JP6533049B2 - Half bearing - Google Patents

Half bearing Download PDF

Info

Publication number
JP6533049B2
JP6533049B2 JP2014224253A JP2014224253A JP6533049B2 JP 6533049 B2 JP6533049 B2 JP 6533049B2 JP 2014224253 A JP2014224253 A JP 2014224253A JP 2014224253 A JP2014224253 A JP 2014224253A JP 6533049 B2 JP6533049 B2 JP 6533049B2
Authority
JP
Japan
Prior art keywords
groove
half bearing
region
inner circumferential
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014224253A
Other languages
Japanese (ja)
Other versions
JP2016089926A (en
Inventor
裕紀 高田
裕紀 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2014224253A priority Critical patent/JP6533049B2/en
Publication of JP2016089926A publication Critical patent/JP2016089926A/en
Application granted granted Critical
Publication of JP6533049B2 publication Critical patent/JP6533049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半割軸受に供給する油量を抑制する技術に関する。   The present invention relates to a technology for suppressing the amount of oil supplied to a half bearing.

対をなす2つの半割軸受を互いに突合せて全体として円筒状に形成し内周面の側に軸を収容するすべり軸受が広く用いられている。このうち一方の半割軸受の内周面に周方向に沿って潤滑油を流通させる油溝を形成したすべり軸受が知られている。
特許文献1には、油溝を、半割軸受の周方向全域に形成して接合部で開口させた半割軸受が記載されている。特許文献2には、油溝の底部を、周方向に中央側の部分より接合部に向けて内周面の中心位置に近づくように形成した軸受が記載されている。特許文献3には、油溝の流路面積が接合部側の部分で小さくなっている軸受が記載されている。
2. Description of the Related Art A slide bearing is widely used, in which two half bearings forming a pair are butted together to form an overall cylindrical shape and the shaft is accommodated on the side of the inner circumferential surface. Among them, there is known a slide bearing in which an oil groove is formed in the inner peripheral surface of one half bearing so as to distribute lubricating oil along the circumferential direction.
Patent Document 1 describes a half bearing in which oil grooves are formed in the entire circumferential direction of the half bearing and the joint is opened. Patent Document 2 describes a bearing in which the bottom of the oil groove is formed so as to be closer to the center position of the inner circumferential surface from the central portion in the circumferential direction toward the joint. Patent Document 3 describes a bearing in which the flow passage area of the oil groove is reduced at the joint portion side.

特許文献1に記載された軸受は、油溝が半割り軸受の接合部にまで開口しているため、エンジンに必要な油圧を確保するために比較的多量の潤滑油が必要となる。特許文献2に記載された軸受は、異物が油溝の端部に堆積し易いという問題がある。特許文献3に記載された軸受は、油溝の流路面積が接合部側部分で小さくなっているので、メインホール内の油圧を確保し易いという特徴がある。   In the bearing described in Patent Document 1, since the oil groove opens up to the joint of the half bearing, a relatively large amount of lubricating oil is required to secure the hydraulic pressure necessary for the engine. The bearing described in Patent Document 2 has a problem that foreign matter tends to be deposited at the end of the oil groove. The bearing described in Patent Document 3 is characterized in that the hydraulic pressure in the main hole can be easily secured because the flow passage area of the oil groove is small at the joint portion side.

特開昭63−109215号公報Japanese Patent Application Laid-Open No. 63-109215 特公平7−65615号公報Japanese Examined Patent Publication 7-65615 特許第4466020号Patent No. 4466020

しかしながら、特許文献3に記載の軸受によっても、半割軸受の円周方向全域に油溝が形成されているため、その油溝を満たすだけの潤滑油が必要であった。
本発明の目的の一つは、従来技術に比べて潤滑油の漏れる量(以下、漏れ油量という)が抑制された半割軸受を提供することである。
However, even with the bearing described in Patent Document 3, since the oil groove is formed in the entire circumferential direction of the half bearing, a lubricating oil sufficient to fill the oil groove is required.
One of the objects of the present invention is to provide a half bearing in which the amount of leakage of lubricating oil (hereinafter referred to as the amount of leakage oil) is suppressed as compared with the prior art.

