JP6531905B2 - Friction part structure and method of forming friction surface - Google Patents
Friction part structure and method of forming friction surface Download PDFInfo
- Publication number
- JP6531905B2 JP6531905B2 JP2015129185A JP2015129185A JP6531905B2 JP 6531905 B2 JP6531905 B2 JP 6531905B2 JP 2015129185 A JP2015129185 A JP 2015129185A JP 2015129185 A JP2015129185 A JP 2015129185A JP 6531905 B2 JP6531905 B2 JP 6531905B2
- Authority
- JP
- Japan
- Prior art keywords
- friction
- transfer film
- high hardness
- forming
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Description
本発明は、摩擦部構造及び摩擦面の形成方法に関する。 The present invention relates to a friction part structure and a method of forming a friction surface.
さまざまな分野で使用される機構部品には、回転や伸縮、屈曲など可動部分に摩擦部が存在している。具体例を挙げるならば、駆動軸を備えるモータやポンプであったり、ロッドを備えるシリンダ、膝関節や股関節等の生体関節を模した人工関節などがそれに該当する。 In mechanical parts used in various fields, friction parts exist in movable parts such as rotation, extension and contraction, and bending. Specific examples thereof include a motor and a pump provided with a drive shaft, a cylinder provided with a rod, and an artificial joint imitating a living joint such as a knee joint and a hip joint.
そして従来より、主に運動効率の観点から、できるかぎり摩擦抵抗の少ない摩擦部の構造が提案されている(例えば、特許文献1参照。)。 And conventionally, from the viewpoint of kinetic efficiency mainly, the structure of the friction part with as little friction resistance as possible is proposed (for example, refer to patent documents 1.).
このような摩擦部を備える機構部品によれば、可動部分を円滑に運動させることができ、しかも、摩耗量を減少させて摩耗粉の発生を可及的抑制することができる。 According to the mechanical component provided with such a friction part, the movable part can be moved smoothly, and furthermore, the amount of wear can be reduced and generation of wear powder can be suppressed as much as possible.
ところで、前述の機構部品のうち、例えば人工関節に着目すると、人工関節は、手術によって体内に埋め込まれて関節の代替として機能させるものであることから、患者負担等を勘案するとその性質上メンテナンスや交換は容易ではない。 By the way, focusing on, for example, an artificial joint among the above-mentioned mechanical parts, an artificial joint is implanted in the body by surgery and functions as a substitute for the joint. Exchange is not easy.
それゆえ、摩擦抵抗が少なく摩耗粉の発生量が少ない摩擦部を備えることは人工関節の構成上重要な要素であり、近年では長年に亘り低摩擦抵抗状態を維持可能なものが開発されつつある。 Therefore, it is an important factor in the construction of the artificial joint to provide a friction part having a low friction resistance and a low generation amount of wear powder, and in recent years, one capable of maintaining a low friction resistance state has been developed for many years .
しかしながら、摩擦抵抗が少ない摩擦部からは、従来の摩擦部にて発生していた摩耗粉の大きさに比して微細な摩耗粉が発生してしまうという問題がある。 However, there is a problem that fine wear powder is generated from the friction part having a small friction resistance as compared with the size of the wear powder generated in the conventional friction part.
具体的には、0.1μm〜1μm程度の摩耗粉が発生して人工関節の周囲に散逸すると、主にマクロファージの貪食対象となってしまい、生体内にて免疫反応が惹起され、炎症反応等が生じてしまうおそれがあった。 Specifically, when attrition powder of about 0.1 μm to 1 μm is generated and dissipated around the artificial joint, it becomes mainly a phagocytosing target of macrophages, causing an immune reaction in the living body, and an inflammatory reaction etc. There was a possibility that it might occur.
それゆえ、低摩擦抵抗性と、摩耗粉の微細化抑制、摩耗粉の発生量抑制という3つの相反する特徴を兼ね備えた摩擦部を備える人工関節が求められている。 Therefore, there is a need for an artificial joint provided with a friction portion that has three contradictory features of low friction resistance, suppression of miniaturization of wear powder, and suppression of generation of wear powder.
また、人工関節に限らず、摩擦部を有する機構部品一般において、微細摩耗粉の散逸は予期しない部位での減摩を引き起こすなど、好ましくない現象の原因とも成りうる。 In addition, in the case of mechanical parts in general having friction parts as well as artificial joints, the dissipation of fine wear powder may cause an undesirable phenomenon, such as causing wear at an unexpected part.
本発明は、斯かる事情に鑑みてなされたものであって、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を提供する。 The present invention has been made in view of such circumstances, and while realizing low friction resistance, it is possible to suppress the generation of fine wear powder, and also suppress the generation amount of wear powder itself. To provide a friction part structure that can be
また本発明では、同摩擦部構造を備えた人工関節や、摩擦部構造を構成する摩擦面の形成方法等についても提供する。 The present invention also provides an artificial joint having the same friction portion structure, a method of forming a friction surface that constitutes the friction portion structure, and the like.
上記従来の課題を解決するため、本発明に係る摩擦部構造では、(1)硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部の構造において、前記一対の摩擦面のうち相対的に高硬度の摩擦面は、相対的に低硬度の摩擦面との接触により移着膜が形成される移着膜形成部と、前記高硬度の摩擦面の表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかであって、前記一対の摩擦面の圧接時に前記移着膜形成部の表面に存在する潤滑液を流入させて収容し同表面を実質的に無潤滑液状態にできる容量を備えた凹部と、を有し、前記移着膜形成部の表面は、前記一対の摩擦面の圧接摺動に伴って前記凹部より溢出した潤滑液により前記移着膜形成部の表面に形成された前記移着膜の剥離を助長する移着膜剥離助長手段を備えることを特徴とすることとした。 In order to solve the above-mentioned conventional problems, in the friction portion structure according to the present invention, (1) a pair of members formed between a pair of members with different hardness, which slide relative to each other in the presence of lubricating fluid In the structure of the friction portion provided with a friction surface, the friction surface having a relatively high hardness among the pair of friction surfaces is a transfer film on which a transfer film is formed by contact with a friction surface having a relatively low hardness. And at least one of a groove shape and a hole shape in which the width gradually narrows from the surface side to the inside of the high hardness friction surface, and the transfer film formation portion is formed at the time of pressure contact of the pair of friction surfaces. And a concave portion having a capacity for allowing the lubricating fluid present on the surface to flow in and be stored to make the surface substantially non-lubricating liquid, and the surface of the transfer film forming portion is the pair of friction surfaces Of the transfer film forming portion by the lubricating fluid that has spilled out of the recess along with the Further comprising a transcribing film peeling conducive means to promote the release of the transfer adhesive layer formed on the surface was that characterized.
また、本発明に係る摩擦部構造では、以下の点にも特徴を有する。
(2)前記移着膜剥離助長手段は、1nm〜3nmの算術平均粗さ(Ra)を有する前記移着膜形成部の表面構造であること。
(3)前記表面構造は、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散してなる分散体で研磨したものであること。
(4)前記分散体は、前記2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物が分散されていること。
(5)前記高硬度の摩擦面は、前記移着膜形成部として機能する所定曲率の面上に、前記凹部として機能する複数のピットが形成されたオレンジピール構造を有すること。
(6)前記高硬度の摩擦面は、前記移着膜形成部として機能する所定曲率の面上に、前記凹部として機能する複数の溝が形成された構造を有すること。
(7)前記複数の溝は前記面上に格子状に形成されており、隣接する互いに平行な溝の縁部同士を一部重畳させて、溝の伸延方向と直交する断面視において略正弦波状の波形構造としたこと。
The friction portion structure according to the present invention is also characterized by the following points.
(2) The transfer film separation promoting means is a surface structure of the transfer film forming portion having an arithmetic average roughness (Ra) of 1 nm to 3 nm.
(3) The surface structure is one obtained by polishing with a dispersion formed by dispersing diamond particles having a primary particle diameter of 2 nm to 5 nm in a predetermined solvent.
(4) The dispersion is obtained by dispersing a crushed material having a particle size distribution of 2 nm to 20 nm obtained by crushing a coagulated body formed by aggregating diamond particles having a primary particle diameter of 2 nm to 5 nm. is being done.
(5) The high-hardness friction surface has an orange peel structure in which a plurality of pits functioning as the concave portion are formed on a surface of a predetermined curvature functioning as the transfer film forming portion.
(6) The high-hardness friction surface has a structure in which a plurality of grooves functioning as the concave portion are formed on the surface having a predetermined curvature functioning as the transfer film forming portion.
(7) The plurality of grooves are formed in a lattice shape on the surface, and the edges of adjacent grooves parallel to each other are partially overlapped to form a substantially sine wave in a cross sectional view orthogonal to the extending direction of the grooves. Waveform structure.
また、本発明に係る人工関節では、(8)上記(1)〜(7)のいずれかに記載の摩擦部構造を備えることとした。 Moreover, in the artificial joint which concerns on this invention, we decided to provide the friction part structure in any one of (8) said (1)-(7).
また本発明では、(9)上記(1)〜(7)のいずれかに記載の摩擦部構造における移着膜剥離助長手段を形成するために、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散してなる分散体を研磨剤として使用した。 In the present invention, (9) diamond particles having a primary particle diameter of 2 nm to 5 nm in order to form a transfer film peeling promoting means in the friction portion structure according to any one of the above (1) to (7). A dispersion dispersed in a predetermined solvent was used as an abrasive.
また、上記(9)の使用に際し、(10)前記分散体は、前記2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物が分散されたものであることにも特徴を有する。 In the use of (9), (10) the dispersion may be 2 nm to 5 nm obtained by breaking up a coagulated body formed by aggregating diamond particles having a primary particle diameter of 2 nm to 5 nm. It is also characterized in that crushed materials having a particle size distribution of 20 nm are dispersed.
また、本発明に係る摩擦面の形成方法では、(11)硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部における、前記一対の摩擦面のうち相対的に高硬度側の摩擦面の形成方法であって、前記高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、前記ラッピング工程にて形成した表面に、同表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかである凹部を形成する凹部形成工程と、前記凹部形成工程にて形成した表面のうち少なくとも凹部以外の領域を、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散させた分散体である第2の砥液で研磨して、この凹部以外の領域を算術平均粗さ(Ra)を1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記凹部以外の領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とするポリシング工程と、を有することとした。 In the method of forming a friction surface according to the present invention, (11) a pair of friction surfaces which are formed between a pair of members of different hardness and which slide relative to each other in the presence of a lubricating liquid are provided. A method of forming a friction surface having a relatively high hardness of the pair of friction surfaces in a friction portion, the abrasive grain having a primary particle diameter of 1 μm to 5 μm in a region forming the friction surface on the high hardness side Polishing with the first abrasive liquid in which the particles are dispersed, to make the same region have a surface with an arithmetic average roughness (Ra) of 10 nm to 20 nm, and the surface formed in the lapping step from the same surface side The concave portion forming step of forming a concave portion having at least one of a groove shape and a hole shape whose width gradually narrows toward the inner side, and at least a region other than the concave portion in the surface formed in the concave portion forming step Predetermined diamond particles with primary particle size By grinding with a second abrasive fluid, which is a dispersion dispersed in a medium, and setting the area other than this concave part to an arithmetic average roughness (Ra) of 1 nm to 3 nm, with the friction surface on the low hardness side And polishing the surface as a high hardness side friction surface having a surface structure as transfer film peeling promoting means for promoting peeling of the transfer film transferred to a region other than the concave portion by pressure contact sliding. And
また、本実施形態に係る摩擦面の形成方法では、(12)硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部における、前記一対の摩擦面のうち相対的に高硬度側の摩擦面の形成方法であって、前記高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、前記第1の砥液又は一次粒子径が2nm〜5nmの砥粒を所定溶媒中に分散させた分散体である第2の砥液を、前記ラッピング工程にて形成した表面に対して線状に収束させつつ噴射し縦横に走査して格子状の溝を形成すると共に、形成されている溝と隣接する平行な溝の形成時には、新たに形成する溝の縁部を前記形成されている溝の縁部に一部重畳させつつ走査して両溝の走査方向と直交する断面視において略正弦波状の波形構造とし、しかも走査した領域の算術平均粗さ(Ra)を前記第1又は第2の砥液の衝突によって1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記波形構造の頂部近傍領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とする凹部形成工程と、を有することとした。 Further, in the method of forming a friction surface according to the present embodiment, (12) a pair of friction surfaces which are formed between a pair of members having different hardness and which slide relative to each other in the presence of a lubricating liquid are provided. A method of forming a friction surface on the relatively hard side of the pair of friction surfaces in the friction portion, wherein the region forming the friction surface on the high hardness side has a primary particle diameter of 1 μm to 5 μm A lapping step of polishing with the first abrasive fluid in which the particles are dispersed to make the same region a surface with an arithmetic average roughness (Ra) of 10 nm to 20 nm, and the first abrasive fluid or primary particle diameter of 2 nm to A second abrasive fluid, which is a dispersion of abrasive particles of 5 nm dispersed in a predetermined solvent, is linearly focused on the surface formed in the lapping step while being ejected linearly and scanned vertically and horizontally. When forming a groove, and forming a parallel groove adjacent to the formed groove, a new formation is made. The edge of the groove is scanned while partially overlapping with the edge of the formed groove to form a substantially sinusoidal wave structure in a cross sectional view orthogonal to the scanning direction of both grooves, and the arithmetic mean of the scanned area By setting the roughness (Ra) to 1 nm to 3 nm by the collision of the first or second abrasive liquid, the transfer transferred to the region near the top of the corrugated structure by press-contact sliding with the low hardness side friction surface A concave portion forming step of forming a friction surface on the high hardness side on which a surface structure is formed as a transfer film peeling promoting means for promoting the peeling of the deposited film.
さらに、上記(11)又は(12)の摩擦面の形成方法において、(13)前記分散体は、前記2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物が砥粒として分散されたものであることにも特徴を有する。 Furthermore, in the method of forming a friction surface according to the above (11) or (12), (13) the dispersion dissolves a coagulated body formed by aggregating diamond particles having a primary particle diameter of 2 nm to 5 nm. It is also characterized in that a crushed material having a particle size distribution of 2 nm to 20 nm obtained by crushing is dispersed as an abrasive.
