JP6531509B2 - Nitride phosphor, manufacturing method thereof and light emitting device - Google Patents

Nitride phosphor, manufacturing method thereof and light emitting device Download PDF

Info

Publication number
JP6531509B2
JP6531509B2 JP2015121557A JP2015121557A JP6531509B2 JP 6531509 B2 JP6531509 B2 JP 6531509B2 JP 2015121557 A JP2015121557 A JP 2015121557A JP 2015121557 A JP2015121557 A JP 2015121557A JP 6531509 B2 JP6531509 B2 JP 6531509B2
Authority
JP
Japan
Prior art keywords
nitride
phosphor
nitride phosphor
light emitting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015121557A
Other languages
Japanese (ja)
Other versions
JP2017008130A (en
Inventor
貞一 涌井
貞一 涌井
昌治 細川
昌治 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57761371&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6531509(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2015121557A priority Critical patent/JP6531509B2/en
Publication of JP2017008130A publication Critical patent/JP2017008130A/en
Application granted granted Critical
Publication of JP6531509B2 publication Critical patent/JP6531509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本開示は、窒化物蛍光体、その製造方法及び発光装置に関する。   The present disclosure relates to a nitride phosphor, a method of manufacturing the same, and a light emitting device.

光源と、この光源からの光で励起されて光源の色相とは異なる色相の光を放出可能な波長変換部材とを組み合わせることで、光の混色の原理により多様な色相の光を放出可能な発光装置が開発されている。特に、発光ダイオード(Light Emitting Diode:以下「LED」と呼ぶ。)と蛍光体とを組み合わせて形成した発光装置は、照明装置、液晶表示装置のバックライト等へと盛んに応用されており、普及が進んでいる。例えば、白色系発光の発光装置においては、青緑色、緑色、黄緑色等の短波長に発光する蛍光体と、橙色、赤色等の長波長に発光する蛍光体とを組み合わせることで、液晶表示装置の色再現範囲や照明装置の演色性の改善が可能である。   By combining a light source and a wavelength conversion member capable of emitting light of a hue different from that of the light source by being excited by light from the light source, light emission capable of emitting light of various hues according to the principle of color mixture of light Devices are being developed. In particular, a light emitting device formed by combining a light emitting diode (Light Emitting Diode: hereinafter referred to as "LED") and a phosphor is actively applied to a lighting device, a backlight of a liquid crystal display device, etc. Is advancing. For example, in a light emitting device of white light emission, a liquid crystal display device is obtained by combining a phosphor emitting light at short wavelengths such as blue-green, green, yellow-green and the like and a phosphor emitting light at long wavelengths such as orange and red. It is possible to improve the color reproduction range of the above and the color rendering of the lighting device.

高エネルギー励起においても輝度低下の少ない蛍光体として、サイアロン蛍光体、酸窒化物蛍光体、窒化物蛍光体等の、結晶構造に窒素を含有する無機結晶を母体とする蛍光体が提案されている。これらのうち窒化物蛍光体の一例として、CaAlSiNを母体結晶としてEu2+で賦活された赤色蛍光体(以下、「CASN蛍光体」と呼ぶ。)及びCASN蛍光体のCaの一部をSrに置換した(Sr,Ca)AlSiN:Eu(以下、「SCASN蛍光体」と呼ぶ。)が知られている。CASN蛍光体及びSCASN蛍光体は、610〜680nmと幅広い範囲に発光ピーク波長を有している。これらの発光スペクトルの半値幅は75〜95nmと比較的狭いが、液晶表示装置用の発光装置として用いる場合、色再現範囲の更なる改善が望まれており、半値幅のより狭い蛍光体が望まれている。 Phosphors based on inorganic crystals containing nitrogen in the crystal structure, such as sialon phosphors, oxynitride phosphors and nitride phosphors, have been proposed as phosphors with little reduction in luminance even at high energy excitation. . Among these, as an example of the nitride phosphor, a red phosphor activated with Eu 2+ as a host crystal (hereinafter referred to as "CASN phosphor") using CaAlSiN 3 and a part of Ca of the CASN phosphor as Sr There are known substituted (Sr, Ca) AlSiN 3 : Eu (hereinafter referred to as “SCASN phosphors”). The CASN phosphor and the SCASN phosphor have emission peak wavelengths in a wide range of 610 to 680 nm. Although the full width at half maximum of these emission spectra is relatively narrow at 75 to 95 nm, further improvement of the color reproduction range is desired when used as a light emitting device for liquid crystal display devices, and a phosphor with a narrower half width is desirable. It is rare.

近年、半値幅が70nm以下と狭い、新しい窒化物蛍光体としてSrLiAl:Eu(以下、「SLAN蛍光体」と呼ぶ。)が提案されている。この化合物の発光ピーク波長は650nm付近である(例えば、特許文献1、非特許文献1参照)。このSLAN蛍光体は、例えば、水素化リチウムアルミニウム(LiAlH)、窒化アルミニウム(AlN)及びフッ化ユウロピウム(EuF)を含む原料粉末をEu=0.4mol%となるような化学両論比で計量、混合した後タングステンルツボに入れ、水素と窒素の混合ガス雰囲気の大気圧下で1000℃、2時間、高周波加熱炉で焼成することで製造される。 In recent years, SrLiAl 3 N 4 : Eu (hereinafter referred to as “SLAN phosphor”) has been proposed as a new nitride phosphor having a narrow half width of 70 nm or less. The emission peak wavelength of this compound is around 650 nm (see, for example, Patent Document 1 and Non-Patent Document 1). This SLAN phosphor measures, for example, a raw material powder containing lithium aluminum hydride (LiAlH 4 ), aluminum nitride (AlN) and europium fluoride (EuF 3 ) at a stoichiometric ratio such that Eu = 0.4 mol%. After mixing, they are put into a tungsten crucible and manufactured by firing in a high frequency heating furnace at 1000 ° C. for 2 hours under atmospheric pressure of a mixed gas atmosphere of hydrogen and nitrogen.

国際公開第2013/175336号International Publication No. 2013/175336

Nature Materials, NMAT4012, 2014Nature Materials, NMAT4012, 2014

しかしながら、上記の製造方法で得られるSLAN蛍光体では内部量子効率に改良の余地があり、より発光効率に優れる蛍光体が望まれている。
従って、本開示に係る一実施形態の目的は、発光効率に優れる窒化物蛍光体を提供することにある。
However, in the SLAN phosphor obtained by the above manufacturing method, there is room for improvement in the internal quantum efficiency, and a phosphor having more excellent luminous efficiency is desired.
Accordingly, an object of an embodiment according to the present disclosure is to provide a nitride phosphor excellent in light emission efficiency.

前記課題を解決するための具体的手段は以下の通りであり、本開示は以下の態様を包含する。
第一の態様は、下記式(I)で示される組成を有し、400nm以上570nm以下の波長範囲の光で励起され、発光ピーク波長が630nm以上670nm以下の範囲にあり、650nmにおける反射率の460nmにおける反射率に対する比が2以上である窒化物蛍光体である。
EuAl (I)
式中、Mは、Ca、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素であり、MはLi、Na及びKからなる群から選択される少なくとも1種の元素であり、w、x、y及びzはそれぞれ、0.8≦w<1.0、0.5≦x<1.0、0.001<y≦0.1、z=(2/3)w+(1/3)x+(2/3)y+を満たす。
The specific means for solving the problems is as follows, and the present disclosure includes the following aspects.
The first embodiment has a composition represented by the following formula (I), is excited by light in the wavelength range of 400 nm to 570 nm, has an emission peak wavelength in the range of 630 nm to 670 nm, and has a reflectance of 650 nm. It is a nitride fluorescent material whose ratio to the reflectance at 460 nm is 2 or more.
M a w M b x Eu y Al 3 N z (I)
Wherein, M a is, Ca, Sr, at least one element selected from the group consisting of Ba, and Mg, M b is Li, at least one element selected from the group consisting of Na and K W, x, y and z are respectively 0.8 ≦ w <1.0, 0.5 ≦ x <1.0, 0.001 <y ≦ 0.1, z = (2/3) w + (1/3) x + (2/3) y + 3 is satisfied.

第二の態様は、下記式(I)で示される組成を有する窒化物蛍光体の製造方法であって、原料混合物を、温度が1000℃以上1300℃以下、圧力が0.2MPa以上200MPa以下の窒素ガスを含む雰囲気中で処理することを含む、窒化物蛍光体の製造方法である。
EuAl (I)
式中、Mは、Ca、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素であり、MはLi、Na及びKからなる群から選択される少なくとも1種の元素であり、w、x、y及びzはそれぞれ、0.8≦w<1.0、0.5≦x<1.0、0.001<y≦0.1、z=(2/3)w+(1/3)x+(2/3)y+を満たす。
The second embodiment is a method for producing a nitride phosphor having a composition represented by the following formula (I), wherein the raw material mixture is heated at a temperature of 1000 ° C. or more and 1300 ° C. or less and a pressure of 0.2 MPa or more and 200 MPa or less It is a manufacturing method of nitride fluorescent substance including processing in the atmosphere containing nitrogen gas.
M a w M b x Eu y Al 3 N z (I)
Wherein, M a is, Ca, Sr, at least one element selected from the group consisting of Ba, and Mg, M b is Li, at least one element selected from the group consisting of Na and K W, x, y and z are respectively 0.8 ≦ w <1.0, 0.5 ≦ x <1.0, 0.001 <y ≦ 0.1, z = (2/3) w + (1/3) x + (2/3) y + 3 is satisfied.

本開示に係る一実施形態によれば、発光効率に優れる窒化物蛍光体を提供することができる。   According to an embodiment of the present disclosure, a nitride phosphor excellent in luminous efficiency can be provided.

本実施形態に係る発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which concerns on this embodiment. 比較例1並びに実施例1及び2に係る窒化物蛍光体のX線回折パターンである。It is a X-ray-diffraction pattern of the nitride fluorescent substance which concerns on the comparative example 1 and Example 1 and 2. FIG. 比較例1及び2並びに実施例1、2及び3に係る窒化物蛍光体について、波長に対する相対発光強度を示す発光スペクトルである。It is an emission spectrum which shows the relative emission intensity with respect to a wavelength about the nitride fluorescent substance which concerns on Comparative example 1 and 2 and Example 1, 2 and 3. FIG. 比較例1及び2並びに実施例1、2及び3に係る窒化物蛍光体について、波長に対する反射率を示す反射スペクトルである。It is a reflection spectrum which shows the reflectance with respect to a wavelength about the nitride fluorescent substance which concerns on Comparative example 1 and 2 and Example 1, 2 and 3. FIG. 比較例1に係る窒化物蛍光体のSEM画像の一例である。It is an example of the SEM image of the nitride fluorescent substance which concerns on the comparative example 1. FIG. 比較例2に係る窒化物蛍光体のSEM画像の一例である。It is an example of the SEM image of the nitride fluorescent substance which concerns on the comparative example 2. FIG. 実施例1に係る窒化物蛍光体のSEM画像の一例である。5 is an example of a SEM image of a nitride phosphor according to Example 1; 実施例2に係る窒化物蛍光体のSEM画像の一例である。FIG. 16 is an example of a SEM image of a nitride phosphor according to Example 2. FIG. 実施例A及び比較例Aに係る発光装置について、波長に対する相対発光強度を示す発光スペクトルである。It is a luminescence spectrum which shows relative luminescence intensity to a wavelength about a luminescence device concerning Example A and comparative example A. 実施例B及び比較例Bに係る発光装置について、波長に対する相対発光強度を示す発光スペクトルである。It is a luminescence spectrum which shows relative luminescence intensity to a wavelength about a luminescence device concerning Example B and comparative example B.

以下、本開示に係る窒化物蛍光体、その製造方法及び発光装置を、実施の形態及び実施例に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、窒化物蛍光体等を例示するものであって、本発明は、窒化物蛍光体等を以下のものに特定しない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   Hereinafter, a nitride phosphor according to the present disclosure, a method for manufacturing the same, and a light emitting device will be described based on the embodiments and examples. However, the embodiment shown below exemplifies a nitride phosphor and the like for embodying the technical concept of the present invention, and the present invention specifies the nitride phosphor and the like as follows. do not do. The relationship between the color name and the chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, etc. conform to JIS Z8110. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.

(窒化物蛍光体)
本実施形態に係る窒化物蛍光体は、下記式(I)で示される組成を有し、400nm以上570nm以下の波長範囲の光で励起され、発光ピーク波長が630nm以上670nm以下の範囲にあり、650nmにおける反射率の460nmにおける反射率に対する比が2以上である。
EuAl (I)
式中、Mは、Ca、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素であり、MはLi、Na及びKからなる群から選択される少なくとも1種の元素であり、w、x、y及びzはそれぞれ、0.8≦w<1.0、0.5≦x<1.0、0.001<y≦0.1、z=(2/3)w+(1/3)x+(2/3)y+を満たす。
(Nitride phosphor)
The nitride phosphor according to the present embodiment has a composition represented by the following formula (I), is excited by light in the wavelength range of 400 nm to 570 nm, and has an emission peak wavelength in the range of 630 nm to 670 nm, The ratio of the reflectance at 650 nm to the reflectance at 460 nm is 2 or more.
M a w M b x Eu y Al 3 N z (I)
Wherein, M a is, Ca, Sr, at least one element selected from the group consisting of Ba, and Mg, M b is Li, at least one element selected from the group consisting of Na and K W, x, y and z are respectively 0.8 ≦ w <1.0, 0.5 ≦ x <1.0, 0.001 <y ≦ 0.1, z = (2/3) w + (1/3) x + (2/3) y + 3 is satisfied.