上述した課題を解決するため、本発明に係る半割軸受は、対をなす下方側の半割軸受と突合せて全体として内周面の側に軸を収容する円筒状の軸受を形成する上方側の半割軸受であって、前記下方側の半割軸受の接合面と突合せる2つの接合面と、前記2つの接合面のうち一方の接合面から他方の接合面に向かって、前記内周面の周方向に沿って溝が形成された第1領域と、前記内周面のうち前記第1領域よりも前記他方の接合面に近い側にあって、前記溝が形成されていない第2領域と、を有し、前記他方の接合面は、前記軸の回転方向の下流側に配置され、前記溝は、前記下方側の半割軸受に連通しておらず、且つ、該一方の接合面が前記内周面と交差する稜線を起点とし、前記第1領域と前記第2領域との境界線を終点とし、前記起点及び前記終点から離れるほど深くなるように形成されることを特徴とする。 In order to solve the problems described above, the half bearing according to the present invention is an upper side that forms a cylindrical bearing that abuts with a pair of lower half bearings and accommodates a shaft on the side of the inner peripheral surface as a whole. The inner circumference from two joint surfaces in contact with the joint surface of the lower half bearing, and one joint surface of the two joint surfaces toward the other joint surface; A first region in which a groove is formed along the circumferential direction of the surface, and a second region on the side closer to the other joint surface than the first region of the inner peripheral surface, in which the groove is not formed And the other joint surface is disposed on the downstream side in the rotational direction of the shaft , the groove does not communicate with the lower half bearing, and the one joint is The starting point is a ridge line where the surface intersects with the inner circumferential surface, and the end point is a boundary between the first region and the second region, the starting point It is formed to be deeper farther from fine said end point and said Rukoto.

本発明によれば、従来技術に比べて半割軸受からの漏れ油量を抑制することができる。   According to the present invention, the amount of oil leaked from the half bearing can be suppressed as compared with the prior art.

半割軸受の概要を示す斜視図。The perspective view which shows the outline of a half bearing. 半割軸受を溝の中心(図1のII−II)で切断した断面図。Sectional drawing which cut | disconnected the half bearing at the center (II-II of FIG. 1) of a groove | channel. 内周面の半径に対する第2領域長さの割合を説明するための概略図。The schematic for demonstrating the ratio of 2nd area | region length with respect to the radius of inner skin. 内周面の半径に対する第2領域長さの割合と、漏れ油量との関係を示すグラフ。The graph which shows the relationship between the ratio of the 2nd field length to the radius of inner skin, and the amount of leaked oil.

1.実施形態
以下、本発明の一実施形態に係る半割軸受1の構造を説明する。図において、半割軸受1の各構成が配置される空間をxyz右手系座標空間として表す。図に示す座標記号のうち、白い円の中に黒い円を描いた記号は、紙面奥側から手前側に向かう矢印を表す。空間においてx軸に沿う方向をx軸方向という。また、x軸方向のうち、x成分が増加する方向を+x方向といい、x成分が減少する方向を−x方向という。y、z成分についても、上記の定義に沿ってy軸方向、+y方向、−y方向、z軸方向、+z方向、−z方向を定義する。
1. Embodiment Hereinafter, the structure of a half bearing 1 according to an embodiment of the present invention will be described. In the drawing, a space in which each configuration of the half bearing 1 is disposed is represented as an xyz right-handed coordinate space. The symbol which drew the black circle in the white circle among the coordinate symbols shown to a figure represents the arrow which goes to a front side from the back side of a paper surface. The direction along the x axis in space is called the x axis direction. Further, in the x-axis direction, the direction in which the x component increases is referred to as the + x direction, and the direction in which the x component decreases is referred to as the −x direction. The y-axis direction, the + y-direction, the −y-direction, the z-axis direction, the + z-direction, and the −z-direction are also defined for the y and z components in accordance with the above definition.

図1は、半割軸受1の概要を示す斜視図である。半割軸受1は、対をなす下方側の半割軸受(図1において図示せず)と突合せて全体として内周面13の側に軸を収容する円筒状のすべり軸受を形成する上方側の半割軸受である。図1において、半割軸受1は、内周面13の側に収容する軸がx軸方向に沿うように配置されている。なお、図1において+z方向が上方である。   FIG. 1 is a perspective view showing an outline of a half bearing 1. The upper half side bearing 1 forms a cylindrical slide bearing which abuts with a lower half side bearing (not shown in FIG. 1) forming a pair and accommodates a shaft on the side of the inner peripheral surface 13 as a whole. It is a half bearing. In FIG. 1, the half bearing 1 is arranged such that the axis housed on the side of the inner circumferential surface 13 is along the x-axis direction. In FIG. 1, the + z direction is upward.