本発明に係る摩擦部構造によれば、硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部の構造において、前記一対の摩擦面のうち相対的に高硬度の摩擦面は、相対的に低硬度の摩擦面との接触により移着膜が形成される移着膜形成部と、前記高硬度の摩擦面の表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかであって、前記一対の摩擦面の圧接時に前記移着膜形成部の表面に存在する潤滑液を流入させて収容し同表面を実質的に無潤滑液状態にできる容量を備えた凹部と、を有し、前記移着膜形成部の表面は、前記一対の摩擦面の圧接摺動に伴って前記凹部より溢出した潤滑液により前記移着膜形成部の表面に形成された前記移着膜の剥離を助長する移着膜剥離助長手段を備えることとしたため、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を提供することができる。 According to the friction portion structure according to the present invention, the structure of the friction portion includes a pair of friction surfaces which are formed between a pair of members having different hardness and relatively slide in contact with each other in the presence of the lubricating liquid. The relatively high hardness friction surface of the pair of friction surfaces is a transfer film forming portion on which the adhesion film is formed by contact with the relatively low hardness friction surface, and the high hardness friction surface A groove-like and / or hole-like shape in which the width gradually narrows from the surface side to the inside of the surface, and the lubricating fluid present on the surface of the transfer film forming portion flows in during pressure contact of the pair of friction surfaces; And a concave portion having a volume capable of containing the surface and making the surface substantially non-lubricating liquid, and the surface of the transfer film forming portion is closer to the concave portion as the pair of friction surfaces press-contact and slide. Peeling of the transfer film formed on the surface of the transfer film forming portion by the lubricating fluid overflowed As the transfer film peeling promoting means is promoted, it is possible to suppress the generation of fine wear powder while realizing low friction resistance, and to suppress the generation amount of the wear powder itself. It is possible to provide a friction part structure that can be made.
また、前記移着膜剥離助長手段は、1nm〜3nmの算術平均粗さ(Ra)を有する前記移着膜形成部の表面構造であることとすれば、移着膜を堅実に形成可能としながらも、凹部より溢出した潤滑液により移着膜の剥離を容易とすることができる。 In addition, if the transfer film separation promoting means is a surface structure of the transfer film forming portion having an arithmetic average roughness (Ra) of 1 nm to 3 nm, the transfer film can be formed steadily. Also, the transfer film can be easily peeled off by the lubricating fluid overflowing from the recess.
また、前記表面構造は、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散してなる分散体で研磨したものであることとすれば、前記表面構造を精度良く、容易に形成することができる。 In addition, if the surface structure is polished with a dispersion formed by dispersing diamond particles having a primary particle diameter of 2 nm to 5 nm in a predetermined solvent, the surface structure can be formed accurately and easily. can do.
また、前記分散体は、前記2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物が分散されていることとしたため、研磨効率を向上させることができ、表面構造を更に容易に形成することができる。 In the dispersion, a crushed material having a particle size distribution of 2 nm to 20 nm obtained by crushing a coagulated body formed by aggregating diamond particles having a primary particle diameter of 2 nm to 5 nm is dispersed. Therefore, the polishing efficiency can be improved, and the surface structure can be formed more easily.
また、前記高硬度の摩擦面は、前記移着膜形成部として機能する所定曲率の面上に、前記凹部として機能する複数のピットが形成されたオレンジピール構造を有することとすれば、ピット以外の面の部分を移着膜剥離助長手段として機能させて、摩耗粉の大型化を堅実に行わせることができる。 In addition, if the high-hardness friction surface has an orange peel structure in which a plurality of pits functioning as the recess is formed on a surface of a predetermined curvature functioning as the transfer film forming portion, it is other than a pit The portion of the surface of the above can be made to function as transfer film peeling promoting means to make it possible to steadily increase the size of the wear powder.
また、前記高硬度の摩擦面は、前記移着膜形成部として機能する所定曲率の面上に、前記凹部として機能する複数の溝が形成された構造を有することとすれば、溝以外の面の部分を移着膜剥離助長手段として機能させて、摩耗粉の大型化を堅実に行わせることができる。 In addition, if the high-hardness friction surface has a structure in which a plurality of grooves functioning as the recess is formed on the surface having a predetermined curvature functioning as the transfer film forming portion, a surface other than the grooves Can be made to function steadily as a transfer film peeling promoting means to steadily increase the size of the wear powder.
また、前記複数の溝は前記面上に格子状に形成されており、隣接する互いに平行な溝の縁部同士を一部重畳させて、溝の伸延方向と直交する断面視において略正弦波状の波形構造とすれば、波形構造の頂部近傍を移着膜剥離助長手段として機能させて、摩耗粉の大型化を堅実に行わせることができる。 Further, the plurality of grooves are formed in a lattice shape on the surface, and edges of adjacent grooves parallel to each other are partially overlapped to form a substantially sinusoidal wave in a cross-sectional view orthogonal to the extending direction of the grooves. With the wave-like structure, the vicinity of the top of the wave-like structure can be made to function as transfer film peeling promoting means, and the wear powder can be made large steadily.
また、本発明に係る人工関節によれば、上述の摩擦部構造を備えた人工関節とすることにより、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を備えた人工関節を提供することができる。 Further, according to the artificial joint according to the present invention, generation of fine wear powder can be suppressed while realizing low friction resistance, by using the artificial joint provided with the above-mentioned friction part structure, In addition, it is possible to provide the artificial joint provided with the friction portion structure capable of suppressing the generation amount of the wear powder itself.
また、上述の摩擦部構造における移着膜剥離助長手段を形成するために、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散してなる分散体を研磨剤として使用することで、移着膜剥離助長手段を容易に形成することができる。 In addition, in order to form the transfer film separation promoting means in the above-mentioned friction part structure, a dispersion formed by dispersing diamond particles having a primary particle diameter of 2 nm to 5 nm in a predetermined solvent is used as an abrasive. The transfer film peeling promoting means can be easily formed.
また、上記使用に際し、前記分散体は、前記2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物が分散されたものとすることで、研磨効率を向上させることができ、移着膜剥離助長手段を更に容易に形成することができる。 In addition, in the use, the dispersion has a particle size distribution of 2 nm to 20 nm obtained by breaking up a coagulated body formed by aggregating the diamond particles having the primary particle diameter of 2 nm to 5 nm. With the crushed material dispersed, the polishing efficiency can be improved, and the transfer film peeling promoting means can be formed more easily.
また、本発明に係る摩擦面の形成方法によれば、硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部における、前記一対の摩擦面のうち相対的に高硬度側の摩擦面の形成方法であって、前記高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、前記ラッピング工程にて形成した表面に、同表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかである凹部を形成する凹部形成工程と、前記凹部形成工程にて形成した表面のうち少なくとも凹部以外の領域を、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散させた分散体である第2の砥液で研磨して、この凹部以外の領域を算術平均粗さ(Ra)を1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記凹部以外の領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とするポリシング工程と、を有することとしたため、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を構成可能な摩擦面を形成することができる。 Further, according to the method of forming a friction surface according to the present invention, the friction provided with a pair of friction surfaces which are formed between a pair of members having different hardness and which relatively slide in contact with each other in the presence of a lubricating fluid. A method of forming a friction surface having a relatively high hardness side among the pair of friction surfaces in a part, wherein an abrasive grain having a primary particle diameter of 1 μm to 5 μm is formed in a region forming the friction surface on the high hardness side A lapping process for polishing with the dispersed first abrasive liquid to make the same area have a surface with an arithmetic average roughness (Ra) of 10 nm to 20 nm, and a surface formed in the lapping process from the same surface side. Forming at least one of a groove shape and a hole shape in which the width gradually narrows, and at least a region other than the recess in the surface formed in the recess formation step, Predetermined solvent for diamond particles having a particle diameter By polishing with a second abrasive liquid, which is a dispersion dispersed in the above, and setting the area other than the concave portion to an arithmetic mean roughness (Ra) of 1 nm to 3 nm, the pressure contact slide with the friction surface on the low hardness side The polishing process has a high hardness side friction surface on which a surface structure is formed as a transfer film peeling promoting means for promoting peeling of the transfer film transferred to the area other than the concave portion by movement. To form a friction surface capable of constituting a friction portion structure which can suppress the generation of fine wear powder while realizing low friction resistance, and can also suppress the generation amount of wear powder itself. be able to.
また、本発明に係る摩擦面の形成方法によれば、硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部における、前記一対の摩擦面のうち相対的に高硬度側の摩擦面の形成方法であって、前記高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、前記第1の砥液又は一次粒子径が2nm〜5nmの砥粒を所定溶媒中に分散させた分散体である第2の砥液を、前記ラッピング工程にて形成した表面に対して線状に収束させつつ噴射し縦横に走査して格子状の溝を形成すると共に、形成されている溝と隣接する平行な溝の形成時には、新たに形成する溝の縁部を前記形成されている溝の縁部に一部重畳させつつ走査して両溝の走査方向と直交する断面視において略正弦波状の波形構造とし、しかも走査した領域の算術平均粗さ(Ra)を前記第1又は第2の砥液の衝突によって1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記波形構造の頂部近傍領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とする凹部形成工程と、を有することとしたため、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を構成可能な摩擦面を形成することができる。 Further, according to the method of forming a friction surface according to the present invention, the friction provided with a pair of friction surfaces which are formed between a pair of members having different hardness and which relatively slide in contact with each other in the presence of a lubricating fluid. A method of forming a friction surface having a relatively high hardness side among the pair of friction surfaces in a part, wherein an abrasive grain having a primary particle diameter of 1 μm to 5 μm is formed in a region forming the friction surface on the high hardness side A lapping step of polishing with the dispersed first abrasive liquid to make the same area a surface with an arithmetic average roughness (Ra) of 10 nm to 20 nm, and the first abrasive liquid or primary particle diameter of 2 nm to 5 nm A second abrasive liquid, which is a dispersion in which abrasive grains are dispersed in a predetermined solvent, is jetted while linearly converging on the surface formed in the lapping step and scanned longitudinally and laterally to form a grid-like groove. When forming a parallel groove adjacent to the groove being formed, the newly formed groove Part is overlapped with the edge of the formed groove and scanning is performed to form a substantially sinusoidal waveform structure in a cross sectional view orthogonal to the scanning direction of both grooves, and the arithmetic average roughness (Ra of the scanned area) Of 1 nm to 3 nm by the collision of the first or second abrasive fluid, the peeling of the transferred film transferred to the region near the top of the corrugated structure by pressure contact sliding with the low hardness side friction surface Forming a concave surface on the high hardness side on which the surface structure is formed as a transfer film peeling promoting means to promote the formation of fine particles, so that fine abrasion powder can be realized while realizing low frictional resistance. It is possible to form a friction surface capable of constituting the friction portion structure which can suppress the generation of the friction and can also suppress the generation amount of the wear powder itself.
また、前記分散体は、前記2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物が砥粒として分散されたものであることとすれば、研磨効率を向上させることができ、移着膜剥離助長手段を更に容易に形成することができる。 In the dispersion, a crushed material having a particle size distribution of 2 nm to 20 nm obtained by crushing a coagulated body formed by aggregating the diamond particles having a primary particle diameter of 2 nm to 5 nm is an abrasive grain If it is dispersed as, the polishing efficiency can be improved, and the transfer film peeling promoting means can be formed more easily.
本発明は、硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部の構造に係るものである。 The present invention relates to the structure of a friction portion provided with a pair of friction surfaces which are formed between a pair of members of different hardness and which slide relative to each other in the presence of a lubricating fluid.
ここで摩擦部は、さまざまな機構部品における可動部分の摺動部位が対象であり、機構部品自体は特に限定されるものではない。 Here, the friction portion is a sliding portion of movable parts in various mechanical parts, and the mechanical parts themselves are not particularly limited.
また潤滑液の成分は特に限定されるものではなく、一般的な機構部品に用いられる油性潤滑液は勿論のこと、水性の潤滑液や、生体内にて潤滑液の機能を果たす体液(関節液)等も含む概念である。 The components of the lubricating fluid are not particularly limited, and it is possible to use oil-based lubricating fluid, which is used for general mechanical parts, as well as aqueous lubricating fluid, and bodily fluid (joint fluid) that functions as a lubricating fluid in living organisms. ) Is a concept that also includes.
そして、本実施形態に係る摩擦部構造に特徴的には、前記一対の摩擦面のうち相対的に高硬度の摩擦面は、相対的に低硬度の摩擦面との接触により移着膜が形成される移着膜形成部と、前記高硬度の摩擦面の表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかであって、前記一対の摩擦面の圧接時に前記移着膜形成部の表面に存在する潤滑液を流入させて収容し同表面を実質的に無潤滑液状態にできる容量を備えた凹部と、を有し、前記移着膜形成部の表面は、前記一対の摩擦面の圧接摺動に伴って前記凹部より溢出した潤滑液により前記移着膜形成部の表面に形成された前記移着膜の剥離を助長する移着膜剥離助長手段を備えることとしている。 And, as a feature of the friction portion structure according to the present embodiment, among the pair of friction surfaces, the relatively high hardness friction surface forms a transfer film by contact with the relatively low hardness friction surface. And at least one of a groove shape and a hole shape in which the width gradually narrows from the surface side to the inside of the high hardness friction surface, and the pressure is transferred at the time of pressure contact of the pair of friction surfaces. The surface of the transfer film forming part is provided with a recess having a capacity to allow the lubricating liquid present on the surface of the film forming part to flow in and be stored, and to make the surface substantially non-lubricating liquid state; Transfer film peeling promoting means is provided for promoting peeling of the transfer film formed on the surface of the transfer film forming portion by the lubricating liquid overflowing from the recess along with the pressure contact sliding of the pair of friction surfaces. And
このような構成を備えた本実施形態に係る摩擦部構造に関し、発明の理解に供するために、図1及び図2を参照しながらその概念について説明する。図1及び図2は、摩擦面の状態を示した概念図である。なお、図1及び図2に示す概念図においてピットの大きさや移着膜の厚み、形状等は必ずしも正確ではない。 The concept of the friction portion structure according to the present embodiment having such a configuration will be described with reference to FIGS. 1 and 2 in order to provide an understanding of the invention. 1 and 2 are conceptual views showing the state of the friction surface. In the conceptual diagrams shown in FIGS. 1 and 2, the size of the pit, the thickness, the shape, etc. of the transfer film are not necessarily accurate.