650nmにおける反射率(R650)の460nmにおける反射率(R460)に対する反射率比(R650/R460)が2以上であることで、優れた発光効率を達成することができる。反射率比は2.2以上が好ましく、2.5以上がより好ましい。反射率比の上限は特に限定されず、例えば10以下であり、9以下が好ましい。 When the reflectance ratio (R 650 / R 460 ) of the reflectance (R 650 ) at 650 nm to the reflectance (R 460 ) at 460 nm is 2 or more, excellent luminous efficiency can be achieved. The reflectance ratio is preferably 2.2 or more, and more preferably 2.5 or more. The upper limit of the reflectance ratio is not particularly limited, and is, for example, 10 or less, preferably 9 or less.

窒化物蛍光体の460nmにおける反射率は、前記反射率比を満たす限り特に制限されず、例えば35%以下であり、30%以下が好ましい。460nmにおける反射率の下限は特に制限されず、例えば5%以上であり、10%以上が好ましい。また650nmにおける反射率は、例えば60%以上であり、65%以上が好ましい。650nmにおける反射率の上限は特に制限されず、例えば100%以下であり、95%以下が好ましい。   The reflectance of the nitride phosphor at 460 nm is not particularly limited as long as the reflectance ratio is satisfied, and is, for example, 35% or less, preferably 30% or less. The lower limit of the reflectance at 460 nm is not particularly limited, and is, for example, 5% or more, preferably 10% or more. The reflectance at 650 nm is, for example, 60% or more, preferably 65% or more. The upper limit of the reflectance at 650 nm is not particularly limited, and is, for example, 100% or less, preferably 95% or less.

窒化物蛍光体は、640nm以上660nm以下の波長範囲における平均反射率(R640−660)の450nm以上470nm以下の波長範囲における平均反射率(R450−470)に対する平均反射率比(R640−660/R450−470)が2以上であることが好ましく、2.2以上がより好ましく、2.5以上が更に好ましい。平均反射率比の上限は特に限定されず、例えば10以下であり、9以下が好ましい。平均反射率比が上記範囲であると、より優れた発光効率を達成できる傾向がある。 Nitride phosphor has an average reflectance at 470nm or less the wavelength range of 450nm average reflectance at 660nm or less the wavelength range of 640nm (R 640-660) (R 450-470 ) average reflectance ratio (R 640- 660 / R450-470 ) is preferably 2 or more, more preferably 2.2 or more, and still more preferably 2.5 or more. The upper limit of the average reflectance ratio is not particularly limited, and is, for example, 10 or less, preferably 9 or less. When the average reflectance ratio is in the above range, it tends to be possible to achieve better light emission efficiency.

窒化物蛍光体の450nm以上470nm以下の波長範囲における平均反射率は、例えば35%以下であり、30%以下が好ましい。450nm以上470nm以下の波長範囲における平均反射率の下限は特に制限されず、例えば5%以上であり、10%以上が好ましい。また640nm以上660nm以下の波長範囲における平均反射率は、例えば60%以上であり、65%以上が好ましい。640nm以上660nm以下の波長範囲における平均反射率の上限は特に制限されず、例えば100%以下であり、95%以下が好ましい。   The average reflectance in a wavelength range of 450 nm to 470 nm of the nitride phosphor is, for example, 35% or less, and preferably 30% or less. The lower limit of the average reflectance in the wavelength range of 450 nm to 470 nm is not particularly limited, and is, for example, 5% or more, preferably 10% or more. The average reflectance in the wavelength range of 640 nm to 660 nm is, for example, 60% or more, and preferably 65% or more. The upper limit of the average reflectance in the wavelength range of 640 nm to 660 nm is not particularly limited, and is, for example, 100% or less, preferably 95% or less.

ここで平均反射率は、平均値を算出する波長範囲について両端を含む1nmの間隔で各波長における反射率をそれぞれ測定し、測定された反射率の算術平均値として算出される。   Here, the average reflectance is calculated as an arithmetic average value of the measured reflectances by measuring the reflectance at each wavelength at an interval of 1 nm including both ends of the wavelength range for which the average value is calculated.

式(I)において、Mは、発光強度の観点から、Ca及びSrの少なくとも一方を含むことが好ましい。MがCa及びSrの少なくとも一方を含む場合、Mに含まれるCa及びSrの総モル比率は、例えば85モル%以上であり、90モル%が好ましい。
またMは、結晶構造安定性の観点から、少なくともLiを含むことが好ましい。MがLiを含む場合、Mに含まれるLiのモル比率は、例えば80モル%以上であり、90モル%が好ましい。
In formula (I), M a preferably contains at least one of Ca and Sr from the viewpoint of light emission intensity. When M a contains at least one of Ca and Sr, the total molar ratio of Ca and Sr contained in M a is, for example, 85 mol% or more, preferably 90 mol%.
M b preferably contains at least Li from the viewpoint of the crystal structure stability. When M b contains Li, the molar ratio of Li contained in M b is, for example, 80 mol% or more, preferably 90 mol%.

式(I)におけるx、y、z及びwは、それぞれ上記関係式を満たす限り特に制限されない。中でもxは、結晶構造安定性の観点から、0.7以上1.0未満が好ましく、0.8以上1.0未満がより好ましい。またyは、Eu賦活量であり、所望の特性を達成できるように適宜選択すればよい。例えばyは、0.002≦y≦0.020を満たすことが好ましく、0.005≦y≦0.015を満たすことがより好ましい。   In the formula (I), x, y, z and w are not particularly limited as long as the above relation is satisfied. Among them, x is preferably 0.7 or more and less than 1.0, and more preferably 0.8 or more and less than 1.0, from the viewpoint of crystal structure stability. Moreover, y is Eu activation amount, and may be appropriately selected so as to achieve desired characteristics. For example, y preferably satisfies 0.002 ≦ y ≦ 0.020, and more preferably 0.005 ≦ y ≦ 0.015.

窒化物蛍光体は、紫外線から可視光の短波長側領域である400nm以上570nm以下の波長範囲の光を吸収して、発光ピーク波長が630nm以上670nm以下の波長範囲にある蛍光を発する。当該波長範囲の励起光源を用いることにより、発光効率の高い蛍光体を提供することができる。特に、420nm以上500nm以下に主発光ピーク波長を有する励起光源を用いることが好ましく、420nm以上460nm以下に主発光ピーク波長を有する励起光源を用いることがより好ましい。
窒化物蛍光体の発光スペクトルは、発光ピーク波長が630nm以上670nm以下の範囲にあるが、640nm以上660nm以下の範囲にあることが好ましい。また発光スペクトルの半値幅は、例えば65nm以下であり、60nm以下が好ましい。半値幅の下限は特に制限されず、例えば45nm以上である。
The nitride phosphor absorbs light in a wavelength range of 400 nm to 570 nm, which is a short wavelength side region of ultraviolet light to visible light, and emits fluorescence having a light emission peak wavelength of 630 nm to 670 nm. By using the excitation light source of the said wavelength range, a high fluorescent substance of luminous efficiency can be provided. In particular, it is preferable to use an excitation light source having a main emission peak wavelength at 420 nm or more and 500 nm or less, and more preferable to use an excitation light source having a main emission peak wavelength at 420 nm or more and 460 nm or less.
The emission spectrum of the nitride phosphor has an emission peak wavelength in the range of 630 nm to 670 nm, and preferably in the range of 640 nm to 660 nm. The half width of the emission spectrum is, for example, 65 nm or less, preferably 60 nm or less. The lower limit of the half width is not particularly limited, and is, for example, 45 nm or more.

窒化物蛍光体は、希土類であるユウロピウム(Eu)が発光中心となる。ただし本実施形態における発光中心は、ユーロピウムのみに限定されず、その一部を他の希土類金属やアルカリ土類金属に置き換えて、Euと共賦活させたものも使用できる。2価希土類イオンであるEu2+は適当な母体を選べば安定に存在し、発光する効果を奏する。 In the nitride phosphor, europium (Eu), which is a rare earth, is a luminescent center. However, the luminescent center in the present embodiment is not limited to only europium, and a part of which is replaced with another rare earth metal or alkaline earth metal and coactivated with Eu can also be used. Eu 2+, which is a divalent rare earth ion, is stably present when an appropriate host is selected, and exhibits an effect of emitting light.

窒化物蛍光体の平均粒径は特に制限されず、目的等に応じて適宜選択することができる。窒化物蛍光体の平均粒径は、発光効率の観点から、例えば4.0μm以上であり、4.5μm以上が好ましく、5.0μm以上がより好ましい。また平均粒径は、例えば20μm以下であり、18μm以下が好ましい。
平均粒径は大きいほうが、励起光の吸収率及び発光効率がより高くなる傾向がある。このように、光学特性に優れた窒化物蛍光体を後述する発光装置に含有させることにより、発光装置の発光効率がより向上する。
また窒化物蛍光体は、上記の平均粒径値を有する蛍光体粒子が、頻度高く含有されていることが好ましい。すなわち、粒度分布は狭い範囲に分布していることが好ましい。粒度分布のバラツキが小さい蛍光体を用いることにより、より色ムラが抑制され、より良好な色調を有する発光装置が得られる。
The average particle diameter of the nitride phosphor is not particularly limited, and can be appropriately selected according to the purpose and the like. The average particle diameter of the nitride phosphor is, for example, 4.0 μm or more, preferably 4.5 μm or more, and more preferably 5.0 μm or more from the viewpoint of luminous efficiency. The average particle size is, for example, 20 μm or less, preferably 18 μm or less.
As the average particle size is larger, the absorptivity of excitation light and the luminous efficiency tend to be higher. As described above, the luminous efficiency of the light emitting device is further improved by incorporating the nitride phosphor excellent in optical characteristics into the light emitting device described later.
Moreover, it is preferable that the nitride fluorescent substance contains the fluorescent substance particle which has said average particle diameter value with high frequency. That is, the particle size distribution is preferably distributed in a narrow range. By using a phosphor having a small variation in particle size distribution, color unevenness is further suppressed, and a light emitting device having a better color tone can be obtained.

本明細書において窒化物蛍光体及びそれ以外の蛍光体の平均粒径は、フィッシャー・サブ・シーブ・サイザーズ・ナンバー(Fisher Sub Sieve Sizer's No.)と呼ばれる数値であり、空気透過法を用いて測定される。具体的には、気温25℃、湿度70%の環境下において、1cm分の試料を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読み取り、平均粒径に換算した値である。 In the present specification, the average particle diameter of the nitride phosphor and the other phosphors is a numerical value called Fisher Sub Sieve Sizer's No., which is measured using an air transmission method. Be done. Specifically, after taking a sample of 1 cm 3 min at an ambient temperature of 25 ° C and humidity of 70%, packing it into a special tubular container, flowing dry air at a constant pressure, reading the specific surface area from the differential pressure And the average particle diameter.

窒化物蛍光体は、少なくとも一部に結晶性が高い構造を有していることが好ましい。例えばガラス体(非晶質)は構造が不規則であり結晶性が低いため、その生産工程における反応条件が厳密に一様になるよう管理できなければ、蛍光体中の成分比率が一定せず、色度ムラ等を生じる傾向がある。これに対し、本実施形態に係る窒化物蛍光体は、少なくとも一部に結晶性が高い構造を有している粉体ないし粒体であることで製造及び加工し易くなる傾向がある。また、窒化物蛍光体は、有機媒体に均一に分散することが容易にできるため、発光性プラスチック、ポリマー薄膜材料等を調製することが容易にできる。具体的に、窒化物蛍光体は、例えば50重量%以上、より好ましくは80重量%以上が結晶性を有する構造である。これは、発光性を有する結晶相の割合を示し、50重量%以上、結晶相を有しておれば、実用に耐え得る発光が得られるため好ましい。ゆえに結晶相が多いほど発光効率に優れる。これにより、発光輝度をより高くすることができ、かつ加工し易くできる。   The nitride phosphor preferably has a structure with high crystallinity at least in part. For example, since the glass body (amorphous) has irregular structure and low crystallinity, the component ratio in the phosphor is not constant unless the reaction conditions in the production process can be controlled so as to be strictly uniform. And chromaticity unevenness tend to occur. On the other hand, the nitride phosphor according to the present embodiment tends to be easily manufactured and processed because it is a powder or particles having a structure with high crystallinity at least in part. In addition, since the nitride phosphor can be easily dispersed uniformly in the organic medium, it is possible to easily prepare a luminescent plastic, a polymer thin film material, and the like. Specifically, the nitride phosphor has a structure in which, for example, 50% by weight or more, more preferably 80% by weight or more has crystallinity. This indicates the proportion of the crystal phase having a light-emitting property, and it is preferable to have 50% by weight or more of the crystal phase because light emission which can withstand practical use can be obtained. Therefore, the more crystalline phases, the better the light emission efficiency. This makes it possible to increase the light emission luminance and facilitate processing.

(窒化物蛍光体の製造方法)
本実施形態の製造方法は、下記式(I)で示される組成を有する窒化物蛍光体の製造方法であって、原料混合物を、温度が1000℃以上1300℃以下、圧力が0.2MPa以上200MPa以下の窒素ガスを含む雰囲気中で処理することを含む、窒化物蛍光体の製造方法である。
EuAl (I)
式中、Mは、Ca、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素であり、MはLi、Na及びKからなる群から選択される少なくとも1種の元素であり、w、x、y及びzはそれぞれ、0.8≦w<1.0、0.5≦x<1.0、0.001<y≦0.1、z=(2/3)w+(1/3)x+(2/3)y+を満たす。

(Manufacturing method of nitride phosphor)
The production method of the present embodiment is a production method of a nitride phosphor having a composition represented by the following formula (I), and the raw material mixture is subjected to a temperature of 1000 ° C. to 1300 ° C., a pressure of 0.2 MPa to 200 MPa It is a manufacturing method of the nitride fluorescent substance including processing in the atmosphere containing the following nitrogen gas.
M a w M b x Eu y Al 3 N z (I)
Wherein, M a is, Ca, Sr, at least one element selected from the group consisting of Ba, and Mg, M b is Li, at least one element selected from the group consisting of Na and K W, x, y and z are respectively 0.8 ≦ w <1.0, 0.5 ≦ x <1.0, 0.001 <y ≦ 0.1, z = (2/3) w + (1/3) x + (2/3) y + 3 is satisfied.

