JP6534036B2 - Field-effect transistor using hydrogen-terminated diamond - Google Patents

Field-effect transistor using hydrogen-terminated diamond Download PDF

Info

Publication number
JP6534036B2
JP6534036B2 JP2015138068A JP2015138068A JP6534036B2 JP 6534036 B2 JP6534036 B2 JP 6534036B2 JP 2015138068 A JP2015138068 A JP 2015138068A JP 2015138068 A JP2015138068 A JP 2015138068A JP 6534036 B2 JP6534036 B2 JP 6534036B2
Authority
JP
Japan
Prior art keywords
hydrogen
effect transistor
thin film
diamond
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015138068A
Other languages
Japanese (ja)
Other versions
JP2017022240A (en
Inventor
健 川江
健 川江
規夫 徳田
規夫 徳田
浩幹 古市
浩幹 古市
涼太 柄谷
涼太 柄谷
宇史 中嶋
宇史 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2015138068A priority Critical patent/JP6534036B2/en
Publication of JP2017022240A publication Critical patent/JP2017022240A/en
Application granted granted Critical
Publication of JP6534036B2 publication Critical patent/JP6534036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面が水素終端となっているダイヤモンドの表面伝導層をチャネルとした電界効果トランジスタに関する。   The present invention relates to a field effect transistor whose channel is a surface conduction layer of diamond whose surface is hydrogen terminated.

本出願人は、先に二硫化モリブデンをチャネルとし、ゲートに有機強誘電体を用いた電界効果トランジスタを提案している(非特許文献1)。
これに対して本発明は、水素終端ダイヤモンドの表面伝導層をチャネルとした電界効果トランジスタである。
The applicant has previously proposed a field effect transistor in which molybdenum disulfide is used as a channel and an organic ferroelectric is used as a gate (Non-Patent Document 1).
On the other hand, the present invention is a field effect transistor in which the surface conduction layer of hydrogen-terminated diamond is a channel.

「強誘電性ポリマーVDF/TrFEを用いたMoS2−FET構造の作製」,平成26年度応用物理学会 北陸支部 学術講演会 講演予稿集,P20.“Fabrication of MoS2-FET structure using ferroelectric polymer VDF / TrFE,” Proceedings of the 2014 Annual Conference of the Applied Physics Society Hokuriku Branch Conference Proceedings, P20.

本発明は、高い表面キャリア密度を有する水素終端表面からなるダイヤモンドを用いた電界効果トランジスタの提供を目的とする。   An object of the present invention is to provide a field effect transistor using a diamond comprising a hydrogen-terminated surface having a high surface carrier density.

本発明に係る電界効果トランジスタは、水素終端ダイヤモンドの表面伝導層からなるチャネルに、強誘電体からなるゲートを組み合せたことを特徴とする。   A field effect transistor according to the present invention is characterized in that a channel made of a surface conduction layer of hydrogen-terminated diamond is combined with a gate made of a ferroelectric.

表面が水素終端からなるダイヤモンドの表面には、低抵抗のp型表面伝導層を有する。
この表面伝導層は、高い表面キャリア密度(>1013cm−2),低い表面準位密度(>1011cm−2)を有するとともに、その層の厚みは約10nm以下と電流制御に有利な浅いキャリア分布となっている点に特徴がある。
このような表面が水素終端表面になっているダイヤモンドは、マイクロプラズマCVD法等を用いてエピタキシャル成長させることで得られる。
また、ダイヤモンド表面を水素中でアニール処理することでも得られる。
A low resistance p-type surface conductive layer is provided on the surface of the diamond whose surface is hydrogen-terminated.
This surface conductive layer has high surface carrier density (> 10 13 cm -2 ), low surface state density (> 10 11 cm -2 ), and the thickness of the layer is about 10 nm or less, which is advantageous for current control It is characterized in that it has a shallow carrier distribution.
Such a diamond having a hydrogen-terminated surface can be obtained by epitaxial growth using a micro plasma CVD method or the like.
It can also be obtained by annealing the diamond surface in hydrogen.

ここで、強誘電体は前記水素終端ダイヤモンド表面に300℃以下の低温で薄膜形成されたものであることが好ましい。
ダイヤモンドの水素終端表面は300℃を越えると、一部が酸素終端表面に変化する恐れがあるからである。
Here, it is preferable that the ferroelectric is a thin film formed on the surface of the hydrogen-terminated diamond at a low temperature of 300 ° C. or less.
This is because when the hydrogen-terminated surface of diamond exceeds 300 ° C., a part may change to an oxygen-terminated surface.