図1(a)に示すように、高硬度部材10と低硬度部材11とで構成される、硬度の異なる一対の部材間に形成された摩擦部12において、高硬度面13と低硬度面14との間、すなわち摩擦面間には潤滑液15が介在した状態となっている。 As shown in FIG. 1A, the high hardness surface 13 and the low hardness surface 14 are formed in the friction portion 12 formed between the high hardness member 10 and the low hardness member 11 and formed between a pair of members with different hardness. The lubricating fluid 15 intervenes between the friction surfaces, that is, between the friction surfaces.
また、高硬度面13には、予め微細な凹部16が形成されている。 Further, on the high hardness surface 13, fine recesses 16 are formed in advance.
このような状態において、両部材間に徐々に荷重が掛かるなどして摩擦面間が狭められると、図1(b)に示すように、潤滑液15の大部分は摩擦部12外へ排出される。また、凹部16内にも潤滑液が充填されることとなる。 In such a state, when a load is gradually applied between the two members and the space between the friction surfaces is narrowed, most of the lubricating fluid 15 is discharged out of the friction portion 12 as shown in FIG. 1 (b). Ru. Further, the lubricating fluid is also filled in the recess 16.
ここで、摩擦部12を更に拡大視すると、図1(c)に示すように、摩擦面間には未だ極少量の潤滑液15が液膜を形成した状態で存在している。 Here, when the friction portion 12 is further enlarged, as shown in FIG. 1C, a very small amount of lubricating fluid 15 still exists between the friction surfaces in a state where a liquid film is formed.
次に、両部材間に充分に荷重が掛かると、図1(d)に示すように、摩擦面間に存在していた極少量の潤滑液15も、既に潤滑液15で満杯となっている凹部16内に圧縮されつつ収容され、摩擦面間には潤滑液15が存在せず、高硬度面13及び低硬度面14が直接的に接触した状態となる。 Next, when a sufficient load is applied between the two members, as shown in FIG. 1 (d), a very small amount of lubricating fluid 15 existing between the friction surfaces is already full of lubricating fluid 15. It is accommodated while being compressed in the recess 16, the lubricating liquid 15 is not present between the friction surfaces, and the high hardness surface 13 and the low hardness surface 14 are in direct contact with each other.
このような状態で高硬度部材10と低硬度部材11との相対的な運動によって摺動が起こると、図2(a)に示すように、高硬度面13の凹部16以外の部分に低硬度部材11の一部が移行して移着膜17が形成される。すなわち、高硬度面13の凹部16以外の部分が移着膜形成部18として機能する。 When sliding occurs due to relative movement between the high hardness member 10 and the low hardness member 11 in such a state, as shown in FIG. 2A, the low hardness portion of the high hardness surface 13 other than the recess 16 A part of the member 11 is transferred to form the transfer film 17. That is, the portion other than the concave portion 16 of the high hardness surface 13 functions as the transfer film forming portion 18.
このように移着膜17が形成されると、実質的には移着膜17と低硬度部材11との接触となり、移着膜17の素材は低硬度部材11の素材と同じであるため、高硬度部材10と低硬度部材11との摩擦抵抗に比して低い摩擦抵抗を示すこととなって円滑な摺動を促す。 When the transfer film 17 is formed as described above, the transfer film 17 and the low hardness member 11 substantially contact each other, and the material of the transfer film 17 is the same as the material of the low hardness member 11. As compared with the frictional resistance between the high hardness member 10 and the low hardness member 11, a low frictional resistance is exhibited to promote smooth sliding.
また、この移着膜形成部18上に形成された移着膜17は、図2(b)に示すように、高硬度部材10と低硬度部材11との相対運動が繰り返されることにより徐々に肥厚する。 Further, as shown in FIG. 2B, the transfer film 17 formed on the transfer film forming portion 18 is gradually repeated by relative motion between the high hardness member 10 and the low hardness member 11. Thicken.
これに伴い、摩擦面の位置も高硬度面13から徐々に離隔し、凹部16の深さは相対的に深くなる。この摩擦面の離隔移動に伴い、凹部16内に収容されていた潤滑液は圧力が開放されて、同潤滑液15の液面が高硬度面13と移着膜17との界面のレベルよりも高い位置となる。 Along with this, the position of the friction surface is also gradually separated from the high hardness surface 13, and the depth of the recess 16 becomes relatively deep. With the separation movement of the friction surface, the pressure of the lubricating liquid contained in the recess 16 is released, and the liquid level of the lubricating liquid 15 is higher than the level of the interface between the high hardness surface 13 and the transfer film 17. It becomes a high position.
また、移着膜17と低硬度面14との間では、摺動に伴って微細な摩擦粉(以下、微細摩擦粉19ともいう。)も生じる。先にも述べたように、この微細摩擦粉19は、可動部分を有する一般的な機構部品において予期しない部位での減摩を生起させたり、生体内に置換された人工関節においてマクロファージの貪食対象となり炎症反応を惹起してしまう。 Also, between the transfer film 17 and the low hardness surface 14, fine friction powder (hereinafter also referred to as fine friction powder 19) is also generated along with the sliding. As mentioned above, this fine friction powder 19 causes an unexpected reduction in area in a general mechanical component having a movable part, and it is a target for phagocytosis of macrophages in an artificial joint replaced in vivo. And cause an inflammatory reaction.
そこで、本実施形態に係る摩擦部構造に特徴的には、摩擦抵抗の低減に寄与する移着膜17の剥離を敢えて助長する手段を備えている。 Therefore, as a feature of the friction portion structure according to the present embodiment, means is provided for intentionally promoting the peeling of the transfer film 17 which contributes to the reduction of the frictional resistance.
すなわち、移着膜形成部18の表面には移着膜剥離助長手段が備えられており、図2(c)に示すように、凹部16の周縁等における移着膜17の剥離開始部20の形成が促される。 That is, the transfer film peeling promoting means is provided on the surface of the transfer film forming portion 18, and as shown in FIG. 2C, the peeling start portion 20 of the transfer film 17 at the periphery of the recess 16 or the like. Formation is prompted.
すると、凹部16より溢出した潤滑液15が、例えば毛細管現象などによってささくれ状となった剥離開始部20から高硬度面13と移着膜17との間に滲入し、剥離液の如く機能して移着膜17が徐々に剥離する。 Then, the lubricating liquid 15 overflowing from the concave portion 16 infiltrates between the high hardness surface 13 and the transfer film 17 from the peeling start portion 20 which has become incised by, for example, capillary phenomenon, and functions as a peeling liquid. The transfer film 17 is gradually peeled off.
剥離した移着膜17は、あたかも消しゴムの消しカスが互いに結合して大きくなるように、微細摩擦粉19を巻き込みながら大型化し、大型摩耗粉30が形成されることとなる(図2(d)参照。)。 The separated transfer film 17 is enlarged while involving the fine friction powder 19 so that the large scraps of the eraser are combined with each other and the large wear powder 30 is formed (FIG. 2 (d)). reference.).
従って、摩耗粉の大型化が促進されると共に微細摩擦粉19は散逸することなく、一般機構部品等における予期しない減摩や、人工関節に由来する生体内での炎症等が生じるおそれを低減することができる。 Therefore, the enlargement of the wear powder is promoted and the fine friction powder 19 is not dissipated, thereby reducing the possibility of unexpected abrasion in general mechanical parts or the like, inflammation in the living body derived from the artificial joint, etc. be able to.
しかも、剥離は移着膜17の全てに起こる訳ではなく、移着膜17と低硬度面14との接触面積は、移着膜の剥離が助長されていない場合や凹部16が存在しない場合に比して小さくなるため、低い摩擦抵抗性を実現しながらも、摩耗粉の発生量自体も抑制することができる。 Moreover, peeling does not occur in all of the transfer film 17, and the contact area between the transfer film 17 and the low hardness surface 14 is determined when the peeling of the transfer film is not promoted or when the recess 16 does not exist. In comparison with this, the amount of generation of wear powder can be suppressed while realizing low frictional resistance.
このように、本実施形態に係る摩擦部構造によれば、低摩擦抵抗性と、摩耗粉の微細化抑制、摩耗粉の発生量抑制という3つの相反する特徴を兼ね備えた摩擦部を実現することができる。 As described above, according to the friction portion structure according to the present embodiment, it is possible to realize the friction portion having the three contradictory characteristics of low friction resistance, suppression of miniaturization of wear powder, and suppression of generation amount of wear powder. Can.
ただし、凹部16は、高硬度面13と低硬度面14との圧接時に、移着膜形成部の表面に存在する潤滑液を流入させて収容し同表面を実質的な無潤滑液状態にできる容量を備える必要がある。 However, when the high hardness surface 13 and the low hardness surface 14 are in pressure contact with each other, the recess 16 allows the lubricating liquid present on the surface of the transfer film forming portion to flow in and be accommodated, thereby making the surface substantially non-lubricating liquid You need to have a capacity.
このような凹部16は、高硬度面13に複数設けられているのが望ましく、より具体的には、凹凸を考慮しない平面視における高硬度面13の面積を100%とした場合、平面視において移着膜形成部18として機能しない領域の面積が1%〜50%、より好ましくは1%〜30%となるように凹部16を形成するのが良い。 It is desirable that a plurality of such concave portions 16 be provided on the high hardness surface 13. More specifically, when the area of the high hardness surface 13 in planar view not considering unevenness is 100%, in the planar view It is preferable to form the recess 16 so that the area of the region not functioning as the transfer film forming portion 18 is 1% to 50%, more preferably 1% to 30%.
また、凹部16は、摩擦面の表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれであっても良い。 In addition, the recess 16 may be at least one of a groove shape and a hole shape whose width gradually narrows from the surface side to the inside of the friction surface.
凹部16が穴状(ピット)である場合には、開口径が10nm〜100nm、深さが35nm〜65nmであるのが望ましい。 When the recess 16 is in the form of a hole (pit), it is desirable that the opening diameter be 10 nm to 100 nm and the depth be 35 nm to 65 nm.
また、凹部16が溝状である場合には、溝の幅が10nm〜5mm、深さが35nm〜200nmであるのが望ましい。より具体的には、後述する図4(a)に示すような微細な格子状の構造の場合は溝の幅を10nm〜100nm、深さを35nm〜65nm、溝の間隔を0.1mm〜1.0mmとなるようにしても良く、図4(b)に示すような比較的粗な格子状の構造の場合は溝の幅を0.5mm〜5mm、深さを35nm〜200nmとすることができる。なお、凹部16が溝である場合、図2を用いて説明した凹部16への潤滑液15の圧入が起こらない(圧力の逃げ場がある)可能性も否定できないが、その場合であっても、凹部16内に収容されている潤滑液15の界面は潤滑液15の表面張力等により高硬度面13と移着膜17との境界面近傍であると考えられ、相対的な摺動により凹部16からの潤滑液15の溢出が促されることとなる。 Moreover, when the recessed part 16 is groove shape, it is desirable for the width | variety of a groove | channel to be 10 nm-5 mm, and to be 35 nm-200 nm in depth. More specifically, in the case of a fine lattice structure as shown in FIG. 4A described later, the groove width is 10 nm to 100 nm, the depth is 35 nm to 65 nm, and the groove interval is 0.1 mm to 1.0 mm. The width of the groove may be 0.5 mm to 5 mm and the depth may be 35 nm to 200 nm in the case of a relatively coarse lattice structure as shown in FIG. In the case where the recess 16 is a groove, the possibility that the pressing of the lubricating fluid 15 into the recess 16 described with reference to FIG. 2 does not occur (there is a space for pressure relief) can not be denied either. The interface of the lubricating fluid 15 contained in the recess 16 is considered to be in the vicinity of the interface between the high hardness surface 13 and the transfer film 17 due to the surface tension of the lubricating fluid 15, etc. Spilling out of the lubricating fluid 15 is promoted.
また、実質的な無潤滑液状態とは、移着膜形成部18の表面に潤滑液の組成成分が一分子たりとも付着していない状態を意味するものではなく、潤滑液15の潤滑機能が充分に発揮できない程度に枯渇している状態を意味している。 Further, the substantially non-lubricated liquid state does not mean a state in which no composition component of the lubricating liquid adheres to the surface of the transfer film forming portion 18, and the lubricating function of the lubricating liquid 15 It means a state of being depleted to such an extent that it can not be fully exerted.
ところで、移着膜形成部18の表面に備えられる移着膜剥離助長手段は、凹部16より溢出した潤滑液15によって移着膜17の剥離を助長する手段であれば特に限定されるものではない。 By the way, the transfer film peeling promoting means provided on the surface of the transfer film forming portion 18 is not particularly limited as long as it is means for promoting the peeling of the transfer film 17 by the lubricating liquid 15 overflowing from the recess 16 .
このような移着膜剥離助長手段のより限定された具体例を敢えて示すならば、凹部16の縁部形状であって、上方へ拡開する凹部側壁面から移着膜形成部18にかけてつながる滑らかな曲面形状を挙げることができる。 If a more specific example of such a transfer film peeling promoting means is daringly shown, it is an edge shape of the recess 16 and is smooth connected from the recess side wall surface expanding upward and the transfer film forming portion 18 Curved surface shape can be mentioned.
このような縁部形状を備えることにより、移着膜を凹部の落ち込み方向に沿って徐々に薄く形成させることができ、摩擦部12における摺動に伴って移着膜末端のささくれ立ちを惹起させて剥離を助長することができる。 By providing such an edge shape, the transfer film can be formed to be thin gradually along the depression direction of the recess, and the end of the transfer film is caused to break up along with the sliding in the friction portion 12. Can promote the peeling.
また更なる一例としては、移着膜剥離助長手段は、1nm〜3nmの算術平均粗さ(Ra)を有する移着膜形成部18の表面構造を挙げることができる。 Further, as a further example, the transfer film separation promoting means may include the surface structure of the transfer film forming portion 18 having an arithmetic average roughness (Ra) of 1 nm to 3 nm.