窒素ガスを含む加圧雰囲気下、所定の温度で原料混合物を熱処理することで、所望の組成を有し、発光効率に優れる窒化物蛍光体を効率よく製造することができる。また製造される窒化物蛍光体は、650nmにおける反射率の460nmにおける反射率に対する反射率比(R650/R460)が2以上となる傾向があり、また平均反射率比(R640−660/R450−470)が2以上となる傾向があり、より優れた発光効率を達成することができる。更に、平均粒径が4.0μm以上の窒化物蛍光体を、容易にかつ効率的に製造することができる。
本実施形態の製造方法は、既述の本実施形態に係る窒化物蛍光体の製造方法に適用することができる。すなわち、本実施形態の製造方法によって製造される窒化物蛍光体は、前記窒化物蛍光体の態様を具備することができる。
By heat-treating the raw material mixture at a predetermined temperature in a pressurized atmosphere containing nitrogen gas, a nitride phosphor having a desired composition and excellent in luminous efficiency can be efficiently produced. In addition, the nitride phosphor manufactured tends to have a reflectance ratio (R 650 / R 460 ) to a reflectance at 460 nm of reflectance at 650 nm of 2 or more, and an average reflectance ratio (R 640-660 / R 450-470 ) tends to be 2 or more, and better light emission efficiency can be achieved. Furthermore, nitride phosphors having an average particle size of 4.0 μm or more can be easily and efficiently produced.
The manufacturing method of the present embodiment can be applied to the manufacturing method of the nitride phosphor according to the present embodiment described above. That is, the nitride fluorescent substance manufactured by the manufacturing method of this embodiment can comprise the aspect of the said nitride fluorescent substance.

窒化物蛍光体の製造方法に用いられる原料混合物は、式(I)で示される組成を達成可能であれば、その成分は特に制限されない。原料混合物は例えば、式(I)で示される組成を構成する金属元素の単体及びそれらの金属化合物からなる群から選択される少なくとも1種を含むことができる。前記金属化合物としては、水素化物、窒化物、フッ化物、酸化物、炭酸塩、塩化物等を挙げることができ、発光特性の観点から、水素化物、窒化物及びフッ化物からなる群から選択される少なくとも1種であることが好ましい。原料混合物が金属化合物として、酸化物、炭酸塩、塩化物等を含む場合、それらの含有量は原料混合物中に5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
中でも原料混合物は、Ca、Sr、Ba及びMgからなる群から選択される金属元素を含む金属化合物、Li、Na及びKからなる群から選択される金属元素を含む金属化合物、Alを含む金属化合物及びEuを含む金属化合物からなる群から選択される少なくとも1種の金属化合物を含むことが好ましい。
The raw material mixture used for the manufacturing method of nitride fluorescent substance will not be restrict | limited in particular, if the composition shown by Formula (I) can be achieved. The raw material mixture can include, for example, at least one selected from the group consisting of a single element of the metal element constituting the composition represented by the formula (I) and a metal compound thereof. Examples of the metal compound include hydrides, nitrides, fluorides, oxides, carbonates, chlorides and the like, and are selected from the group consisting of hydrides, nitrides and fluorides from the viewpoint of light emission characteristics. Preferably, it is at least one of When the raw material mixture contains an oxide, a carbonate, a chloride and the like as the metal compound, the content thereof is preferably 5% by mass or less and more preferably 1% by mass or less in the raw material mixture.
Above all, the raw material mixture is a metal compound containing a metal element selected from the group consisting of Ca, Sr, Ba and Mg, a metal compound containing a metal element selected from the group consisting of Li, Na and K, a metal compound containing Al And at least one metal compound selected from the group consisting of metal compounds containing Eu.

Ca、Sr、Ba及びMgからなる群から選択される金属元素を含む金属化合物(以下、「第一の金属化合物」ともいう)として具体的には、SrN、SrN、Sr、SrH、SrF、Ca、CaH、CaF等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。
第一の金属化合物は、Ca及びSrの少なくとも一方を含むことが好ましい。第一の金属化合物がSrを含む場合、Srの一部がCa、Mg、Ba等で置換されていてもよい。また第一の金属化合物がCaを含む場合、Caの一部がSr、Mg、Ba等で置換されていてもよい。これにより、窒化物蛍光体の発光ピーク波長を調整することができる。第一の金属化合物がCaを含む場合、Li、Na、K、B、Al等をさらに含有していてもよい。
第一の金属化合物は、単体を使用することが好ましいが、イミド化合物、アミド化合物等の化合物を使用することもできる。第一の金属化合物は1種単独でも、2種以上を組合せて用いてもよい。
Specific examples of the metal compound containing a metal element selected from the group consisting of Ca, Sr, Ba and Mg (hereinafter also referred to as “first metal compound”) include SrN 2 , SrN, Sr 3 N 2 , SrH 2 , SrF 2 , Ca 3 N 2 , CaH 2 , CaF 2 and the like, and at least one selected from the group consisting of these is preferable.
The first metal compound preferably contains at least one of Ca and Sr. When the first metal compound contains Sr, a part of Sr may be substituted by Ca, Mg, Ba or the like. When the first metal compound contains Ca, a part of Ca may be substituted by Sr, Mg, Ba or the like. Thereby, the emission peak wavelength of the nitride phosphor can be adjusted. When the first metal compound contains Ca, it may further contain Li, Na, K, B, Al and the like.
The first metal compound is preferably used singly, but compounds such as imide compounds and amide compounds can also be used. The first metal compound may be used alone or in combination of two or more.

Li、Na及びKからなる群から選択される金属元素を含む金属化合物(以下、「第二の金属化合物」ともいう)は、少なくともLiを含むことが好ましく、Liの窒化物及び水素化物の少なくとも1種であることがより好ましい。第二の金属化合物がLiを含む場合、Liの一部がNa、K等で置換されていてもよく、窒化物蛍光体を構成する他の金属元素を含んでいてもよい。
Liを含む第二の金属化合物として具体的には、LiN、LiN、LiH、LiAlH等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。
第二の金属化合物は1種単独でも、2種以上を組合せて用いてもよい。
The metal compound containing a metal element selected from the group consisting of Li, Na and K (hereinafter also referred to as “second metal compound”) preferably contains at least Li, and at least a nitride of Li and a hydride thereof. It is more preferable that it is 1 type. When the second metal compound contains Li, part of Li may be substituted with Na, K or the like, and may contain another metal element constituting the nitride phosphor.
Specific examples of the second metal compound containing Li include Li 3 N, LiN 3 , LiH, LiAlH 4 and the like, and at least one selected from the group consisting of these is preferable.
The second metal compounds may be used alone or in combination of two or more.

Alを含む金属化合物(以下、「第三の金属化合物」ともいう)は、金属元素として実質的にAlのみを含む金属化合物であってもよく、Alの一部が第III族元素のGa及びIn、並びにV、Cr及びCo等からなる群から選択された金属元素で置換された金属化合物であってもよく、Alに加えてLi等の窒化物蛍光体を構成する他の金属元素を含む金属化合物であってもよい。
第三の金属化合物として具体的には、AlN、AlH、AlF、LiAlH等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。
第三の金属化合物は1種単独でも、2種以上を組合せて用いてもよい。
The metal compound containing Al (hereinafter, also referred to as “third metal compound”) may be a metal compound substantially containing only Al as a metal element, and a part of Al is a Group III element Ga and It may be a metal compound substituted with a metal element selected from the group consisting of In and V, Cr, Co, etc., and contains, in addition to Al, other metal elements constituting a nitride phosphor such as Li. It may be a metal compound.
Specific examples of the third metal compound include AlN, AlH 3 , AlF 3 , LiAlH 4 and the like, and at least one selected from the group consisting of these is preferable.
The third metal compound may be used alone or in combination of two or more.

Euを含む金属化合物(以下、「第四の金属化合物」ともいう)は、賦活剤としてのEuを含むが、Euの一部がSc、Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等で置換されていてもよい。Euの一部を他の元素で置換することにより、他の元素は例えば共賦活剤として作用すると考えられる。窒化物蛍光体を共賦活とすることにより色調を変化させることができ、発光特性の調整を行うことができる。Euを必須とする混合物を窒化物蛍光体として使用する場合、所望により配合比を変えることができる。ユウロピウムは、主に2価と3価のエネルギー準位を持つが、本実施形態の窒化物蛍光体は、少なくともEu2+を賦活剤として用いる。 A metal compound containing Eu (hereinafter also referred to as “fourth metal compound”) contains Eu as an activator, but part of Eu is Sc, Y, La, Ce, Pr, Nd, Sm, Gd, It may be substituted by Tb, Dy, Ho, Er, Tm, Yb, Lu and the like. By replacing part of Eu with another element, it is considered that the other element acts as a co-activator, for example. The color tone can be changed by co-activating the nitride phosphor, and the light emission characteristics can be adjusted. When a mixture containing Eu is used as a nitride phosphor, the blending ratio can be changed as desired. Although europium mainly has divalent and trivalent energy levels, the nitride phosphor of the present embodiment uses at least Eu 2+ as an activator.

第四の金属化合物として具体的には、Eu、EuN、EuF等が挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。本実施形態に係る窒化物蛍光体は、発光の中心として2価のEuを含むが、2価のEuは酸化されやすく、3価のEuを含む金属化合物を用いて原料混合物を構成することができる。 Specific examples of the fourth metal compound include Eu 2 O 3 , EuN, EuF 3 and the like, and at least one selected from the group consisting of these is preferable. The nitride phosphor according to the present embodiment includes divalent Eu as a light emission center, but divalent Eu is easily oxidized, and a raw material mixture may be formed using a metal compound containing trivalent Eu. it can.

原料混合物は、上記金属元素単体及び金属化合物に加えて、必要に応じてそれら以外の他の金属元素を含んでいてもよい。他の金属元素は、通常、酸化物、水酸化物等として原料混合物を構成することができるが、これらに限定されるものではなく、金属単体、窒化物、イミド、アミド、その他の無機塩等であってもよく、また予め既述の原料化合物に含まれている状態であってもよい。   The raw material mixture may contain, in addition to the metal element alone and the metal compound, other metal elements other than those as needed. Other metal elements can usually constitute the raw material mixture as oxides, hydroxides, etc., but are not limited to these, and simple metals, nitrides, imides, amides, other inorganic salts, etc. It may be in the state of being contained in the above-mentioned starting material compound.

また、本実施形態に係る窒化物蛍光体には、その組成中に少量の酸素が含有されることがある。酸素の由来としては、原料化合物となる各種酸化物;窒化物、金属等に含まれる微量酸化物;熱処理中に原料化合物が酸化されて生成する酸化物;生成後の窒化蛍光体への付着物等が挙げられる。
一般には、窒化物蛍光体組成中の酸素のモル比を制御することで、蛍光体の結晶構造を変化させ、蛍光体の発光ピーク波長をシフトさせることが可能である。しかし一方で、発光効率の観点からは、窒化物蛍光体に含まれる酸素は少ない方が好ましい。窒化物蛍光体が酸素原子を含む場合、その含有量は例えば6質量%以下である。
In addition, the nitride phosphor according to the present embodiment may contain a small amount of oxygen in its composition. As the origin of oxygen, various oxides as raw material compounds; trace oxides contained in nitrides, metals, etc .; oxides formed by oxidation of raw material compounds during heat treatment; adhesion to nitrided phosphor after formation Etc.
In general, it is possible to change the crystal structure of the phosphor and shift the emission peak wavelength of the phosphor by controlling the molar ratio of oxygen in the nitride phosphor composition. However, from the viewpoint of luminous efficiency, it is preferable that the amount of oxygen contained in the nitride phosphor be small. When the nitride phosphor contains an oxygen atom, the content is, for example, 6% by mass or less.

原料混合物は、ハロゲン化物等のフラックスを含んでいてもよい。原料混合物がフラックスを含むことで、原料間の反応がより促進され、さらには固相反応がより均一に進行するために粒径が大きく、発光特性により優れた蛍光体を得ることができる。これは例えば、製造方法における熱処理が1000℃以上1300℃以下で行われ、この温度がフラックスであるハロゲン化物等の液相の生成温度とほぼ同じであるためと考えられる。ハロゲン化物としては、希土類金属、アルカリ土類金属、アルカリ金属の塩化物、フッ化物等を利用できる。フラックスとしては、陽イオンの元素比率を目的物組成になるような化合物として加えることもできるし、更に目的物組成に各原料を加えた後に、添加する形で加えることもできる。
原料混合物がフラックスを含む場合、その含有量は原料混合物中に例えば10質量%以下であり、5質量%以下が好ましい。またその含有量は例えば2質量%以上である。
The raw material mixture may contain a flux such as a halide. When the raw material mixture contains a flux, the reaction between the raw materials is further promoted, and furthermore, the solid phase reaction proceeds more uniformly, so that the particle size is large, and a phosphor excellent in light emission characteristics can be obtained. This is considered to be because, for example, the heat treatment in the manufacturing method is performed at 1000 ° C. or more and 1300 ° C. or less, and this temperature is almost the same as the formation temperature of liquid phase such as halide which is a flux. As the halide, rare earth metals, alkaline earth metals, chlorides of alkali metals, fluorides and the like can be used. As the flux, the element ratio of the cation may be added as a compound to achieve the target composition, or it may be added in the form of adding each raw material to the target composition.
When the raw material mixture contains a flux, its content in the raw material mixture is, for example, 10% by mass or less, and preferably 5% by mass or less. Moreover, the content is 2 mass% or more, for example.