図1に示すように半割軸受1の内周面13には幅方向(x軸方向)の中央を周方向に沿って溝10が形成されている。溝10のうち所定の位置には外周面14に向けて貫通した油孔19が設けられている。半割軸受1を外周面14の側から支持するケーシング(図示略)には、潤滑油の給油口が設けられており、この給油口から油孔19に潤滑油が供給される。   As shown in FIG. 1, a groove 10 is formed on the inner circumferential surface 13 of the half bearing 1 along the circumferential direction at the center in the width direction (x-axis direction). An oil hole 19 penetrating toward the outer circumferential surface 14 is provided at a predetermined position of the groove 10. A casing (not shown) for supporting the half bearing 1 from the side of the outer peripheral surface 14 is provided with a lubricating oil filling port, and the lubricating oil is supplied to the oil hole 19 from this filling port.

図2は、半割軸受1を溝の中心(図1のII−II)で切断した断面図である。図2(a)には、従来技術の例として半割軸受7が示されている。この半割軸受7は、特許文献3に記載された「溝の流路面積が接合部側の部分で小さくなっている軸受」の一例である。半割軸受7の外周面74および内周面73は、いずれもyz平面上で半円形である。半割軸受7の内周面73に収容される軸は矢印Dに沿って回転する。この矢印Dが示す回転方向により上流側および下流側を定義する。上流側の接合面71および下流側の接合面72は、いずれも下方側(−z方向側)の半割軸受の接合面と突合せる接合面である。   FIG. 2 is a cross-sectional view of the half bearing 1 cut at the center of the groove (II-II in FIG. 1). The half bearing 7 is shown by FIG. 2 (a) as an example of a prior art. The half bearing 7 is an example of the “bearing in which the flow passage area of the groove is reduced at the joint portion side” described in Patent Document 3. The outer peripheral surface 74 and the inner peripheral surface 73 of the half bearing 7 are both semicircular on the yz plane. The shaft accommodated in the inner circumferential surface 73 of the half bearing 7 rotates along the arrow D. The upstream side and the downstream side are defined by the rotation direction indicated by the arrow D. The joint surface 71 on the upstream side and the joint surface 72 on the downstream side are joint surfaces that abut on the joint surface of the lower half (−z direction side) half bearing.

半割軸受7には油孔79を有する溝70が設けられている。この溝70は、上流側の接合面71が内周面73と交差する稜線710を起点とし、下流側の接合面72が内周面73と交差する稜線720を終点とする。溝70は起点および終点で深さがない、すなわち、溝70は起点および終点で内周面73と繋がっている。そして、溝70は、上流側の接合面71および下流側の接合面72から離れるほど深くなるように形成されている。溝70が最も深くなる位置は、例えば内周面73のうち稜線710および稜線720からの距離が等しい中央部であり、その深さはt7である。   The half bearing 7 is provided with a groove 70 having an oil hole 79. The groove 70 starts from a ridgeline 710 where the bonding surface 71 on the upstream side intersects with the inner circumferential surface 73, and ends at a ridgeline 720 where the bonding surface 72 on the downstream side intersects the inner circumferential surface 73. The groove 70 has no depth at the start and end points, ie, the groove 70 is connected to the inner circumferential surface 73 at the start and end points. The groove 70 is formed to be deeper as it gets farther from the upstream joint surface 71 and the downstream joint surface 72. The position where the groove 70 is deepest is, for example, a central portion of the inner circumferential surface 73 which has the same distance from the ridgeline 710 and the ridgeline 720, and the depth thereof is t7.

一方、図2(b)には、本発明に係る半割軸受1が示されている。半割軸受1の外周面14および内周面13は、いずれもyz平面上で半円形である。半割軸受1の内周面13に収容される軸は矢印Dに沿って回転する。この矢印Dが示す回転方向により上流側および下流側を定義する。   On the other hand, FIG. 2 (b) shows a half bearing 1 according to the present invention. The outer peripheral surface 14 and the inner peripheral surface 13 of the half bearing 1 are both semicircular on the yz plane. The shaft accommodated in the inner circumferential surface 13 of the half bearing 1 rotates along the arrow D. The upstream side and the downstream side are defined by the rotation direction indicated by the arrow D.

半割軸受1は、上流側の接合面11および下流側の接合面12を有する。これらはいずれも下方側(−z方向側)の半割軸受の接合面と突合せる接合面である。また、半割軸受1は、内周面13に周方向に沿った溝10を有している。溝10は、油孔19(油孔79に相当)を有する点と上流側の接合面11が内周面13と交差する稜線110を起点とする点において、溝70と共通しているが、終点が下流側の接合面12に至っていない点において溝70と異なっている。   The half bearing 1 has an upstream joint surface 11 and a downstream joint surface 12. Each of these is a joint surface to be abutted with the joint surface of the lower half (−z direction side) half bearing. The half bearing 1 also has a groove 10 along the circumferential direction on the inner circumferential surface 13. The groove 10 is common to the groove 70 in that it has an oil hole 19 (corresponding to the oil hole 79) and a ridge line 110 where the joint surface 11 on the upstream side intersects the inner circumferential surface 13 as a starting point It differs from the groove 70 in that the end point does not reach the downstream joint surface 12.

溝10は、下流側の接合面12が内周面13と交差する稜線120よりも内周面13において上流側に位置する境界線130を終点とする。境界線130はx軸方向に沿った線である。これにより内周面13は、稜線110から境界線130までの第1領域と、境界線130から稜線120までの第2領域とに区分される。すなわち、境界線130は、第1領域と第2領域との境界である。第1領域は、軸の接合面11から内周面13の周方向に沿って溝10が形成された領域である。第2領域は、第1領域よりも軸の回転方向の下流側の領域であって、溝10が形成されていない領域である。   The groove 10 ends a boundary line 130 located upstream of the ridgeline 120 at which the downstream joint surface 12 intersects the inner circumferential surface 13 with the inner circumferential surface 13. The boundary line 130 is a line along the x-axis direction. Thus, the inner circumferential surface 13 is divided into a first region from the ridge 110 to the boundary 130 and a second region from the boundary 130 to the ridge 120. That is, the boundary 130 is the boundary between the first area and the second area. The first region is a region in which the groove 10 is formed along the circumferential direction of the inner circumferential surface 13 from the joint surface 11 of the shaft. The second region is a region downstream of the first region in the rotation direction of the shaft, and is a region in which the groove 10 is not formed.

溝10は、稜線110および境界線130から離れるほど深くなるように形成されている。溝10が最も深くなる位置は、例えば内周面13のうち稜線110および境界線130からの距離が等しい位置であり、その深さはt1である。この位置は、例えば内周面の周方向における中央部よりも上流側にある。   The groove 10 is formed to be deeper as it goes away from the ridgeline 110 and the boundary 130. The position where the groove 10 is deepest is, for example, a position on the inner circumferential surface 13 where the distances from the ridgeline 110 and the boundary 130 are equal, and the depth is t1. This position is, for example, on the upstream side of the central portion in the circumferential direction of the inner circumferential surface.

そして、溝10は、起点および終点で深さがない、すなわち、溝10は、起点および終点で内周面13と繋がっている。この構成により、溝10は下流側の接合面12と連通していないため、接合面12における潤滑油の漏れ量が、溝と連通している場合に比べて抑制される。また、溝10は、上流側の接合面11に含まれる稜線110を起点としているので、半割軸受1の内周面13に混入した異物は上流側の接合面11から溝10を通って半割軸受1の外部へ排出され易い。   And, the groove 10 has no depth at the start point and the end point, that is, the groove 10 is connected to the inner circumferential surface 13 at the start point and the end point. With this configuration, the groove 10 does not communicate with the downstream joint surface 12, so the amount of lubricating oil leaked at the joint surface 12 is suppressed as compared to when the groove 10 communicates with the groove. In addition, since the groove 10 starts from the ridgeline 110 included in the joint surface 11 on the upstream side, foreign matter mixed in the inner circumferential surface 13 of the half bearing 1 passes from the joint surface 11 on the upstream side through the groove 10 and It is easy to be discharged to the outside of the split bearing 1.

2.計算例
ここで、図2(b)に示すyz平面において半割軸受1が収容する軸の中心100から内周面13までの距離は半径rであり、内周面13上にある境界線130および稜線120の相互間の直線距離は長さLである。半径rに対する長さLの割合は7%以上であることが望ましい。以下に、数値計算結果に基づいてこの割合について説明する。
2. Calculation Example Here, in the yz plane shown in FIG. 2B, the distance from the center 100 of the shaft accommodated by the half bearing 1 to the inner circumferential surface 13 is the radius r, and the boundary 130 on the inner circumferential surface 13 And the linear distance between the ridgelines 120 is L. The ratio of the length L to the radius r is preferably 7% or more. Below, this ratio is demonstrated based on a numerical calculation result.

図3は、内周面の半径に対する第2領域長さの割合を説明するための概略図である。稜線120および境界線130は、内周面13の上にあるため、yz平面において軸の中心100からそれぞれ半径rだけ離れている。したがって、yz平面において、中心100、稜線120、および境界線130を結ぶと二等辺三角形となる。この二等辺三角形の底辺が第2領域の長さLであり、境界線130と稜線120とをyz平面上における直線で結んだ距離である。なお、この長さLは、内周面13に沿った長さではない。   FIG. 3 is a schematic diagram for explaining the ratio of the second region length to the radius of the inner peripheral surface. Since the ridgeline 120 and the boundary 130 are on the inner circumferential surface 13, they are each separated by a radius r from the center 100 of the axis in the yz plane. Therefore, connecting the center 100, the ridgeline 120, and the boundary 130 in the yz plane results in an isosceles triangle. The base of this isosceles triangle is the length L of the second region, which is the distance between the boundary 130 and the ridge 120 by a straight line on the yz plane. The length L is not a length along the inner circumferential surface 13.

本願発明の発明者らは、長さL/半径rが0.07以上、すなわち上記の割合が7%以上となるように溝10を切り上げて形成した半割軸受に収容した軸を、2つの代表的な回転速度でそれぞれ回転させたときの漏れ油量を推算する数値計算を行った。この数値計算には、質量保存を考慮したレイノルズ方程式による油膜解析を用いた。   The inventors of the present invention have two shafts which are housed in a half bearing formed by cutting up the groove 10 so that the length L / radius r is 0.07 or more, that is, the above ratio is 7% or more. Numerical calculation was performed to estimate the amount of leaked oil when rotating each at a typical rotation speed. The oil film analysis by Reynolds equation in consideration of mass conservation was used for this numerical calculation.

図4は、計算結果を示すグラフであり、内周面の半径に対する第2領域の長さの割合と、漏れ油量との関係を示すグラフである。図4の横軸は内周面13の半径rに対する第2領域の長さLの割合を示す百分率である。図4の縦軸は、軸を回転させたときの単位時間当たりの漏れ油量を示している。   FIG. 4 is a graph showing the calculation result, and is a graph showing the relationship between the ratio of the length of the second region to the radius of the inner circumferential surface and the amount of leaked oil. The horizontal axis in FIG. 4 is a percentage indicating the ratio of the length L of the second region to the radius r of the inner circumferential surface 13. The vertical axis in FIG. 4 indicates the amount of leaked oil per unit time when the shaft is rotated.

上記計算は、すべり軸受の内周面の側に収容された軸を、低速回転である2000rpmと、高速回転である6600rpmでそれぞれ回転させた場合について行った。低速回転では従来技術による半割軸受7の漏れ油量がVLである。一方、本願発明に係る半割軸受1の長さL/半径rの割合を7%以上とすると、図4に曲線WLで示すように漏れ油量がVLよりも少なくなり、さらにこの割合が7%を超えて大きくなるほど漏れ油量が少なくなった。すなわち、内周面の半径に対する第2領域の長さの割合を7%以上とすることにより、低速回転時における漏れ油量は従来技術に比べて抑制されることがわかった。   The above calculation was performed for the case where the shaft housed on the side of the inner circumferential surface of the slide bearing was rotated at 2000 rpm, which is a low speed rotation, and 6600 rpm, which is a high speed rotation. At low speed rotation, the amount of oil leaked from the half bearing 7 according to the prior art is VL. On the other hand, assuming that the ratio of length L / radius r of the half bearing 1 according to the present invention is 7% or more, the amount of oil leakage becomes smaller than VL as shown by curve WL in FIG. As the percentage increases, the amount of leaked oil decreases. That is, it was found that by setting the ratio of the length of the second region to the radius of the inner peripheral surface to 7% or more, the amount of oil leakage at the time of low speed rotation is suppressed as compared with the prior art.