例えばこの表面構造の算術平均粗さが1nmを下回ると、凝着性の摩耗が増大し摩擦粉の生成量が増加するため好ましくない。また、3nmを上回っても、切削性の摩耗(アブレシブ摩耗)が増大し摩擦粉の生成量が増加するため好ましくない。 For example, when the arithmetic mean roughness of this surface structure is less than 1 nm, the cohesion wear increases and the amount of friction powder is increased, which is not preferable. Moreover, even if it exceeds 3 nm, it is not preferable because the machinability wear (abrasive wear) increases and the amount of friction powder increases.
表面構造の算術平均粗さを1nm以上3nm以下とすることにより、移着膜形成部18と移着膜17との境界面における微細な凹凸の噛み混み深さを適度に小さくすることができ、剥離開始部20からの潤滑液15の滲入時における移着膜17の移着膜形成部18からの剥離を助長することができる。 By setting the arithmetic average roughness of the surface structure to 1 nm or more and 3 nm or less, it is possible to appropriately reduce the biting depth of fine unevenness on the interface between the transfer film forming portion 18 and the transfer film 17 Peeling of the transfer film 17 from the transfer film forming unit 18 can be promoted at the time of penetration of the lubricating liquid 15 from the peeling start unit 20.
また、このような移着膜形成部18の表面構造を形成するにあたっては、2nm〜5μm程度の微細な砥粒を溶媒に分散させてなる砥液を用いるのが望ましい。 Further, in forming such a surface structure of the transfer film forming portion 18, it is preferable to use an abrasive liquid in which fine abrasive particles of about 2 nm to 5 μm are dispersed in a solvent.
具体的には、1μm〜5μm程度の粒子径を有するダイヤモンド粒子やアルミナ粒子を砥粒として分散させた砥液や、2nm〜5nm程度の粒子径を有するダイヤモンド粒子やアルミナ粒子を砥粒として分散させた砥液を採用することができる。例えば、1μm〜5μm程度の砥粒を含む砥液は、後述するマイクロスラリーエロージョン装置40に供することで1nm〜3nmの算術平均粗さ(Ra)を有する移着膜形成部18の表面構造を形成することができる。 Specifically, an abrasive liquid in which diamond particles or alumina particles having a particle diameter of about 1 μm to 5 μm are dispersed as abrasive particles, or diamond particles or alumina particles having a particle diameter of about 2 nm to 5 nm are dispersed as abrasive particles. Abrasive fluid can be employed. For example, an abrasive liquid containing abrasive grains of about 1 μm to 5 μm forms a surface structure of the transfer film forming portion 18 having an arithmetic average roughness (Ra) of 1 nm to 3 nm by being provided to a microslurry erosion device 40 described later. can do.
また、2nm〜5nm程度の砥粒を含む砥液、より好ましくは、2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された二次粒子径が2nm〜20nmの凝膠体を所定溶媒中に分散してなる分散体は、研磨作業に供することにより、前述の表面構造を形成することができる。なお、この研磨は、後述のポリシング工程に相当する研磨であり、ポリシング工程については後に言及する。 In addition, an abrasive liquid containing abrasive particles of about 2 nm to 5 nm, more preferably, an aggregate having a secondary particle diameter of 2 nm to 20 nm formed by aggregating diamond particles having a primary particle diameter of 2 nm to 5 nm A dispersion dispersed in a solvent can form the above-described surface structure by being subjected to a polishing operation. In addition, this grinding | polishing is grinding | polishing corresponding to the below-mentioned polishing process, and mentions a polishing process later.
このような性状を備えた凝膠体は、例えば、酸素欠如型爆薬を爆発させる爆轟法により得ることができる。詳細については、国際公開WO2009/060613号公報や、国際公開WO2007/001031号公報等に委ねるが、所定の配合割合とした爆薬組成物を爆発チャンバー内で爆発させ、爆発生成物を回収して精製することで得ることができる。また、得られた凝膠体は必要に応じ、水素雰囲気中で加熱処理を施し水素化凝膠体とするなどして解砕を容易化する処理を施しても良い。 A clot with such properties can be obtained, for example, by a detonation method in which an oxygen-deficient explosive is detonated. For details, it is entrusted to International Publication WO2009 / 060613, International Publication WO2007 / 001031, etc., but the explosive composition in a predetermined mixing ratio is detonated in the explosion chamber to recover and purify the explosive product. It can be obtained by doing. In addition, the obtained coagulated body may be subjected to a heat treatment in a hydrogen atmosphere, if necessary, to a hydrogenated coagulated body to facilitate disintegration.
また、砥液として使用する分散体には二次粒子である凝膠体は勿論のこと、一次粒子が混在していても良いのであって、解砕が容易化された凝膠体(例えば、水素化凝膠体)を所定溶媒中でビーズミリング法等に供して湿式分散処理し、一次粒子割合を増加させていても良い。また必要に応じ超音波処理などによって更なる分散処理を施しても良い。前記分散処理方法によって得られた分散体は、動的散乱法による粒度分布測定において体積平均粒子径での50%粒径が50nm以下に、好ましくは30nm以下に、更に好ましくは2nm〜20nmに微粒子化された分散体として用いられる。 In addition, in the dispersion used as the abrasive fluid, it is possible that primary particles may be mixed as well as coagulated bodies which are secondary particles, and coagulated bodies which are easily disintegrated (for example, The hydrogenated coagulated substance) may be subjected to a bead milling method or the like in a predetermined solvent and subjected to wet dispersion treatment to increase the primary particle ratio. Further, if necessary, further dispersion processing may be performed by ultrasonic treatment or the like. In the dispersion obtained by the dispersion treatment method, fine particles having a 50% particle size of 50 nm or less, preferably 30 nm or less, more preferably 2 nm to 20 nm in volume average particle diameter in particle size distribution measurement by dynamic scattering method It is used as a formulated dispersion.
なお、分散体に用いられる溶媒は、前述のようにして得られたダイヤモンド粒子が均一に分散可能であれば特に制限はないが、極性溶媒が好ましい。極性溶媒としては例えばプロトン性極性溶媒、非プロトン性極性溶媒が挙げられる。使用できるプロトン性極性溶媒の具体例としては、水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、ギ酸、酢酸、2−メトキシエタノール等が挙げられ、好ましくはC3〜C6アルコール又はC1〜C3アルコキシ置換C1〜C4アルコール等が好ましい。使用できる非プロトン性極性溶媒の具体例としては、テトラヒドロフラン(THF)、メチルtert−ブチルエーテル、1,4−ジオキサン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、1,3−ジオキソラン、2−メチルテトラヒドロフラン等のエーテル溶媒;N,N−ジメチルホルムアミド(DMF)又はN,N−ジメチルアセトアミド(DMAc)等のアミド溶媒;アセトン又はN−メチル−2−ピロリドン等のケトン溶媒;アセトニトリル又はプロピオニトリル等のニトリル溶媒;ジメチルスルホキシド(DMSO)、スルホラン、1,3−ジメチル−2−イミダゾリジノン(DMI)が挙げられ、アセトン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン等が好ましい。これら溶媒は、1種だけでなく、任意の組み合わせで混合して使用することもできる。溶媒の使用量に特に制限はないが、ダイヤモンドの濃度が0.1重量%〜20重量%程度になるように使用するのが好ましい。 The solvent used for the dispersion is not particularly limited as long as the diamond particles obtained as described above can be dispersed uniformly, but a polar solvent is preferable. Examples of polar solvents include protic polar solvents and aprotic polar solvents. Specific examples of the protic polar solvent which can be used include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, formic acid, acetic acid, 2-methoxyethanol and the like, preferably a C3 to C6 alcohol or C1-C3 alkoxy substituted C1-C4 alcohol etc. are preferable. Specific examples of aprotic polar solvents that can be used include ether solvents such as tetrahydrofuran (THF), methyl tert-butyl ether, 1,4-dioxane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, 1,3-dioxolane, 2-methyltetrahydrofuran and the like Amide solvents such as N, N-dimethylformamide (DMF) or N, N-dimethylacetamide (DMAc); ketone solvents such as acetone or N-methyl-2-pyrrolidone; nitrile solvents such as acetonitrile or propionitrile; dimethyl Sulfoxide (DMSO), sulfolane, 1,3-dimethyl-2-imidazolidinone (DMI), acetone, acetonitrile, N, N-dimethylformamide, dimethylsulfoxide, N-methane -2-pyrrolidone is preferred. These solvents may be used alone or in combination of any combination. Although the amount of the solvent used is not particularly limited, it is preferably used so that the concentration of diamond is about 0.1% by weight to 20% by weight.
高硬度面13と低硬度面14は、摩擦部12を構成する面であるため、同摩擦部12を備える構成部材に応じた機能を発揮できる面形状である必要があるが、必ずしも互いに平行な水平面である必要はなく、所定の曲率を有する面であっても良い。すなわち、生体内の関節が有する摩擦面の如く複雑な面形状であっても良い。 The high-hardness surface 13 and the low-hardness surface 14 are surfaces that constitute the friction portion 12 and thus need to have surface shapes that can exhibit functions according to the constituent members provided with the friction portion 12. It does not need to be a horizontal surface, and may be a surface having a predetermined curvature. That is, it may be a complex surface shape such as a friction surface of a joint in a living body.
また、高硬度面13は、上述した摩擦部構造の一形態として、例えば移着膜形成部18として機能する所定曲率の面上に、凹部16として機能する複数のピットが形成された、所謂オレンジピール構造を有する面であっても良い。 Further, the high hardness surface 13 is a so-called orange in which a plurality of pits functioning as the concave portion 16 are formed on a surface of a predetermined curvature functioning as the transfer film forming portion 18 as one form of the friction portion structure described above. It may be a surface having a peel structure.
図3にオレンジピール構造の模式図を示す。図3に示すようにオレンジピール構造は、オレンジの皮の表面形状に由来する当該分野における技術的な称呼であり、高硬度面13aは、所定曲率の面である移着膜形成部18a(図3においては曲率0として記載。)と、穴状に形成された凹部16としてのピット21とで構成されている。このようなオレンジピール構造は、例えば、研磨加工により工作物表面に生じた丸みを帯びた無数の凹凸として得ることができる。 FIG. 3 shows a schematic view of the orange peel structure. As shown in FIG. 3, the orange peel structure is a technical term in the field derived from the surface shape of the orange peel, and the high hardness surface 13 a has a transfer film forming portion 18 a having a predetermined curvature (see FIG. In 3, it describes as curvature 0.) and pit 21 as crevice 16 formed in the shape of a hole. Such an orange peel structure can be obtained, for example, as innumerable rounded unevenness formed on the surface of a workpiece by polishing.
このような高硬度面13aを備えた摩擦部12によっても、ピット21以外の面の部分、すなわち、移着膜形成部18aを移着膜剥離助長手段として機能させて、摩耗粉の大型化を堅実に行わせることができる。 Even with the friction portion 12 having such a high hardness surface 13a, the portion of the surface other than the pits 21, that is, the transfer film forming portion 18a functions as transfer film peeling promoting means, and the wear powder is enlarged. It can be done consistently.
また、摩擦部構造の更なる一形態として、高硬度面13は例えば、移着膜形成部18として機能する所定曲率の面上に、凹部16として機能する複数の溝が形成された構造を有するものであっても良い。 Further, as a further form of the friction portion structure, for example, the high hardness surface 13 has a structure in which a plurality of grooves functioning as the recess 16 are formed on the surface having a predetermined curvature functioning as the transfer film forming portion 18 It may be something.
図4(a)はこのような複数の溝構造を備えた面の模式図を示している。図4(a)に示すように、高硬度面13bは、所定曲率である移着膜形成部18b(図3と同様に曲率0として記載。)と、溝状に形成された凹部16としての溝22とで構成している。 FIG. 4A shows a schematic view of a surface provided with such a plurality of groove structures. As shown in FIG. 4 (a), the high hardness surface 13b is a transfer film forming portion 18b (indicated as a curvature 0 as in FIG. 3) having a predetermined curvature, and a recess 16 formed in a groove shape. And the groove 22.
このような高硬度面13bを備えた摩擦部12によっても、溝22以外の面の部分、すなわち、移着膜形成部18bを移着膜剥離助長手段として機能させて、摩耗粉の大型化を堅実に行わせることができる。 Even with the friction portion 12 provided with such a high hardness surface 13b, a portion of the surface other than the groove 22, that is, the transfer film forming portion 18b functions as transfer film peeling promoting means, and the wear powder is enlarged. It can be done consistently.
また、摩擦部構造の更なる一形態として、高硬度面13は例えば、所定曲率の面上に、凹部16として機能する複数の溝が格子状に形成されており、後に詳述するように隣接する互いに平行な溝の縁部同士を一部重畳させて、溝の伸延方向と直交する断面視において略正弦波状の波形構造を有するものであっても良い。 Further, as a further form of the friction portion structure, the high hardness surface 13 has, for example, a plurality of grooves functioning as the recess 16 formed in a lattice shape on the surface of a predetermined curvature, and adjacent as described in detail later The edges of the grooves parallel to each other may be partially overlapped to have a substantially sinusoidal waveform structure in a cross-sectional view orthogonal to the extending direction of the grooves.
図4(b)にはこのような波形構造を備えた高硬度面13cの模式図を示している。なお、凹凸形状を顕著とするために、凹凸方向の縮尺を大幅に拡大しており、実際は図示するよりもはるかになだらかな凹凸形状である点に留意されたい。 FIG. 4 (b) shows a schematic view of the high hardness surface 13c having such a corrugated structure. It should be noted that in order to make the asperity shape remarkable, the scale of the asperity direction is greatly enlarged, and in fact, the asperity shape is much smoother than illustrated.