次に、式(I)で示される組成を有する窒化物蛍光体の内、設計組成としてSr0.993Eu0.007LiAlの製造方法について具体的に説明するが、窒化物蛍光体の製造方法は、これに限定されない。 Next, among the nitride phosphors having the composition represented by the formula (I), the method for producing Sr 0.993 Eu 0.007 LiAl 3 N 4 as a design composition will be specifically described. The manufacturing method of is not limited to this.

原料混合物を構成する金属化合物として、SrN(x=2/3相当)、LiN、AlN、EuFの各粉末を用い、それをSr:Eu:Li:Al=0.993:0.007:1.17:3になるように、不活性雰囲気のグローブボックス内で計量、混合して原料混合物を得る。ここでLiは焼成時に飛散しやすいため、理論値より多めに配合している。なお、本実施形態はこの組成比に限定されない。 Powders of SrN x (equivalent to x = 2/3), Li 3 N, AlN, and EuF 3 are used as metal compounds constituting the raw material mixture, and these powders are used as Sr: Eu: Li: Al = 0.993: 0. The raw material mixture is obtained by weighing and mixing in an inert atmosphere glove box so as to be 007: 1.17: 3. Here, since Li is easily scattered at the time of firing, it is blended more than the theoretical value. Note that the present embodiment is not limited to this composition ratio.

上記の原料混合物を窒素雰囲気中で熱処理する。熱処理は、例えば、ガス加圧電気炉を使用することができる。熱処理温度は、1000℃以上1400℃以下の範囲で行うことができるが、1000℃以上1300℃以下が好ましく、1100℃以上1300℃以下がより好ましい。また、熱処理は、800℃以上1000℃以下で一段階目の熱処理を行い、徐々に昇温して1000℃以上1400℃以下で二段階目の熱処理を行う二段階焼成(多段階焼成)を使用することもできる。原料混合物の熱処理には、黒鉛等の炭素材質、窒化ホウ素(BN)材質、アルミナ(Al)、W、Mo材質等のルツボ、ボート等を使用することができる。 The above raw material mixture is heat treated in a nitrogen atmosphere. The heat treatment can use, for example, a gas pressurized electric furnace. The heat treatment temperature can be in the range of 1000 ° C. or more and 1400 ° C. or less, preferably 1000 ° C. or more and 1300 ° C. or less, and more preferably 1100 ° C. or more and 1300 ° C. or less. The heat treatment uses two-step firing (multi-step firing) in which the first heat treatment is performed at 800 ° C. to 1000 ° C., the temperature is gradually increased, and the second heat treatment is performed at 1000 ° C. to 1400 ° C. You can also For the heat treatment of the raw material mixture, a carbon material such as graphite, boron nitride (BN) material, alumina (Al 2 O 3 ), crucible made of W, Mo material or the like, a boat or the like can be used.

熱処理雰囲気は、窒素ガスを含む雰囲気であればよく、窒素ガスに加えて水素、アルゴン、二酸化炭素、一酸化炭素、アンモニア等からなる群から選択される少なくとも1種を含む雰囲気とすることもできる。熱処理雰囲気における窒素ガスの比率は、70体積%以上が好ましく、80体積%以上がより好ましい。
熱処理は、0.2MPa以上200MPa以下の加圧雰囲気で行う。目的とする窒化物蛍光体は高温になるほど分解し易くなるが、加圧雰囲気にすることにより、分解が抑えられて、より優れた発光特性を達成することができる。加圧雰囲気はゲージ圧として、0.2MPa以上1.0MPa以下が好ましく、0.8MPa以上1.0MPa以下がより好ましい。
The heat treatment atmosphere may be an atmosphere containing nitrogen gas, and may be an atmosphere containing at least one selected from the group consisting of hydrogen, argon, carbon dioxide, carbon monoxide, ammonia, etc. in addition to nitrogen gas. . 70 volume% or more is preferable and, as for the ratio of the nitrogen gas in heat processing atmosphere, 80 volume% or more is more preferable.
The heat treatment is performed in a pressurized atmosphere of 0.2 MPa or more and 200 MPa or less. The target nitride phosphors are more easily decomposed as the temperature is higher, but the decomposition can be suppressed by using a pressurized atmosphere, and more excellent light emission characteristics can be achieved. As a pressurization atmosphere, 0.2 MPa or more and 1.0 MPa or less are preferable as gauge pressure, and 0.8 MPa or more and 1.0 MPa or less are more preferable.

熱処理の時間は、熱処理温度、ガス圧力等に応じて適宜選択すればよい。熱処理の時間は、例えば1〜10時間であり、2〜4時間が好ましい。   The heat treatment time may be appropriately selected according to the heat treatment temperature, gas pressure and the like. The heat treatment time is, for example, 1 to 10 hours, preferably 2 to 4 hours.

上記の熱処理により、Sr0.993Eu0.007LiAlで表される蛍光体を得ることができる。ただし、この窒化物蛍光体の組成は、原料混合物の配合比率より推定される理論組成であり、各元素の係数や、Fなど飛散する成分は記載から除いている。実際に合成された組成は原料等に由来する酸素分が含まれたり、熱処理時の分解、飛散等が生じたりするため仕込みの組成は、Al=3とした場合、Sr、Eu、Liが理論より少ない場合もある。また、各原料の配合比率を変更することにより、目的とする窒化物蛍光体の組成を変更することができる。 By the above heat treatment, a phosphor represented by Sr 0.993 Eu 0.007 LiAl 3 N 4 can be obtained. However, the composition of this nitride phosphor is a theoretical composition estimated from the compounding ratio of the raw material mixture, and the coefficient of each element and the component such as F that scatters are excluded from the description. When the composition of the preparation is Al = 3, Sr, Eu, and Li are theoretical because the composition actually synthesized contains oxygen components derived from the raw materials etc. and decomposition and scattering occur during heat treatment. It may be less. In addition, the composition of the target nitride phosphor can be changed by changing the blending ratio of each raw material.

また上記以外の別の製造方法も可能である。具体的には上記の原料の一部に水素化物を用いて原料混合物を構成して窒化物蛍光体を製造してもよく、また各元素の金属単体を所定の組成比になるように計量した後に溶融させて合金を形成した後、その合金を粉砕し、窒素ガス雰囲気中でガス加圧焼結炉、HIP炉等により合金を窒化させて、目的組成となる窒化物蛍光体を製造してもよい。   Other manufacturing methods than the above are also possible. Specifically, a nitride phosphor may be produced by forming a raw material mixture using a hydride as a part of the above raw materials, or a single metal of each element was weighed to have a predetermined composition ratio. After the alloy is formed by melting later, the alloy is crushed, and the alloy is nitrided in a nitrogen gas atmosphere by a gas pressure sintering furnace, a HIP furnace or the like to produce a nitride phosphor having a target composition. It is also good.

以上の製造方法によって、目的とする窒化物蛍光体を得ることが可能である。また、Euは希土類元素であり、Euの一部を各種の希土類元素に置き換えてもよく、Euに加えて、La、Ce、Gd、Tb、Dy、Ho、Er、Tm、Lu等の希土類元素を含む窒化物蛍光体とすることも可能である。以上のようにして、所望の窒化物蛍光体を得ることができる。   By the above manufacturing method, it is possible to obtain the target nitride phosphor. Eu is a rare earth element, and part of Eu may be replaced with various rare earth elements, and in addition to Eu, rare earth elements such as La, Ce, Gd, Tb, Dy, Ho, Er, Tm, Lu and the like It is also possible to use a nitride phosphor containing As described above, a desired nitride phosphor can be obtained.

本実施形態に係る窒化物蛍光体の発光特性のデータの具体例は後述するが、本実施形態に係る窒化物蛍光体は、特定の合成条件を採用しながら、特定の組成を狙うことにより、より優れた発光特性を達し得ることが確認された。   Although specific examples of data of light emission characteristics of the nitride phosphor according to the present embodiment will be described later, the nitride phosphor according to the present embodiment aims at a specific composition while adopting specific synthesis conditions. It was confirmed that better emission characteristics could be achieved.

(発光装置)
次に、上記の窒化物蛍光体を波長変換部材の構成要素として利用した発光装置について説明する。本実施形態の発光装置は、前記窒化物蛍光体を含む第一の蛍光体と、400nm以上570nm以下の波長範囲の光を発する励起光源とを備える。
(Light-emitting device)
Next, a light emitting device using the above nitride phosphor as a component of the wavelength conversion member will be described. The light emitting device of the present embodiment includes the first phosphor including the nitride phosphor, and an excitation light source that emits light in a wavelength range of 400 nm to 570 nm.

励起光源には発光素子を用いることができる。発光素子は400nm以上570nm以下の波長範囲の光を発する。発光素子の発光ピーク波長は420nm以上460nm以下の波長範囲にあることが好ましい。この範囲に発光ピーク波長を有する発光素子を励起光源として用いることにより、発光素子からの光と蛍光体からの蛍光との混色光を発する発光装置を構成することが可能となる。さらに、発光素子から外部に放射される光を有効に利用することができるため、発光装置から出射される光の損失を少なくすることができ、高効率な発光装置を得ることができる。   A light emitting element can be used as the excitation light source. The light emitting element emits light in a wavelength range of 400 nm to 570 nm. The emission peak wavelength of the light emitting element is preferably in the wavelength range of 420 nm to 460 nm. By using a light emitting element having a light emission peak wavelength in this range as an excitation light source, it becomes possible to configure a light emitting device that emits mixed color light of light from the light emitting element and fluorescence from the fluorescent substance. Further, since the light emitted from the light emitting element to the outside can be effectively used, the loss of light emitted from the light emitting device can be reduced, and a highly efficient light emitting device can be obtained.

発光素子の発光スペクトルの半値幅は特に制限されない。半値幅は例えば、30nm以下とすることができる。
発光素子には半導体発光素子を用いることが好ましい。光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
半導体発光素子としては、例えば、窒化物系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)を用いた青色、緑色等に発光する半導体発光素子を用いることができる。
The half width of the emission spectrum of the light emitting element is not particularly limited. The half width can be, for example, 30 nm or less.
It is preferable to use a semiconductor light emitting element as the light emitting element. By using a semiconductor light emitting element as a light source, it is possible to obtain a stable light emitting device with high efficiency, high output linearity with respect to input, and resistance to mechanical shock.
The semiconductor as the light emitting element, for example, nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) blue was used, the semiconductor light emitting element that emits green light, etc. Can be used.

発光装置に含まれる第一の蛍光体は前述の窒化物蛍光体を含む。窒化物蛍光体は、式(I)で示される組成を有し、400nm以上570nm以下の波長範囲の光で励起され、発光ピーク波長が630nm以上670nm以下の波長範囲にあり、650nmにおける反射率の460nmにおける反射率に対する反射率比が2以上である。窒化物蛍光体の詳細は既述の通りであり、好ましい態様も同様である。第一の蛍光体は前記窒化物蛍光体の少なくとも1種を含む赤色発光の蛍光体である。   The first phosphor included in the light emitting device includes the above-described nitride phosphor. The nitride phosphor has a composition represented by the formula (I), is excited by light in a wavelength range of 400 nm to 570 nm, has an emission peak wavelength of 630 nm to 670 nm, and has a reflectance of 650 nm. The reflectance ratio to the reflectance at 460 nm is 2 or more. The details of the nitride phosphor are as described above, and preferred embodiments are also the same. The first phosphor is a red-emitting phosphor containing at least one of the aforementioned nitride phosphors.

第一の蛍光体は、例えば、励起光源を覆う封止樹脂に含有されて発光装置を構成することができる。励起光源が第一の蛍光体を含有する封止樹脂で覆われた発光装置では、励起光源から出射された光の一部が第一の蛍光体に吸収されて、赤色光として放射される。400nm以上570nm以下の波長範囲の光を発する励起光源を用いることで、放射される光をより有効に利用することができる。よって発光装置から出射される光の損失を少なくすることができ、高効率の発光装置を提供することができる。
発光装置に含まれる第一の蛍光体の含有量は特に制限されず、励起光源等に応じて適宜選択することができる。例えば第一の蛍光体の含有量は、封止樹脂100質量部に対して1〜50質量部とすることができ、2〜30質量部であることが好ましい。
The first phosphor can be contained in, for example, a sealing resin covering the excitation light source to constitute a light emitting device. In the light emitting device in which the excitation light source is covered with the sealing resin containing the first phosphor, part of the light emitted from the excitation light source is absorbed by the first phosphor and emitted as red light. The emitted light can be used more effectively by using an excitation light source which emits light in a wavelength range of 400 nm to 570 nm. Therefore, the loss of light emitted from the light emitting device can be reduced, and a highly efficient light emitting device can be provided.
The content of the first phosphor contained in the light emitting device is not particularly limited, and can be appropriately selected according to the excitation light source and the like. For example, the content of the first phosphor can be 1 to 50 parts by mass with respect to 100 parts by mass of the sealing resin, and is preferably 2 to 30 parts by mass.