本発明に係る電界効果トランジスタの具体的な形態例としては、水素終端ダイヤモンドの表面伝導層上にソース及びドレイン電極を形成し、前記ソース電極とドレイン電極との間であって前記水素終端ダイヤモンドの表面伝導層上に強誘電体の薄膜を積層し、前記強誘電体の薄膜にゲート電極を形成した例が挙げられる。   As a specific embodiment of the field effect transistor according to the present invention, source and drain electrodes are formed on a surface conduction layer of hydrogen-terminated diamond, and the hydrogen-terminated diamond is between the source electrode and the drain electrode. The example which laminated | stacked the ferroelectric thin film on the surface conduction layer, and formed the gate electrode in the thin film of the said ferroelectric substance is mentioned.

本発明において強誘電体は、ダイヤモンドの水素終端表面にこの水素終端構造を破壊することなく積層できるものであれば特に限定はないが、約100〜150℃の低温で積層できる点でフッ素系の有機薄膜が好ましく、例えばフッ化ビニリデン(VDF)と、三フッ化エチレン(TrFE)との共重合体薄膜が例として挙げられる。
また、本発明において強誘電体とは、外部に電場がなくても電気双極子が整列しており、且つ、双極子の方向が電場によって変化できる物質をいう。
In the present invention, the ferroelectric is not particularly limited as long as it can be laminated on the hydrogen-terminated surface of diamond without destroying this hydrogen-terminated structure, but it is fluorine-based in that it can be laminated at a low temperature of about 100 to 150 ° C. An organic thin film is preferable, for example, a copolymer thin film of vinylidene fluoride (VDF) and ethylene trifluoride (TrFE) can be mentioned as an example.
Further, in the present invention, a ferroelectric refers to a substance in which electric dipoles are aligned without an external electric field, and the direction of the dipole can be changed by the electric field.

本発明に係る電界効果トランジスタは、水素終端ダイヤモンドの表面伝導層をチャネルとし、ゲートに強誘電体を用いたことにより、この強誘電体の強い分極により効率的にキャリアを誘起することができ、自発分極によるノーマリーオフ動作の実現が期待される。   In the field effect transistor according to the present invention, the surface conduction layer of hydrogen-terminated diamond is a channel, and by using a ferroelectric for the gate, carriers can be efficiently induced by the strong polarization of the ferroelectric, The realization of a normally-off operation by spontaneous polarization is expected.

本発明に係る電界効果トランジスタ(FET)の構造例を模式的に示す。The structural example of the field effect transistor (FET) which concerns on this invention is shown typically. 評価に用いたFETの表面写真を示す。The surface photograph of FET used for evaluation is shown. 強誘電体薄膜(VDF/TrFE)のAFM像を示す。An AFM image of a ferroelectric thin film (VDF / TrFE) is shown. 評価品のIDS−VDS(DCバイアス)特性を示す。The I DS- V DS (DC bias) characteristics of the evaluation product are shown. 評価品のP−V特性を示す。The PV characteristic of evaluation goods is shown. 直流バイアスによる電気特性測定回路を模式的に示す。The electric characteristic measurement circuit by a DC bias is shown typically. 直流バイアスにおけるIDS−VDS特性を示す。It shows the I DS -V DS characteristics in the DC bias. 直流バイアスにおけるIDS−VG特性を示す。The I DS -V G characteristic in direct current | flow bias is shown. 残留分極(自発分極)による電気特性測定回路を模式的に示す。The electrical property measurement circuit by a residual polarization (spontaneous polarization) is shown typically. 自発分極におけるIDS−V’DS特性を示す。It shows the I DS -V 'DS characteristics in spontaneous polarization. 自発分極におけるIDS−V’特性を示す。It shows the I DS -V 'G characteristics of spontaneous polarization.

本発明に係る電界効果トランジスタ(FET)の構造例を図1に模式的に示す。
水素終端表面構造からなる表面伝導層有するダイヤモンド基板を用いて、この表面伝導層の上にソース(Source)電極とドレイン(Drain)電極とを形成してある。
ソース電極とドレイン電極との間であって、この表面伝導層の上にゲートとなるように強誘電体、例えばVDF/TrFEの薄膜を形成し、この薄膜の上にゲート(Gate)電極を形成してある。
A structural example of a field effect transistor (FET) according to the present invention is schematically shown in FIG.
A source (Source) electrode and a drain (Drain) electrode are formed on the surface conduction layer using a diamond substrate having a surface conduction layer having a hydrogen-terminated surface structure.
A thin film of a ferroelectric such as VDF / TrFE is formed between the source electrode and the drain electrode to be a gate on the surface conductive layer, and a gate electrode is formed on the thin film Yes.