この図4(b)に示す波形構造は、図4(a)に示す形状の溝間隔(凹部16の間隔)をより接近させつつ縁部を重複させて形成した構造と捉えることができ、形成された頂部近傍を移着膜形成部18cとしている。付言するならば、移着膜形成部18cには、山の山頂に積もった雪のような状態で移着膜が形成される。なお、図4(b)に示す波形構造にあっては、移着膜形成部18cは平坦ではないが、極めてなだらかな凹凸形状であるため、実際上は低硬度面14との接触により移着膜17が形成される。すなわち、移着膜形成部18は、平坦か否かに拘わらず、移着膜17が形成される領域と解することもできる。付言すれば、凹部内壁は移着膜17が形成されない凹部寄りの部位と解することができる。 The waved structure shown in FIG. 4B can be regarded as a structure formed by overlapping the edge portions while making the groove spacing (the space of the concave portion 16) of the shape shown in FIG. The vicinity of the top portion thus formed is referred to as a transfer film forming portion 18c. In addition, in the transfer film forming portion 18c, a transfer film is formed in a snow-like state accumulated on the top of a mountain. In the waveform structure shown in FIG. 4B, although the transfer film forming portion 18c is not flat, since it has an extremely gentle uneven shape, transfer is actually performed by contact with the low hardness surface 14 A film 17 is formed. That is, the transfer film forming unit 18 can be understood as a region where the transfer film 17 is formed regardless of whether it is flat or not. In addition, the inner wall of the recess can be understood as a portion near the recess where the transfer film 17 is not formed.
このような高硬度面13cを備えた摩擦部12によっても、縁部や移着膜形成部18cを移着膜剥離助長手段として機能させて、摩耗粉の大型化を堅実に行わせることができる。 Even by the friction portion 12 provided with such a high hardness surface 13c, the edge portion and the transfer film forming portion 18c can function as transfer film peeling promoting means, thereby making it possible to steadily increase the wear powder size. .
ここまで述べてきたように、本実施形態に係る摩擦部構造は、種々の機構部品における摩擦部に適用可能な構造であり、低摩擦抵抗性と、摩耗粉の微細化抑制、摩耗粉の発生量抑制という3つの相反する課題を解決するものであるが、機構部品を特に限定するならば、先に述べた生体内における炎症の抑制やメンテナンスの困難性の観点から、特に人工関節に適した構造であるとも言える。 As described above, the friction part structure according to the present embodiment is a structure applicable to the friction parts in various mechanical parts, and has low friction resistance, suppression of the reduction of wear powder, and generation of wear powder. It solves three contradictory problems of quantity suppression, but if mechanical parts are particularly limited, it is particularly suitable for artificial joints from the viewpoint of the suppression of inflammation in the living body described above and the difficulty of maintenance. It can be said that it is a structure.
すなわち、上述の摩擦部構造を備えた人工関節によれば、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を備えた人工関節を提供することができる。 That is, according to the artificial joint provided with the above-mentioned friction part structure, it is possible to suppress the generation of fine wear powder while realizing low friction resistance, and to suppress the generation amount of the wear powder itself. It is possible to provide an artificial joint having a friction part structure that can be
また、本明細書では、上述の摩擦部構造を構成する高硬度側の摩擦面の形成方法についても提供する。 In addition, the present specification also provides a method of forming a high hardness side friction surface that constitutes the above-described friction portion structure.
すなわち、本願は、硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部における、前記一対の摩擦面のうち相対的に高硬度側の摩擦面の形成方法を提供するものでもある。 That is, the present application is formed between a pair of members having different hardnesses, and among the pair of friction surfaces in the friction portion provided with a pair of friction surfaces that slide relatively while contacting each other in the presence of the lubricating fluid It also provides a method of forming a relatively hard surface.
そして、本実施形態に係る摩擦面の形成方法における特徴の一つは、高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、前記ラッピング工程にて形成した表面に、同表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかである凹部を形成する凹部形成工程と、前記凹部形成工程にて形成した表面のうち少なくとも凹部以外の領域を、2nm〜5nmの一次粒子径を有するダイヤモンド粒子が集合して形成された二次粒子径が2nm〜20nmの凝膠体を所定溶媒中に分散させた分散体である第2の砥液で研磨して、この凹部以外の領域を算術平均粗さ(Ra)を1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記凹部以外の領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とするポリシング工程と、を有する。 And one of the features in the method of forming a friction surface according to the present embodiment is the first abrasive liquid in which abrasive grains having a primary particle diameter of 1 μm to 5 μm are dispersed in the region forming the friction surface on the high hardness side. Lapping process to make the same area a surface with an arithmetic average roughness (Ra) of 10 nm to 20 nm, and a groove whose width gradually decreases from the surface side to the inside on the surface formed by the lapping process. Forming a recess having a shape of at least one of a circle and a hole, and diamond particles having a primary particle diameter of 2 nm to 5 nm in an area other than the recess at least in the surface formed in the recess forming step The second abrasive liquid, which is a dispersion in which a coagulated body having a secondary particle diameter of 2 nm to 20 nm is dispersed in a predetermined solvent, is polished, and the area other than this concave portion is arithmetic average roughness ( By setting Ra) to 1 nm to 3 nm, friction on the low hardness side Polishing a surface on the high hardness side having a surface structure as a transfer film separation promoting means for promoting separation of the transfer film transferred to the area other than the concave part by pressure contact sliding with a surface; Have.
ラッピング工程にて使用する第1の砥液は、1μm〜5μmの一次粒径を有する砥粒を分散させた砥液であれば特に限定されるものではないが、例えば砥粒としてダイヤモンドやアルミナを用いることができる。 The first abrasive used in the lapping step is not particularly limited as long as it is an abrasive in which abrasives having a primary particle diameter of 1 μm to 5 μm are dispersed. For example, diamond or alumina is used as the abrasive. It can be used.
このような第1の砥液を用いて高硬度側摩擦面を形成する領域を研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とすることでラッピング工程を行う。 A lapping process is performed by polishing the area | region which forms the high hardness side friction surface using such 1st abrasives, and making the area | region the surface of 10 nm-20 nm of arithmetic mean roughness (Ra).
ここで表面の算術平均粗さが10nmを下回ると、不必要かつ除去が困難な凹部発生の原因となるため好ましくない。また、20nmを上回ると、後のポリシング行程の加工効率が大きく減少するため好ましくない。算術平均粗さが10nm〜20nmの表面とすることにより、後のポリシング工程を良好に行うことができる。 Here, if the arithmetic mean roughness of the surface is less than 10 nm, it is not preferable because it causes unnecessary concave portions that are difficult to remove. Moreover, if it exceeds 20 nm, the processing efficiency of the subsequent polishing step is significantly reduced, which is not preferable. By setting the arithmetic mean roughness to a surface of 10 nm to 20 nm, the subsequent polishing step can be favorably performed.
凹部形成工程は、算術平均粗さ(Ra)を10nm〜20nmとした表面に凹部16を形成する工程である。前述の如く凹部16は、同表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかであれば良い。 The recess forming step is a step of forming the recess 16 on the surface having an arithmetic average roughness (Ra) of 10 nm to 20 nm. As described above, the recess 16 may be at least one of a groove and a hole whose width gradually decreases from the surface side to the inside.
凹部16の形成は、適宜公知の方法を採用することができ、例えばエロージョンやエッチングによるものとすることができる。 A well-known method can be suitably employ | adopted for formation of the recessed part 16, for example, can be based on erosion and etching.
例えば凹部16が図3にて説明したピット21であるならば、エロージョンが生起したり、金属結晶の一部が脱落するなどしてピット21が形成されるまでラッピング工程に供することで形成することができる。付言すれば、この凹部形成工程は、ラッピング工程と同時に行われても良い。 For example, if the recess 16 is the pit 21 described in FIG. 3, it may be formed by being subjected to a lapping process until the pit 21 is formed due to the occurrence of erosion or the dropping of a part of the metal crystal. Can. In addition, the recess forming step may be performed simultaneously with the lapping step.
特に、ラッピング工程と同時に凹部形成工程を行ってピット21を形成する際には、ラッピング処理を開始した後は新たな砥液を供給することなく砥粒を減摩させながら研磨を行うことで、算術平均粗さ(Ra)が10nm〜20nmである表面の形成と、エロージョンによるピット21の形成とを効率良く同時に行うことができる。 In particular, when forming the pits 21 by performing the recess formation process simultaneously with the lapping process, after starting the lapping process, polishing is performed while reducing the abrasive grains without supplying a new abrasive liquid, The formation of the surface having an arithmetic average roughness (Ra) of 10 nm to 20 nm and the formation of pits 21 by erosion can be performed efficiently and simultaneously.
ポリシング工程は、凹部形成工程にて形成した表面のうち少なくとも凹部以外の領域、すなわち移着膜形成部18の表面を研磨して算術平均粗さ(Ra)を1nm〜3nmとする工程である。 The polishing step is a step of polishing at least a region other than the recess in the surface formed in the recess forming step, that is, the surface of the transfer film forming portion 18 to set the arithmetic average roughness (Ra) to 1 nm to 3 nm.
ここで行う研磨は、前述した分散体である第2の砥液を用いて行うことで、低硬度側の摩擦面との圧接摺動によって移着膜形成部18の表面に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面を形成することができる。 The polishing performed here is performed using the second abrasive liquid, which is the above-described dispersion, to transfer and transfer the surface of the transfer film forming portion 18 by press-contact sliding with the low hardness side friction surface. It is possible to form a high hardness side friction surface on which a surface structure is formed as a transfer film separation promoting means for promoting film separation.
また、このポリシング工程は、凹部形成工程にて形成した凹部16の周縁を丸めて滑らかな曲面形状として、低硬度面14との圧接摺動の際のアブレシブ摩耗の抑制や、潤滑液15の剥離開始部20への滲入性の改善を図る役割も有している。 Further, in this polishing step, the peripheral edge of the recess 16 formed in the recess forming step is rounded to form a smooth curved surface, suppressing abrasive wear during pressure-contact sliding with the low hardness surface 14 and peeling off the lubricating fluid 15 It also has a role of improving the penetration into the start part 20.
このように、本実施形態に係る摩擦面の形成方法によれば、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を構成可能な摩擦面を形成することができる。 As described above, according to the method of forming a friction surface according to the present embodiment, it is possible to suppress the generation of fine wear powder while realizing low friction resistance, and further, the generation amount of the wear powder itself is also It is possible to form a frictional surface that can constitute a frictional portion structure that can be suppressed.
また、本実施形態に係る摩擦面の形成方法の他の特徴的構成としては、高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、前記第1の砥液又は一次粒子径が2nm〜5nmの砥粒を所定溶媒中に分散させた分散体である第2の砥液を、前記ラッピング工程にて形成した表面に対して線状に収束させつつ噴射し縦横に走査して格子状の溝を形成すると共に、形成されている溝と隣接する平行な溝の形成時には、新たに形成する溝の縁部を前記形成されている溝の縁部に一部重畳させつつ走査して両溝の走査方向と直交する断面視において略正弦波状の波形構造とし、しかも走査した領域の算術平均粗さ(Ra)を前記第1又は第2の砥液の衝突によって1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記波形構造の頂部近傍領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とするする凹部形成工程と、を有する。 In addition, as another characteristic configuration of the method of forming a friction surface according to the present embodiment, a first abrasive particle having a primary particle diameter of 1 μm to 5 μm is dispersed in a region forming the friction surface on the high hardness side. Polishing with abrasive liquid to make the same area have a surface with an arithmetic average roughness (Ra) of 10 nm to 20 nm, and the first abrasive liquid or abrasive particles with a primary particle diameter of 2 nm to 5 nm in a predetermined solvent And a second abrasive liquid, which is a dispersion dispersed in the above, is linearly converged on the surface formed in the lapping step while scanning it longitudinally and transversely to form a grid-like groove, When forming a parallel groove adjacent to a groove, the edge portion of the groove to be newly formed is scanned while being partially overlapped with the edge portion of the groove formed, and a cross sectional view orthogonal to the scanning direction of both grooves And the arithmetic mean roughness (Ra) of the scanned area is the first or By setting the thickness to 1 nm to 3 nm by the collision of the abrasive liquid of 2, the transfer film peeling that promotes the peeling of the transfer film transferred to the area near the top of the corrugated structure by pressure contact sliding with the low hardness side friction surface And a recessed portion forming step to be a friction surface on the high hardness side on which a surface structure is formed as a promoting means.
図5は、上述の他の特徴的構成に係る凹部形成工程にて使用可能な装置構成を示す説明図である。凹部型性工程を行うにあたって使用する機器類は特に限定されるものではないが、例えば図5に示すマイクロスラリーエロージョン装置40を用いることによっても実現することができる。 FIG. 5: is explanatory drawing which shows the apparatus structure which can be used at the recessed part formation process which concerns on the above-mentioned other characteristic structure. There are no particular limitations on the equipment used to perform the recess-type process, but this can also be realized by using, for example, a micro-slurry erosion device 40 shown in FIG.
マイクロスラリーエロージョン装置40は、空気圧により砥液を極細の線状に収束させた状態で対象物に吹き付ける装置であり、砥液導入部41から砥液(第1又は第2の砥液)を供給しつつ、エア供給部42より圧搾空気を供給することで、先端ノズル43から砥液流44を高速で高硬度部材10に吹き付け可能としている。 The micro-slurry erosion device 40 is a device that sprays the abrasive liquid onto the object in a state where the abrasive liquid is converged into a very thin linear shape by air pressure, and supplies the abrasive liquid (first or second abrasive liquid) from the abrasive liquid introduction unit 41 However, by supplying compressed air from the air supply unit 42, the abrasive fluid flow 44 can be sprayed from the tip nozzle 43 onto the high hardness member 10 at high speed.
また、マイクロスラリーエロージョン装置40と高硬度部材10は相対的に移動可能に構成している。すなわち、高硬度部材10に対してマイクロスラリーエロージョン装置40を移動させるか、又はその逆に、マイクロスラリーエロージョン装置40に対して高硬度部材10を移動させることにより、高硬度部材10の表面を砥液流44にて走査可能としている。 In addition, the micro slurry erosion device 40 and the high hardness member 10 are configured to be movable relative to each other. That is, the surface of the high hardness member 10 is abraded by moving the micro slurry erosion device 40 relative to the high hardness member 10 or, conversely, moving the high hardness member 10 relative to the micro slurry erosion device 40. It is possible to scan with the liquid flow 44.
従って、砥液流44で高硬度部材10の表面を所定走査速度で縦横に(格子状に)走査することで、図4(a)や図4(b)に示すような有溝の高硬度面13を形成することができる。 Therefore, by scanning the surface of the high hardness member 10 longitudinally and horizontally (in a lattice) at the predetermined scanning speed with the abrasive fluid flow 44, the high hardness of the grooved groove as shown in FIG. 4 (a) or 4 (b) The surface 13 can be formed.