発光装置は第一の蛍光体とは発光ピーク波長が異なる第二の蛍光体を含んでいてもよい。例えば、発光装置において、青色光を放出する発光素子と、これに励起される第一の蛍光体及び第二の蛍光体を用いることで、色再現範囲、演色性に優れた白色光を得ることができる。   The light emitting device may include a second phosphor whose emission peak wavelength is different from that of the first phosphor. For example, by using a light emitting element that emits blue light and a first phosphor and a second phosphor excited by the light emitting device, white light excellent in color reproduction range and color rendering property is obtained. Can.

第二の蛍光体としては、例えば、下記式(IIa)から(IIh)のいずれかで示される組成を有する蛍光体を挙げることができ、これらからなる群から選択される式で示される組成を有する蛍光体の少なくとも1種を含むことが好ましく、式(IIc)又は(IIe)で示される組成を有する蛍光体の少なくとも1種を含むことがより好ましい。
(Y,Gd,Tb,Lu)(Al,Ga)12:Ce (IIa)
(Ba,Sr,Ca)SiO:Eu (IIb)
Si6−pAl8−p:Eu(0<p≦4.2) (IIc)
(Ca,Sr)MgSi16(Cl,F,Br):Eu (IId)
(Ba,Sr,Ca)Ga:Eu (IIe)
(Ba,Sr,Ca)Si:Eu (IIf)
(Sr,Ca)AlSiN:Eu (IIg)
(Si,Ge,Ti)F:Mn (IIh)
組成式(IIc)中、pは、0.01<p<2を満たすことが好ましい。
発光装置は第二の蛍光体を1種単独でも、2種以上を組合せて含んでいてもよい。
Examples of the second phosphor include a phosphor having a composition represented by any of the following formulas (IIa) to (IIh), and a composition represented by a formula selected from the group consisting of It is preferable to include at least one kind of phosphor having, and more preferably to contain at least one kind of phosphor having the composition represented by the formula (IIc) or (IIe).
(Y, Gd, Tb, Lu) 3 (Al, Ga) 5 O 12 : Ce (IIa)
(Ba, Sr, Ca) 2 SiO 4: Eu (IIb)
Si 6-p Al p O p N 8- p : Eu (0 <p ≦ 4.2) (II c)
(Ca, Sr) 8 MgSi 4 O 16 (Cl, F, Br) 2: Eu (IId)
(Ba, Sr, Ca) Ga 2 S 4: Eu (IIe)
(Ba, Sr, Ca) 2 Si 5 N 8: Eu (IIf)
(Sr, Ca) AlSiN 3 : Eu (IIg)
K 2 (Si, Ge, Ti) F 6 : Mn ( II h)
In the composition formula (IIc), p preferably satisfies 0.01 <p <2.
The light emitting device may contain the second phosphor singly or in combination of two or more.

第二の蛍光体の平均粒径は、特に制限されず、目的等に応じて適宜選択することができる。第二の蛍光体の平均粒径は、発光効率の観点から、2μm以上35μm以下であることが好ましく、5μm以上30μm以下であることがより好ましい。   The average particle size of the second phosphor is not particularly limited, and can be appropriately selected according to the purpose and the like. The average particle diameter of the second phosphor is preferably 2 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less from the viewpoint of luminous efficiency.

第二の蛍光体の含有量は、目的等に応じて適宜選択することができる。例えば第二の蛍光体の含有量は、封止樹脂100重量部に対して1〜200重量部とすることができ、2〜180重量部であることが好ましい。   The content of the second phosphor can be appropriately selected according to the purpose and the like. For example, the content of the second phosphor can be 1 to 200 parts by weight with respect to 100 parts by weight of the sealing resin, and is preferably 2 to 180 parts by weight.

第一の蛍光体と第二の蛍光体の含有比は、所望の発光特性が得られる限り特に制限されず、目的等に応じて適宜選択することができる。例えば第一の蛍光体の第二の蛍光体に対する含有比(第一の蛍光体/第二の蛍光体)は、重量基準で0.01〜5とすることができ、0.05〜3が好ましい。   The content ratio of the first phosphor and the second phosphor is not particularly limited as long as desired emission characteristics can be obtained, and can be appropriately selected according to the purpose and the like. For example, the content ratio of the first phosphor to the second phosphor (first phosphor / second phosphor) can be 0.01 to 5 on a weight basis, and 0.05 to 3 is preferable.

第一の蛍光体及び第二の蛍光体(以下、併せて単に「蛍光体」ともいう)は、封止樹脂とともに発光素子を被覆する封止材料を構成することが好ましい。封止材料を構成する封止樹脂としては、エポキシ樹脂、シリコーン樹脂、エポキシ変性シリコーン樹脂、変性シリコーン樹脂等の熱硬化性樹脂を挙げることができる。
封止材料中の蛍光体の総含有量は特に制限されず、目的等に応じて適宜選択することができる。蛍光体の総含有量は、例えば、封止樹脂100質量部に対して5〜300質量部とすることができ、10〜250質量部が好ましく、15〜230質量部がより好ましく、15〜200質量部がさらに好ましい。封止材料中の蛍光体の含有量が上記範囲であると、発光素子を充分に被覆することができ、発光素子から発光した光を蛍光体で効率よく波長変換することができ、より効率よく発光することができる。
It is preferable that the first phosphor and the second phosphor (hereinafter, also simply referred to as “phosphors”) constitute a sealing material that covers the light emitting element together with the sealing resin. As a sealing resin which comprises sealing material, thermosetting resins, such as an epoxy resin, a silicone resin, an epoxy modified silicone resin, a modified silicone resin, can be mentioned.
The total content of the phosphors in the sealing material is not particularly limited, and can be appropriately selected according to the purpose and the like. The total content of the phosphor can be, for example, 5 to 300 parts by mass, preferably 10 to 250 parts by mass, and more preferably 15 to 230 parts by mass, with respect to 100 parts by mass of the sealing resin. Parts by weight are more preferred. When the content of the phosphor in the sealing material is in the above range, the light emitting element can be sufficiently covered, and the light emitted from the light emitting element can be efficiently wavelength-converted by the phosphor, and more efficiently It can emit light.

封止材料は、封止樹脂及び蛍光体に加えて、フィラー、光拡散材等を更に含んでいてもよい。フィラーとしては例えば、シリカ、酸化チタン、酸化亜鉛、酸化ジルコニウム、アルミナ等を挙げることができる。
封止材料がフィラーを含む場合、その含有量は目的等に応じて適宜選択することができる。フィラーの含有量は例えば、封止樹脂100質量部に対して1〜20質量部とすることができる。
The sealing material may further include a filler, a light diffusing material, etc. in addition to the sealing resin and the phosphor. Examples of the filler include silica, titanium oxide, zinc oxide, zirconium oxide, alumina and the like.
When a sealing material contains a filler, the content can be suitably selected according to the objective etc. The content of the filler can be, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the sealing resin.

発光装置の形式は特に制限されず、通常用いられる形式から適宜選択することができる。発光装置の形式としては、砲弾型、表面実装型等を挙げることができる。一般に砲弾型とは、外面を構成する樹脂の形状を砲弾型に形成したものを指す。また表面実装型とは、凹状の収納部内に光源となる発光素子及び樹脂を充填して形成されたものを示す。さらに発光装置の形式としては、平板状の実装基板上に光源となる発光素子を実装し、その発光素子を覆うように、蛍光体を含有した封止樹脂をレンズ状等に形成した発光装置等も挙げられる。   The type of the light emitting device is not particularly limited, and can be appropriately selected from commonly used types. Examples of the type of the light emitting device include a shell type and a surface mounting type. In general, the shell type refers to one in which the shape of the resin constituting the outer surface is formed into a shell type. Further, the surface mount type refers to one formed by filling a concave storage portion with a light emitting element serving as a light source and a resin. Further, as a type of light emitting device, a light emitting device as a light source is mounted on a flat mounting substrate, and a sealing resin containing a phosphor is formed in a lens shape or the like so as to cover the light emitting device. Can also be mentioned.

本実施形態に係る発光装置の一例を図面に基づいて説明する。図1は、本実施形態に係る発光装置の一例を示す概略断面図である。この発光装置は、表面実装型発光装置の一例である。   An example of a light emitting device according to the present embodiment will be described based on the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device according to the present embodiment. This light emitting device is an example of a surface mounted light emitting device.

発光装置100は、凹部を有するパッケージ40と、発光素子10と、発光素子10を被覆する封止部材50とを備える。発光素子10は、パッケージ40に形成された凹部内に配置されており、パッケージ40に配置された正負一対のリード電極20、30に導電性ワイヤ60によって電気的に接続されている。封止部材50は、凹部内に充填されており、発光素子10を被覆している。封止部材50は、例えば、熱硬化性樹脂である封止樹脂と発光素子10からの光を波長変換する第一の蛍光体71と第二の蛍光体72とを更に含有する。正負一対のリード電極20、30は、その一部がパッケージ40の外側面に露出されている。これらのリード電極20、30を介して、外部から電力の供給を受けて発光装置100が発光する。   The light emitting device 100 includes a package 40 having a recess, a light emitting element 10, and a sealing member 50 that covers the light emitting element 10. The light emitting element 10 is disposed in a recess formed in the package 40, and is electrically connected to a pair of positive and negative lead electrodes 20 and 30 disposed in the package 40 by a conductive wire 60. The sealing member 50 is filled in the recess and covers the light emitting element 10. The sealing member 50 further contains, for example, a sealing resin that is a thermosetting resin, and a first phosphor 71 and a second phosphor 72 that convert the wavelength of light from the light emitting element 10. A portion of the positive and negative lead electrodes 20 and 30 is exposed to the outer surface of the package 40. The light emitting device 100 emits light by receiving power supply from the outside through the lead electrodes 20 and 30.

封止部材50は、発光装置100の凹部内に載置された発光素子10を覆うように透光性の樹脂やガラスで充填されて形成される。製造の容易性を考慮すると、封止部材の材料は、透光性樹脂が好ましい。透光性樹脂は、シリコーン樹脂組成物を使用することが好ましいが、エポキシ樹脂組成物、アクリル樹脂組成物等の絶縁樹脂組成物を用いることもできる。また、封止部材50には第一の蛍光体71及び第二の蛍光体72が含有されているが、さらに適宜、その他の材料を添加することもできる。例えば、光拡散材を含むことで、発光素子からの指向性を緩和させ、視野角を増大させることができる。   The sealing member 50 is formed by being filled with a translucent resin or glass so as to cover the light emitting element 10 placed in the recess of the light emitting device 100. In consideration of the ease of manufacture, the material of the sealing member is preferably a translucent resin. It is preferable to use a silicone resin composition as the translucent resin, but an insulating resin composition such as an epoxy resin composition or an acrylic resin composition can also be used. Moreover, although the 1st fluorescent substance 71 and the 2nd fluorescent substance 72 are contained in the sealing member 50, another material can also be added suitably further. For example, by including a light diffusing material, directivity from the light emitting element can be relaxed and a viewing angle can be increased.

封止部材50は、発光素子10、第一の蛍光体71及び第二の蛍光体72を外部環境から保護するための部材としてだけではなく、波長変換部材としても機能する。図1では、第一の蛍光体71、第一の蛍光体72は封止部材50中で部分的に偏在している。このように発光素子10に接近して第一の蛍光体71、第一の蛍光体72を配置することにより、発光素子10からの光を効率よく波長変換することができ、発光効率の優れた発光装置とできる。なお、第一の蛍光体71、第一の蛍光体72を含む封止部材50と、発光素子10との配置は、それらを接近して配置させる形態に限定されることなく、第一の蛍光体71、第一の蛍光体72への熱の影響を考慮して、封止部材50中で発光素子10と、第一の蛍光体71、第一の蛍光体72との間隔を空けて配置することもできる。また、第一の蛍光体71、第一の蛍光体72を封止部材50の全体にほぼ均一の割合で混合することによって、色ムラがより抑制された光を得るようにすることもできる。   The sealing member 50 not only functions as a member for protecting the light emitting element 10, the first phosphor 71 and the second phosphor 72 from the external environment, but also functions as a wavelength conversion member. In FIG. 1, the first phosphor 71 and the first phosphor 72 are partially localized in the sealing member 50. By arranging the first fluorescent substance 71 and the first fluorescent substance 72 close to the light emitting element 10 in this manner, the wavelength of light from the light emitting element 10 can be efficiently converted, and the light emission efficiency is excellent. It can be a light emitting device. The arrangement of the light emitting element 10 and the sealing member 50 including the first fluorescent substance 71 and the first fluorescent substance 72 is not limited to the form in which they are arranged in close proximity to each other, and the first fluorescent substance In consideration of the influence of heat on the body 71 and the first phosphor 72, the light emitting element 10, the first phosphor 71, and the first phosphor 72 are spaced apart from each other in the sealing member 50. You can also In addition, by mixing the first phosphor 71 and the first phosphor 72 in the entire sealing member 50 at a substantially uniform ratio, it is possible to obtain light in which color unevenness is further suppressed.

発光装置の適用例には、例えば、照明器具、液晶ディスプレイのバックライト、レーダー等の表示装置等が挙げられるが、これらに制限されるものではない。   Examples of applications of the light emitting device include, but are not limited to, lighting devices, backlights of liquid crystal displays, display devices such as radars, and the like.

以下、本開示を実施例により具体的に説明するが、本開示はこれらの実施例に限定されるものではない。   Hereinafter, the present disclosure will be specifically described by way of examples, but the present disclosure is not limited to these examples.