また、高速回転では従来技術による半割軸受7の漏れ油量がVHである。一方、本願発明に係る半割軸受1の漏れ油量は、低速回転時における曲線WLが、高速回転時において曲線WHに移動した。この曲線WLから曲線WHへの漏れ油量の増加率は、VLからVHへの増加率よりも高い。すなわち、本願発明に係る半割軸受1のように、内周面13のうち第1領域よりも接合面12に近い側にあって、溝10が形成されていない第2領域を設けることにより、高速回転時における漏れ油量は従来技術に比べて増加することがわかった。したがって、半割軸受1によれば高速回転時における異物の排出性が従来技術である半割軸受7に比べて向上することがわかった。   Further, at high speed rotation, the amount of leaked oil of the half bearing 7 according to the prior art is VH. On the other hand, the leaked oil amount of the half bearing 1 according to the present invention is such that the curve WL at low speed rotation moves to the curve WH at high speed rotation. The rate of increase in the amount of leaked oil from the curve WL to the curve WH is higher than the rate of increase from the VL to the VH. That is, as in the half bearing 1 according to the present invention, by providing the second region in which the groove 10 is not formed on the side closer to the joint surface 12 than the first region in the inner circumferential surface 13, It has been found that the amount of oil leakage at high speed rotation is increased as compared with the prior art. Therefore, according to the half bearing 1, it has been found that the discharge performance of foreign matter at high speed rotation is improved as compared with the half bearing 7 according to the prior art.

以上説明したように、本発明に係る半割軸受1は、溝10が形成されている第1領域よりも軸の回転方向の下流側に、溝10が形成されていない第2領域を設けるため、漏れ油量が減少し、潤滑油の供給量を抑制することができる。   As described above, in the half bearing 1 according to the present invention, the second region in which the groove 10 is not formed is provided downstream of the first region in which the groove 10 is formed in the rotational direction of the shaft. The amount of leaked oil is reduced, and the amount of lubricating oil supplied can be suppressed.

特に、第2領域の両端である境界線130と稜線120との長さLを、内周面13の半径rの7%以上とすることにより、軸の低速回転時では従前構造よりも漏れ油量が低減し、軸の高速回転時では漏れ油量が増加するものの異物排出性が向上する。   In particular, by setting the length L of the boundary line 130 and the ridge 120 which are both ends of the second region to 7% or more of the radius r of the inner circumferential surface 13, the leaked oil than in the conventional structure at low speed rotation of the shaft The amount decreases, and at the time of high-speed rotation of the shaft, although the amount of oil leakage increases, the foreign matter dischargeability is improved.

1…半割軸受、10…溝、100…中心、11…接合面、110…稜線、12…接合面、120…稜線、13…内周面、130…境界線、14…外周面、19…油孔、7…半割軸受、70…溝、71…接合面、710…稜線、72…接合面、720…稜線、73…内周面、D…矢印、L…長さ、r…半径、WH…曲線、WL…曲線 DESCRIPTION OF SYMBOLS 1 ... half bearing, 10 ... groove | channel, 100 ... center, 11 ... joint surface, 110 ... ridgeline, 12 ... joint surface, 120 ... ridgeline, 13 ... inner peripheral surface, 130 ... boundary line, 14 ... outer peripheral surface, 19 ... Oil hole, 7 ... half bearing, 70 ... groove, 71 ... joint surface, 710 ... ridge line, 72 ... joint surface, 720 ... ridge line, 73 ... inner circumferential surface, D ... arrow, L ... length, r ... radius, WH ... Curve, WL ... Curve

Claims (1)

対をなす下方側の半割軸受と突合せて全体として内周面の側に軸を収容する円筒状の軸受を形成する上方側の半割軸受であって、
前記下方側の半割軸受の接合面と突合せる2つの接合面と、
前記2つの接合面のうち一方の接合面から他方の接合面に向かって、前記内周面の周方向に沿って溝が形成された第1領域と、
前記内周面のうち前記第1領域よりも前記他方の接合面に近い側にあって、前記溝が形成されていない第2領域と、
を有し、
前記他方の接合面は、前記軸の回転方向の下流側に配置され
前記溝は、前記下方側の半割軸受に連通しておらず、且つ、該一方の接合面が前記内周面と交差する稜線を起点とし、前記第1領域と前記第2領域との境界線を終点とし、前記起点及び前記終点から離れるほど深くなるように形成され
ことを特徴とする半割軸受。
An upper half bearing that forms a cylindrical bearing that abuts with a pair of lower half bearings and accommodates a shaft on the side of the inner circumferential surface as a whole,
Two joint surfaces to be abutted with the joint surfaces of the lower half bearings;
A first region in which a groove is formed along a circumferential direction of the inner circumferential surface from one of the two bonding surfaces toward the other of the two bonding surfaces;
A second region of the inner circumferential surface closer to the other joining surface than the first region and in which the groove is not formed;
Have
The other joint surface is disposed downstream of the rotation direction of the shaft ,
The groove does not communicate with the lower half bearing, and a boundary line between the first region and the second region starts from a ridge line at which one of the joint surfaces intersects the inner peripheral surface. the line and the end point, the start point and half bearing, characterized in that that will be formed so as deeper distance from the end point.
JP2014224253A 2014-11-04 2014-11-04 Half bearing Active JP6533049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224253A JP6533049B2 (en) 2014-11-04 2014-11-04 Half bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224253A JP6533049B2 (en) 2014-11-04 2014-11-04 Half bearing

Publications (2)

Publication Number Publication Date
JP2016089926A JP2016089926A (en) 2016-05-23
JP6533049B2 true JP6533049B2 (en) 2019-06-19

Family

ID=56018028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224253A Active JP6533049B2 (en) 2014-11-04 2014-11-04 Half bearing

Country Status (1)

Country Link
JP (1) JP6533049B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243434A (en) * 1994-03-02 1995-09-19 Nissan Motor Co Ltd Crank lubricating device for engine
JPH1030419A (en) * 1996-07-17 1998-02-03 Nippon Soken Inc Bearing device for internal combustion engine
JP2005249024A (en) * 2004-03-03 2005-09-15 Daido Metal Co Ltd Slide bearing
JP4513001B2 (en) * 2004-10-29 2010-07-28 大豊工業株式会社 Bearing lubricator
JP4725480B2 (en) * 2006-10-12 2011-07-13 トヨタ自動車株式会社 Slide bearing, and torque transmission device and engine having the same
JP5084346B2 (en) * 2007-05-17 2012-11-28 日立造船株式会社 Bearing metal

Also Published As

Publication number Publication date
JP2016089926A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP6096689B2 (en) Plain bearing
JP5967719B2 (en) Main bearing for crankshaft of internal combustion engine
EP2770189A1 (en) Half thrust bearing and bearing device
JP4864108B2 (en) Connecting rod bearing for internal combustion engine
WO2014148573A1 (en) Sliding bearing
JP6095233B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
JP2016035304A (en) Half-split thrust bearing and bearing device using same
JP2009174697A (en) Connecting rod bearing for internal combustion engine
JP5971995B2 (en) Half bearing and plain bearing
US8961018B2 (en) Connecting rod bearing
EP3263930A1 (en) Slide bearing
JP6390038B2 (en) Sliding bearing and manufacturing method of sliding bearing
JP5801753B2 (en) Half bearing and plain bearing
JP6533049B2 (en) Half bearing
JP6025655B2 (en) Manufacturing method of plain bearing
WO2015072407A1 (en) Slide bearing
JP5337227B2 (en) Floating bush bearing
KR20170118186A (en) METHOD FOR MANUFACTURING SLIDE BEARING AND SLIDE BEARING
JP6644603B2 (en) Washers
JP6216226B2 (en) Plain bearing
JP2016090026A (en) Half-split bearing
KR20170122222A (en) Sliding bearing
WO2017104795A1 (en) Slide bearing
JP6390852B2 (en) Plain bearing
JP6166064B2 (en) Plain bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6533049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250