また特に、図4(b)に示した高硬度面13cにおいては、隣接する互いに平行な溝の縁部同士を一部重畳させた構造としている。 Further, in particular, in the high hardness surface 13c shown in FIG. 4B, the edges of adjacent grooves parallel to each other are partially overlapped.
図6は図4(b)に示した高硬度面13cをマイクロスラリーエロージョン装置40により形成する過程を示した説明図である。図6(a)に示すように、高硬度面13cの如き波形構造を形成するにあたっては、砥液流44にて直線状に高硬度部材10の表面を走査して、実線にて示すようにまず溝22を一本形成する。 FIG. 6 is an explanatory view showing a process of forming the high hardness surface 13c shown in FIG. 4B by the micro slurry erosion device 40. As shown in FIG. As shown in FIG. 6A, when forming a corrugated structure such as the high hardness surface 13c, the surface of the high hardness member 10 is scanned linearly with the abrasive liquid flow 44, as shown by a solid line. First, one groove 22 is formed.
このとき、高硬度部材10に噴射された砥液流44は、その勢いで高硬度部材10の表面にて反射された際に、上方へ拡開する溝部の側壁面から高硬度部材10の基礎平面につながる滑らかな曲面形状の縁部46が形成される。なお、この縁部46は移着膜剥離手段として機能する部位でもある。 At this time, when the abrasive fluid flow 44 jetted to the high hardness member 10 is reflected on the surface of the high hardness member 10 by its momentum, the foundation of the high hardness member 10 is formed from the side wall surface of the groove portion expanding upward. A smooth curved edge 46 is formed which leads to a flat surface. The edge portion 46 is also a portion functioning as a transfer film peeling means.
次いで、形成した溝22と隣接する平行な溝22を形成するにあたり、形成されている溝の縁部46に、新たに形成する溝22の縁部46を破線にて示すように一部重畳させつつ走査する。 Next, in forming the parallel groove 22 adjacent to the formed groove 22, the edge 46 of the groove 22 to be newly formed is partially overlapped with the edge 46 of the formed groove as shown by a broken line. While scanning.
これを複数回繰り返すことにより、図6(b)に示すように、溝の伸延方向と直交する断面視において略正弦波状の波形構造が形成されることとなる。 By repeating this a plurality of times, as shown in FIG. 6B, a substantially sinusoidal waveform structure is formed in a cross sectional view orthogonal to the extending direction of the groove.
このようにして形成した波形構造の溝幅pや深さqは特に限定されるものではないが、好ましくは前述したように、溝幅pを0.5mm〜5mm、深さqを35nm〜200nmとすることで、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を構成可能な摩擦面を形成することができる。なお、このような波形構造が形成された領域は、実質的に略全表面が砥液流44により研磨された状態、すなわち、ポリシング工程が施されたような表面状態となっている。これは、砥粒の高硬度面13への衝突による無数の衝突痕の形成(ナノメートルエロージョン)によるものと考えられる。従って、この他の特徴的構成に係る凹部形成工程によれば、別途ポリシング工程を省略することも可能である。ただし、必要に応じてポリシング工程を実施することを妨げるものではない。 The groove width p and the depth q of the corrugated structure thus formed are not particularly limited, but preferably the groove width p is 0.5 mm to 5 mm, and the depth q is 35 nm to 200 nm, as described above. By doing this, it is possible to suppress the generation of fine wear powder while realizing low friction resistance, and moreover, it is possible to configure a friction part structure capable of suppressing the generation amount of wear powder itself. Can be formed. The region where such a corrugated structure is formed is in a state in which substantially the entire surface has been polished by the abrasive fluid flow 44, that is, a surface state in which a polishing process is performed. This is considered to be due to the formation of innumerable collision marks (nanometer erosion) due to the collision of the abrasive grains with the high hardness surface 13. Therefore, according to the recess forming process according to the other characteristic configuration, it is possible to omit the polishing process separately. However, this does not prevent the implementation of the polishing process as needed.
ところで、本実施形態に係る摩擦部構造は、別の異なる切り口にて捕らえるならば、摩擦面間の直接的な接触が必要となる摩擦部において摩耗特性を改善するものと考えることもできる。 By the way, the friction part structure according to the present embodiment can also be considered to improve the wear characteristics in the friction part where direct contact between the friction surfaces is required if it is caught by another different cut.
例えば、回転又は往復可能に支持された軸の周囲に配置され、前記軸周りの液密性を確保するためのシール部材を備えた軸封装置等では、液密性の向上のために軸とシール部材との緊密性が要求されるが、軸に対してシール部材を緊密に接触させれば液密性は向上するものの摩擦抵抗が増大してしまい、またその反面、接触を緩めにすれば摩擦抵抗は低減するものの液密性が低下してしまうという問題が存在する。 For example, in a shaft sealing device or the like provided around a shaft rotatably or reciprocably supported and provided with a seal member for securing liquid tightness around the shaft, the shaft and the like for improving liquid tightness. Although tightness with the seal member is required, if the seal member is in close contact with the shaft, liquid tightness is improved but frictional resistance is increased. On the other hand, if the contact is loosened Although the frictional resistance is reduced, there is a problem that the liquid tightness is reduced.
これに対し、本実施形態に係る摩擦部構造は、摩擦面を接触させつつも低摩擦抵抗性と低摩耗性とを実現できるものであり、このような軸封装置等において極めて有用な技術であるとも言える。 On the other hand, the friction part structure according to the present embodiment can realize low friction resistance and low abrasion while contacting the friction surfaces, and is an extremely useful technique in such a shaft sealing device or the like. It can be said that there is.
以下、本実施形態に係る摩擦部構造や摩擦面の形成方法等について、実験結果等を交えながら更に詳説する。なお、以下ではまず実施例1として、図3及び図4(a)に示す構造について検討した例を示し、追って実施例2として、図4(b)に示す構造について検討した例を示す。 Hereinafter, the structure of the friction portion, the method of forming the friction surface, and the like according to the present embodiment will be described in more detail with experimental results and the like. In the following, an example in which the structure shown in FIG. 3 and FIG. 4 (a) is examined first will be shown as Example 1, and an example in which the structure shown in FIG.
[実施例1]
〔1.高硬度側摩擦面の形成〕
まず、高硬度側摩擦面の形成について言及する。本実施形態では、硬度の異なる一対の部材として、一方の相対的に高硬度の部材をコバルトクロムモリブデン合金(Co-28Cr-Mo)、他方の相対的に低硬度の部材を超高分子量ポリエチレン(平均分子量600万)とした。
Example 1
[1. Formation of high hardness side friction surface]
First, the formation of the high hardness side friction surface is mentioned. In this embodiment, as a pair of members having different hardnesses, one member having a relatively high hardness is a cobalt chromium molybdenum alloy (Co-28Cr-Mo), and the other member having a relatively low hardness is an ultrahigh molecular weight polyethylene ( Average molecular weight was 6 million).
図5に示すように、高硬度部材の表面のうち高硬度側の摩擦面を形成する領域(以下、単に形成領域という。)に対してラッピング加工を施すことによりラッピング工程を行った。 As shown in FIG. 5, the lapping process was performed by performing lapping processing on a region (hereinafter, simply referred to as a formation region) which forms the friction surface on the high hardness side in the surface of the high hardness member.
具体的には、ダイヤモンド又はアルミナで構成された粒径が1μm〜5μmの砥粒を所定の分散媒に分散させてなる砥液を第1の砥液とし、前述の高硬度部材をラッピング装置に供して、表面の算術平均粗さ(Ra)が10nm〜20nmとなるようラッピング加工を行った。 Specifically, an abrasive liquid obtained by dispersing abrasive particles having a particle diameter of 1 μm to 5 μm made of diamond or alumina in a predetermined dispersion medium is used as a first abrasive liquid, and the above-described high hardness member is used as a lapping apparatus. Then, lapping was performed so that the arithmetic mean roughness (Ra) of the surface was 10 nm to 20 nm.
また、第1の砥液はラッピング加工の初期に供給した後追加補給を行うことなく、砥粒を摩耗させつつ研磨を行って、高硬度部材の表面にエロージョンを生起させることでピットを形成させた。すなわち、ラッピング工程と共に凹部形成工程を行って、オレンジピール構造を形成した。 After the first abrasive liquid is supplied at the initial stage of lapping, the abrasive grains are abraded while being abraded without causing additional replenishment, and pits are formed by causing erosion on the surface of the high hardness member. The That is, the recess formation step was performed together with the lapping step to form an orange peel structure.
次いで、凹部形成工程にて形成した表面のうち少なくとも凹部以外の領域に対し、算術平均粗さ(Ra)が1nm〜3nmとなるまで第2の砥液で研磨してポリシング工程を行った。 Next, the polishing process was performed by polishing with a second abrasive liquid until the arithmetic average roughness (Ra) became 1 nm to 3 nm with respect to at least a region other than the recess in the surface formed in the recess forming step.
第2の砥液は、2nm〜5nmの一次粒子径を有するナノダイヤモンド粒子の水分散体(日本化薬株式会社製、商品名「Ustalla(登録商標) TypeA」)を用いた。この第2の砥液は、2nm〜5nmの一次粒子径を有するダイヤモンド粒子を所定溶媒中に分散してなる分散体であり、ダイヤモンド粒子が集合して形成された凝膠体を解砕して得られた2nm〜20nmの粒度分布を有する解砕物として分散されている。図6に、この第2の砥液の粒度分布測定データを示す。図6からも分かるように、使用した第2の砥液は、2nm〜20nmに微粒子化された分散体であることが分かる。 As the second abrasive liquid, an aqueous dispersion of nanodiamond particles having a primary particle diameter of 2 nm to 5 nm (trade name "Ustalla (registered trademark) Type A" manufactured by Nippon Kayaku Co., Ltd.) was used. The second abrasive liquid is a dispersion in which diamond particles having a primary particle diameter of 2 nm to 5 nm are dispersed in a predetermined solvent, and a coagulated body formed by aggregating diamond particles is disintegrated. It is dispersed as a crushed material having a particle size distribution of 2 nm to 20 nm obtained. FIG. 6 shows the particle size distribution measurement data of this second abrasive liquid. As can also be seen from FIG. 6, it can be seen that the second abrasive fluid used is a dispersion finely divided to 2 nm to 20 nm.
このようにしてポリシング工程を経ることにより、低硬度側の摩擦面との圧接摺動によって前記凹部以外の領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面(L-2)を備える高硬度部材Aを得た。この摩擦面(L-2)を備える高硬度部材Aは、本実施形態に係る摩擦部構造を形成可能な高硬度部材Aである。 Thus, by passing through the polishing step, a surface structure as a transfer film peeling promoting means for promoting the peeling of the transfer film transferred to the area other than the concave portion by pressure contact sliding with the low hardness side friction surface. Thus, a high hardness member A provided with the high hardness side friction surface (L-2) formed was obtained. The high hardness member A provided with the friction surface (L-2) is a high hardness member A capable of forming the friction portion structure according to the present embodiment.
また、本実施形態に係る摩擦部構造を構築可能な他の高硬度部材Bの作成も行った。この高硬度部材Bは、摩擦面に形成された凹部構造が溝状である点で高硬度部材Aと構造を異にするものである。 Moreover, creation of the other high hardness member B which can build the friction part structure which concerns on this embodiment was also performed. The high hardness member B is different in structure from the high hardness member A in that the recess structure formed on the friction surface is groove-shaped.
具体的には、まず前述の第1の砥液にて、高硬度部材をラッピング装置に供し、エロージョンを生じさせることなく、ラッピング処理中における第1の砥液の追加補給を行い、又は行わずに、表面の算術平均粗さ(Ra)が10nm〜20nmとなるようラッピング加工を行った。 Specifically, first, the high hardness member is subjected to the lapping apparatus with the above-mentioned first abrasive liquid, and the first abrasive liquid is additionally supplied or not during the lapping process without causing erosion. In addition, lapping was performed such that the arithmetic mean roughness (Ra) of the surface was 10 nm to 20 nm.
次に、ラッピング加工が施された形成領域に対し、エッチング又はエロージョンによって、複数の凹部としての格子状の溝を形成して凹部型性工程を行った。格子間隔は500μmであり、溝の幅は250μm、溝の深さは35nm〜65nmとした。 Next, in the formation region subjected to the lapping process, grid-like grooves as a plurality of recesses were formed by etching or erosion, and a recess-type process was performed. The lattice spacing was 500 μm, the groove width was 250 μm, and the groove depth was 35 nm to 65 nm.
次に凹部型性工程を経た形成領域に対し、前述の高硬度部材Aと同様ポリシング工程を行うことで、低硬度側の摩擦面との圧接摺動によって前記凹部以外の領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面(X-1)を備える高硬度部材Bを得た。 Next, by performing the polishing process in the same manner as the above-described high hardness member A with respect to the formation area having undergone the recess type process, the transfer transferred to the area other than the recess by press-contacting sliding with the low hardness side friction surface. A high-hardness member B was obtained which has a high-hardness-side friction surface (X-1) on which a surface structure is formed as a transfer film separation promoting means for promoting separation of the deposited film.
また、これら高硬度部材A及び高硬度部材Bに加え、次に述べる検証や試験に供するための比較対象として、高硬度部材の形成領域に対してラッピング工程のみが施された摩擦面(G-1)を備える高硬度部材Z1と、高硬度部材Aと同様の形成方法であるが凹部としてのピットの深さが深く過剰の容量を有することで潤滑液を溢出させることができない摩擦面(L-1)を備える高硬度部材Z2と、高硬度部材Aと同様の形成方法であるが凹部としてのピットの深さが浅く、移着膜の剥離を促進できる量の潤滑液を貯留できない摩擦面(L-3)を備える高硬度部材Z3とについても形成した。 Further, in addition to the high hardness member A and the high hardness member B, a friction surface (G-to which only the lapping process is applied to the formation region of the high hardness member is provided as a comparison target for verification and testing described below. 1) A method of forming the same as the high hardness member Z1 and the high hardness member A, but the depth of the pit as a recess is deep and the friction surface (L can not spill out the lubricating fluid by having an excessive capacity) The same method as in the case of the high hardness member Z2 and the high hardness member A, but the depth of the pit as a recess is small, and the friction surface can not store the lubricating liquid in an amount capable of promoting the peeling of the transfer film. It formed also about high hardness member Z3 provided with (L-3).