(実施例1)
EuAlで表される組成を有する蛍光体として、M=Sr、M=Liとし、SrN(x=2/3相当)、LiAlH、AlN、EuFを各原料として用い、それを仕込み量比としてのモル比が、Sr:Li:Eu:Al=0.993:1.1:0.007:3になるように、不活性雰囲気のグローブボックス内で計量、混合して原料混合物を得た。ここでLiは焼成時に飛散しやすいため、理論値より多めに配合した。原料混合物をルツボに充填し、窒素ガス雰囲気で、ガス圧力をゲージ圧として0.92MPa(絶対圧力では1.02MPa)として、温度が1000℃で、熱処理を3時間行って、実施例1の窒化物蛍光体の粉末を得た。
Example 1
As a phosphor having a composition represented by M a w M b x E u y Al 3 N z , M a = Sr, M b = Li, SrN x (corresponding to x = 2/3), LiAlH 4 , AlN, Glove of inert atmosphere such that EuF 3 is used as each raw material, and the molar ratio as the charged amount ratio is Sr: Li: Eu: Al = 0.993: 1.1: 0.007: 3 The raw material mixture was obtained by weighing and mixing in a box. Here, since Li is easily scattered at the time of firing, it was blended more than the theoretical value. The raw material mixture is filled in a crucible, and heat treatment is performed for 3 hours at a temperature of 1000 ° C. in a nitrogen gas atmosphere with a gas pressure of 0.92 MPa (1.02 MPa in absolute pressure) as a gauge pressure, and nitriding of Example 1 A powder of the phosphor was obtained.

(実施例2)
熱処理の温度を1100℃に変更した以外は実施例1と同様の条件にして、実施例2の窒化物蛍光体の粉末を得た。
(Example 2)
A nitride phosphor powder of Example 2 was obtained under the same conditions as in Example 1 except that the temperature of the heat treatment was changed to 1100 ° C.

(実施例3)
熱処理の温度を1200℃に変更した以外は実施例1と同様の条件にして、実施例3の窒化物蛍光体の粉末を得た。
(Example 3)
The nitride phosphor powder of Example 3 was obtained under the same conditions as in Example 1 except that the temperature of the heat treatment was changed to 1200 ° C.

(実施例4)
熱処理の温度を1300℃に変更した以外は実施例1と同様の条件にして、実施例4の窒化物蛍光体の粉末を得た。
(Example 4)
The nitride phosphor powder of Example 4 was obtained under the same conditions as in Example 1 except that the temperature of the heat treatment was changed to 1300 ° C.

(実施例5)
実施例1において、Liの仕込み量を1.1から1.2に増量変更した以外は実施例1と同様の条件にして、実施例5の窒化物蛍光体の粉末を得た。
(Example 5)
A nitride phosphor powder of Example 5 was obtained under the same conditions as in Example 1 except that the amount of charged Li was increased from 1.1 to 1.2.

(実施例6)
実施例3において、Liの仕込み量を1.1から1.2に増量変更した以外は実施例3と同様の条件にして、実施例6の窒化物蛍光体の粉末を得た。
(Example 6)
A nitride phosphor powder of Example 6 was obtained under the same conditions as in Example 3 except that the amount of charged Li was changed from 1.1 to 1.2 in Example 3.

(比較例1)
ガス雰囲気を窒素(N)/水素(H)=9/1の混合ガス雰囲気とし、ガス圧力を大気圧(ゲージ圧として1.0kPa、絶対圧力として0.10MPa)として、温度が1000℃で、熱処理を3時間した以外は実施例1と同様の条件にして、比較例1の窒化物蛍光体の粉末を得た。
(Comparative example 1)
The gas atmosphere is a mixed gas atmosphere of nitrogen (N 2 ) / hydrogen (H 2 ) = 9/1, the gas pressure is atmospheric pressure (1.0 kPa as gauge pressure, 0.10 MPa as absolute pressure), and the temperature is 1000 ° C. Under the same conditions as in Example 1 except that the heat treatment was performed for 3 hours, a powder of the nitride phosphor of Comparative Example 1 was obtained.

(比較例2)
比較例1において、熱処理温度を1100℃に変更した以外は比較例1と同様の条件にして、比較例2の窒化物蛍光体の粉末を得た。
(Comparative example 2)
In Comparative Example 1, a powder of a nitride phosphor of Comparative Example 2 was obtained under the same conditions as Comparative Example 1 except that the heat treatment temperature was changed to 1100 ° C.

(比較例3)
比較例1において、熱処理温度を1200℃に変更した以外は比較例1と同様の条件にして、比較例3の窒化物蛍光体の粉末を得た。
(Comparative example 3)
In Comparative Example 1, a powder of the nitride phosphor of Comparative Example 3 was obtained under the same conditions as Comparative Example 1 except that the heat treatment temperature was changed to 1200 ° C.

(比較例4)
比較例1において、熱処理温度を1300℃に変更した以外は比較例1と同様の条件にして、比較例4の窒化物蛍光体の粉末を得た。
(Comparative example 4)
In Comparative Example 1, a powder of the nitride phosphor of Comparative Example 4 was obtained under the same conditions as Comparative Example 1 except that the heat treatment temperature was changed to 1300 ° C.

(比較例5)
比較例1において、ガス雰囲気を窒素ガス雰囲気に変更した以外は比較例1と同様の条件にして、比較例5の窒化物蛍光体の粉末を得た。
(Comparative example 5)
In Comparative Example 1, a powder of a nitride phosphor of Comparative Example 5 was obtained under the same conditions as Comparative Example 1 except that the gas atmosphere was changed to a nitrogen gas atmosphere.

(比較例6)
比較例1において、ガス雰囲気を窒素ガス雰囲気に変更し、熱処理温度を1100℃に変更した以外は比較例1と同様の条件にして、比較例6の窒化物蛍光体の粉末を得た。
(Comparative example 6)
In Comparative Example 1, a powder of a nitride phosphor of Comparative Example 6 was obtained under the same conditions as Comparative Example 1 except that the gas atmosphere was changed to a nitrogen gas atmosphere and the heat treatment temperature was changed to 1100 ° C.

(比較例7)
比較例1において、ガス雰囲気を窒素ガス雰囲気に変更し、熱処理温度を1200℃に変更した以外は比較例1と同様の条件にして、比較例7の窒化物蛍光体の粉末を得た。
(Comparative example 7)
In Comparative Example 1, a powder of a nitride phosphor of Comparative Example 7 was obtained under the same conditions as Comparative Example 1 except that the gas atmosphere was changed to a nitrogen gas atmosphere and the heat treatment temperature was changed to 1200 ° C.

(比較例8)
比較例1において、ガス雰囲気を窒素ガス雰囲気に変更し、熱処理温度を1300℃に変更した以外は比較例1と同様の条件にして、比較例8の窒化物蛍光体の粉末を得た。
(Comparative example 8)
The powder of the nitride phosphor of Comparative Example 8 was obtained under the same conditions as Comparative Example 1 except that the gas atmosphere was changed to a nitrogen gas atmosphere and the heat treatment temperature was changed to 1300 ° C. in Comparative Example 1.

<評価>
(X線回折スペクトル)
得られた窒化物蛍光体について、X線回折スペクトル(XRD)を測定した。測定はリガク製UltimaIVを用い、CuKα線を用いて行った。得られたXRDパターンの例を図2に示す。
図2に示すように比較例1、実施例1及び実施例2の化合物は組成がSrLiAlで表される化合物であることを確認できた。
なお、図2では、下から順に、参考のために示すSrLiAlで表される化合物(SLAN)、比較例1の窒化物蛍光体、実施例1の窒化物蛍光体及び実施例2の窒化物蛍光体のXRDパターンを示す。
<Evaluation>
(X-ray diffraction spectrum)
The X-ray diffraction spectrum (XRD) was measured about the obtained nitride fluorescent substance. The measurement was performed using CuK alpha ray, using Ultima IV made by Rigaku. An example of the obtained XRD pattern is shown in FIG.
As shown in FIG. 2, it was confirmed that the compounds of Comparative Example 1, Example 1 and Example 2 were compounds represented by SrLiAl 3 N 4 in composition.
In FIG. 2, the compound (SLAN) represented by SrLiAl 3 N 4 shown for reference in the order from the bottom, the nitride phosphor of Comparative Example 1, the nitride phosphor of Example 1, and the Example 2 The XRD pattern of nitride fluorescent substance is shown.

(組成分析)
得られた窒化物蛍光体について、ICP発光分析法により、Sr、Li、Eu及びAlの各元素の組成比を求めた。仕込み時のLi量比とEu量比、得られた分析値より各元素の化学組成比を算出した結果を表1に示す。なお、組成分析による各元素の組成比は、Alを基準値3として求めた。
(Composition analysis)
The composition ratio of each element of Sr, Li, Eu and Al was determined by ICP emission analysis for the obtained nitride phosphor. Table 1 shows the results of calculating the chemical composition ratio of each element from the Li content ratio and the Eu content ratio at the time of preparation, and the obtained analysis values. The composition ratio of each element by composition analysis was determined using Al as a reference value 3.

(平均粒径)
得られた窒化物蛍光体について、平均粒径を測定した。得られた粉末の平均粒径は、F.S.S.S.No.(Fisher Sub Sieve Sizer's No.)であり、空気透過法で得られる平均粒径を指す。具体的には、気温25℃、湿度70%の環境下において、1cm分の試料を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読み取り、平均粒径に換算した。結果を表2に示す。
(Average particle size)
The average particle size of the obtained nitride phosphor was measured. The average particle size of the obtained powder is as described in F.I. S. S. S. No. (Fisher Sub Sieve Sizer's No.), which refers to the average particle size obtained by air permeation method. Specifically, after taking a sample of 1 cm 3 min at an ambient temperature of 25 ° C and humidity of 70%, packing it into a special tubular container, flowing dry air at a constant pressure, reading the specific surface area from the differential pressure , Converted to the average particle size. The results are shown in Table 2.

(発光特性)
得られた窒化物蛍光体について、発光特性を測定した。粉体の発光特性は分光蛍光光度計:F−4500(株式会社日立ハイテクノロジーズ製)で励起光の波長を460nmとして測定した。その得られた発光スペクトルから相対発光強度(相対Ip:%)とピーク波長(λp:nm)と半値幅(FWHM:nm)を求めた。結果を表2に示す。なお、相対発光強度は比較例1の窒化物蛍光体を基準として求めた。
また図3に比較例1、2及び実施例1から3で得られた窒化物蛍光体の発光スペクトルを他の実施例及び比較例に代表して示す。図3の発光スペクトルは、波長に対する相対発光強度を示す。
(Light emission characteristics)
The emission characteristics of the obtained nitride phosphor were measured. The emission characteristics of the powder were measured using a spectrofluorimeter: F-4500 (manufactured by Hitachi High-Technologies Corporation) with a wavelength of excitation light of 460 nm. The relative emission intensity (relative Ip:%), peak wavelength (λp: nm), and half width (FWHM: nm) were determined from the obtained emission spectrum. The results are shown in Table 2. The relative emission intensity was determined based on the nitride phosphor of Comparative Example 1.
Further, FIG. 3 shows the emission spectra of the nitride phosphors obtained in Comparative Examples 1 and 2 and Examples 1 to 3 as representative examples of other examples and comparative examples. The emission spectrum of FIG. 3 shows the relative emission intensity to the wavelength.

(反射率)
得られた窒化物蛍光体について、反射スペクトルを測定した。反射スペクトルは発光特性と同様に分光蛍光光度計:F−4500を用いて測定した。なお、反射率の基準にはCaHPOを用いた。
反射率の測定は測定範囲について1nm間隔で行った。450nm以上470nm以下の波長範囲における平均反射率は、450nm以上470nm以下の21点について反射率を測定し、その算術平均値として算出した。640nm以上660nm以下の平均反射率についても同様にして算出した。
460nmにおける反射率に対する650nmにおける反射率の比(R650/R460)と、450nm以上470nm以下における平均反射率に対する640nm以上660nm以下における平均反射率の比(R640−660/R450−470)をそれぞれ求めた。
図4に比較例1、2及び実施例1から3で得られた窒化物蛍光体の反射スペクトルを他の実施例及び比較例に代表して示す。
(Reflectance)
The reflection spectrum was measured about the obtained nitride fluorescent substance. The reflection spectrum was measured using a spectrofluorimeter: F-4500 in the same manner as the light emission characteristics. In addition, CaHPO 4 was used as a reference | standard of a reflectance.
The measurement of reflectance was performed at 1 nm intervals in the measurement range. The average reflectance in a wavelength range of 450 nm or more and 470 nm or less was calculated as an arithmetic average value by measuring the reflectance at 21 points of 450 nm or more and 470 nm or less. It calculated similarly about the average reflectance of 640 nm or more and 660 nm or less.
The ratio of reflectance at 650nm for the reflectivity at 460nm and (R 650 / R 460), the ratio of the average reflectance at 640nm or 660nm or less to the average reflectance at 450nm or 470nm or less (R 640-660 / R 450-470) I asked for each.
FIG. 4 shows the reflection spectra of the nitride phosphors obtained in Comparative Examples 1 and 2 and Examples 1 to 3 as representative examples of other examples and comparative examples.

表1に示した組成比は、Alを基準値3として求めている。組成分析の結果をみると仕込みの元素量よりLiが減少していることが分かる。また高温になるとLiの減少量が大きくなっている。一方、実施例ではSr、Liは理論組成であるSrLiAlに近い数値となっている。比較例と実施例を比較すると、ガス圧力(ゲージ圧)が高い実施例のほうがLiの減少が抑えられていることが分かる。またSrも比較例では減少の傾向であるが、実施例では減少が抑えられていることが分かる。 The composition ratios shown in Table 1 are determined using Al as a reference value 3. From the results of compositional analysis, it can be seen that Li is reduced from the amount of elements in the preparation. Moreover, the amount of decrease of Li is large when the temperature is high. On the other hand, in the examples, Sr and Li have numerical values close to the theoretical composition SrLiAl 3 N 4 . Comparing the comparative example and the example, it can be seen that the reduction of Li is suppressed in the example having a high gas pressure (gauge pressure). Further, Sr also tends to decrease in the comparative example, but it can be seen that the decrease is suppressed in the example.