このような構造のFETを試作し評価したので、以下説明する。
マイクロ波プラズマCVD法を用いて、人工ダイヤモンドをエピタキシャル成長させて製作したダイヤモンド基板の表面を必要に応じて洗浄し、次にこの表面にフォトリソグラフィ法により、白金又は金等からなるソース電極とドレイン電極を形成した。
次に必要に応じてマスキング処理し、ゲート絶縁膜として75/25mol%のVDF/TrFEコポリマーをスピンコート法により塗布し、その後に110〜120℃にて乾燥させた。
形成されたVDF/TrFEの薄膜の膜厚は、約130nmであった。
次にフォトリソグラフィ法により、VDF/TrFE薄膜の上に白金又は金等からなるゲート電極を形成した。
そのパターンの表面写真を図2に示す。
また、VDF/TrFE薄膜のAFM(原子間力顕微鏡)像を図3に示す。
これにより、VDF/TrFE薄膜にホール等の欠陥が無いことを確認した。
このようにして得られた評価品の直流バイアスによるIDS−VDS特性を示すグラフを図4に示した。
観測されたIDS−VDS特性の近似直線の傾きからシート抵抗値を求めた。
このことから、チャネルとして水素終端表面伝導層が形成されているのを確認できた。
次に測定周波数1HzにおけるP−V特性を図5のグラフに示す。
これにより、強誘電性ヒステリシスを確認することができた。
The trial manufacture and evaluation of the FET having such a structure will be described below.
The surface of a diamond substrate manufactured by epitaxially growing artificial diamond using microwave plasma CVD method is cleaned if necessary, and then the source electrode and drain electrode made of platinum or gold etc. are formed on this surface by photolithography. Formed.
Next, masking treatment was carried out if necessary, and 75/25 mol% of VDF / TrFE copolymer was applied by spin coating as a gate insulating film, and then dried at 110 to 120 ° C.
The film thickness of the VDF / TrFE thin film formed was about 130 nm.
Next, a gate electrode made of platinum, gold or the like was formed on the VDF / TrFE thin film by photolithography.
The surface photograph of the pattern is shown in FIG.
Further, an AFM (atomic force microscope) image of the VDF / TrFE thin film is shown in FIG.
As a result, it was confirmed that the VDF / TrFE thin film was free of defects such as holes.
The graph showing the I DS -V DS characteristics due to the DC bias of the thus obtained evaluation items shown in FIG.
The sheet resistance value was determined from the slope of the approximate straight line of the observed I DS- V DS characteristics.
From this, it could be confirmed that a hydrogen-terminated surface conduction layer was formed as a channel.
Next, the PV characteristics at a measurement frequency of 1 Hz are shown in the graph of FIG.
As a result, ferroelectric hysteresis could be confirmed.

次に図6に示すような測定回路を用いて、ゲートに直流バイアスVGSを印加したまま、IDSを測定した結果を図7及び図8に示す。
図7は、IDS−VDS特性であり、電流On/Off比は10倍以上を示した。
図8は、IDS−V特性であり、ゲートが強誘電体として機能しているのが分かる。
Next, using the measurement circuit as shown in FIG. 6, the results of measuring I DS with the DC bias V GS applied to the gate are shown in FIG. 7 and FIG.
FIG. 7 shows I DS -V DS characteristics, and the current on / off ratio showed 10 7 times or more.
FIG. 8 shows I DS -V G characteristics, and it can be seen that the gate functions as a ferroelectric.

次に、図9に示すような測定回路を用いて、ゲートに所定のパルス電圧を5sec間印可し、VDF/TrFEの薄膜を分極させた後にゲート端子を開放してからIDSを測定した。
その残留分極(自発分極)によるIDS−V’DS特性の測定結果を図10に、IDS−V’特性を図11に示す。
このことから、本発明に係るFETは自発分極によりゲート電圧ゼロ状態でチャネル電流に変調を与えることが可能であり、ノーマリーオフ動作の実現も可能と思われる。
Next, using a measurement circuit as shown in FIG. 9, a predetermined pulse voltage was applied to the gate for 5 seconds to polarize the VDF / TrFE thin film, and then the gate terminal was opened to measure I DS .
The measurement results of I DS -V ' DS characteristics by the residual polarization (spontaneous polarization) are shown in FIG. 10, and the I DS -V' G characteristics are shown in FIG.
From this, it is possible that the FET according to the present invention can modulate the channel current at the gate voltage zero state by the spontaneous polarization, and also realize the normally-off operation.

Claims (1)

水素終端ダイヤモンドの表面伝導層上にソース及びドレイン電極を形成し、
前記ソース電極とドレイン電極との間であって前記水素終端ダイヤモンドの表面伝導層上に強誘電体の薄膜を積層してあり、
前記強誘電体の薄膜にゲート電極を形成してあり、
前記強誘電体はフッ化ビニリデンと三フッ化エチレンとの共重合体薄膜であることを特徴とする電界効果トランジスタ。
Forming source and drain electrodes on the surface conductive layer of hydrogen terminated diamond,
Between the source electrode and the drain electrode, a ferroelectric thin film is laminated on the surface conductive layer of the hydrogen-terminated diamond ,
A gate electrode is formed on the ferroelectric thin film ,
The field effect transistor is characterized in that the ferroelectric is a copolymer thin film of vinylidene fluoride and trifluoride ethylene .
JP2015138068A 2015-07-09 2015-07-09 Field-effect transistor using hydrogen-terminated diamond Active JP6534036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138068A JP6534036B2 (en) 2015-07-09 2015-07-09 Field-effect transistor using hydrogen-terminated diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138068A JP6534036B2 (en) 2015-07-09 2015-07-09 Field-effect transistor using hydrogen-terminated diamond

Publications (2)

Publication Number Publication Date
JP2017022240A JP2017022240A (en) 2017-01-26
JP6534036B2 true JP6534036B2 (en) 2019-06-26

Family

ID=57888368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138068A Active JP6534036B2 (en) 2015-07-09 2015-07-09 Field-effect transistor using hydrogen-terminated diamond

Country Status (1)

Country Link
JP (1) JP6534036B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245409A (en) * 1994-03-07 1995-09-19 Mitsubishi Electric Corp Semiconductor device
JP3364119B2 (en) * 1996-09-02 2003-01-08 東京瓦斯株式会社 Hydrogen-terminated diamond MISFET and method for manufacturing the same
US6316797B1 (en) * 1999-02-19 2001-11-13 Advanced Technology Materials, Inc. Scalable lead zirconium titanate(PZT) thin film material and deposition method, and ferroelectric memory device structures comprising such thin film material

Also Published As

Publication number Publication date
JP2017022240A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
Ma et al. MoTe2 lateral homojunction field-effect transistors fabricated using flux-controlled phase engineering
Xiao et al. Ferroelectric-domain-patterning-controlled Schottky junction state in monolayer MoS 2
Jie et al. Ferroelectric polarization effects on the transport properties of graphene/PMN-PT field effect transistors
Park et al. Ferroelectric single-crystal gated graphene/hexagonal-BN/ferroelectric field-effect transistor
US8735271B2 (en) Gate tunable tunnel diode
Wang et al. Modulation of the anisotropic electronic properties in ReS2 via ferroelectric film
Petti et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs
Yang et al. Dual-gated topological insulator thin-film device for efficient fermi-level tuning
Chaganti et al. Demonstration of a depletion-mode SrSnO 3 n-channel MESFET
TWI765974B (en) Semiconductor substrate, electronic device, semiconductor substrate inspection method and electronic device manufacturing method
Blanchard et al. MOSFETs made from GaN nanowires with fully conformal cylindrical gates
Sun et al. Tunable transport characteristics of double-gated graphene field-effect transistors using P (VDF-TrFE) ferroelectric gating
Shih et al. Application of sputtering-deposited AlN films to gate dielectric for AlGaN/GaN metal–insulator–semiconductor heterojunction field-effect transistor
JP2016213280A (en) Field effect transistor
Huo et al. Flexible transparent InGaZnO thin-film transistors on muscovite mica
Huang et al. Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer
JP6534036B2 (en) Field-effect transistor using hydrogen-terminated diamond
Fukushima et al. Electrical characteristics of controlled-polarization-type ferroelectric-gate field-effect transistor
JP5747245B2 (en) Field effect transistor and manufacturing method thereof
US20180331189A1 (en) Electron Carrier Confinement in Gallium Oxide (Ga2O3)
Chou et al. Gate field induced ordered electric dipoles in a polymer dielectric for low-voltage operating organic thin-film transistors
Albaridy et al. Strain-Induced Sulfur Vacancies in Monolayer MoS2
JP2016157874A (en) Semiconductor laminate structure and manufacturing method of the same, and semiconductor element and manufacturing method of the same
JP2018157076A (en) MFS type field effect transistor
Sha et al. Adaptive wind-evoked power devices for autonomous motor control applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6534036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250