〔2.高硬度側摩擦面の検証〕
次に、上述の〔1.高硬度側摩擦面の形成〕にて形成した各摩擦面G-1、L-1、L-2、L-3、X-1に関し、その性状について検証を行った。その結果を表1に示す。
Next, the above-mentioned [1. Formation of High-Hardness Side Friction Surface] The properties of each of the friction surfaces G-1, L-1, L-2, L-3, and X-1 formed in the above were verified. The results are shown in Table 1.
表1からも分かるように、G-1の表面粗さは、L-1〜L-3やX-1の表面粗さと比較して粗いことが示された。また、G-1の表面解析結果から、比較的シャープな凹凸形状が残存していることが示された。 As can be seen from Table 1, it was shown that the surface roughness of G-1 was rough as compared to the surface roughness of L-1 to L-3 and X-1. In addition, it was shown from the surface analysis result of G-1 that a relatively sharp asperity remains.
一方、L-1〜L-3やX-1の表面粗さは、いずれも数nmと平滑であることが示された。しかしながら、これらの摩擦面の表面解析結果によれば、L-1に形成された凹部は収容した潤滑液の溢出を促せない程容量が大きく、L-3に形成された凹部は移着膜を剥離するのに不十分な潤滑液の量しか貯留できないことが示された。また、L-2及びX-1に形成された凹部は、移着膜の剥離に充分な潤滑液を収容可能であって、収容した潤滑液も摩擦面の摺動に伴って溢出可能な容量であることが示された。 On the other hand, it was shown that the surface roughness of each of L-1 to L-3 and X-1 was as smooth as several nm. However, according to the surface analysis results of these friction surfaces, the concave portion formed in L-1 has a large capacity so as not to promote spillage of the contained lubricating fluid, and the concave portion formed in L-3 has the transfer film It was shown that only a sufficient amount of lubricating fluid could be stored to delaminate. In addition, the concave portions formed in L-2 and X-1 can accommodate lubricating fluid sufficient for peeling of the transfer film, and the contained lubricating fluid can also spill out with sliding of the friction surface. It was shown to be.
〔3.摩擦抵抗確認試験〕
次に、各摩擦面G-1、L-1、L-2、L-3、X-1に関し、相対的に低硬度の部材(超高分子量ポリエチレン)との摩擦抵抗について試験を行った。その結果、G-1>L-1≒L-2≒X-1>L-3であることが示された。
[3. Friction resistance confirmation test]
Next, with respect to each of the friction surfaces G-1, L-1, L-2, L-3, and X-1, a test was conducted on the frictional resistance with a relatively low hardness member (ultrahigh molecular weight polyethylene). As a result, it was shown that G-1> L-1 ≒ L-2 ≒ X-1> L-3.
〔4.摩耗量の確認試験〕
次に、各摩擦面G-1、L-1、L-2、L-3に関し、相対的に低硬度の部材(超高分子量ポリエチレン)と摩擦部を構築した際の摺動時の摩耗量について、Pin-on-disc法により確認を行った。なお、本試験において潤滑液は25%牛血清水溶液を用いた。その結果を図7に示す。
[4. Confirmation test of the amount of wear]
Next, with respect to each of the friction surfaces G-1, L-1, L-2 and L-3, the amount of wear at the time of sliding when constructing a member (ultrahigh molecular weight polyethylene) having a relatively low hardness and a friction portion Were confirmed by the Pin-on-disc method. In this test, 25% bovine serum aqueous solution was used as the lubricating fluid. The results are shown in FIG.
図7からも分かるように、ラッピング工程のみに供した摩擦面G-1と比較し、L-1とL-2では摩耗の低下が見られた。特に、L-2は摩耗量が最も低い結果となった。また、L-3は摩耗が増加する結果となった。これは、L-1とL-2においては形成した凹部に潤滑液が誘導・貯留され、高硬度部材Z2や高硬度部材Aと低硬度部材との間が無潤滑液状態になったためと考えられる。すなわち、このような状態となったことにより、高硬度部材の表面、すなわち移着膜形成部表面に移着膜が形成され、自己潤滑作用も伴って摩耗が減少したものと考えられた。一方、L-3の場合は凹部の容量が足らず、潤滑液の誘導・貯留が不十分で、凝着性の摩耗が顕在化したと考えられた。 As can be seen from FIG. 7, in the L-1 and L-2, a decrease in wear was observed as compared with the friction surface G-1 which was subjected only to the lapping step. In particular, L-2 resulted in the lowest amount of wear. L-3 also resulted in increased wear. This is thought to be because the lubricating liquid is induced and stored in the concave portions formed in L-1 and L-2, and the high hardness member Z2 or the high hardness member A and the low hardness member are in a non-lubricant state. Be That is, it was considered that due to such a state, the transfer film was formed on the surface of the high hardness member, that is, the surface of the transfer film forming portion, and the wear was reduced along with the self-lubricating action. On the other hand, in the case of L-3, the volume of the recess was insufficient, and the induction and storage of the lubricating fluid were insufficient, and it was considered that the adhesive wear was apparent.
〔5.摩耗粉の粒度分布測定〕
各摩擦面G-1、L-1、L-2、L-3に関し、相対的に低硬度の部材(超高分子量ポリエチレン)と摩擦部を構築した際の摺動時に発生した摩耗粉の粒度分布について確認を行った。その結果を図8に示す。
[5. Particle size distribution measurement of wear powder]
For each friction surface G-1, L-1, L-2, L-3, the particle size of wear powder generated during sliding when constructing a member (ultrahigh molecular weight polyethylene) with relatively low hardness and friction part We confirmed the distribution. The results are shown in FIG.
図8に示すように、ラッピング工程のみに供した摩擦面G-1と比較し、L-1〜L-3のいずれにおいても摩耗粉のサイズが大きくなっていることが明らかとなった。 As shown in FIG. 8, it was revealed that the size of the wear powder was larger in any of L-1 to L-3 as compared with the friction surface G-1 which was subjected only to the lapping step.
本実施形態に係る摩擦部構造を備えない摩擦部の高硬度面に移着膜が形成されると、摩耗量は少なくなるものの、摩耗粉のサイズも小さくなってしまうという問題がある。 When the transfer film is formed on the high hardness surface of the friction portion not provided with the friction portion structure according to the present embodiment, although the amount of wear decreases, there is a problem that the size of the wear powder also decreases.
しかしながら、L-1〜L-3の場合、凹部に誘導・貯留された潤滑液が溢出することで移着膜の剥離を促進することとなる。そして、剥離した移着膜は潤滑状態が充分でない摩擦面間で凝集肥大化することとなり、その結果、摩耗粉のサイズが大型化する。 However, in the case of L-1 to L-3, exfoliation of the transfer film is promoted by the lubricating fluid induced and stored in the recess overflowing. Then, the peeled transfer film is aggregated and enlarged between the friction surfaces whose lubrication state is not sufficient, and as a result, the size of the wear powder is increased.
そして、〔3.摩擦抵抗確認試験〕〜〔5.摩耗粉の粒度分布測定〕までの結果を総合的に勘案すると、本実施形態に係る摩擦部構造を構築可能なL-2が、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる高硬度面であることが分かる。 And [3. Frictional resistance confirmation test] to [5. When comprehensively considering the results of the particle size distribution measurement of the wear powder], although L-2 capable of constructing the friction part structure according to the present embodiment realizes low friction resistance, generation of fine wear powder It can be seen that the surface is a high hardness surface which can suppress the generation of wear powder and also can suppress the generation amount of wear powder itself.
[実施例2]
次に、図4(b)に示す構造について検討した例を示す。
Example 2
Next, an example in which the structure shown in FIG.
〔1.高硬度側摩擦面の形成〕
まず、高硬度側摩擦面の形成について言及する。本実施例2においても、硬度の異なる一対の部材として、一方の相対的に高硬度の部材をコバルトクロムモリブデン合金(Co-28Cr-Mo)、他方の相対的に低硬度の部材を超高分子量ポリエチレン(平均分子量600万)とした。
[1. Formation of high hardness side friction surface]
First, the formation of the high hardness side friction surface is mentioned. Also in Example 2, as a pair of members having different hardnesses, one member of relatively high hardness is a cobalt chromium molybdenum alloy (Co-28Cr-Mo), and the other member of relatively low hardness is an ultra high molecular weight It was polyethylene (average molecular weight 6 million).
次に、ダイヤモンド又はアルミナで構成された粒径が1μm〜5μmの砥粒を所定の分散媒に分散させてなる砥液を第1の砥液とし、前述の高硬度部材をラッピング装置に供し、形成領域に対して表面の算術平均粗さ(Ra)が10nm〜20nmとなるようラッピング加工を行った。 Next, a polishing solution prepared by dispersing abrasive particles having a particle diameter of 1 μm to 5 μm composed of diamond or alumina in a predetermined dispersion medium is used as a first polishing solution, and the above-mentioned high hardness member is applied to a lapping machine. Lapping was performed on the formation region so that the arithmetic mean roughness (Ra) of the surface was 10 nm to 20 nm.
次いで、前述のマイクロスラリーエロージョン装置40を用い、ラッピング工程にて形成した表面に対して前述した第1又は第2の砥液を線状に収束させつつ噴射し、砥液流44で縦横に走査した。 Next, using the above-described micro-slurry erosion device 40, the first or second abrasive liquid described above is ejected while linearly converging on the surface formed in the lapping process, and the abrasive liquid flow 44 scans lengthwise and crosswise did.
また、形成されている溝と隣接する平行な溝の形成時には、新たに形成する溝の縁部を形成されている溝の縁部に一部重畳させつつ走査して、両溝の走査方向と直交する断面視において略正弦波状の波形構造を有するようにし、図4(b)に示す格子状の溝構造を形成した。 When forming a parallel groove adjacent to the formed groove, scanning is performed while partially overlapping the edge of the formed groove with the edge of the newly formed groove, and the scanning direction of both grooves It was made to have a waveform structure of a substantially sine wave in the cross-sectional view orthogonal to form a grid-like groove structure shown in FIG. 4 (b).
このようにして凹部形成工程を経ることにより、低硬度側の摩擦面との圧接摺動によって移着膜形成部18cに移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面(M)を備える高硬度部材Cを得た。この摩擦面(M)を備える高硬度部材Cは、本実施形態に係る摩擦部構造を形成可能な高硬度部材である。 Thus, by passing through the concave portion forming step, as a transfer film peeling promoting means for promoting the peeling of the transfer film transferred to the transfer film forming portion 18c by the pressure contact sliding with the low hardness side friction surface. The high hardness member C provided with the high hardness side friction surface (M) on which the surface structure was formed was obtained. The high hardness member C provided with the friction surface (M) is a high hardness member capable of forming the friction portion structure according to the present embodiment.
〔2.高硬度側摩擦面の検証〕
この高硬度部材Cについて摩擦面(M)の解析を行った結果、溝22の溝幅pは1mm、深さqは180nmであった。また、砥液流44による走査により、形成領域の算術平均粗さ(Ra)が2nmとなっており、実質的にはポリシング工程と同様の効果が得られていることが確認された。
[2. Verification of high hardness side friction surface]
As a result of analyzing the friction surface (M) of the high hardness member C, the groove width p of the groove 22 was 1 mm, and the depth q was 180 nm. Further, it was confirmed by the scanning with the abrasive liquid flow 44 that the arithmetic mean roughness (Ra) of the formed region was 2 nm, and that substantially the same effect as the polishing step was obtained.
〔3.摩擦抵抗確認試験〕
次に、摩擦面(M)に関し、相対的に低硬度の部材(超高分子量ポリエチレン)との摩擦抵抗について試験を行った。その結果、前述のL-2やX-1と略同程度の摩擦抵抗であることが示された。
[3. Friction resistance confirmation test]
Next, with respect to the friction surface (M), a test was conducted on the frictional resistance with a relatively low hardness member (ultrahigh molecular weight polyethylene). As a result, it was shown that the frictional resistance was substantially equivalent to that of L-2 and X-1 described above.
〔4.摩耗量の確認試験〕
次に、摩擦面(M)に関し、相対的に低硬度の部材(超高分子量ポリエチレン)と摩擦部を構築した際の摺動時の摩耗量について、Pin-on-disc法により確認を行った。なお、本試験では、比較対象としてラッピング工程のみを施した高硬度部材の摩擦面(G2)についても検討を行った。これら摩擦面(M)及び摩擦面(G2)の表面状態のデータを表2に示す。
Next, with respect to the friction surface (M), the amount of wear at the time of sliding when constructing a member (ultrahigh molecular weight polyethylene) having a relatively low hardness and the friction portion was confirmed by the Pin-on-disc method . In addition, in this test, the friction surface (G2) of the high hardness member subjected only to the lapping process as a comparative object was also examined. The data of the surface state of the friction surface (M) and the friction surface (G2) are shown in Table 2.
また、本試験において潤滑液は25%牛血清水溶液を用いた。その結果を図11(a)に示す。 In addition, 25% bovine serum aqueous solution was used as the lubricating fluid in this test. The result is shown in FIG.
図11(a)からも分かるように、ラッピング工程のみに供した摩擦面(G2)と比較し、摩擦面(M)では摩耗の低下が見られた。特に、摩擦面(M)における摩耗量は平均で約0.6mgとなり、前述のL-2に比してもより低い結果となった。 As can be seen from FIG. 11 (a), in the friction surface (M), a decrease in wear was observed as compared with the friction surface (G2) subjected only to the lapping step. In particular, the amount of wear on the friction surface (M) was about 0.6 mg on average, which was lower than the above-mentioned L-2.
〔5.摩耗粉の粒度分布測定〕
各摩擦面G2、Mに関し、相対的に低硬度の部材(超高分子量ポリエチレン)と摩擦部を構築した際の摺動時に発生した摩耗粉の粒度分布について確認を行った。その結果を図11(b)に示す。
[5. Particle size distribution measurement of wear powder]
With respect to each of the friction surfaces G2 and M, the particle size distribution of wear powder generated at the time of sliding when a member (ultrahigh molecular weight polyethylene) having a relatively low hardness and a friction portion were constructed was confirmed. The result is shown in FIG.