表2に平均粒径と発光特性を示す。実施例1から6の蛍光体はいずれも比較例1から8よりも相対発光強度が高くなっており、発光特性が優れていることが分かる。発光ピーク波長は652nm〜654nm、半値幅は55nm〜61nmである。また実施例1から6の460nmにおける反射率に対する650nmにおける反射率の反射率比(R650/R460)は2以上となっており、比較例1から8よりも高い数値となっている。また40nm以上660nm以下の平均反射率(R640−660)の450nm以上470nm以下の平均反射率(R450−470)に対する平均反射率比(R640−660/R450−470)も2以上となっている。
460nmにおける反射率は、比較例1から4、7及び8の反射率が35%よりも大きいのに対し、実施例1から6の反射率は35%以下であり、460nm付近に発光スペクトルの発光ピークを有する励起光源を備えた発光装置に用いた場合、励起光の高い吸収があり、使用に好適な粒径等の特性を有していることが分かる。
反射率比(R650/R460)は、窒化物蛍光体における励起光の吸収と、発光波長での吸収の比率を示すと考えられる。例えば、窒化物蛍光体の発光波長での吸収が多いと、励起光を吸収して発光したとしても、実際に窒化物蛍光体の外へ取り出される発光が少なくなる。つまり、反射率比(R650/R460)が大きいと、励起光の吸収が多く、更に発光波長での吸収が少ないことを示し、発光効率の指標となる。発光強度が高くなり、更に反射率比(R650/R460)が大きくなる原因として、熱処理時に高圧にすることにより、組成ずれが抑制され、より理想的な結晶形に近づくためであることが影響していると考えられる。
実施例1から6の蛍光体粒子の平均粒径はいずれも4μm以上となっており、比較例3、4、7及び8の平均粒径よりも大きくなっている。特に実施例2から6の蛍光体粒子の平均粒径はいずれも4.5μmよりも大きくなっており、比較例1から8の平均粒径よりも大きくなっている。これにより、相対発光強度がより向上していると考えられる。
Table 2 shows the average particle size and the light emission characteristics. The phosphors of Examples 1 to 6 all have higher relative luminescence intensity than Comparative Examples 1 to 8, and it can be seen that the luminescent characteristics are excellent. The emission peak wavelength is from 652 nm to 654 nm, and the half width is from 55 nm to 61 nm. The reflectance ratio (R 650 / R 460 ) of the reflectance at 650 nm with respect to the reflectance at 460 nm in Examples 1 to 6 is 2 or more, which is a numerical value higher than in Comparative Examples 1 to 8. The average reflectance ratio 40nm or 660nm or less of the average reflectance (R 640-660) 450nm or 470nm or less of the average reflectance (R 450-470) (R 640-660 / R 450-470) also 2 or more and It has become.
While the reflectance at 460 nm is higher than 35% for the reflectances of Comparative Examples 1 to 4, 7 and 8, the reflectance for Examples 1 to 6 is 35% or less, and the emission of light in the emission spectrum near 460 nm When used in a light emitting device provided with an excitation light source having a peak, it can be seen that there is high absorption of the excitation light and that it has characteristics such as a particle diameter suitable for use.
The reflectance ratio (R 650 / R 460 ) is considered to indicate the ratio of absorption of excitation light in the nitride phosphor to absorption at the emission wavelength. For example, when the absorption at the emission wavelength of the nitride phosphor is large, the emission actually taken out of the nitride phosphor is reduced even if the light is absorbed by absorbing the excitation light. That is, when the reflectance ratio (R 650 / R 460 ) is large, it indicates that the absorption of the excitation light is large and the absorption at the emission wavelength is small, which is an index of luminous efficiency. As a cause of the increase of the light emission intensity and the increase of the reflectance ratio (R 650 / R 460 ), the composition deviation is suppressed by applying a high pressure at the time of heat treatment, and the crystal shape approaches more ideal. It is thought that it is affecting.
The average particle diameter of each of the phosphor particles of Examples 1 to 6 is 4 μm or more, and is larger than the average particle diameter of Comparative Examples 3, 4, 7 and 8. In particular, the average particle diameter of each of the phosphor particles of Examples 2 to 6 is larger than 4.5 μm, and is larger than the average particle diameter of Comparative Examples 1 to 8. Thereby, it is considered that the relative light emission intensity is further improved.

(実施例7〜10、比較例9)
実施例2において、仕込み時のLi量比とEu量比を表3に示すように変更した以外は実施例2と同様の条件にして、実施例7〜10、比較例9の窒化物蛍光体の粉末をそれぞれ得た。なお、Eu量比は、Sr量比と合計した値が、Alを3とする場合に1となるように調整した。
得られた実施例7〜10、比較例9の窒化物蛍光体の粉末について上記と同様に評価を行った。組成分析からの組成比を表3に示し、発光特性の評価結果を表4に示す。
(Examples 7 to 10, Comparative Example 9)
Nitride phosphors of Examples 7 to 10 and Comparative Example 9 under the same conditions as in Example 2 except that the Li amount ratio and the Eu amount ratio at the time of preparation are changed as shown in Table 3 in Example 2. The respective powders were obtained. In addition, Eu amount ratio was adjusted so that the value which totaled Sr amount ratio may be set to 1, when setting Al to three.
The evaluations were performed in the same manner as described above for the powders of the nitride phosphors of Examples 7 to 10 and Comparative Example 9 obtained. Composition ratios from composition analysis are shown in Table 3, and evaluation results of light emission characteristics are shown in Table 4.

表3に示す通り組成分析より求めたEu量比は、仕込みEu量比とほぼ同じであった。組成分析より求めたLi量比とSr量比は、仕込み量比よりも減っており、Sr量比は0.900〜0.958、Li量比は0.838〜0.930であった。
表4に示すようにEu量比を変更している実施例7〜9の窒化物蛍光体においても相対発光強度は実施例2と同等に高くなる傾向であり、反射率比(R650/R460)も実施例2と同等か、それよりも高いことが分かる。また、Eu量比が実施例2や実施例7〜9よりも高い0.05である実施例10の窒化物蛍光体は、相対発光強度が実施例2や実施例7〜9よりも低いものの、反射率比(R650/R460)は実施例2と同等に比較例9よりも高いことが分かる。一方、Eu量比が実施例2や実施例7〜10よりも低い0.001である比較例9の窒化物蛍光体は実施例2や実施例7〜10よりも相対発光強度が低く、反射率比(R650/R460)が低くなっている。
As shown in Table 3, the Eu content ratio determined from the composition analysis was almost the same as the charged Eu content ratio. The Li amount ratio and the Sr amount ratio obtained from the composition analysis were lower than the preparation amount ratio, and the Sr amount ratio was 0.900 to 0.958, and the Li amount ratio was 0.838 to 0.930.
As shown in Table 4, even in the nitride phosphors of Examples 7 to 9 in which the amount ratio of Eu is changed, the relative emission intensity tends to be as high as that in Example 2, and the reflectance ratio (R 650 / R 460 ) is also found to be equal to or higher than that of the second embodiment. Moreover, although the nitride fluorescent substance of Example 10 whose Eu amount ratio is 0.05 higher than Example 2 and Examples 7-9 has a relative luminous intensity lower than Example 2 or Examples 7-9. The reflectance ratio (R 650 / R 460 ) is found to be higher than that of Comparative Example 9 as in Example 2. On the other hand, the nitride phosphor of Comparative Example 9 having a Eu content ratio of 0.001 lower than that of Example 2 and Examples 7 to 10 has a relative emission intensity lower than that of Example 2 or Examples 7 to 10, and reflection is The ratio ratio (R 650 / R 460 ) is low.

(実施例11)
実施例2において、Srの一部をCaに変更し、更にEu量比を変更した以外は実施例2と同様の条件にして、実施例11の窒化物蛍光体の粉末を得た。
なお、実施例11はSr:Ca:Li:Eu:Al=0.891:0.1:1.2:0.009:3.0となるように原料混合物を配合した。
得られた実施例11の窒化物蛍光体の粉末について上記と同様に評価を行った。組成分析からの組成比を表5に示し、発光特性の評価結果を表6に示す。
(Example 11)
In Example 2, a powder of the nitride phosphor of Example 11 was obtained under the same conditions as in Example 2 except that a part of Sr was changed to Ca and the Eu content ratio was further changed.
In Example 11, the raw material mixture was blended so that Sr: Ca: Li: Eu: Al = 0.891: 0.1: 1.2: 0.009: 3.0.
The obtained powder of the nitride phosphor of Example 11 was evaluated in the same manner as described above. Composition ratios from composition analysis are shown in Table 5, and evaluation results of light emission characteristics are shown in Table 6.

(実施例12)
実施例2において、Srの一部をBaに変更した以外は実施例2と同様の条件にして、実施例12の窒化物蛍光体の粉末を得た。
なお、実施例12はSr:Ba:Li:Eu:Al=0.893:0.1:1.1:0.007:3.0となるように原料混合物を配合した。
得られた実施例12の窒化物蛍光体の粉末について上記と同様に評価を行った。組成分析からの組成比を表5に示し、発光特性の評価結果を表6に示す。
(Example 12)
A nitride phosphor powder of Example 12 was obtained under the same conditions as in Example 2 except that a part of Sr was changed to Ba in Example 2.
In Example 12, the raw material mixture was blended so as to be Sr: Ba: Li: Eu: Al = 0.893: 0.1: 1.1: 0.007: 3.0.
The obtained powder of the nitride phosphor of Example 12 was evaluated in the same manner as described above. Composition ratios from composition analysis are shown in Table 5, and evaluation results of light emission characteristics are shown in Table 6.

表5の組成分析からの組成比に示されるように、実施例11、12の窒化物蛍光体は、Srに加えてCa及びBaを含んでいることが分かる。また表6に示されるように、実施例11、12の窒化物蛍光体の発光特性について、相対発光強度や反射率比(R650/R460)が他の実施例と同様に比較例よりも高く、優れた発光特性であることが分かる。 As shown in the compositional ratio from compositional analysis in Table 5, it can be seen that the nitride phosphors of Examples 11 and 12 contain Ca and Ba in addition to Sr. Further, as shown in Table 6, with respect to the light emission characteristics of the nitride phosphors of Examples 11 and 12, the relative light emission intensity and the reflectance ratio (R 650 / R 460 ) are higher than those of the comparative examples as in the other examples. It is understood that the light emission characteristics are high and excellent.

(実施例A)
実施例Aに係る発光装置は、発光ピーク波長が453nmのLEDと、第一の蛍光体として実施例2の窒化物蛍光体と、第二の蛍光体として544nmに発光ピーク波長を有するβサイアロン蛍光体(Si6−pAl8−p:Eu、0<p≦4.2)とを組み合わせて、通常の方法で作製した。青色LEDと各蛍光体を組み合わせた発光装置の混色発光の色度を色度座標(x,y)でx=0.25、y=0.20付近に合わせた。
Example A
The light emitting device according to Example A is an LED having a light emission peak wavelength of 453 nm, the nitride phosphor of Example 2 as the first phosphor, and β sialon fluorescence having the light emission peak wavelength at 544 nm as the second phosphor. body (Si 6-p Al p O p N 8-p: Eu, 0 <p ≦ 4.2) in combination with, was prepared in the usual way. The chromaticity of mixed-color emission of the light emitting device in which the blue LED and each phosphor were combined was adjusted to around x = 0.25 and y = 0.20 in the chromaticity coordinates (x, y).

(比較例A)
比較例Aに係る発光装置は、第一の蛍光体として比較例2の窒化物蛍光体とする他は、実施例Aと同様に、通常の方法で作製した。また、実施例Aと同様に発光装置の混色発光の色度を上記色度座標付近に合わせた。
(Comparative example A)
The light emitting device according to Comparative Example A was manufactured in the same manner as Example A except that the nitride phosphor of Comparative Example 2 was used as the first phosphor. Further, as in Example A, the chromaticity of mixed-color emission of the light emitting device was adjusted to the vicinity of the above-mentioned chromaticity coordinates.

実施例A及び比較例Aに係る発光装置の色度座標及び光束比を表7に示す。また発光スペクトルを図9に示す。図9の発光スペクトルは、波長に対する相対発光強度を示す。なお、発光装置の光束は、積分式全光束測定装置を用いて測定し、比較例Aを基準とした光束比として下表に示した。   The chromaticity coordinates and luminous flux ratios of the light emitting devices according to Example A and Comparative Example A are shown in Table 7. The emission spectrum is shown in FIG. The emission spectrum of FIG. 9 shows the relative emission intensity with respect to the wavelength. The luminous flux of the light emitting device was measured using an integral type total luminous flux measuring device, and the luminous flux ratio based on Comparative Example A is shown in the following table.

表7に示すように実施例2の窒化物蛍光体を用いた実施例Aの発光装置の光束比は、比較例2の窒化物蛍光体を用いた比較例Aに比べて約20%高くなった。図9に示すように発光スペクトルは、いずれの窒化物蛍光体を用いても略同じスペクトル形状であったが、実施例Aのほうが比較例Aよりも相対発光強度が大きくなった。   As shown in Table 7, the luminous flux ratio of the light emitting device of Example A using the nitride phosphor of Example 2 is about 20% higher than that of Comparative Example A using the nitride phosphor of Comparative Example 2. The As shown in FIG. 9, the emission spectrum was substantially the same spectral shape regardless of which nitride phosphor was used, but the relative emission intensity in Example A was larger than that in Comparative Example A.

(実施例B)
実施例Bに係る発光装置は、発光ピーク波長が455nmのLEDと、第一の蛍光体として実施例2の窒化物蛍光体と、第二の蛍光体としてY(Al,Ga)12:Ceなる組成を有する蛍光体とを組み合わせて、通常の方法により作製した。青色LEDと各蛍光体を組み合わせた発光装置の混色発光の色度を色度座標(x,y)でx=0.34、y=0.35付近に合わせた。
Example B
The light emitting device according to Example B includes an LED having an emission peak wavelength of 455 nm, the nitride phosphor of Example 2 as the first phosphor, and Y 3 (Al, Ga) 5 O 12 as the second phosphor. : It combined with the fluorescent substance which has a composition of: Ce, and was produced by the normal method. The chromaticity of mixed-color emission of a light emitting device in which a blue LED and each phosphor were combined was adjusted to around x = 0.34 and y = 0.35 in the chromaticity coordinates (x, y).

(比較例B)
比較例Bに係る発光装置は、第一の蛍光体として比較例2の窒化物蛍光体を用いた以外は、実施例Bと同様に、通常の方法で作製した。また、実施例Bと同様に発光装置の混色発光の色度を上記色度座標付近に合わせた。
(Comparative Example B)
The light emitting device according to Comparative Example B was manufactured in the same manner as in Example B except that the nitride phosphor of Comparative Example 2 was used as the first phosphor. Further, as in Example B, the chromaticity of mixed-color light emission of the light emitting device was adjusted to the vicinity of the above-mentioned chromaticity coordinates.

実施例B及び比較例Bに係る発光装置の色度座標及び光束比を表8に示す。また発光スペクトルを図10に示す。図10の発光スペクトルは、波長に対する相対発光強度を示す。なお、発光装置の光束は、積分式全光束測定装置を用いて測定し、比較例Bを基準とした光束比として下表に示した。   The chromaticity coordinates and luminous flux ratios of the light emitting devices according to Example B and Comparative Example B are shown in Table 8. The emission spectrum is shown in FIG. The emission spectrum of FIG. 10 shows the relative emission intensity with respect to the wavelength. The luminous flux of the light emitting device was measured using an integral type total luminous flux measuring device, and the luminous flux ratio based on Comparative Example B is shown in the following table.

表8に示すように実施例2の窒化物蛍光体を用いた実施例Bの発光装置の光束比は、比較例2の窒化物蛍光体を用いた比較例Bに比べて約3%高くなった。平均演色性評価数Raについては、実施例Bは比較例Bよりも高かった。図10に示すように発光スペクトルは、いずれの蛍光体を用いても略同じスペクトル形状であったが、実施例Bのほうが比較例Bよりも相対発光強度が大きくなった。   As shown in Table 8, the luminous flux ratio of the light emitting device of Example B using the nitride phosphor of Example 2 is about 3% higher than that of Comparative Example B using the nitride phosphor of Comparative Example 2. The Example B was higher than Comparative Example B with respect to the average color rendering index Ra. As shown in FIG. 10, the emission spectrum was substantially the same spectral shape regardless of which phosphor was used, but the relative emission intensity in Example B was larger than that in Comparative Example B.

本実施形態の窒化物蛍光体は、発光効率に優れるため、この窒化物蛍光体を用いることで光束が大きい発光装置を提供することができる。   Since the nitride fluorescent substance of this embodiment is excellent in luminous efficiency, a light emitting device with a large luminous flux can be provided by using this nitride fluorescent substance.

本開示の窒化物蛍光体を用いた発光装置は、照明用の光源等として好適に利用できる。特に発光ダイオードを励起光源とする発光特性に極めて優れた照明用光源、LEDディスプレイ、液晶用バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   A light emitting device using the nitride phosphor of the present disclosure can be suitably used as a light source for illumination and the like. In particular, it can be suitably used for an illumination light source extremely excellent in light emission characteristics using a light emitting diode as an excitation light source, an LED display, a backlight light source for liquid crystal, a traffic light, an illumination switch, various sensors, various indicators and the like.

10:発光素子、50:封止部材、71:第一の蛍光体、72:第二の蛍光体、100:発光装置   10: light emitting element, 50: sealing member, 71: first phosphor, 72: second phosphor, 100: light emitting device

Claims (11)

下記式(I)で示される組成を有する窒化物蛍光体の製造方法であって、 で表される元素を含む金属化合物を理論量よりも多く含む原料混合物を、温度が1000℃以上1400℃以下、圧力がゲージ圧として0.2MPa以上1.0MPa以下の窒素ガスを含む雰囲気中で処理することを含む窒化物蛍光体の製造方法。
EuAl (I)
(式中、Mは、Ca、Sr、Ba及びMgからなる群から選択される少なくとも1種の元素であり、MはLi、Na及びKからなる群から選択される少なくとも1種の元素であり、w、x、y及びzはそれぞれ、0.8≦w<1.0、0.5≦x<1.0、0.001<y≦0.1、z=(2/3)w+(1/3)x+(2/3)y+を満たす。)
The manufacturing method of the nitride phosphor having a composition represented by the following formula (I), a raw material mixture containing more than the stoichiometric amount of metal compound containing an element represented by M b, the temperature is 1000 ° C. 1,400 A method for producing a nitride phosphor, comprising treating in an atmosphere containing nitrogen gas at a temperature of 0.2 ° C. or less and 0.2 MPa or more and 1.0 MPa or less as a gauge pressure .
M a w M b x Eu y Al 3 N z (I)
(Wherein, M a is at least one element selected from the group consisting of Ca, Sr, Ba and Mg, and M b is at least one element selected from the group consisting of Li, Na and K And w, x, y and z are respectively 0.8 ≦ w <1.0, 0.5 ≦ x <1.0, 0.001 <y ≦ 0.1, z = (2/3) w + (1/3) x + (2/3) y + 3 )
前記原料混合物が、前記組成を構成する金属元素を含む、水素化物、窒化物及びフッ化物からなる群から選択される少なくとも1種の金属化合物を含む請求項に記載の窒化物蛍光体の製造方法。 The production of a nitride phosphor according to claim 1 , wherein the raw material mixture contains at least one metal compound selected from the group consisting of a hydride, a nitride and a fluoride, which contains the metal element constituting the composition. Method. 圧力がゲージ圧として0.8MPa以上1.0MPa以下である請求項1又は2に記載の窒化物蛍光体の製造方法。 Manufacturing method of the nitride phosphor according to claim 1 or 2 pressure is less than 1.0 MPa 0.8 MPa or more as a gauge pressure. 前記原料混合物が、M で表される元素の窒化物、M で表される元素を含む水素化アルミニウム化合物、窒化アルミニウム及びフッ化ユウロピウムを含む請求項1から3のいずれか1項に記載の窒化物蛍光体の製造方法 The raw material mixture, a nitride of element represented by M a, aluminum hydride compounds containing an element represented by M b, according to claims 1 containing aluminum nitride and fluorinated europium 1 wherein either 3 Method of producing a nitride phosphor . 原料混合物を処理する温度が、1100℃以上1300℃以下である請求項1から4のいずれか1項に記載の窒化物蛍光体の製造方法 The method for producing a nitride phosphor according to any one of claims 1 to 4, wherein the temperature at which the raw material mixture is treated is 1100 ° C or more and 1300 ° C or less . 前記窒化物蛍光体の平均粒径が、4.0μm以上20μm以下である請求項1から5のいずれか1項に記載の窒化物蛍光体の製造方法 The method for producing a nitride phosphor according to any one of claims 1 to 5, wherein an average particle diameter of the nitride phosphor is 4.0 μm or more and 20 μm or less . 前記窒化物蛍光体は、400nm以上570nm以下の波長範囲の光で励起されるとき、発光ピーク波長が630nm以上670nm以下の範囲にある請求項1から6のいずれか1項に記載の窒化物蛍光体の製造方法。The nitride fluorescent light according to any one of claims 1 to 6, wherein the nitride phosphor has an emission peak wavelength in a range of 630 nm to 670 nm when excited with light in a wavelength range of 400 nm to 570 nm. How to make the body. 前記窒化物蛍光体は、650nmにおける反射率の460nmにおける反射率に対する比が2以上である請求項1から7のいずれか1項に記載の窒化物蛍光体の製造方法。The method for producing a nitride phosphor according to any one of claims 1 to 7, wherein a ratio of a reflectance at 650 nm to a reflectance at 460 nm is 2 or more. 前記窒化物蛍光体は、460nmにおける反射率が30%以下である請求項1から8のいずれか1項に記載の窒化物蛍光体の製造方法。The method for producing a nitride phosphor according to any one of claims 1 to 8, wherein the nitride phosphor has a reflectance of 30% or less at 460 nm. 前記式(I)において、MIn the above formula (I), M a がCa及びSrの少なくとも一方を含み、MContains at least one of Ca and Sr, M b がLiを含む請求項1から9のいずれか1項に記載の窒化物蛍光体の製造方法。The manufacturing method of the nitride fluorescent substance of any one of Claims 1 to 9 containing Li. 前記式(I)において、xが0.7以上1.0未満である請求項1から10のいずれか1項に記載の窒化物蛍光体の製造方法。The method for producing a nitride phosphor according to any one of claims 1 to 10, wherein in the formula (I), x is 0.7 or more and less than 1.0.
JP2015121557A 2015-06-16 2015-06-16 Nitride phosphor, manufacturing method thereof and light emitting device Active JP6531509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121557A JP6531509B2 (en) 2015-06-16 2015-06-16 Nitride phosphor, manufacturing method thereof and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121557A JP6531509B2 (en) 2015-06-16 2015-06-16 Nitride phosphor, manufacturing method thereof and light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019095814A Division JP2019143162A (en) 2019-05-22 2019-05-22 Nitride phosphor, manufacturing method and light emitting device thereof

Publications (2)

Publication Number Publication Date
JP2017008130A JP2017008130A (en) 2017-01-12
JP6531509B2 true JP6531509B2 (en) 2019-06-19

Family

ID=57761371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121557A Active JP6531509B2 (en) 2015-06-16 2015-06-16 Nitride phosphor, manufacturing method thereof and light emitting device

Country Status (1)

Country Link
JP (1) JP6531509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078285A (en) * 2016-10-31 2018-05-17 日亜化学工業株式会社 Light-emitting device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575500B2 (en) 2016-12-15 2019-09-18 日亜化学工業株式会社 Method for producing nitride phosphor
EP3492554B1 (en) * 2017-11-30 2020-08-19 Nichia Corporation Light emitting device, illumination device and plant cultivation method
CN111902517A (en) * 2018-03-28 2020-11-06 电化株式会社 Phosphor, method for producing same, and light-emitting device
CN116987501A (en) * 2022-01-20 2023-11-03 三菱化学株式会社 Phosphor, light emitting device, illumination device, image display device, and display lamp for vehicle
WO2023139824A1 (en) * 2022-01-20 2023-07-27 三菱ケミカル株式会社 Phosphor, light emitting device, illumination device, image display device, and vehicular display lamp
KR102599819B1 (en) * 2022-01-20 2023-11-08 미쯔비시 케미컬 주식회사 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle
JP7311867B1 (en) * 2022-01-20 2023-07-20 三菱ケミカル株式会社 Phosphor
WO2023139823A1 (en) * 2022-01-20 2023-07-27 三菱ケミカル株式会社 Phosphor, light-emitting device, lighting device, image display device, and indicator lamp for vehicles
JP7253214B1 (en) 2022-01-20 2023-04-06 三菱ケミカル株式会社 Light-emitting device, lighting device, image display device, and vehicle indicator light
CN116802822A (en) * 2022-01-20 2023-09-22 三菱化学株式会社 Phosphor, light emitting device, illumination device, image display device, and display lamp for vehicle
JP7311866B1 (en) * 2022-01-20 2023-07-20 三菱ケミカル株式会社 Phosphor
KR102599818B1 (en) * 2022-01-20 2023-11-08 미쯔비시 케미컬 주식회사 Phosphor, light-emitting device, illumination device, image display device, and indicator lamp for vehicle
JP7464959B1 (en) 2022-12-27 2024-04-10 三菱ケミカル株式会社 Light-emitting device, lighting device, image display device, and vehicle indicator light

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6335884B2 (en) * 2012-05-22 2018-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018078285A (en) * 2016-10-31 2018-05-17 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP2017008130A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6531509B2 (en) Nitride phosphor, manufacturing method thereof and light emitting device
JP6798536B2 (en) Nitride phosphor manufacturing method, nitride phosphor and light emitting device
US7391060B2 (en) Phosphor composition and method for producing the same, and light-emitting device using the same
KR101331392B1 (en) Fluorescent substance, process for producing the same, and light emitting device using said fluorescent substance
TWI344220B (en) White emitting led with definite color-temperature
JP6528418B2 (en) Phosphor and light emitting device using the same
TWI491706B (en) Green luminescent phosphor and light emitting device
JP2012092350A (en) Phosphor, method for producing the same, and light emission device using the phosphor
JP2008163259A (en) Nitride fluorescent material and light emitting apparatus using the same
JP6323177B2 (en) Semiconductor light emitting device
JP6287268B2 (en) Light emitting device
JP5353638B2 (en) Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
JP2019143162A (en) Nitride phosphor, manufacturing method and light emitting device thereof
JP7071683B2 (en) Nitride phosphor manufacturing method
CN109423285B (en) Aluminate phosphor and light-emitting device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250