図11(b)に示すように、ラッピング工程のみに供した摩擦面G2と比較し、摩擦面(M)の摩耗粉のサイズは大きくなっており、0.2μm〜1.0μmに分類されるサイズの摩耗分の量が著しく低減していることが明らかとなった。特に、摩擦面(M)における摩耗粉の分布傾向を見ると、前述のL-2に比してもより良好な結果となった。 As shown in FIG. 11 (b), the size of the wear powder on the friction surface (M) is larger than that of the friction surface G2 subjected only to the lapping process, and the size of 0.2 μm to 1.0 μm is classified. It was found that the amount of wear was significantly reduced. In particular, the distribution tendency of the wear powder on the friction surface (M) shows better results than the above-mentioned L-2.
〔6.炎症関連物質発現量測定〕
次に、各摩擦面G2、Mにて得られた摩耗粉を用いて、マクロファージから放出されるサイトカイン、特にIL-6(インターロイキン-6)とTNF-αの量を測定し、炎症抑制効果が得られているか否かについて検討を行った。
[6. Measurement of expression level of inflammation related substance]
Next, the amount of cytokines released from macrophages, in particular IL-6 (interleukin-6) and TNF-α, is measured using the attrition powder obtained on each friction surface G2, M, and the inflammation suppression effect We examined whether or not we were obtained.
具体的には、各摩擦面G2、Mにて得られた摩耗粉と共にヒト単球由来マクロファージ(Human monocyte-derived macrophages:HMDM)を培養し、IL-6及びTNF-αの分泌量を測定した。その結果を図11(c)に示す。 Specifically, human monocyte-derived macrophages (HMDM) were cultured together with attrition powder obtained on each friction surface G2, M, and the amount of secreted IL-6 and TNF-α was measured. . The result is shown in FIG.
図11(c)からも分かるように、IL-6とTNF-αとのいずれにおいても、ラッピング工程のみに供した摩擦面G2の摩耗粉に比して、摩擦面Mで発生した摩耗粉はサイトカインの発生量が低いことが示された。 As can be seen from FIG. 11 (c), in both IL-6 and TNF-α, the wear powder generated on the friction surface M is smaller than the wear powder on the friction surface G2 subjected only to the lapping step. It was shown that the amount of cytokine production was low.
すなわち、本実施形態に係る摩擦部構造や、摩擦面の形成方法により得られた摩擦面は、生体内において炎症の原因となりにくいことが示された。 That is, it was shown that the friction portion structure according to the present embodiment and the friction surface obtained by the method of forming the friction surface are less likely to cause inflammation in a living body.
上述してきたように、本実施形態に係る摩擦部構造によれば、硬度の異なる一対の部材間に形成され、潤滑液の存在下で互いに接触しつつ相対的に摺動する一対の摩擦面を備えた摩擦部の構造において、前記一対の摩擦面のうち相対的に高硬度の摩擦面は、相対的に低硬度の摩擦面との接触により移着膜が形成される移着膜形成部と、前記高硬度の摩擦面の表面側から内側にかけて徐々に幅が狭くなる溝状及び穴状の少なくともいずれかであって、前記一対の摩擦面の圧接時に前記移着膜形成部の表面に存在する潤滑液を流入させて収容し同表面を実質的に無潤滑液状態にできる容量を備えた凹部と、を有し、前記移着膜形成部の表面は、前記一対の摩擦面の圧接摺動に伴って前記凹部より溢出した潤滑液により前記移着膜形成部の表面に形成された前記移着膜の剥離を助長する移着膜剥離助長手段を備えることとしたため、低い摩擦抵抗性を実現しながらも、微細な摩耗粉の発生を抑制することができ、しかも、摩耗粉の発生量自体も抑制することのできる摩擦部構造を提供することができる。 As described above, according to the friction portion structure according to the present embodiment, a pair of friction surfaces which are formed between a pair of members with different hardness and relatively slide in contact with each other in the presence of the lubricating liquid In the structure of the provided friction portion, the friction surface having relatively high hardness among the pair of friction surfaces is a transfer film forming portion where the transfer film is formed by contact with the friction surface having relatively low hardness. And at least one of a groove shape and a hole shape in which the width gradually narrows from the surface side to the inside of the high hardness friction surface, and is present on the surface of the transfer film forming portion when the pair of friction surfaces are in pressure contact. And a concave portion having a volume capable of causing the lubricating fluid to flow in and storing the same surface substantially in a non-lubricating liquid state, and the surface of the transfer film forming portion is a pressure contact slide of the pair of friction surfaces. It forms on the surface of the said transfer film formation part by the lubricating fluid which overflowed from the said recessed part with movement. Since the transfer film separation promoting means for promoting the separation of the transfer film is provided, generation of fine wear powder can be suppressed while realizing low friction resistance, and moreover, wear powder It is possible to provide a friction portion structure that can also suppress the generation amount of itself.
最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。 Finally, the description of each of the above-described embodiments is an example of the present invention, and the present invention is not limited to the above-described embodiments. For this reason, even if it is a range which does not deviate from the technical idea concerning the present invention even if it is other than each embodiment mentioned above, it is needless to say that various change is possible according to a design etc.
10 高硬度部材
11 低硬度部材
12 摩擦部
13 高硬度面
14 低硬度面
15 潤滑液
16 凹部
17 移着膜
18 移着膜形成部
19 微細摩擦粉
20 剥離開始部
21 ピット
22 溝
30 大型摩耗粉
DESCRIPTION OF SYMBOLS 10 High hardness member 11 Low hardness member 12 Friction part 13 High hardness surface 14 Low hardness surface 15 Lubricant 16 Concave part 17 Transfer film 18 Transfer film formation part 19 Fine friction powder 20 Peeling start part 21 Pit 22 Groove 30 Large wear powder
Claims (9)
前記一対の摩擦面のうち相対的に高硬度の摩擦面は、
相対的に低硬度の摩擦面との接触により移着膜が形成される移着膜形成部と、
前記一対の摩擦面の圧接時に前記移着膜形成部の表面に存在する潤滑液を流入させて収容し同表面を実質的に無潤滑液状態にできる容量を備えた凹部と、を有し、
前記移着膜形成部の表面は、前記一対の摩擦面の圧接摺動に伴って前記凹部より溢出した潤滑液により前記移着膜形成部の表面に形成された前記移着膜の剥離を助長する移着膜剥離助長手段を備え、
前記高硬度の摩擦面は、前記移着膜形成部として機能する所定曲率の面上に、表面側から内側にかけて徐々に幅が狭くなる前記凹部として機能する複数の溝が形成された構造を有し、
前記複数の溝は前記面上に格子状に形成されており、隣接する互いに平行な溝の縁部同士を一部重畳させて、溝の伸延方向と直交する断面視において略正弦波状の波形構造としたことを特徴とする摩擦部構造。 In the structure of a friction part provided with a pair of friction surfaces which are formed between a pair of members of different hardness and which slide relative to each other in the presence of a lubricating fluid,
Of the pair of friction surfaces, the relatively hard one is
A transfer film forming portion in which a transfer film is formed by contact with a relatively low hardness friction surface;
Anda recess having a substantially capacity to the unlubricated liquid state of the same surface accommodated by introducing the lubricant present on the surface of the transfer film deposition forming portion during pressing prior Symbol pair of friction surfaces ,
The surface of the transfer film forming part promotes the peeling of the transfer film formed on the surface of the transfer film forming part by the lubricating liquid overflowing from the recess along with the pressure contact sliding of the pair of friction surfaces. Transfer film peeling promoting means ,
The high-hardness friction surface has a structure in which a plurality of grooves functioning as the concave portion whose width gradually narrows from the surface side to the inside is formed on the surface having a predetermined curvature functioning as the transfer film forming portion And
The plurality of grooves are formed in a lattice shape on the surface, and the edges of adjacent grooves parallel to each other are partially overlapped to form a substantially sinusoidal wave structure in a cross-sectional view orthogonal to the extending direction of the grooves The friction part structure characterized by.
前記高硬度側の摩擦面を形成する領域を1μm〜5μmの一次粒径を有する砥粒を分散させた第1の砥液で研磨して、同領域を算術平均粗さ(Ra)が10nm〜20nmの表面とするラッピング工程と、
前記第1の砥液又は一次粒子径が2nm〜5nmの砥粒を所定溶媒中に分散させた分散体である第2の砥液を、前記ラッピング工程にて形成した表面に対して線状に収束させつつ噴射し縦横に走査して格子状の溝を形成すると共に、形成されている溝と隣接する平行な溝の形成時には、新たに形成する溝の縁部を前記形成されている溝の縁部に一部重畳させつつ走査して両溝の走査方向と直交する断面視において略正弦波状の波形構造とし、しかも走査した領域の算術平均粗さ(Ra)を前記第1又は第2の砥液の衝突によって1nm〜3nmとすることにより、低硬度側の摩擦面との圧接摺動によって前記波形構造の頂部近傍領域に移着した移着膜の剥離を助長する移着膜剥離助長手段としての表面構造が形成された高硬度側の摩擦面とする凹部形成工程と、
を有することを特徴とする摩擦面の形成方法。 Relatively high hardness among the pair of friction surfaces in the friction portion provided with a pair of friction surfaces which are formed between a pair of members of different hardnesses and relatively slide in contact with each other in the presence of lubricating fluid A method of forming the side friction surface,
The area forming the high hardness side friction surface is polished with a first abrasive liquid in which abrasive grains having a primary particle diameter of 1 μm to 5 μm are dispersed, and the area is arithmetic average roughness (Ra) of 10 nm to Lapping process with 20 nm surface,
The first abrasive liquid or a second abrasive liquid, which is a dispersion in which abrasive grains having a primary particle diameter of 2 nm to 5 nm are dispersed in a predetermined solvent, is linear to the surface formed in the lapping step. At the same time when forming parallel grooves adjacent to the formed groove, the edge of the groove to be newly formed is formed by spraying while performing convergence and scanning vertically and horizontally to form a lattice-like groove. The scanning is carried out while partially overlapping the edge portion to form a substantially sinusoidal waveform structure in a cross-sectional view orthogonal to the scanning direction of both grooves, and the arithmetic average roughness (Ra) of the scanned area is the first or second Transfer film peeling promoting means for promoting peeling of the transferred film transferred to the area near the top of the above-mentioned waveform structure by pressure sliding with the low hardness side friction surface by setting the thickness to 1 nm to 3 nm by the collision of the abrasive liquid Forming a concave surface on the high hardness side on which the surface structure as a surface is formed
A method of forming a friction surface comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015129185A JP6531905B2 (en) | 2014-07-03 | 2015-06-26 | Friction part structure and method of forming friction surface |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014138065 | 2014-07-03 | ||
JP2014138065 | 2014-07-03 | ||
JP2015129185A JP6531905B2 (en) | 2014-07-03 | 2015-06-26 | Friction part structure and method of forming friction surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016026555A JP2016026555A (en) | 2016-02-18 |
JP6531905B2 true JP6531905B2 (en) | 2019-06-19 |
Family
ID=55352218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015129185A Active JP6531905B2 (en) | 2014-07-03 | 2015-06-26 | Friction part structure and method of forming friction surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6531905B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7274690B2 (en) * | 2018-09-25 | 2023-05-17 | 国立大学法人 熊本大学 | Concave-convex body manufacturing method and concavo-convex body |
JPWO2022014644A1 (en) * | 2020-07-14 | 2022-01-20 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009060613A1 (en) * | 2007-11-08 | 2009-05-14 | Nippon Kayaku Kabushiki Kaisha | Dispersion of nanodiamond in organic solvent, and method for production thereof |
US20120221110A1 (en) * | 2009-10-23 | 2012-08-30 | Yoshitaka Nakanishi | Artificial joint |
-
2015
- 2015-06-26 JP JP2015129185A patent/JP6531905B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016026555A (en) | 2016-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rosenkranz et al. | Synergetic effects of surface texturing and solid lubricants to tailor friction and wear–a review | |
Podgornik et al. | Surface topography effect on galling resistance of coated and uncoated tool steel | |
JP6531905B2 (en) | Friction part structure and method of forming friction surface | |
CN105142903B (en) | Sliding member, method for manufacturing same, and compressor swash plate using sliding member | |
JP6300843B2 (en) | Sliding member | |
JP5742031B2 (en) | Artificial joint | |
CN105579722B (en) | Sliding component | |
EP2714814B1 (en) | Surface conditioning nanolubricant | |
JP6298132B1 (en) | Sliding member | |
Fan et al. | Surface composition–lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro–dimpled texture and diamond–like carbon films in a water environment | |
JP2010274386A (en) | SLIDING MATERIAL OF Si-PARTICLE-CONTAINING Al-Si ALLOY AND METHOD FOR FORMING SLIDING SURFACE | |
CN105579723B (en) | Sliding component and the manufacture method of sliding component | |
Feng Su et al. | Friction and counterface wear influenced by surface profiles of plasma electrolytic oxidation coatings on an aluminum A356 alloy | |
Fu et al. | Tribological properties and releasing behavior of solid lubricant WS2 in the dimples on cylinder liner surface of diesel engine | |
Chen et al. | Process-surface morphology-tribological property relationships for H62 brass employing various manufacturing approaches | |
Jones et al. | Experimental investigation of laser texturing and its effect on friction and lubrication | |
Ivanov et al. | Nanodiamond-based oil lubricants on steel-steel and stainless steel-hard alloy high load contact: investigation of friction surfaces | |
Wu et al. | Tribological properties of PTFE/PPS films deposited on the ultrasonic rolling textured substrates by electrohydrodynamic atomization under dry reciprocating sliding | |
Wang et al. | A textured surface with oil inflow and outflow function designed for starved lubrication | |
Wang et al. | Anti-wear properties of multi-bioinspired textures with hierarchical and superhydrophobic structures under water lubrication | |
JP5255646B2 (en) | Sliding member and manufacturing method thereof | |
TW201433385A (en) | Sliding member and production method for same | |
GB2391274A (en) | Production of lubricant reservoirs in a slide surface | |
JP2017145277A (en) | Sliding device | |
Wu et al. | Synergistic effects of heat-assisted ultrasonic rolling textures and self-lubricating coatings on the friction and wear properties of AISI 52100 steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180521 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190507 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6531905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |