JP6529793B2 - Method of treating liquid to be treated and treatment apparatus of liquid to be treated - Google Patents
Method of treating liquid to be treated and treatment apparatus of liquid to be treated Download PDFInfo
- Publication number
- JP6529793B2 JP6529793B2 JP2015052243A JP2015052243A JP6529793B2 JP 6529793 B2 JP6529793 B2 JP 6529793B2 JP 2015052243 A JP2015052243 A JP 2015052243A JP 2015052243 A JP2015052243 A JP 2015052243A JP 6529793 B2 JP6529793 B2 JP 6529793B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- porous body
- exchange resin
- liquid
- supported
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 146
- 238000000034 method Methods 0.000 title claims description 58
- 239000003456 ion exchange resin Substances 0.000 claims description 169
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 169
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 167
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 150
- 239000011148 porous material Substances 0.000 claims description 116
- 239000003054 catalyst Substances 0.000 claims description 82
- 229910052751 metal Inorganic materials 0.000 claims description 68
- 239000002184 metal Substances 0.000 claims description 68
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 60
- 238000012545 processing Methods 0.000 claims description 32
- 238000011049 filling Methods 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 238000003672 processing method Methods 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 83
- 150000001450 anions Chemical class 0.000 description 61
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 56
- 239000000203 mixture Substances 0.000 description 41
- 238000005342 ion exchange Methods 0.000 description 30
- 229910052763 palladium Inorganic materials 0.000 description 28
- 239000003957 anion exchange resin Substances 0.000 description 24
- 239000002923 metal particle Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 21
- 238000010079 rubber tapping Methods 0.000 description 18
- 229910021642 ultra pure water Inorganic materials 0.000 description 16
- 239000012498 ultrapure water Substances 0.000 description 16
- 238000011068 loading method Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000005349 anion exchange Methods 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000005341 cation exchange Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- 229910052753 mercury Inorganic materials 0.000 description 8
- 125000001453 quaternary ammonium group Chemical group 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 238000002459 porosimetry Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- -1 platinum group metals Chemical class 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical group CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 3
- HOBGCONPBCCQHM-UHFFFAOYSA-N 2-(methylamino)ethane-1,1-diol Chemical group CNCC(O)O HOBGCONPBCCQHM-UHFFFAOYSA-N 0.000 description 3
- PYSGFFTXMUWEOT-UHFFFAOYSA-N 3-(dimethylamino)propan-1-ol Chemical group CN(C)CCCO PYSGFFTXMUWEOT-UHFFFAOYSA-N 0.000 description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical group CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical group CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical group OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 125000005496 phosphonium group Chemical group 0.000 description 3
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical group CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 239000007762 w/o emulsion Substances 0.000 description 3
- 239000005968 1-Decanol Substances 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003251 poly(α-methylstyrene) Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002102 polyvinyl toluene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
- Catalysts (AREA)
Description
本発明は、多孔質体に触媒が担持されている触媒担持多孔質体に、過酸化水素を含有する被処理水、溶存酸素を含有する被処理水、イソプロピルアルコール等の有機溶媒を含有する被処理液等の被処理液を通過させることにより、被処理液を処理する被処理液の処理方法、及びそれに用いられる被処理液の処理装置に関する。 The present invention relates to a catalyst-supporting porous body in which a catalyst is supported on a porous body, an object to be treated comprising water to be treated containing hydrogen peroxide, water to be treated containing dissolved oxygen, or an organic solvent such as isopropyl alcohol. The present invention relates to a method for treating a liquid to be treated that passes a liquid to be treated such as a treatment liquid, and a device for treating a liquid to be used for the method.
多孔質体に触媒が担持されている触媒担持多孔質体は、一般的な粒状や平面状の触媒担持物よりも、比表面積が格段に大きいため、効率的な被処理流体との接触が可能である。そのため、水処理や排ガス処理、化学物質の製造等、さまざまな分野で使用されている。 The catalyst-supporting porous body, in which the catalyst is supported on the porous body, has a much larger specific surface area than a general particulate or planar catalyst support, and therefore, efficient contact with the process fluid is possible. It is. Therefore, it is used in various fields such as water treatment, exhaust gas treatment, and production of chemical substances.
多孔質体に触媒が担持されている触媒担持多孔質体と被処理流体とを接触させる方法において、一般的に触媒担持多孔質体のみを処理容器内に充填し、形成される触媒担持多孔質体層に、被処理流体を供給し、触媒担持多孔質体層を通過させる方法が提案されている。 In the method of bringing the catalyst-supporting porous body, in which the catalyst is supported on the porous body, into contact with the fluid to be treated, generally, only the catalyst-supporting porous body is filled in the treatment container, and the catalyst-supporting porous body is formed. A method has been proposed in which the fluid to be treated is supplied to the body layer and allowed to pass through the catalyst-supporting porous body layer.
例えば、特許文献1では、多孔質フッ素樹脂からなるペレット状担体に触媒金属を担持させた触媒担持多孔質体を、処理容器に充填し、被処理液と触媒担持多孔質体を接触させる方法が提案されている。 For example, in Patent Document 1, there is a method in which a catalyst-supporting porous body in which a catalyst metal is supported on a pellet-like carrier made of porous fluorocarbon resin is filled in a treatment container, and the treatment liquid and the catalyst-supporting porous body are in contact. Proposed.
また、特許文献2では、ウレタンフォーム等の多孔質体に金属触媒がメッキされた触媒担持多孔質体を、処理容器に充填し、被処理ガスと触媒担持多孔質体を接触させる方法が提案されている。 Further, Patent Document 2 proposes a method in which a catalyst-supporting porous body in which a metal catalyst is plated on a porous body such as urethane foam is filled in a processing container, and a gas to be treated is brought into contact with the catalyst-supporting porous body. ing.
また、特許文献3では、アルミナ、シリカ等の多孔質担体に活性金属及び有機カルボン酸が担持された触媒担持多孔質体を、容器に充填し、被処理ガソリンと触媒担持多孔質体を接触させる方法が提案されている。 Further, in Patent Document 3, a catalyst-supporting porous body in which an active metal and an organic carboxylic acid are supported on a porous support such as alumina or silica is filled in a container, and the gasoline to be treated is brought into contact with the catalyst-supporting porous body. A method has been proposed.
また、特許文献4では、モノリス状有機多孔質体又はモノリス状有機多孔質イオン交換体に白金族金属が担持された白金族金属触媒担持多孔質体を、充填カラムの形状に切り出し、処理容器に嵌め込んで充填し、被処理水と白金族金属担持多孔質体を接触させる方法が提案されている。 Further, in Patent Document 4, a platinum group metal catalyst-supporting porous body in which a platinum group metal is supported on a monolith-like organic porous body or a monolith-like organic porous ion exchanger is cut out in the form of a packed column and treated in a processing vessel. A method has been proposed in which the water to be treated and the platinum group metal-supporting porous body are brought into contact with each other.
また、超純水中の過酸化水素を除去する方法として、例えば、特許文献5には、アニオン交換樹脂を担体として触媒が担持されてなる粒状の触媒担持アニオン交換樹脂と、アニオン交換樹脂と、を有する触媒混合塔に、過酸化水素を含有する被処理水を通水することで、比較的効率的に過酸化水素を除去する方法が開示されている。 In addition, as a method of removing hydrogen peroxide in ultrapure water, for example, Patent Document 5 discloses a particulate catalyst-supporting anion exchange resin formed by supporting a catalyst using an anion exchange resin as a carrier, and an anion exchange resin, A method is disclosed for relatively efficiently removing hydrogen peroxide by passing water to be treated containing hydrogen peroxide in a catalyst mixing tower having the
特許文献1〜3では、触媒担持多孔質体のみを処理容器に充填しているが、処理容器内に充填されている触媒担持多孔質体間の隙間が広い場合には、被処理流体がその隙間をショートパスするため、処理効率が低くなってしまうという問題があった。 In Patent Documents 1 to 3, only the catalyst-supporting porous body is filled in the treatment vessel, but when the gap between the catalyst-supporting porous bodies filled in the treatment vessel is wide, the fluid to be treated is There is a problem in that the processing efficiency is lowered because a short pass is made through the gap.
また、特許文献4のように、触媒が担持されているモノリス状有機多孔質体又はモノリス状有機多孔質イオン交換体を、充填カラムの形状に切り出して、充填カラムに嵌め込めば、ショートパスを防止することはできる。しかし、手間がかかる上に、充填カラムの径が非常に大きい場合には、それに合う大きさのモノリス状有機多孔質体又はモノリス状有機多孔質イオン交換体を製造することが困難であるという問題があった。 In addition, as in Patent Document 4, when a monolithic organic porous body or monolithic organic porous ion exchanger on which a catalyst is supported is cut out in the shape of a packed column and inserted into the packed column, a short path is obtained. It can be prevented. However, it takes time and, in the case where the diameter of the packed column is very large, there is a problem that it is difficult to produce a monolithic organic porous body or monolithic organic porous ion exchanger having a suitable size. was there.
また、特許文献5のように、アニオン交換樹脂を担体として触媒が担持されている粒状の触媒担持アニオン交換樹脂と、アニオン交換樹脂と、を有する触媒混合塔に、過酸化水素を含有する被処理水を通水することで、比較的効率的に過酸化水素を除去することができるが、粒状の触媒担持アニオン交換樹脂では比表面積が小さいため、単位流量あたりの処理能力が小さく、また、不純物の溶出量も多いため、溶出物を除去するためのアニオン交換樹脂量も多くする必要がある。そのため、アニオン交換樹脂に対して、触媒担持アニオン交換樹脂を3〜20重量%の比率で混合する必要があり、通水速度は、SV=10〜200h−1までとする必要があるという問題があった。 Further, as described in Patent Document 5, a catalyst mixing tower having a particulate catalyst-supporting anion exchange resin in which a catalyst is supported with an anion exchange resin as a carrier, and an anion exchange resin, to be treated with hydrogen peroxide By passing water through it, hydrogen peroxide can be removed relatively efficiently, but the particulate catalyst-supported anion exchange resin has a small specific surface area, so the processing capacity per unit flow rate is small, and impurities can also be removed. The amount of anion exchange resin is also large, so it is necessary to increase the amount of anion exchange resin to remove the eluate. Therefore, it is necessary to mix a catalyst-supported anion exchange resin at a ratio of 3 to 20% by weight with respect to the anion exchange resin, and there is a problem that the water flow rate needs to be SV = 10 to 200 h −1. there were.
従って、本発明は、多孔質体に触媒が担持されている触媒担持多孔質体に、効率的に被処理液を通過させることができる被処理液の処理方法を提供すること、及びそれに用いられる被処理液の処理装置を提供することにある。 Therefore, the present invention provides a method for treating a liquid to be treated that can efficiently pass the liquid to be treated to the catalyst-supporting porous body in which the catalyst is supported on the porous body, and used therein It is providing the processing apparatus of a to-be-processed liquid.
このような上記課題は、以下の本発明によって解決される。
すなわち、本発明(1)は、多孔質体に触媒が担持されている触媒担持多孔質体と、該触媒担持多孔質体の間を埋める粒状のイオン交換樹脂と、からなる触媒担持多孔質体充填層に、被処理液を供給して、該被処理液を該触媒担持多孔質体充填層に通過させる被処理液の処理方法であり、
該触媒担持多孔質体が、モノリス状有機多孔質体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体、又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質イオン交換体であること、
該触媒担持多孔質体充填層において、該触媒担持多孔質体の充填体積及び該粒状のイオン交換樹脂の充填体積の合計に対する該触媒担持多孔質体の充填体積の割合が、25〜67体積%であること、
を特徴とする被処理液の処理方法を提供するものである。
Such problems as described above are solved by the present invention described below.
That is, the present invention (1) is a catalyst-supporting porous body comprising a catalyst-supporting porous body having a catalyst supported on a porous body, and a particulate ion exchange resin filling the space between the catalyst-supporting porous body. A method for treating a liquid to be treated, wherein the liquid to be treated is supplied to the packed bed, and the liquid to be treated is allowed to pass through the catalyst-supporting porous material packed bed,
The catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body in which a platinum group metal catalyst is supported on a monolithic organic porous body, or a platinum group metal catalyst as a monolithic organic porous ion exchanger Being a supported platinum group metal supported monolithic organic porous ion exchanger;
In the catalyst-supported porous body packed bed, the ratio of the packed volume of the catalyst-supported porous body to the total of the packed volume of the catalyst-supported porous body and the packed volume of the particulate ion exchange resin is 25 to 67% by volume To be
The present invention provides a method of treating a liquid to be treated characterized by
また、本発明(2)は、被処理液が通液される処理塔又は処理容器を有し、
該処理塔又は処理容器には、多孔質体に触媒が担持されている触媒担持多孔質体と、該触媒担持多孔質体の間を埋める粒状のイオン交換樹脂と、からなる触媒担持多孔質体充填層が形成されており、
該触媒担持多孔質体が、モノリス状有機多孔質体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体、又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質イオン交換体であること、
該触媒担持多孔質体充填層において、該触媒担持多孔質体の充填体積及び該粒状のイオン交換樹脂の充填体積の合計に対する該触媒担持多孔質体の充填体積の割合が、25〜67体積%であること、
を特徴とする被処理液の処理装置を提供するものである。
Further, the present invention (2) has a treatment tower or a treatment vessel through which the liquid to be treated flows.
A catalyst-supporting porous body comprising a catalyst-supporting porous body in which a catalyst is supported on a porous body, and a particulate ion exchange resin filling the space between the catalyst-supporting porous body in the treatment tower or treatment vessel A packed bed is formed,
The catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body in which a platinum group metal catalyst is supported on a monolithic organic porous body, or a platinum group metal catalyst as a monolithic organic porous ion exchanger Being a supported platinum group metal supported monolithic organic porous ion exchanger;
In the catalyst-supported porous body packed bed, the ratio of the packed volume of the catalyst-supported porous body to the total of the packed volume of the catalyst-supported porous body and the packed volume of the particulate ion exchange resin is 25 to 67% by volume To be
An apparatus for treating a liquid to be treated is provided.
本発明によれば、多孔質体に触媒が担持されている触媒担持多孔質体を、効率的に被処理水を通過させることができる被処理水の処理方法を提供すること、及びそれに用いられる被処理水の処理装置を提供することができる。 According to the present invention, it is possible to provide a method for treating water to be treated which can efficiently pass the water to be treated, wherein the catalyst-supporting porous material having a catalyst supported on the porous body can be used efficiently. An apparatus for treating water to be treated can be provided.
本発明の被処理液の処理方法及び本発明の被処理液の処理装置について、図1〜図4を参照して説明する。図1〜図4は、本発明の被処理液の処理装置の形態例の模式的な端面図である。 The processing method of the to-be-processed liquid of this invention and the processing apparatus of the to-be-processed liquid of this invention are demonstrated with reference to FIGS. 1 to 4 are schematic end views of embodiments of the apparatus for treating a liquid to be treated according to the present invention.
図1中、被処理液の処理装置1aは、処理容器2内に、多孔質体に触媒が担持されている触媒担持多孔質体6と、粒状のイオン交換樹脂7と、からなる触媒担持多孔質体充填層3が形成されている。触媒担持多孔質体充填層3は、多数の立方体状の触媒担持多孔質体6と粒状のイオン交換樹脂7とで、混合層状になるように処理容器2内に充填されることにより形成されている。そして、触媒担持多孔質体充填層3では、立方体状に切り出された多数の触媒担持多孔質体6が、通液方向及び横方向に充填され、それらの触媒担持多孔質体6の間及び触媒担持多孔質体6と処理容器2との隙間を埋めるように、粒状のイオン交換樹脂7が充填されている。また、処理容器2には、被処理液21を容器内に供給するための被処理液導入管10が、入口側に付設されており、また、触媒担持多孔質体充填層3を通過した被処理液、すなわち、処理液22を容器外へ排出するための処理液排出管11が付設されている。なお、触媒担持多孔質体充填層3は、処理容器2の下方に設置されている目板12により、下側が支えられて位置が保持されることで、処理容器2内の所定の位置に形成される。 In FIG. 1, the treatment apparatus 1a for the liquid to be treated has a catalyst-supporting porous body 6 in which a catalyst is supported on a porous body in a treatment vessel 2, and a particulate ion exchange resin 7. A porous body packed bed 3 is formed. The catalyst-supporting porous material packed bed 3 is formed by being filled in the processing container 2 so as to form a mixed layer with a large number of cubic catalyst-supporting porous materials 6 and particulate ion exchange resins 7. There is. Then, in the catalyst-supporting porous material packed bed 3, a large number of catalyst-supporting porous materials 6 cut out in a cubic shape are packed in the flowing direction and the lateral direction, and between the catalyst-supporting porous materials 6 and the catalyst A granular ion exchange resin 7 is filled so as to fill the gap between the carrier porous body 6 and the processing vessel 2. In addition, a treatment liquid introduction pipe 10 for supplying a treatment liquid 21 into the treatment container 2 is attached to the inlet side, and the treatment support 2 has passed through the catalyst-supporting porous material filling layer 3. A treatment liquid discharge pipe 11 for discharging the treatment liquid, that is, the treatment liquid 22 to the outside of the container is attached. The catalyst-supporting porous material-containing layer 3 is formed at a predetermined position in the processing container 2 by the lower side being supported and held in position by the eye plates 12 disposed below the processing container 2. Be done.
図2中、被処理液の処理装置1bは、処理容器2内に、触媒担持多孔質体6と、粒状のイオン交換樹脂7と、からなる触媒担持多孔質体充填層3が形成されており、且つ、触媒担持多孔質体充填層3の被処理液の流入側に、粒状のイオン交換樹脂7からなる流入側粒状イオン交換樹脂層4が設けられている。被処理液の処理装置1b中の触媒担持多孔質体充填層3は、被処理液の処理装置1a中の触媒担持多孔質体充填層3と同様である。流入側粒状イオン交換樹脂層4は、粒状のイオン交換樹脂7が層状になるように、処理容器2内に充填されることにより形成されている。 In FIG. 2, in the treatment apparatus 1b for the liquid to be treated, a catalyst-supporting porous material packed bed 3 composed of the catalyst-supporting porous body 6 and the granular ion exchange resin 7 is formed in the treatment container 2. And, the inflow side granular ion exchange resin layer 4 made of granular ion exchange resin 7 is provided on the inflow side of the liquid to be treated of the catalyst-supporting porous material packed bed 3. The catalyst-supporting porous material packed bed 3 in the treatment apparatus 1b for treated liquid is the same as the catalyst-supported porous body packed layer 3 in the treatment apparatus 1a for treated liquid. The inflow side granular ion exchange resin layer 4 is formed by being filled in the processing container 2 so that the granular ion exchange resin 7 becomes a layer.
図3中、被処理液の処理装置1cは、処理容器2内に、触媒担持多孔質体6と、粒状のイオン交換樹脂7と、からなる触媒担持多孔質体充填層3が形成されており、且つ、触媒担持多孔質体充填層3の被処理液の流出側に、粒状のイオン交換樹脂7からなる流出側粒状イオン交換樹脂層5が設けられている。被処理液の処理装置1c中の触媒担持多孔質体充填層3は、被処理液の処理装置1a中の触媒担持多孔質体充填層3及び被処理液の処理装置1b中の触媒担持多孔質体充填層3と同様である。 In FIG. 3, in the treatment apparatus 1c for the liquid to be treated, a catalyst-supporting porous material filled layer 3 composed of the catalyst-supporting porous body 6 and the particulate ion exchange resin 7 is formed in the treatment container 2. And, on the outflow side of the liquid to be treated of the catalyst-supporting porous material packed bed 3, an outflow side granular ion exchange resin layer 5 composed of granular ion exchange resin 7 is provided. The catalyst-supporting porous material packed bed 3 in the treatment apparatus 1c for the treatment liquid is the catalyst-supporting porous material packed bed 3 in the treatment apparatus 1a for the treatment liquid and the catalyst-supporting porous material in the treatment apparatus 1b for the treatment liquid It is similar to the body packed bed 3.
図4中、被処理液の処理装置1dは、処理容器2内に、触媒担持多孔質体6と、粒状のイオン交換樹脂7と、からなる触媒担持多孔質体充填層3が形成されており、且つ、触媒担持多孔質体充填層3の被処理液の流入側に、粒状のイオン交換樹脂7からなる流入側粒状イオン交換樹脂層4が設けられており、且つ、触媒担持多孔質体充填層3の被処理液の流出側に、粒状のイオン交換樹脂7からなる流出側粒状イオン交換樹脂層5が設けられている。被処理液の処理装置1d中の触媒担持多孔質体充填層3は、被処理液の処理装置1a中の触媒担持多孔質体充填層3、被処理液の処理装置1b中の触媒担持多孔質体充填層3、及び被処理液の処理装置1c中の触媒担持多孔質体充填層3と同様であり、また、被処理液の処理装置1d中の流入側粒状イオン交換樹脂層4は、被処理液の処理装置1b中の流入側粒状イオン交換樹脂層4と同様であり、また、被処理液の処理装置1d中の流出側粒状イオン交換樹脂層5は、被処理液の処理装置1c中の流出側粒状イオン交換樹脂層5と同様である。 In FIG. 4, in the treatment apparatus 1 d for the liquid to be treated, a catalyst-supporting porous material filled layer 3 composed of the catalyst-supporting porous body 6 and the particulate ion exchange resin 7 is formed in the treatment container 2. And, the inflow side granular ion exchange resin layer 4 consisting of granular ion exchange resin 7 is provided on the inflow side of the liquid to be treated of the catalyst support porous body packed layer 3, and the catalyst support porous body filled On the outflow side of the liquid to be treated of the layer 3, an outflow side granular ion exchange resin layer 5 composed of granular ion exchange resin 7 is provided. The catalyst-supporting porous material packed bed 3 in the treatment apparatus 1 d for treated liquid is the catalyst-supported porous body packed bed 3 in the treatment apparatus 1 a for treated fluid, the catalyst-supporting porous material in the treatment apparatus 1 b for treated liquid It is the same as the catalyst loading porous body filling layer 3 in the body filling layer 3 and the treatment apparatus 1c of the treatment liquid, and the inflow side granular ion exchange resin layer 4 in the treatment apparatus 1d of the treatment liquid is the treatment subject It is the same as the inflow side granular ion exchange resin layer 4 in the treatment apparatus 1b of the treatment liquid, and the outflow side granular ion exchange resin layer 5 in the treatment apparatus 1d of the treatment liquid is in the treatment apparatus 1c of the treatment liquid. Is the same as the outflow side granular ion exchange resin layer 5 of
触媒担持多孔質体6と粒状のイオン交換樹脂7とでは、粒状のイオン交換樹脂7の方が圧力損失が大きい。そのため、被処理液の処理装置1a、1b、1c、1dでは、触媒担持多孔質体充填層3のうちの触媒担持多孔質体6が存在している部分と、粒状のイオン交換樹脂7が充填されている部分とを比較すると、粒状のイオン交換樹脂7が充填されている部分には、被処理液が流れ難くなり、被処理液の大部分が、触媒担持多孔質体6内を流れる。このことにより、被処理液の処理装置1a、1b、1c、1dでは、触媒が担持されている触媒担持多孔質体6内に、被処理液の大部分が流れ、触媒担持多孔質体6の間を被処理液が流れるショートパスが起こり難くなるので、効率的に被処理液を処理することができる。 In the catalyst-supporting porous body 6 and the particulate ion exchange resin 7, the particulate ion exchange resin 7 has a larger pressure loss. Therefore, in the treatment apparatus 1a, 1b, 1c, 1d of the liquid to be treated, the portion of the catalyst-supporting porous material packed bed 3 where the catalyst-supporting porous body 6 is present and the particulate ion exchange resin 7 are filled. As compared with the portion being treated, the liquid to be treated hardly flows to the portion filled with the particulate ion exchange resin 7, and most of the liquid to be treated flows inside the catalyst-supporting porous body 6. As a result, in the apparatus for treating liquid to be treated 1a, 1b, 1c and 1d, most of the liquid to be treated flows in the catalyst-supporting porous body 6 on which the catalyst is supported. Since a short pass in which the liquid to be treated flows is unlikely to occur, the liquid to be treated can be treated efficiently.
本発明の被処理液の処理方法は、多孔質体に触媒が担持されている触媒担持多孔質体と、該触媒担持多孔質体の間を埋める粒状のイオン交換樹脂と、からなる触媒担持多孔質体充填層に、被処理液を供給して、該被処理液を該触媒担持多孔質体充填層に通過させる被処理液の処理方法であり、
該触媒担持多孔質体が、モノリス状有機多孔質体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体、又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質イオン交換体であること、
を特徴とする被処理液の処理方法である。
In the method for treating a liquid to be treated according to the present invention, a catalyst-supporting porous body comprising a catalyst-supporting porous body having a catalyst supported on a porous body, and a particulate ion exchange resin filling the space between the catalyst-supporting porous body. A method for treating a liquid to be treated, wherein the liquid to be treated is supplied to the porous material-packed layer, and the liquid to be treated is allowed to pass through the catalyst-supporting porous material-filled layer
The catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body in which a platinum group metal catalyst is supported on a monolithic organic porous body, or a platinum group metal catalyst as a monolithic organic porous ion exchanger Being a supported platinum group metal supported monolithic organic porous ion exchanger;
A method of treating a liquid to be treated characterized by
本発明の被処理液の処理方法に係る触媒担持多孔質体充填層は、多孔質体に触媒が担持されている2以上の触媒担持多孔質体と、粒状のイオン交換樹脂と、からなる。触媒担持多孔質体充填層は、2以上の触媒担持多孔質体と粒状のイオン交換樹脂とが、多くの場合は、多数の触媒担持多孔質体と粒状のイオン交換樹脂とが、混合層状となるように、処理塔又は処理容器内に充填されることにより形成されている。そして、触媒担持多孔質体充填層では、触媒担持多孔質体が、通液方向及び横方向に充填され、且つ、触媒担持多孔質体同士の間、触媒担持多孔質体と処理塔又は処理容器の隙間、又は触媒担持多孔質体同士の間及び触媒担持多孔質体と処理塔又は処理容器の隙間を埋めるように、粒状のイオン交換樹脂が充填されている。 The catalyst-supporting porous material packed bed according to the method for treating a liquid to be treated of the present invention comprises two or more catalyst-supporting porous materials in which a catalyst is supported on a porous material, and a particulate ion exchange resin. The catalyst-supporting porous material packed bed comprises two or more catalyst-supporting porous bodies and particulate ion exchange resins, and in many cases, a large number of catalyst-supporting porous bodies and particulate ion exchange resins as mixed layers. As such, it is formed by being packed in a processing tower or a processing vessel. And, in the catalyst-supporting porous material packed bed, the catalyst-supporting porous material is packed in the liquid passing direction and the lateral direction, and between the catalyst-supporting porous materials, the catalyst-supporting porous material and the treatment tower or treatment vessel. Granular ion exchange resin is filled so as to fill gaps between the catalyst-supporting porous bodies and between the catalyst-supporting porous bodies and the processing tower or the processing vessel.
本発明の被処理液の処理方法に係る触媒担持多孔質体は、白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体である。特に、半導体用電子部品表面や半導体電子部品の製造器具を洗浄するための超純水や純水の製造過程における、種々の工程で生じる水に含有される過酸化水素や溶存酸素の除去には、モノリス状有機多孔質体又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体及び白金族金属担持モノリス状有機多孔質イオン交換体が好適である。以下に、白金族金属担持モノリス状有機多孔質体及び白金族金属担持モノリス状有機多孔質イオン交換体について説明する。 The catalyst-supported porous body according to the method for treating a liquid to be treated of the present invention is a platinum group metal-supported monolithic organic porous body or a platinum group metal-supported monolithic organic porous ion exchanger. In particular, for the removal of hydrogen peroxide and dissolved oxygen contained in water produced in various processes in the production process of ultrapure water and pure water for cleaning the surface of electronic parts for semiconductors and equipment for manufacturing semiconductor electronic parts A platinum group metal supported monolithic organic porous body and a platinum group metal supported monolithic organic porous ion exchanger, wherein a platinum group metal catalyst is supported on a monolithic organic porous body or a monolithic organic porous ion exchanger It is suitable. The platinum group metal-supported monolithic organic porous material and the platinum group metal-supported monolithic organic porous ion exchanger will be described below.
<白金族金属担持モノリス状有機多孔質体、白金族金属担持モノリス状有機多孔質イオン交換体>
白金族金属担持モノリス状有機多孔質体は、モノリス状有機多孔質体に、平均粒子径1〜1000nmの白金族金属の微粒子が担持されている白金族金属担持触媒である。また、白金族金属担持モノリス状有機多孔質イオン交換体は、モノリス状有機多孔質イオン交換体に、平均粒子径1〜1000nmの白金族金属の微粒子が担持されている白金族金属担持触媒である。
<Platinum Group Metal-Supported Monolith-Like Organic Porous Body, Platinum Group Metal-Supported Monolith-Like Organic Porous Ion Exchanger>
The platinum group metal-supported monolithic organic porous material is a platinum group metal-supported catalyst in which fine particles of platinum group metal having an average particle diameter of 1 to 1000 nm are supported on the monolithic organic porous material. In addition, the platinum group metal-supported monolithic organic porous ion exchanger is a platinum group metal-supported catalyst in which fine particles of platinum group metal having an average particle diameter of 1 to 1000 nm are supported on the monolithic organic porous ion exchanger. .
モノリス状有機多孔質体は、骨格が有機ポリマーにより形成されており、骨格間に被処理水の流路となる連通孔を多数有する多孔質体である。また、モノリス状有機多孔質イオン交換体は、モノリス状有機多孔質体に、イオン交換基が導入された多孔質体である。 The monolithic organic porous body is a porous body having a skeleton formed of an organic polymer and having a large number of communicating holes serving as a flow path of water to be treated between the skeletons. In addition, the monolithic organic porous ion exchanger is a porous body in which ion exchange groups are introduced into the monolithic organic porous body.
モノリス状有機多孔質体に白金族金属が担持されている白金族金属担持モノリ状有機多孔質体としては、モノリス状有機多孔質体に、平均粒子径1〜1000nmの白金族金属の微粒子が担持されており、モノリス状有機多孔質体が、連続骨格相と連続空孔相からなり、連続骨格の厚みは1〜100μm、連続空孔の平均直径は1〜1000μm、全細孔容積は0.5〜50mL/gであり、白金族金属の担持量が、乾燥状態で0.004〜20重量%である、白金族金属担持モノリス状有機多孔質体が挙げられる。 As a platinum group metal supported monolithic organic porous body in which a platinum group metal is supported on a monolithic organic porous body, fine particles of platinum group metal having an average particle diameter of 1 to 1000 nm are supported on a monolithic organic porous body The monolithic organic porous body is composed of a continuous framework phase and a continuous pore phase, the thickness of the continuous framework is 1 to 100 μm, the average diameter of the continuous pores is 1 to 1000 μm, and the total pore volume is 0. The platinum group metal-supported monolithic organic porous body, which has a loading amount of platinum group metal of 0.004 to 20% by weight in a dry state, can be mentioned.
また、モノリス状有機多孔質イオン交換体に白金族金属が担持されている白金族金属担持モノリス状有機多孔質イオン交換体としては、モノリス状有機多孔質イオン交換体に、平均粒子径1〜1000nmの白金族金属の微粒子が担持されており、モノリス状有機多孔質イオン交換体は、連続骨格相と連続空孔相からなり、連続骨格の厚みは1〜100μm、連続空孔の平均直径は1〜1000μm、全細孔容積は0.5〜50mL/gであり、乾燥状態での重量当りのイオン交換容量は1〜6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、白金族金属の担持量が、乾燥状態で0.004〜20重量%である、白金族金属担持モノリス状有機多孔質イオン交換体が挙げられる。 In addition, as a platinum group metal-supported monolithic organic porous ion exchanger in which a platinum group metal is supported on a monolithic organic porous ion exchanger, the monolithic organic porous ion exchanger has an average particle diameter of 1 to 1000 nm. The fine particles of platinum group metals are supported, and the monolithic organic porous ion exchanger is composed of a continuous framework phase and a continuous pore phase, the thickness of the continuous framework is 1 to 100 μm, and the average diameter of the continuous pores is 1 The total pore volume is 0.5 to 50 mL / g, the ion exchange capacity per weight in dry condition is 1 to 6 mg equivalent / g, and the ion exchange group is in the organic porous ion exchanger A uniformly distributed, platinum group metal-supported monolithic organic porous ion exchanger can be mentioned, wherein the supported amount of platinum group metal is 0.004 to 20% by weight in a dry state.
なお、白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体の空孔の平均直径は、水銀圧入法により測定され、水銀圧入法により得られる細孔分布曲線の極大値を指す。また、白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体の構造、及び連続骨格の厚みは、SEM観察により求められる。白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体に担持されている白金族金属の微粒子の粒子径は、TEM観察により求められる。 The average diameter of the pores of the platinum group metal-supported monolithic organic porous material or the platinum group metal-supported monolithic organic porous ion exchanger is measured by mercury porosimetry, and a pore distribution curve obtained by mercury porosimetry Points to the maximum value of The structure of the platinum group metal-supported monolithic organic porous material or the platinum group metal-supported monolithic organic porous ion exchanger and the thickness of the continuous skeleton can be determined by SEM observation. The particle diameter of the platinum group metal particles supported by the platinum group metal-supported monolithic organic porous material or the platinum group metal-supported monolithic organic porous ion exchanger can be determined by TEM observation.
以下、本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」とも言い、また、モノリスの製造における中間体(前駆体)である「モノリス状有機多孔質中間体」を単に「モノリス中間体」とも言う。 Hereinafter, in the present specification, “monolith-like organic porous body” is simply referred to as “monolith”, and “monolith-like organic porous ion exchanger” is simply referred to as “monolith ion exchanger”, and an intermediate in the production of monolith The body (precursor) "monolith like organic porous intermediate" is also referred to simply as "monolith intermediate".
上記のようなモノリス又はモノリスイオン交換体の構造例としては、特開2002−306976号公報や特開2009−62512号公報に開示されている連続気泡構造や、特開2009−67982号公報に開示されている共連続構造や、特開2009−7550号公報に開示されている粒子凝集型構造や、特開2009−108294号公報に開示されている粒子複合型構造等が挙げられる。 Examples of the structure of the monolith or monolith ion exchanger as described above include the open cell structure disclosed in JP-A-2002-306976 and JP-A-2009-62512, and JP-A-2009-67982. Examples of the co-continuous structure that has been described, the particle aggregation type structure disclosed in JP 2009-7550 A, and the particle composite type structure disclosed in JP 2009-108294 A, and the like.
白金族金属が担持されているモノリス又はモノリスイオン交換体の乾燥状態での連続骨格の厚みは1〜100μmである。モノリス又はモノリスイオン交換体の連続骨格の厚みが、1μm未満であると、機械的強度が低下して、特に高流速で通液した際にモノリス又はモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、被処理液とモノリス又はモノリスイオン交換体との接触効率が低下し、触媒活性が低下するため好ましくない。一方、モノリス又はモノリスイオン交換体の連続骨格の厚みが、100μmを越えると、骨格が太くなり過ぎ、通液時の圧力損失が増大するため好ましくない。 The thickness of the continuous framework in the dry state of the monolith or monolithic ion exchanger on which the platinum group metal is supported is 1 to 100 μm. If the thickness of the continuous framework of the monolith or monolith ion exchanger is less than 1 μm, the mechanical strength is lowered, and the monolith or monolith ion exchanger will be largely deformed particularly when passing at a high flow rate, which is preferable. Absent. Furthermore, the contact efficiency between the liquid to be treated and the monolith or monolith ion exchanger is lowered, and the catalyst activity is unfavorably lowered. On the other hand, when the thickness of the continuous framework of the monolith or monolithic ion exchanger exceeds 100 μm, the framework becomes too thick, which is not preferable because the pressure loss at the time of passing the solution increases.
白金族金属が担持されているモノリス又はモノリスイオン交換体の乾燥状態での連続空孔の平均直径は、1〜1000μmである。モノリス又はモノリスイオン交換体の連続空孔の平均直径が、1μm未満であると通液時の圧力損失が大きくなってしまうため好ましくない。一方、モノリス又はモノリスイオン交換体の連続空孔の平均直径が、1000μmを超えると、被処理液とモノリス又はモノリスイオン交換体との接触が不十分となり、触媒活性が低下するため好ましくない。 The average diameter of the continuous pores in the dry state of the monolith or monolithic ion exchanger on which the platinum group metal is supported is 1 to 1000 μm. If the average diameter of the continuous pores of the monolith or monolith ion exchanger is less than 1 μm, the pressure loss at the time of flow becomes large, which is not preferable. On the other hand, when the average diameter of the continuous pores of the monolith or monolith ion exchanger exceeds 1000 μm, the contact between the liquid to be treated and the monolith or monolith ion exchanger becomes insufficient and the catalyst activity is unfavorably reduced.
白金族金属が担持されているモノリスイオン交換体に導入されているイオン交換基は、カチオン交換基又はアニオン交換基である。カチオン交換基としては、カルボキシル基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。アニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。 The ion exchange group introduced into the monolithic ion exchanger on which the platinum group metal is supported is a cation exchange group or an anion exchange group. As a cation exchange group, a carboxyl group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, a phosphoric acid ester group etc. are mentioned. As an anion exchange group, quaternary ammonium groups such as trimethyl ammonium group, triethyl ammonium group, tributyl ammonium group, dimethyl hydroxyethyl ammonium group, dimethyl hydroxypropyl ammonium group, methyl dihydroxyethyl ammonium group, etc., tertiary sulfonium group, phosphonium group Etc.
上記モノリス、すなわち、白金族金属粒子の担体となるモノリスの形態例(以下、モノリス(1)とも記載する。)及び上記モノリスイオン交換体、すなわち、白金族金属粒子の担体となるモノリスイオン交換体の形態例(以下、モノリスイオン交換体(1)とも記載する。)としては、特開2009−67982号公報に開示されている共連続構造を有するモノリス及びモノリスイオン交換体が挙げられる。つまり、白金族金属粒子の担体となるモノリス(1)は、イオン交換基が導入される前のモノリスであり、全構成単位中、架橋構造単位を0.1〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5〜10mL/gである有機多孔質体であるモノリスである。また、白金族金属粒子の担体となるモノリスイオン交換体(1)は、全構成単位中、架橋構造単位を0.1〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5〜10mL/gであり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1〜6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体である。 The above monolith, that is, an example of the monolith form supporting the platinum group metal particles (hereinafter, also described as monolith (1)) and the above monolith ion exchanger, that is, the monolith ion exchange member serving as the support of platinum group metal particles Examples of the form of (hereinafter, also described as monolith ion exchanger (1)) include monoliths and monolith ion exchangers having a co-continuous structure disclosed in JP-A-2009-67982. That is, the monolith (1) to be a carrier of the platinum group metal particles is a monolith before the ion exchange group is introduced, and an aroma containing 0.1 to 5.0% by mole of a crosslinking structural unit in all the structural units. Consisting of a three-dimensionally continuous framework with an average thickness of 1 to 60 μm in a dry state and an average diameter of 10 to 200 μm in a dry condition between the frameworks. It is a monolith which is a co-continuous structure and is an organic porous body having a total pore volume in a dry state of 0.5 to 10 mL / g. In addition, the monolithic ion exchanger (1) serving as a support for platinum group metal particles has a dry average thickness of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinking structural units in all constituent units. A co-continuous structure consisting of a three-dimensionally continuous framework of 1 to 60 μm in the state and three-dimensionally continuous pores of 10 to 200 μm in the dry state in average diameter between the skeletons, the dry state Total pore volume at 0.5 to 10 mL / g, having ion exchange groups, and having a dry ion exchange capacity per weight of 1 to 6 mg equivalent / g; A monolithic ion exchanger uniformly distributed in the organic porous ion exchanger.
白金族金属粒子の担体となるモノリス(1)又はモノリスイオン交換体(1)は、平均太さが乾燥状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μm、好ましくは15〜180μm、特に好ましくは20〜150μmの三次元的に連続した空孔とからなる共連続構造体である。共連続構造とは、連続する骨格相と連続する空孔相とが絡み合ってそれぞれが共に3次元的に連続する構造である。この連続した空孔は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがない。また、骨格が太いため機械的強度が高い。 The monolith (1) or monolith ion exchanger (1) to be a carrier of platinum group metal particles has a three-dimensionally continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in a dry state, and its skeleton In the meanwhile, it is a co-continuous structure composed of three-dimensionally continuous pores having an average diameter of 10 to 200 μm, preferably 15 to 180 μm, and particularly preferably 20 to 150 μm in a dry state. The co-continuous structure is a structure in which a continuous framework phase and a continuous vacancy phase are intertwined and each is continuous in three dimensions. The continuous pores have high continuity of pores and no deviation in size as compared with the conventional open cell monolith and particle aggregation monolith. In addition, the mechanical strength is high because the skeleton is thick.
乾燥状態のモノリス(1)の開口の平均直径、モノリスイオン交換体(1)の開口の平均直径及び以下に述べるモノリスの製造のI処理で得られる、乾燥状態のモノリス中間体(1)の空孔の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、モノリス(1)またはモノリスイオン交換体(1)の骨格の乾燥状態での平均太さは、乾燥状態のモノリス(1)またはモノリスイオン交換体(1)のSEM観察により求められる。具体的には、乾燥状態のモノリス(1)又はモノリスイオン交換体(1)のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。 The average diameter of the opening of the monolith (1) in the dry state, the average diameter of the opening of the monolith ion exchanger (1) and the empty state of the monolith intermediate (1) in the dry state obtained by the treatment I of the preparation of the monolith described below The mean diameter of the pores is measured by mercury porosimetry and refers to the maximum value of the pore distribution curve obtained by mercury porosimetry. In addition, the average thickness of the monolith (1) or the monolithic ion exchanger (1) in the dried state can be determined by SEM observation of the dried monolith (1) or the monolithic ion exchanger (1). Specifically, SEM observation of dry monolith (1) or monolith ion exchanger (1) is performed at least three times, and the thickness of the skeleton in the obtained image is measured, and their average value is averaged. I assume. In addition, although frame | skeleton is rod-shaped and is circular cross-sectional shape, you may include the thing of different diameter cross sections, such as elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.
また、白金族金属粒子の担体となるモノリス(1)又はモノリスイオン交換体(1)の乾燥状態での重量当りの全細孔容積は、0.5〜10mL/gである。全細孔容積が0.5mL/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過量が小さくなり、処理量が低下してしまうため好ましくない。一方、全細孔容積が10mL/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリスまたはモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリス(1)またはモノリスイオン交換体(1)との接触効率が低下するため、触媒効率も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、反応液との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通液が可能となる。 In addition, the total pore volume per weight of the monolith (1) or the monolith ion exchanger (1) as a carrier of platinum group metal particles in a dry state is 0.5 to 10 mL / g. If the total pore volume is less than 0.5 mL / g, the pressure loss at the time of passing will be large, which is not preferable, and furthermore, the amount of permeation per unit cross-sectional area will be small, and the throughput will be lowered. Unfavorable. On the other hand, when the total pore volume exceeds 10 mL / g, the mechanical strength is lowered, and the monolith or the monolith ion exchanger is largely deformed particularly when passing at a high flow rate, which is not preferable. Further, the contact efficiency between the reaction solution and the monolith (1) or the monolith ion exchanger (1) is lowered, and the catalyst efficiency is also lowered. When the three-dimensionally continuous pore size and total pore volume are in the above range, the contact with the reaction solution is extremely uniform, the contact area is large, and liquid passage is possible under low pressure loss. .
白金族金属粒子の担体となるモノリス(1)又はモノリスイオン交換体(1)において、骨格を構成する材料は、全構成単位中、0.1〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.1モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および、酸またはアルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。 In the monolith (1) or the monolith ion exchanger (1) serving as a carrier of platinum group metal particles, the material constituting the skeleton is 0.1 to 5 mol%, preferably 0.5 to 3.% of the total structural units. It is an aromatic vinyl polymer containing 0 mol% of crosslinking structural units and is hydrophobic. If the crosslinking structural unit is less than 0.1 mol%, mechanical strength is insufficient, which is not preferable. If it exceeds 5 mol%, the structure of the porous body tends to deviate from the co-continuous structure. The type of the aromatic vinyl polymer is not particularly limited, and examples thereof include polystyrene, poly (α-methylstyrene), polyvinyltoluene, polyvinylbenzyl chloride, polyvinylbiphenyl, polyvinylnaphthalene and the like. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, or a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, and a blend of two or more polymers. It may be done. Among these organic polymer materials, styrene-divinylbenzene co-weights from the ease of formation of co-continuous structure, the ease of ion exchange group introduction and the high mechanical strength, and the high stability to acid or alkali. Preferred is coalescence or a vinylbenzyl chloride-divinylbenzene copolymer.
白金族金属粒子の担体となるモノリスイオン交換体(1)において、導入されているイオン交換基は、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAを用いることで簡単に確認される。また、イオン交換基が、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。 In the monolithic ion exchanger (1) serving as a carrier of platinum group metal particles, the introduced ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith. As used herein, "the ion exchange groups are uniformly distributed" means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton at least on the order of μm. The distribution of ion exchange groups is easily confirmed using EPMA. In addition, when the ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith, the physical and chemical properties of the surface and the interior can be made uniform, so that the durability against swelling and shrinkage is obtained. Improves the quality.
白金族金属粒子の担体となるモノリスイオン交換体(1)に導入されているイオン交換基は、カチオン交換基又はアニオン交換基である。カチオン交換基としては、カルボキシル基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。アニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。 The ion exchange group introduced into the monolithic ion exchanger (1) serving as a carrier of platinum group metal particles is a cation exchange group or an anion exchange group. As a cation exchange group, a carboxyl group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, a phosphoric acid ester group etc. are mentioned. As an anion exchange group, quaternary ammonium groups such as trimethyl ammonium group, triethyl ammonium group, tributyl ammonium group, dimethyl hydroxyethyl ammonium group, dimethyl hydroxypropyl ammonium group, methyl dihydroxyethyl ammonium group, etc., tertiary sulfonium group, phosphonium group Etc.
白金族金属粒子の担体となるモノリスイオン交換体(1)は、乾燥状態での重量当りのイオン交換容量が1〜6mg当量/gのイオン交換容量を有する。モノリスイオン交換体(1)は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。重量当りのイオン交換容量が上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。モノリスイオン交換体(1)がモノリスアニオン交換体の場合は、モノリスアニオン交換体(1)には、アニオン交換基が導入されており、乾燥状態での重量当りのアニオン交換容量は、1〜6mg当量/gである。また、モノリスイオン交換体(1)がモノリスカチオン交換体の場合は、モノリスカチオン交換体(1)には、カチオン交換基が導入されており、乾燥状態での重量当りのカチオン交換容量は、1〜6mg当量/gである。 The monolithic ion exchanger (1) serving as a carrier for platinum group metal particles has an ion exchange capacity per dry weight of 1 to 6 mg equivalent / g of ion exchange capacity. Since the monolithic ion exchanger (1) has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, the ion exchange capacity per volume can be dramatically increased while keeping the pressure loss low. When the ion exchange capacity per weight is in the above range, the environment around the catalyst active point, such as pH inside the catalyst, can be changed, thereby increasing the catalyst activity. When the monolithic ion exchanger (1) is a monolithic anion exchanger, an anion exchange group is introduced into the monolithic anion exchanger (1), and the anion exchange capacity per weight in the dry state is 1 to 6 mg. It is equivalent / g. When the monolithic ion exchanger (1) is a monolithic cation exchanger, a cation exchange group is introduced into the monolithic cation exchanger (1), and the cation exchange capacity per weight in dry state is 1 ~ 6 mg equivalent / g.
白金族金属粒子の担体となるモノリス(1)は、特開2009−67982号公報に開示されているモノリス状有機多孔質体の製造方法を行うことにより得られる。つまり、当該製法は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16mL/gを超え、30mL/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体(1)とも記載する。)を得るI処理、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII処理、およびII処理で得られた混合物を静置下、且つI処理で得られたモノリス中間体(1)の存在下に重合を行い、共連続構造体である有機多孔質体であるモノリス(1)を得るIII処理、を含む。 Monolith (1) used as a support | carrier of platinum group metal particle is obtained by performing the manufacturing method of the monolith-like organic porous body currently disclosed by Unexamined-Japanese-Patent No. 2009-67982. That is, in the method, a water-in-oil emulsion is prepared by stirring a mixture of an oil-soluble monomer containing no ion exchange group, a surfactant and water, and then the water-in-oil emulsion is polymerized to obtain all pores. I. Treatment to obtain a monolithic organic porous intermediate of continuous macropore structure (hereinafter also referred to as monolith intermediate (1)) having a volume of more than 16 mL / g and not more than 30 mL / g, aromatic vinyl monomer, 0.3-5 mol% of a crosslinking agent, an aromatic vinyl monomer or a crosslinking agent is dissolved in an oil-soluble monomer having at least two or more vinyl groups in the molecule, but an aromatic vinyl monomer is polymerized and formed. Monoliths obtained by treatment II in which the mixture obtained in the treatment II is prepared, and the mixture obtained in treatment II is prepared by preparing a mixture consisting of an organic solvent and a polymerization initiator in which the polymer is not dissolved. Performed in the presence in the polymerization between body (1), comprising a III treatment, to obtain a monolith (1) is an organic porous material is a co-continuous structure.
白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体には、白金族金属が担持されている。白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いても良く、更に、二種類以上の金属を合金として用いても良い。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。 A platinum group metal is supported on the platinum group metal-supported monolithic organic porous material or the platinum group metal-supported monolithic organic porous ion exchanger. The platinum group metals are ruthenium, rhodium, palladium, osmium, iridium and platinum. One of these platinum group metals may be used alone, or two or more metals may be used in combination, and two or more metals may be used as an alloy. Among these, platinum, palladium and platinum / palladium alloys have high catalytic activity and are preferably used.
白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体に担持されている白金族金属粒子の平均粒子径は、1〜1000nmであり、好ましくは1〜200nm、更に好ましくは1〜20nmである。平均粒子径が1nm未満であると、白金族金属粒子が担体から脱離する可能性が高くなるため好ましくない。一方、平均粒子径が200nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、白金族金属粒子の平均粒子径は、透過型電子顕微鏡(TEM)分析により得られるTEM画像を、画像解析することにより求められる。 The average particle diameter of the platinum group metal particles supported by the platinum group metal-supported monolithic organic porous material or the platinum group metal-supported monolithic organic porous ion exchanger is 1 to 1000 nm, preferably 1 to 200 nm, More preferably, it is 1 to 20 nm. If the average particle size is less than 1 nm, the platinum group metal particles are not likely to be detached from the carrier, which is not preferable. On the other hand, when the average particle size exceeds 200 nm, the surface area per unit mass of metal decreases, and the catalytic effect can not be obtained efficiently, which is not preferable. The average particle size of the platinum group metal particles can be determined by image analysis of a TEM image obtained by transmission electron microscopy (TEM) analysis.
白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体中の白金族金属粒子の担持量((白金族金属粒子/乾燥状態の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。白金族金属粒子の担持量が0.004重量%未満であると、触媒活性が不十分になるため好ましくない。一方、白金族金属粒子の担持時量が20重量%を超えると、水中への金属溶出が認められるようになるため好ましくない。 Supported amount of platinum group metal particles in platinum group metal supported monolithic organic porous body or platinum group metal supported monolithic organic porous ion exchanger ((platinum group metal particle / platinum group supported metal catalyst in dry state) × 100 ) Is 0.004 to 20% by weight, preferably 0.005 to 15% by weight. If the loading amount of the platinum group metal particles is less than 0.004% by weight, the catalytic activity becomes insufficient, which is not preferable. On the other hand, when the loading amount of platinum group metal particles exceeds 20% by weight, metal elution in water is observed, which is not preferable.
白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体の製造方法には特に制約はない。公知の方法により、モノリス又はモノリスイオン交換体に、白金族金属の微粒子を担持させることにより、白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体が得られる。モノリス状有機多孔質体又はモノリス状有機多孔質イオン交換体に白金族金属を担持する方法としては、例えば、特開2010−240641号公報に開示されている方法が挙げられる。例えば、乾燥状態のモノリスイオン交換体を酢酸パラジウム等の白金族金属化合物のメタノール溶液に浸漬し、パラジウムイオンをイオン交換によりモノリスイオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属微粒子をモノリスイオン交換体に担持する方法である。あるいは、モノリスイオン交換体をテトラアンミンパラジウム錯体等の白金族金属化合物の水溶液に浸漬し、パラジウムイオンをイオン交換によりモノリスイオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属微粒子をモノリスイオン交換体に担持する方法である。 There are no particular restrictions on the method for producing the platinum group metal-supported monolithic organic porous material or the platinum group metal-supported monolithic organic porous ion exchanger. By supporting fine particles of a platinum group metal on a monolith or monolithic ion exchanger by a known method, a platinum group metal-supported monolithic organic porous body or a platinum group metal-supported monolithic organic porous ion exchanger can be obtained . As a method for supporting a platinum group metal on a monolithic organic porous body or a monolithic organic porous ion exchanger, for example, the method disclosed in JP-A-2010-240641 can be mentioned. For example, the monolith ion exchanger in a dry state is immersed in a methanol solution of a platinum group metal compound such as palladium acetate, palladium ion is adsorbed to the monolith ion exchanger by ion exchange, and then it is contacted with a reducing agent to make palladium metal microparticles Is supported on a monolithic ion exchanger. Alternatively, the monolith ion exchanger is immersed in an aqueous solution of a platinum group metal compound such as a tetraamminepalladium complex, palladium ion is adsorbed to the monolith ion exchanger by ion exchange, and then the palladium metal particles are contacted with a reducing agent to make the palladium metal particles monolith ion It is a method of carrying on an exchange body.
モノリス状有機多孔質体又はモノリス状有機多孔質イオン交換体に白金族金属を担持させた後は、得られる白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体を、所定の形状及び大きさに切り出して、処理塔又は処理容器に充填用の白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体とすることができる。 After the platinum group metal is supported on the monolithic organic porous body or monolithic organic porous ion exchanger, the resulting platinum group metal supported monolithic organic porous body or platinum group metal supported monolithic organic porous ion exchange is obtained The body can be cut into a predetermined shape and size to form a platinum group metal-supported monolithic organic porous body or a platinum group metal-supported monolithic organic porous ion exchanger for packing in a treatment tower or a treatment vessel. .
本発明の被処理液の処理方法に係る触媒担持多孔質体の大きさは特に制限されないが、触媒担持多孔質体の1個当たりの平均見かけ体積は、好ましくは1〜8000μL、特に好ましくは1〜1000μLである。触媒担持多孔質体の1個当たりの平均見かけ体積が、上記範囲にあることにより、ショートパスを防ぐ効果が高くなり、被処理液の処理効率が高くなる。なお、触媒担持多孔質体の1個当たりの平均見かけ体積とは、水湿潤状態の見かけ体積であり、触媒担持多孔質体内の細孔の体積も含めた見かけ上の体積である、つまり、触媒担持多孔質体の1個当たりの平均見かけ体積とは、充填時の触媒担持多孔質体を形成する骨格部の体積と触媒担持多孔質体内に形成されている細孔の体積の合計体積の1個当たりの平均値である。 The size of the catalyst-supporting porous body according to the method for treating a liquid to be treated of the present invention is not particularly limited, but the average apparent volume per one catalyst-supporting porous body is preferably 1 to 8000 μL, particularly preferably 1 1000 μL. When the average apparent volume per one catalyst-supporting porous body is in the above range, the effect of preventing a short pass is enhanced, and the treatment efficiency of the liquid to be treated is enhanced. The average apparent volume per one catalyst-supporting porous body is the apparent volume in a water-wet state, and is the apparent volume including the volume of pores in the catalyst-supporting porous body, that is, the catalyst The average apparent volume per supported porous body is one of the total volume of the volume of the skeleton forming the catalyst supported porous body at the time of loading and the volume of the pores formed in the catalyst supported porous body. It is an average value per piece.
触媒担持多孔質体の形状は、特に制限されず、例えば、立方体、直方体、球状等が挙げられる。 The shape of the catalyst-supporting porous body is not particularly limited, and examples thereof include a cube, a rectangular solid, and a sphere.
本発明の被処理液の処理方法に係る粒状のイオン交換樹脂は、基体が樹脂であり、その樹脂にカチオン交換基又はアニオン交換基が導入されている粒状のイオン交換体であり、スチレン系のゲル型又はMR型のイオン交換樹脂である。粒状のイオン交換樹脂において、イオン交換基が導入されている樹脂としては、スチレン−ジビニルベンゼン共重合体が好ましい。粒状のイオン交換樹脂に導入されているイオン交換基は、カチオン交換基又はアニオン交換基である。カチオン交換基としては、カルボキシル基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。アニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。 The particulate ion exchange resin according to the method for treating a liquid to be treated according to the present invention is a particulate ion exchanger in which the substrate is a resin and a cation exchange group or anion exchange group is introduced into the resin. It is a gel type or MR type ion exchange resin. In the particulate ion exchange resin, a styrene-divinylbenzene copolymer is preferable as the resin in which the ion exchange group is introduced. The ion exchange group introduced into the particulate ion exchange resin is a cation exchange group or an anion exchange group. As a cation exchange group, a carboxyl group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, a phosphoric acid ester group etc. are mentioned. As an anion exchange group, quaternary ammonium groups such as trimethyl ammonium group, triethyl ammonium group, tributyl ammonium group, dimethyl hydroxyethyl ammonium group, dimethyl hydroxypropyl ammonium group, methyl dihydroxyethyl ammonium group, etc., tertiary sulfonium group, phosphonium group Etc.
粒状のアニオン交換樹脂としては、4級アンモニウム基を官能基として有し、そのアンモニウム基の窒素原子に結合する基がアルキル基だけの強塩基性I型、4級アンモニウム基を官能基として有し、そのアンモニウム基の窒素原子に結合する基がアルキル基及びアルカノール基である強塩基性II型、第1〜第3アミノ基を官能基として有する弱塩基性が挙げられる。 As a particulate anion exchange resin, it has a quaternary ammonium group as a functional group, and a group bonded to the nitrogen atom of the ammonium group has strongly basic type I of only an alkyl group, and a quaternary ammonium group as a functional group. Examples thereof include strongly basic type II groups in which the group bonded to the nitrogen atom of the ammonium group is an alkyl group and an alkanol group, and weak basicity having the first to third amino groups as functional groups.
粒状のイオン交換樹脂の平均粒径は、好ましくは0.2〜1.0mm、特に好ましくは0.4〜0.8mmである。また、粒状のイオン交換樹脂の1個当たりの平均見かけ体積は、好ましくは0.004〜0.5μL、特に好ましくは0.03〜0.25μLである。なお、粒状のイオン交換樹脂の1個当たりの平均見かけ体積とは、水湿潤状態の見かけ体積であり、充填時の粒状のイオン交換樹脂を形成する骨格部の体積の1個当たりの平均値である。 The average particle size of the particulate ion exchange resin is preferably 0.2 to 1.0 mm, particularly preferably 0.4 to 0.8 mm. Also, the average apparent volume per particulate ion exchange resin is preferably 0.004 to 0.5 μL, particularly preferably 0.03 to 0.25 μL. The average apparent volume per granular ion exchange resin is the apparent volume in a water-wet state, and is an average value per volume of the skeleton forming the granular ion exchange resin at the time of filling. is there.
触媒担持多孔質体の1個当たりの平均見かけ体積に対する粒状のイオン交換樹脂の1個当たりの平均見かけ体積の比(粒状のイオン交換樹脂の1個当たりの平均見かけ体積/触媒担持多孔質体の1個当たりの平均見かけ体積)は、好ましくは0.5以下、特に好ましくは0.000001〜0.1、より好ましくは0.00001〜0.01である。触媒担持多孔質体の1個当たりの平均見かけ体積に対する粒状のイオン交換樹脂の1個当たりの平均見かけ体積の比が、上記範囲にあることにより、被処理液のショートパスを防ぐ効果が高くなる。 Ratio of average apparent volume per particle of ion exchange resin to average apparent volume per particle of catalyst-supporting porous material (average apparent volume per particle of ion exchange resin of particulate / catalyst-supporting porous material) The average apparent volume per unit) is preferably 0.5 or less, particularly preferably 0.000001 to 0.1, and more preferably 0.00001 to 0.01. When the ratio of the average apparent volume per particle of the particulate ion exchange resin to the average apparent volume per particle of the catalyst-supporting porous body is in the above range, the effect of preventing the short path of the liquid to be treated is enhanced. .
触媒担持多孔質体は、平均見かけ体積が所定の体積となるように製造されたものであっても、先に、大きなものを製造し、それを所定の平均見かけ体積となるように切り刻んだり砕いたりしたものであってもよい。 Even if the catalyst-supporting porous body is manufactured so that the average apparent volume is a predetermined volume, a large one is first manufactured, and it is cut or crushed so as to have a predetermined average apparent volume. It may be a
触媒担持多孔質体と粒状のイオン交換樹脂とでは、粒状のイオン交換樹脂の方が圧力損失が大きい。つまり、触媒担持多孔質体と、粒状のイオン交換樹脂とを、それぞれ、同じ充填体積で、同じ処理容器に充填し、処理容器に被処理液を通液した場合、粒状のイオン交換樹脂を充填した方が、触媒担持多孔質体を充填した方より、圧力損失が大きくなる。そして、水を通液したときの触媒担持多孔質体の圧力損失に対する粒状のイオン交換樹脂の圧力損失の比は、好ましくは1.5〜10、特に好ましくは2〜5である。水を通液したときの触媒担持多孔質体の圧力損失に対する粒状のイオン交換樹脂の圧力損失の比が上記範囲にあることにより、ショートパスを防ぐ効果が高くなる。なお、水以外の液体を通液した場合も、粘性が極めて大きい液体でない限り、圧力損失の比は、水を通液した場合と同程度になるので、水以外の液体を通液する場合も、触媒担持多孔質体の圧力損失に対する粒状のイオン交換樹脂の圧力損失の比は、好ましくは1.5〜10、特に好ましくは2〜5である。 In the catalyst-supporting porous body and the particulate ion exchange resin, the particulate ion exchange resin has a larger pressure loss. That is, when the catalyst-supporting porous body and the particulate ion exchange resin are respectively filled in the same treatment volume in the same treatment vessel and the treatment liquid is passed through the treatment vessel, the particulate ion exchange resin is filled. The pressure loss is larger in the case where the catalyst is loaded than in the case where the catalyst-supporting porous body is filled. The ratio of the pressure loss of the particulate ion exchange resin to the pressure loss of the catalyst-supporting porous body when water is passed is preferably 1.5 to 10, and particularly preferably 2 to 5. When the ratio of the pressure loss of the particulate ion exchange resin to the pressure loss of the catalyst-supporting porous body when water is passed is in the above range, the effect of preventing a short pass is enhanced. Even when a liquid other than water is passed, the pressure loss ratio is the same as when water is passed unless the viscosity is a very large liquid, so even when a liquid other than water is passed. The ratio of the pressure loss of the particulate ion exchange resin to the pressure loss of the catalyst-supporting porous material is preferably 1.5 to 10, particularly preferably 2 to 5.
触媒担持多孔質体充填層において、触媒担持多孔質体の充填体積及び粒状のイオン交換樹脂の充填体積の合計に対する触媒担持多孔質体の充填体積の割合((触媒担持多孔質体の充填体積/(触媒担持多孔質体の充填体積+粒状のイオン交換樹脂の充填体積))×100)が、好ましくは25〜67体積%、特に好ましくは50〜67体積%である。引用文献5のように、粒状のイオン交換樹脂を担体として触媒が担持されている粒状の触媒担持イオン交換樹脂と、粒状のイオン交換樹脂の混合層の場合では、粒状の触媒担持イオン交換樹脂の比率が多過ぎると粒状の触媒担持イオン交換樹脂自体から溶出する物質の溶出量が増大するため、触媒担持イオン交換樹脂の使用量を多くすることはできない。それに対して、触媒担持多孔質体として、白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体を用いる場合、SVを大きく通液することができるため、触媒担持多孔質体の混合比率が多くても触媒担持多孔質体自体からの溶出する物質の量を低く抑えることが可能である。そのため、触媒担持多孔質体充填層において、触媒担持多孔質体の充填体積及び粒状のイオン交換樹脂の充填体積の合計に対する触媒担持多孔質体の充填体積の割合が25〜67体積%、あるいは50〜67体積%であっても、触媒担持多孔質体自体からの溶出する物質の量が少なく、且つ、触媒担持多孔質体の充填体積及び粒状のイオン交換樹脂の充填体積の合計に対する触媒担持多孔質体の充填体積の割合が、好ましくは25〜67体積%、特に好ましくは50〜67体積%であることにより、優れた処理能力を発揮する。また、触媒担持多孔質体の充填体積及び粒状のイオン交換樹脂の充填体積の合計に対する触媒担持多孔質体の充填体積の割合をあえて25体積%未満とする必要はないが、25体積%未満でも優れた処理能力を発揮する。なお、触媒担持多孔質体の充填体積及び粒状のイオン交換樹脂の充填体積の合計に対する触媒担持多孔質体の充填体積の割合が、67体積%を超えると、触媒担持多孔質体間の隙間に充填される粒状のイオン交換樹脂の量が不十分となるため、ショートパスを起こし易くなる。なお、触媒担持多孔質体の充填体積とは、充填時(水湿潤状態)の触媒担持多孔質体充填層中の触媒担持多孔質体の見かけ体積の合計体積である。触媒担持多孔質体の充填体積は、混合充填する前の触媒担持多孔質体の見かけ体積の合計である。また、粒状のイオン交換樹脂の充填体積とは、充填時(水湿潤状態)の触媒担持多孔質体充填層中の粒状のイオン交換樹脂の見かけ体積の合計体積と粒状のイオン交換樹脂間の隙間の合計体積の合計である。この粒状のイオン交換樹脂の充填体積は、混合充填する前の粒状のイオン交換樹脂のタッピング法により測定されるタッピング体積である。タッピング法による粒状のイオン交換樹脂のタッピング体積の測定法は以下の通りである。試料イオン交換樹脂の体積より容量の大きいメスシリンダーを用い、試料イオン交換樹脂を水とともにメスシリンダーに移し入れ、水を試料イオン交換樹脂が水面下になるように十分に加える。ガラス棒の先端に直径約30mmのゴム栓を取り付け、メスシリンダーの側面をゴム栓の部分でたたく。この操作を試料イオン交換樹脂層の高さが変化しなくなるまで繰り返し、試料イオン交換樹脂の高さをmlの単位で読み取る。試料イオン交換樹脂を振り混ぜた後、再びゴム栓の部分でメスシリンダーの側面を軽くたたいて、試料イオン交換樹脂層の高さをmlの単位で読み取る。この操作を3回繰り返し、平均値を求めて試料イオン交換樹脂のタッピング体積とする。 In the catalyst-supporting porous material packed bed, the ratio of the loading volume of the catalyst-supporting porous material to the total of the loading volume of the catalyst-supporting porous material and the loading volume of the particulate ion exchange resin (Packed volume of catalyst-supporting porous body + packed volume of particulate ion exchange resin)) × 100) is preferably 25 to 67% by volume, particularly preferably 50 to 67% by volume. In the case of a mixed layer of a particulate catalyst-supporting ion exchange resin in which a particulate ion exchange resin is used as a carrier and a particulate ion exchange resin as in Patent Document 5, a particulate catalyst-supporting ion exchange resin is used. If the ratio is too large, the elution amount of the substance eluted from the particulate catalyst-supporting ion exchange resin itself increases, so the amount of catalyst-supporting ion exchange resin can not be increased. On the other hand, when using a platinum group metal-supported monolithic organic porous body or a platinum group metal-supported monolithic organic porous ion exchanger as the catalyst-supporting porous body, the SV can be flowed largely, so the catalyst Even if the mixing ratio of the support porous body is large, it is possible to keep the amount of the substance eluted from the catalyst support porous body itself low. Therefore, in the catalyst-supporting porous material packed bed, the ratio of the loading volume of the catalyst-supporting porous body to the total of the loading volume of the catalyst-supporting porous body and the loading volume of the particulate ion exchange resin is 25 to 67% by volume, or 50 Even when the amount is up to 67% by volume, the amount of the substance eluted from the catalyst-supporting porous body itself is small, and the catalyst-supporting porous relative to the total of the packed volume of the catalyst-supporting porous body and the packed volume of the particulate ion exchange resin When the proportion of the filling volume of the matrix is preferably 25 to 67% by volume, particularly preferably 50 to 67% by volume, excellent processing performance is exhibited. Also, the ratio of the packed volume of the catalyst-supporting porous body to the total of the packed volume of the catalyst-supporting porous body and the packed volume of the particulate ion exchange resin does not have to be less than 25% by volume. Demonstrate excellent processing capacity. When the ratio of the filling volume of the catalyst-supporting porous body to the total of the filling volume of the catalyst-supporting porous body and the filling volume of the particulate ion exchange resin exceeds 67% by volume, the gaps between the catalyst-supporting porous bodies Since the amount of particulate ion exchange resin to be filled is insufficient, a short pass is likely to occur. The packed volume of the catalyst-supporting porous body is the total volume of the apparent volume of the catalyst-supporting porous body in the catalyst-supported porous body packed bed at the time of packing (water wet state). The packed volume of the catalyst-supported porous body is the sum of the apparent volumes of the catalyst-supported porous body before mixed and packed. Further, the filling volume of the particulate ion exchange resin means the total volume of the apparent volume of the particulate ion exchange resin and the particulate ion exchange resin in the catalyst-supporting porous material loading layer at the time of loading (water wet state) The sum of the total volume of The filling volume of the particulate ion exchange resin is a tapping volume measured by the tapping method of the particulate ion exchange resin before mixed loading. The measuring method of tapping volume of granular ion exchange resin by tapping method is as follows. Using a measuring cylinder whose volume is larger than the volume of the sample ion exchange resin, transfer the sample ion exchange resin to the measuring cylinder together with water, and add water sufficiently so that the sample ion exchange resin is below the water surface. Attach a rubber stopper about 30 mm in diameter to the end of the glass rod and tap the side of the measuring cylinder with the rubber stopper. This operation is repeated until the height of the sample ion exchange resin layer does not change, and the height of the sample ion exchange resin is read in units of ml. After shaking the sample ion exchange resin, again tap the side of the measuring cylinder with the rubber plug to read the height of the sample ion exchange resin layer in the unit of ml. This operation is repeated three times, and an average value is determined to be a tapping volume of the sample ion exchange resin.
触媒担持多孔質体充填層の厚みは、処理塔又は処理容器の大きさや径、被処理液の種類や処理対象物の濃度等により、適宜選択されるが、好ましくは10mm以上、特に好ましくは30mm以上である。触媒担持多孔質体充填層の厚みが薄過ぎると、均一に被処理液が流れない可能性やショートパスを起こす可能性がある。 The thickness of the catalyst-supporting porous material packed bed is appropriately selected depending on the size and diameter of the treatment tower or treatment vessel, the type of liquid to be treated, the concentration of the treatment object, etc., preferably 10 mm or more, particularly preferably 30 mm. It is above. When the thickness of the catalyst-supporting porous material packed layer is too thin, there is a possibility that the liquid to be treated does not flow uniformly or a short pass may occur.
触媒担持多孔質体充填層は、処理塔又は処理容器内に形成される。つまり、触媒担持多孔質体と粒状のイオン交換樹脂は、処理塔又は処理容器に充填されている。処理塔又は処理容器には、処理塔又は処理容器内に被処理液を供給するための被処理液の供給管と、処理塔又は処理容器外に処理液を排出するための処理液排出管が付設されている。 The catalyst-supported porous material packed bed is formed in the treatment tower or treatment vessel. That is, the catalyst-supporting porous body and the particulate ion exchange resin are packed in the treatment tower or treatment container. In the treatment tower or treatment vessel, a supply pipe for the treatment liquid for supplying the treatment liquid into the treatment tower or treatment vessel, and a treatment liquid discharge pipe for discharging the treatment liquid to the outside of the treatment tower or treatment vessel It is attached.
本発明の被処理液の処理方法では、触媒担持多孔質体充填層に、被処理液を供給して、被処理液を、触媒担持多孔質体充填層に通過させる。 In the method of treating a liquid to be treated according to the present invention, the liquid to be treated is supplied to the catalyst-supporting porous body packed bed, and the liquid to be treated is allowed to pass through the catalyst-supporting porous body packed bed.
被処理液としては、過酸化水素を含有する被処理水、溶存酸素を含有する被処理水、イソプロピルアルコール等の有機溶媒を含有する被処理液等が挙げられる。特に、本発明の被処理液の処理方法では、被処理液としては、半導体用電子部品表面や半導体電子部品の製造器具を洗浄するための超純水又は純水の製造過程における、種々の工程で生じる過酸化水素を含有する水や溶存酸素を含有する水が挙げられ、本発明の被処理液の処理方法は、これらの超純水又は純水の処理において、優れた効果を発揮する。 Examples of the liquid to be treated include water to be treated containing hydrogen peroxide, water to be treated containing dissolved oxygen, and a liquid to be treated containing an organic solvent such as isopropyl alcohol. In particular, in the method for treating a liquid to be treated according to the present invention, various steps in the process of producing ultrapure water or pure water for cleaning the surface of electronic parts for semiconductors and tools for producing semiconductor electronic parts as the liquid to be treated Water containing hydrogen peroxide and water containing dissolved oxygen produced in the above can be mentioned, and the method of treating a liquid to be treated according to the present invention exhibits excellent effects in the treatment of these ultrapure water or pure water.
触媒担持多孔質体充填層への被処理液の供給速度は、適宜選択されるが、被処理液が、超純水や純水の製造過程における、種々の工程で生じる過酸化水素を含有する水又は溶存酸素を含有する水であり、被処理水中の過酸化水素又は溶存酸素を除去する場合、触媒担持多孔質体充填層に対する被処理水の空間速度は、好ましくは空間速度SV2000〜20000h−1、より好ましくはSV2000〜10000h−1である。白金族金属担持モノリス状有機多孔質体及び白金族金属担持モノリス状有機多孔質イオン交換体は、過酸化水素及び溶存酸素の除去能力が著しく高いため、あえて通水速度をSV2000h−1未満とする必要はないが、通水速度をSV2000h−1未満としてもよく、通水速度をSV2000h−1未満とした場合も、優れた過酸化水素及び溶存酸素除去性を発揮する。一方、SVが20000h−1を超えると、通水差圧が大きくなり過ぎる傾向にある。本発明において、空間速度SVとは、触媒担持多孔質体充填層に充填されている触媒担体多孔質体の合計の充填体積に対する空間速度のことである。 Although the supply rate of the liquid to be treated to the catalyst-supporting porous material packed bed is appropriately selected, the liquid to be treated contains hydrogen peroxide generated in various steps in the production process of ultrapure water and pure water. a water containing water or dissolved oxygen, to remove hydrogen peroxide or dissolved oxygen in the water to be treated, the space velocity of the water to be treated for the catalyst-carrying porous material packed layer, preferably a space velocity SV2000~20000h - 1 , and more preferably SV 2000 to 10000 h −1 . The platinum group metal-supported monolithic organic porous material and the platinum group metal-supported monolithic organic porous ion exchanger intentionally have a water flow rate of less than SV 2000 h −1 because their ability to remove hydrogen peroxide and dissolved oxygen is extremely high. Although not required, it may be a water flow rate of less than SV2000h -1, even when the water flow rate less than SV2000h -1, exhibits excellent hydrogen peroxide and dissolved oxygen removability. On the other hand, when SV exceeds 20000 h −1 , the water flow differential pressure tends to be too large. In the present invention, the space velocity SV is the space velocity relative to the total packed volume of the catalyst support porous body packed in the catalyst support porous body packed bed.
そして、本発明の被処理液の処理方法では、触媒担持多孔質体充填層に、被処理液を供給して、被処理液を、触媒担持多孔質体充填層に通過させ、触媒担持多孔質体充填層で処理された処理液を、排出することにより、処理液を得る。 Then, in the method for treating a liquid to be treated according to the present invention, the liquid to be treated is supplied to the catalyst-supporting porous body packed bed, and the liquid to be treated is allowed to pass through the catalyst-supporting porous body packed bed. A treatment liquid is obtained by discharging the treatment liquid treated in the body packed bed.
本発明の被処理水の処理装置は、被処理液が通液される処理塔又は処理容器を有し、
該処理塔又は処理容器には、多孔質体に触媒が担持されている触媒担持多孔質体と、該触媒担持多孔質体の間を埋める粒状のイオン交換樹脂と、からなる触媒担持多孔質体充填層が形成されており、
該触媒担持多孔質体が、モノリス状有機多孔質体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体、又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質イオン交換体であること、
を特徴とする被処理液の処理装置である。
The apparatus for treating water to be treated according to the present invention has a treatment tower or a treatment vessel through which the liquid to be treated flows.
A catalyst-supporting porous body comprising a catalyst-supporting porous body in which a catalyst is supported on a porous body, and a particulate ion exchange resin filling the space between the catalyst-supporting porous body in the treatment tower or treatment vessel A packed bed is formed,
The catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body in which a platinum group metal catalyst is supported on a monolithic organic porous body, or a platinum group metal catalyst as a monolithic organic porous ion exchanger Being a supported platinum group metal supported monolithic organic porous ion exchanger;
It is a processing apparatus of the processed liquid characterized by the above.
本発明の被処理液の処理装置に係る処理塔、処理容器、触媒担持多孔質体、粒状のイオン交換樹脂、触媒担持多孔質体充填層、被処理液は、本発明の被処理液の処理方法に係る処理塔、処理容器、触媒担持多孔質体、粒状のイオン交換樹脂、触媒担持多孔質体充填層、被処理液と同様である。 The treatment tower, the treatment vessel, the catalyst-supporting porous body, the particulate ion exchange resin, the catalyst-supporting porous body-packed layer, the treatment liquid, and the treatment liquid according to the treatment liquid of the present invention It is the same as the treatment tower, the treatment vessel, the catalyst-supporting porous body, the particulate ion exchange resin, the catalyst-supporting porous body packed bed, and the liquid to be treated according to the method.
本発明の被処理液の処理方法及び本発明の被処理液の処理装置に係る触媒担持多孔質体は、白金族金属担持モノリス状有機多孔質体又は白金族金属担持モノリス状有機多孔質イオン交換体であるので、粒状のイオン交換樹脂は、触媒担持多孔質体に比べ、圧力損失が大きい。そのため、本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、触媒担持多孔質体充填層のうちの触媒担持多孔質体が存在している部分と、粒状のイオン交換樹脂が充填されている部分とを比較すると、粒状のイオン交換樹脂が充填されている部分には、被処理液が流れ難くなるので、被処理液の大部分が、触媒担持多孔質体内を流れる。このことにより、本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、触媒担持多孔質体内に、被処理液の大部分が流れ、触媒担持多孔質体間の隙間を被処理液が流れるショートパスが起こり難くなるので、効率的に被処理液を処理することができる。 The catalyst-supporting porous body according to the method for treating a liquid to be treated of the present invention and the apparatus for treating a liquid to be treated according to the present invention is a platinum group metal supported monolithic organic porous body or a platinum group metal supported monolithic organic porous ion exchange Since it is a body, particulate ion exchange resin has a larger pressure loss than a catalyst-supporting porous body. Therefore, in the method for treating a liquid to be treated according to the present invention and the apparatus for treating a liquid to be treated according to the present invention, particulate ion exchange is carried out with the portion of the catalyst-support porous body packed layer where the catalyst-supporting porous body is present. In comparison with the part filled with resin, the part to be treated hardly flows in the part filled with the particulate ion exchange resin, so most of the part to be treated flows in the catalyst-supporting porous body. . As a result, in the method of treating a liquid to be treated according to the present invention and the apparatus for treating a liquid to be treated according to the present invention, most of the liquid to be treated flows in the catalyst-supporting porous body to form gaps between the catalyst-supporting porous bodies. Since the short pass through which the liquid to be treated flows is unlikely to occur, the liquid to be treated can be treated efficiently.
一方、特許文献5のように、粒状のアニオン交換樹脂を担体として触媒が担持されている粒状の触媒担持アニオン交換体と、粒状のアニオン交換樹脂とを混合した場合、粒状の触媒担持アニオン交換樹脂と、粒状のアニオン交換樹脂では、通液時の圧力損失の差はほとんどない。そのため、両者を混合することによる粒状の触媒担持アニオン交換体自体の被処理液に対する処理性能向上は、あまり見込めない。ただし、アニオン交換樹脂はSV1〜500h−1の範囲であれば、過酸化水素を除去することができることは知られている。 On the other hand, as in Patent Document 5, when a particulate catalyst-supported anion exchanger carrying a catalyst is used with a particulate anion exchange resin as a carrier, and a particulate anion exchange resin mixed, the particulate catalyst-carrying anion exchange resin And, in the particulate anion exchange resin, there is almost no difference in pressure drop when passing through. Therefore, the improvement in the treatment performance of the particulate catalyst-supported anion exchanger itself for the liquid to be treated by mixing the two can not be expected very much. However, it is known that the anion exchange resin can remove hydrogen peroxide if it is in the range of SV1 to 500 h −1 .
また、本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、触媒担持多孔質体同士の間に粒状のイオン交換樹脂が存在することにより、例え、触媒担持多孔質体や処理容器等からイオン成分等の不純物が溶出したとしても、粒状のイオン交換樹脂のイオン交換機能により、系外への不純物の流出を少なくすることができる。 Further, in the method of treating a liquid to be treated according to the present invention and the apparatus for treating a liquid to be treated according to the present invention, a particulate ion exchange resin is present between the catalyst-supporting porous bodies. Even if impurities such as ion components are eluted from the processing container or the like, the ion exchange function of the granular ion exchange resin can reduce the outflow of the impurities out of the system.
また、触媒担持多孔質体として、白金族金属担持モノリス状有機多孔質体や白金族金属担持モノリス状有機多孔質イオン交換体を用いる場合に、本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、処理塔又は処理容器の径が大きくても、その径に合うサイズの触媒担持多孔質体を製造する必要はなく、効率的なサイズ又は製造コストを低く抑えられるサイズの触媒担持多孔質体を製造し、それを所定の大きさに切断すればよいので、大きな処理塔又は処理容器の径に合うサイズの触媒担持多孔質体の製造が困難になるという問題は生じない。 In addition, when using a platinum group metal-supported monolithic organic porous body or a platinum group metal-supported monolithic organic porous ion exchanger as the catalyst-supporting porous body, the method for treating the liquid to be treated of the present invention and the present invention In the treatment apparatus for the liquid to be treated, even if the diameter of the treatment tower or treatment vessel is large, it is not necessary to produce a catalyst-supporting porous body of a size that fits the diameter, and an efficient size or a size that can suppress the production cost low. Since it is sufficient to produce the catalyst-supporting porous material of the present invention and cut it into a predetermined size, there arises a problem that it becomes difficult to produce a catalyst-supporting porous material of a size suitable for the diameter of a large treatment tower or treatment vessel. Absent.
本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、図2及び図4に示す形態例のように、触媒担持多孔質体充填層の被処理液の流入側に、粒状のイオン交換樹脂からなる流入側粒状イオン交換樹脂層が設けられていることが、被処理液が触媒担持多孔質体充填層に均一に供給され易くなり、そのことにより、処理効率が高まる点で好ましい。 In the method of treating a liquid to be treated according to the present invention and the apparatus for treating a liquid to be treated according to the present invention, as in the embodiment shown in FIG. 2 and FIG. The provision of the inflow side granular ion exchange resin layer made of granular ion exchange resin makes it easier to uniformly supply the liquid to be treated to the catalyst-supporting porous material packed bed, thereby enhancing the treatment efficiency. Preferred.
流入側粒状イオン交換樹脂層に係る粒状のイオン交換樹脂は、触媒担持多孔質体充填層に係る粒状のイオン交換樹脂と同様である。また、流入側粒状イオン交換樹脂層に係る粒状のイオン交換樹脂として、触媒担持多孔質体充填層に係る粒状のイオン交換樹脂と同じ粒状のイオン交換樹脂を用いてもよいし、異なる粒状のイオン交換樹脂を用いてもよい。 The particulate ion exchange resin according to the inflow side particulate ion exchange resin layer is the same as the particulate ion exchange resin according to the catalyst-supporting porous material packed bed. Further, as the particulate ion exchange resin according to the inflow side particulate ion exchange resin layer, the same particulate ion exchange resin as the particulate ion exchange resin according to the catalyst-supporting porous material packed bed may be used, or different particulate ion exchange resin Exchange resins may be used.
本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、図3及び図4に示す形態例のように、触媒担持多孔質体充填層の被処理液の流出側に、粒状のイオン交換樹脂からなる流出側粒状イオン交換樹脂層が設けられており、流出側粒状イオン交換樹脂層と触媒担持多孔質体充填層とが接していることが、被処理液のショートパスを防ぐ効果が高まり、そのことにより、処理効率が高くなる点で好ましい。 In the method of treating a liquid to be treated according to the present invention and the apparatus for treating a liquid to be treated according to the present invention, as in the embodiment shown in FIG. 3 and FIG. It is provided that an outflow side granular ion exchange resin layer made of granular ion exchange resin is provided, and the outflow side granular ion exchange resin layer and the catalyst-supporting porous material packed layer are in contact with each other. It is preferable in that the prevention effect is enhanced, and thereby the processing efficiency is enhanced.
流出側粒状イオン交換樹脂層に係る粒状のイオン交換樹脂は、触媒担持多孔質体充填層に係る粒状のイオン交換樹脂と同様である。また、流出側粒状イオン交換樹脂層に係る粒状のイオン交換樹脂として、触媒担持多孔質体充填層に係る粒状のイオン交換樹脂と同じ粒状のイオン交換樹脂を用いてもよいし、異なる粒状のイオン交換樹脂を用いてもよい。 The particulate ion exchange resin according to the outflow side particulate ion exchange resin layer is the same as the particulate ion exchange resin according to the catalyst-supporting porous material packed bed. Further, as the particulate ion exchange resin according to the outflow side particulate ion exchange resin layer, the same particulate ion exchange resin as the particulate ion exchange resin according to the catalyst-supporting porous material packed bed may be used, or different particulate ion exchange resin is used. Exchange resins may be used.
また、本発明の被処理液の処理方法及び本発明の被処理液の処理装置では、超純水や純水の製造過程における、種々の工程で生じる水の不純物イオンを除去することを目的としたイオン交換樹脂塔内に触媒担持多孔質体充填層を設けることで、不純物イオンと同時に過酸化水素や溶存酸素の除去も可能となる。また、上記でも説明したように触媒担持多孔質体充填層は被処理液の流入側及び流出側ともに粒状イオン交換樹脂層で挟まれているほうがより好ましい。また、触媒担持多孔質体が白金族金属担持モノリス状有機多孔質体及び白金族金属担持モノリス状有機多孔質イオン交換体であるので、過酸化水素及び溶存酸素の除去能力が著しく高く、イオン交換樹脂塔総充填量に対する触媒担持多孔質体の充填比率は、粒状のイオン交換樹脂を担体として触媒を担持させた粒状の触媒担持イオン交換樹脂を用いた場合に比べ、はるかに小さくてよい。具体的には、イオン交換樹脂塔総充填体積に対して、触媒担持多孔質体の充填体積は、1〜5体積%が好ましく、2〜4体積%が特に好ましい。 Further, in the method for treating a liquid to be treated according to the present invention and the apparatus for treating a liquid to be treated according to the present invention, it is an object to remove impurity ions of water generated in various steps in the process of producing ultrapure water and pure water. By providing the catalyst-supporting porous material packed bed in the ion exchange resin column, it is possible to remove hydrogen peroxide and dissolved oxygen simultaneously with impurity ions. Further, as described above, it is more preferable that the catalyst-supporting porous material-containing layer be sandwiched between the particulate ion exchange resin layers on the inflow side and the outflow side of the liquid to be treated. In addition, since the catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body and a platinum group metal-supporting monolithic-organic porous ion exchanger, the ability to remove hydrogen peroxide and dissolved oxygen is extremely high, and ion exchange The filling ratio of the catalyst-supporting porous body to the total packed amount of the resin tower may be much smaller than in the case of using a particulate catalyst-supporting ion exchange resin having a particulate ion exchange resin as a carrier and supporting the catalyst. Specifically, 1 to 5% by volume is preferable, and 2 to 4% by volume is particularly preferable as the packed volume of the catalyst-supporting porous body with respect to the total packed volume of the ion exchange resin tower.
以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は、以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
<白金族金属(パラジウム)担持モノリス状有機多孔質イオン交換体Aの製造>
(モノリス中間体の製造(I処理))
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.25gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEMにより観察した。SEM画像から、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は18.2mL/gであった。
<Production of platinum group metal (palladium) -supported monolithic organic porous ion exchanger A>
(Production of monolith intermediate (I treatment))
9.28 g of styrene, 0.19 g of divinylbenzene, 0.50 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.25 g of 2,2'-azobis (isobutyronitrile) were mixed and uniformly dissolved. Next, the mixture of styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co., Ltd.) is a planetary stirring device. The mixture was stirred under reduced pressure using to give a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, sealed, and allowed to polymerize at 60 ° C. for 24 hours under standing conditions. After the polymerization was completed, the contents were taken out, extracted with methanol, and then dried under reduced pressure to produce a monolithic intermediate having a continuous macropore structure. The internal structure of the monolith intermediate (dry matter) thus obtained was observed by SEM. From the SEM image, although the wall part partitioning two adjacent macropores is very thin rod-like, it has an open cell structure, and the average of the openings (mesopores) in the portions where the macropores and the macropores overlap measured by mercury porosimetry The diameter was 40 μm and the total pore volume was 18.2 mL / g.
(モノリスの製造)
次いで、スチレン216.6g、ジビニルベンゼン4.4g、1-デカノール220g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II処理)。次に上記モノリス中間体を反応容器に入れ、当該スチレン/ジビニルベンゼン/1−デカノール/2,2’−アゾビス(2,4−ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下50℃で24時間重合させた。重合終了後内容物を取り出し、アセトンでソックスレー抽出した後、減圧乾燥した(III処理)。
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.2モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した。SEM観察から、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の平均太さは20μmであった。また、水銀圧入法により測定した、当該モノリスの三次元的に連続した空孔の平均直径は70μm、全細孔容積は4.4mL/gであった。なお、空孔の平均直径は、水銀圧入法により得られた細孔分布曲線の極大値から求めた。
(Manufacture of monolith)
Next, 216.6 g of styrene, 4.4 g of divinylbenzene, 220 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and uniformly dissolved (II treatment). Next, the monolith intermediate is placed in a reaction vessel, immersed in the mixture of styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile), and defoamed in a vacuum chamber. The reaction vessel was sealed and allowed to stand still at 50 ° C. for 24 hours for polymerization. After completion of the polymerization, the contents were taken out, Soxhlet extracted with acetone, and then dried under reduced pressure (III treatment).
The internal structure of the monolith (dry matter) containing 1.2 mol% of the crosslinking component consisting of the styrene / divinylbenzene copolymer thus obtained was observed by SEM. From the SEM observation, it was found that the monolith was a three-dimensionally continuous skeleton and pore, and had a bicontinuous structure in which both phases were intertwined. Moreover, the average thickness of the skeleton measured from the SEM image was 20 μm. The average diameter of three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 70 μm, and the total pore volume was 4.4 mL / g. The average diameter of the pores was determined from the maximum value of the pore distribution curve obtained by mercury porosimetry.
(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスをカラム状反応器に入れ、クロロスルホン酸1600gと四塩化スズ400g、ジメトキシメタン2500mLからなる溶液を循環・通液して、30℃、5時間反応させ、クロロメチル基を導入した。反応終了後、クロロメチル化モノリスをTHF/水=2/1の混合溶媒で洗浄し、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1600mLとトリメチルアミン30%水溶液1400mLを加え、60℃、6時間反応させた。反応終了後、生成物をメタノールで洗浄し、次いで純水で洗浄してモノリスアニオン交換体を得た。
得られたモノリスアニオン交換体のアニオン交換容量は、乾燥状態で4.2mg当量/gであり、四級アンモニウム基が定量的に導入されていることを確認した。また、SEM画像から測定した乾燥状態での骨格の太さは20μmであり、水銀圧入法による測定から求めた、当該モノリスアニオン交換体の三次元的に連続した空孔の乾燥状態での平均直径は70μm、乾燥状態での全細孔容積は4.4mL/gであった。
次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。
(Production of Monolith Anion Exchanger)
The monolith prepared by the above method is placed in a column-like reactor, and a solution consisting of 1600 g of chlorosulfonic acid, 400 g of tin tetrachloride and 2500 mL of dimethoxymethane is circulated and allowed to react for 5 hours at 30 ° C. Introduced. After completion of the reaction, the chloromethylated monolith was washed with a mixed solvent of THF / water = 2/1 and further washed with THF. To this chloromethylated monolith, 1600 mL of THF and 1400 mL of a 30% aqueous solution of trimethylamine were added, and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with methanol and then with pure water to obtain a monolithic anion exchanger.
The anion exchange capacity of the obtained monolithic anion exchanger was 4.2 mg equivalent / g in a dry state, and it was confirmed that a quaternary ammonium group was quantitatively introduced. In addition, the thickness of the skeleton in the dry state measured from the SEM image is 20 μm, and the average diameter in the dry state of three-dimensionally continuous pores of the monolith anion exchanger is determined from the measurement by the mercury penetration method. Of 70 μm, and the total pore volume in the dry state was 4.4 mL / g.
Next, in order to confirm the distribution of quaternary ammonium groups in the monolithic anion exchanger, the monolithic anion exchanger was treated with an aqueous solution of hydrochloric acid to form a chloride type, and then the distribution of chloride ions was observed by EPMA. . As a result, the chloride ion is uniformly distributed not only on the skeleton surface of the monolithic anion exchanger but also on the inside of the skeleton, and it can be confirmed that the quaternary ammonium group is uniformly introduced into the monolithic anion exchanger. The
(白金族金属の担持)
上記モノリスアニオン交換体をCl形にイオン交換した後、乾燥状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、2.1gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム160mgを溶解した希塩酸に24時間浸漬し、塩化パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行い、パラジウム担持モノリスアニオン交換体Aを得た。塩化パラジウム酸形モノリスアニオン交換体が茶色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウム微粒子の生成が示唆された。還元後の試料は、数回純水で洗浄した後、減圧乾燥させた。得られた乾燥状態のパラジウム担持モノリスアニオン交換体Aをカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とした。
パラジウムの担持量をICP発光分光分析法で求めたところ、パラジウム担持量は3.9重量%であった。モノリスアニオン交換体に担持されたパラジウムの分布状態を確認するため、EPMAによりパラジウムの分布状態を観察した。パラジウムはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも分布しており、内部の方か濃度が若干高いものの、比較的均一に分布していることが確認できた。また、担持されたパラジウム粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。パラジウム微粒子の平均粒子径は8nmであった。
(Supporting platinum group metals)
The above monolith anion exchanger was ion-exchanged to the Cl form, then cut out in a cylindrical form in a dry state and dried under reduced pressure. The weight of the monolithic anion exchanger after drying was 2.1 g. The dried monolith anion exchanger was immersed in dilute hydrochloric acid in which 160 mg of palladium chloride was dissolved for 24 hours to ion-exchange into the form of palladium chloride. After completion of the immersion, the monolithic anion exchanger was washed with pure water several times, and immersed in a hydrazine aqueous solution for 24 hours to perform reduction treatment, whereby a palladium-supported monolithic anion exchanger A was obtained. While the palladium chloride type monolith anion exchanger was brown, the monolith anion exchanger after completion of the reduction treatment was colored black, suggesting the formation of palladium microparticles. The sample after reduction was washed with pure water several times and then dried under reduced pressure. The obtained dried palladium-loaded monolithic anion exchanger A was packed in a column, and an aqueous solution of sodium hydroxide was passed through to make the carrier, the carrier monolithic anion exchanger, in the form of OH.
The amount of palladium supported was determined by ICP emission spectrometry, and the amount of palladium supported was 3.9% by weight. In order to confirm the distribution of palladium supported on the monolithic anion exchanger, the distribution of palladium was observed by EPMA. It was confirmed that palladium was distributed not only on the framework surface of the monolithic anion exchanger but also on the inside of the framework, and although the concentration was slightly higher inside, it was relatively uniformly distributed. In addition, in order to measure the average particle diameter of the supported palladium particles, transmission electron microscope (TEM) observation was performed. The average particle size of the palladium fine particles was 8 nm.
得られたパラジウム担持モノリスアニオン交換体を切り出し、内径57mmの触媒充填カラムに充填した。このとき、体積が85mL(水湿潤状態)となるよう切り出した。次いで、SV5000h−1になるように超純水を通水し、差圧を測定したところ、圧力損失は20kPaであった。 The obtained palladium-supported monolithic anion exchanger was cut out and packed in a catalyst-packed column with an inner diameter of 57 mm. At this time, it cut out so that a volume might be set to 85 mL (water wet state). Next, ultrapure water was passed through so as to be SV 5000 h −1 , and the differential pressure was measured. The pressure loss was 20 kPa.
<粒状イオン交換樹脂混合物A>
粒状カチオン交換樹脂(AMBERJET1024H、ロームアンドハース・ジャパン株式会社、平均径0.6〜0.7mm、水湿潤状態の1個当たりの平均見かけ体積0.113〜0.180μL)と、粒状アニオン交換樹脂(AMBERJET4002Cl、ロームアンドハース・ジャパン株式会社、平均径0.5〜0.7mm、水湿潤状態の1個当たりの平均見かけ体積0.065〜0.180μL)をNaOHで再生したものとを、1:2の体積割合で混合し、粒状イオン交換樹脂混合物Aを用意した。
この時の粒状イオン交換樹脂混合物Aの見かけ密度は0.71(g/cm3-R)であった。
<Particulate ion exchange resin mixture A>
Granular cation exchange resin (AMBERJET 1024H, Rohm and Haas Japan Ltd., average diameter 0.6 to 0.7 mm, average apparent volume per water wet condition 0.113 to 0.180 μL), and granular anion exchange resin (AMBERJET 4002 Cl, Rohm and Haas Japan Ltd., average diameter 0.5 to 0.7 mm, average apparent volume per water-wet state 0.065 to 0.180 μL) regenerated with NaOH, 1 : It mixed by the volume ratio of 2, and prepared granular ion exchange resin mixture A.
The apparent density of the particulate ion exchange resin mixture A at this time was 0.71 (g / cm 3 -R).
粒状イオン交換樹脂混合物Aを85mL(水湿潤状態の充填体積(タッピング体積))、内径57mmの触媒充填カラムに充填した。次いで、SV5000h−1になるように超純水を通水し、差圧を測定したところ、圧力損失は43kPaであった。 85 mL of particulate ion exchange resin mixture A (water wet packed volume (tapping volume)) was packed into a catalyst packed column with an inner diameter of 57 mm. Next, ultrapure water was passed through so as to be SV 5000 h −1 , and the differential pressure was measured. The pressure loss was 43 kPa.
<被処理水>
被処理水として、過酸化水素を含有する被処理水を用意した。その性状を表1に示す。
<Water to be treated>
As the water to be treated, water to be treated containing hydrogen peroxide was prepared. The properties are shown in Table 1.
(実施例1)
図5に示す形態例の処理装置を用いて試験を行った。
先ず、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL(充填体積に相当)切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aを目板12が設置されている内径57mmの触媒充填カラムに入れた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を、触媒充填カラムに入れ、タッピングして、白金族金属担持モノリスアニオン交換体Aの間に粒状イオン交換樹脂混合物Aを充填させて、白金族金属担持モノリスアニオン交換体Aと、それらの間を埋める粒状イオン交換樹脂混合物Aと、からなる触媒担持多孔質体層を形成させた。このとき、触媒担持多孔質体層の厚みは70mmであった。また、触媒担持多孔質体充填層における、白金族金属担持モノリスアニオン交換体Aの充填体積及び粒粒状イオン交換樹脂混合物Aの充填体積の合計に対する白金族金属担持モノリスアニオン交換体Aの充填体積の割合は、50体積%であった。
次いで、触媒充填カラムに過酸化水素を15μg/L含有する超純水を、SV5000h−1で通水し、得られた処理水中の過酸化水素濃度を定量した。その結果を表2に示す。
Example 1
The test was conducted using the processing apparatus of the embodiment shown in FIG.
First, 85 mL (corresponding to the filling volume) of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above are cut out in a water-wet state, and a 5 mm square cube (apparent volume per piece is 125 μL) The platinum group metal-supported monolithic anion exchanger A was placed in a catalyst-filled column with an inner diameter of 57 mm on which the screen 12 was installed. Next, 85 mL of particulate ion exchange resin mixture A (water wet packed volume (tapping volume)) is placed in a catalyst packed column and tapped to separate the particulate ion exchange resin mixture between platinum group metal-supported monolithic anion exchanger A. A was charged to form a catalyst-supporting porous body layer composed of a platinum group metal-supported monolithic anion exchanger A and a particulate ion exchange resin mixture A filling in between them. At this time, the thickness of the catalyst-supporting porous material layer was 70 mm. Also, in the packed volume of the platinum group metal-supported monolithic anion exchanger A and the packed volume of the particulate ion exchange resin mixture A in the catalyst-supported porous material packed bed, the packed volume of the platinum group metal-supported monolithic anion exchanger A The proportion was 50% by volume.
Next, ultrapure water containing 15 μg / L of hydrogen peroxide was passed through a catalyst-packed column at SV 5000 h −1 , and the concentration of hydrogen peroxide in the obtained treated water was quantified. The results are shown in Table 2.
(実施例2)
図6に示す形態例の処理装置を用いて試験を行った。
先ず、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL(充填体積に相当)切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aを目板12が設置されている内径57mmの触媒充填カラムに入れた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を、触媒充填カラムに入れ、タッピングして、白金族金属担持モノリスアニオン交換体Aの間に粒状イオン交換樹脂混合物Aを充填させて、白金族金属担持モノリスアニオン交換体Aと、それらの間を埋める粒状イオン交換樹脂混合物Aと、からなる触媒担持多孔質体層を形成させた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を触媒充填カラムに充填し、触媒担持多孔質体層の上に流入側粒状イオン交換樹脂層を形成させた。このとき、触媒担持多孔質体充填層の厚みは70mm、流入側粒状イオン交換樹脂層の厚みは50mmであった。また、触媒担持多孔質体充填層における、白金族金属担持モノリスアニオン交換体Aの充填体積及び粒粒状イオン交換樹脂混合物Aの充填体積の合計に対する白金族金属担持モノリスアニオン交換体Aの充填体積の割合は、50体積%であった。
次いで、触媒充填カラムに過酸化水素を15μg/L含有する超純水を、SV5000h−1で通水し、得られた処理水中の過酸化水素濃度を定量した。その結果を表2に示す。
(Example 2)
The test was conducted using the processing apparatus of the embodiment shown in FIG.
First, 85 mL (corresponding to the filling volume) of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above are cut out in a water-wet state, and a 5 mm square cube (apparent volume per piece is 125 μL) The platinum group metal-supported monolithic anion exchanger A was placed in a catalyst-filled column with an inner diameter of 57 mm on which the screen 12 was installed. Next, 85 mL of particulate ion exchange resin mixture A (water wet packed volume (tapping volume)) is placed in a catalyst packed column and tapped to separate the particulate ion exchange resin mixture between platinum group metal-supported monolithic anion exchanger A. A was charged to form a catalyst-supporting porous body layer composed of a platinum group metal-supported monolithic anion exchanger A and a particulate ion exchange resin mixture A filling in between them. Next, 85 mL of particulate ion exchange resin mixture A (filled volume in water wet state (tapping volume)) was packed in a catalyst packed column to form an inflow side particulate ion exchange resin layer on the catalyst-supporting porous material layer. At this time, the thickness of the catalyst-supporting porous material packed bed was 70 mm, and the thickness of the inflow side granular ion exchange resin layer was 50 mm. Also, in the packed volume of the platinum group metal-supported monolithic anion exchanger A and the packed volume of the particulate ion exchange resin mixture A in the catalyst-supported porous material packed bed, the packed volume of the platinum group metal-supported monolithic anion exchanger A The proportion was 50% by volume.
Next, ultrapure water containing 15 μg / L of hydrogen peroxide was passed through a catalyst-packed column at SV 5000 h −1 , and the concentration of hydrogen peroxide in the obtained treated water was quantified. The results are shown in Table 2.
(実施例3)
図7に示す形態例の処理装置を用いて試験を行った。
先ず、粒状イオン交換樹脂混合物Aを85mL(水湿潤状態の充填体積(タッピング体積))、目板12が設置されている内径57mmの触媒充填カラムに入れ、流出側粒状イオン交換樹脂層を形成させた。次いで、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL(充填体積に相当)切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aを目板12が設置されている内径57mmの触媒充填カラムに入れた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を、触媒充填カラムに入れ、タッピングして、白金族金属担持モノリスアニオン交換体Aの間に粒状イオン交換樹脂混合物Aを充填させて、白金族金属担持モノリスアニオン交換体Aと、それらの間を埋める粒状イオン交換樹脂混合物Aと、からなる触媒担持多孔質体層を、流出側粒状イオン交換樹脂層の上に形成させた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を触媒充填カラムに充填し、触媒担持多孔質体層の上に流入側粒状イオン交換樹脂層を形成させた。このとき、触媒担持多孔質体層の厚みは70mm、流入側粒状イオン交換樹脂層の厚みは50mm、流出側粒状イオン交換樹脂層の厚みは50mmであった。また、触媒担持多孔質体充填層における、白金族金属担持モノリスアニオン交換体Aの充填体積及び粒粒状イオン交換樹脂混合物Aの充填体積の合計に対する白金族金属担持モノリスアニオン交換体Aの充填体積の割合は、50体積%であった。
次いで、触媒充填カラムに過酸化水素を15μg/L含有する超純水を、SV5000h−1で通水し、得られた処理水中の過酸化水素濃度を定量した。その結果を表2に示す。
(Example 3)
The test was performed using the processing apparatus of the embodiment shown in FIG.
First, the particulate ion exchange resin mixture A is placed in a catalyst packed column having an inner diameter of 57 mm, in which 85 mL (filled volume in water wet condition (tapping volume)) and the gauze 12 is installed, to form an outflow side particulate ion exchange resin layer. The Then, 85 mL (corresponding to the filling volume) of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above is cut out in a water-wet state, and further a cube of 5 mm square (apparent volume per piece is 125 μL) The platinum group metal-supported monolithic anion exchanger A was placed in a catalyst-filled column with an inner diameter of 57 mm on which the screen 12 was installed. Next, 85 mL of particulate ion exchange resin mixture A (water wet packed volume (tapping volume)) is placed in a catalyst packed column and tapped to separate the particulate ion exchange resin mixture between platinum group metal-supported monolithic anion exchanger A. A: A catalyst-supporting porous material layer consisting of a platinum group metal-supporting monolithic anion exchanger A and a particulate ion exchange resin mixture A filling the space between them is placed on the outflow-side particulate ion exchange resin layer. It was formed. Next, 85 mL of particulate ion exchange resin mixture A (filled volume in water wet state (tapping volume)) was packed in a catalyst packed column to form an inflow side particulate ion exchange resin layer on the catalyst-supporting porous material layer. At this time, the thickness of the catalyst-supporting porous material layer was 70 mm, the thickness of the inflow side particulate ion exchange resin layer was 50 mm, and the thickness of the outflow side particulate ion exchange resin layer was 50 mm. Also, in the packed volume of the platinum group metal-supported monolithic anion exchanger A and the packed volume of the particulate ion exchange resin mixture A in the catalyst-supported porous material packed bed, the packed volume of the platinum group metal-supported monolithic anion exchanger A The proportion was 50% by volume.
Next, ultrapure water containing 15 μg / L of hydrogen peroxide was passed through a catalyst-packed column at SV 5000 h −1 , and the concentration of hydrogen peroxide in the obtained treated water was quantified. The results are shown in Table 2.
(実施例4)
水湿潤状態の白金族金属(パラジウム)担持モノリスアニオン交換体A 85mLを、それぞれ、1mm角、2.5mm角、10mm角、20mm角(1個当たりの見かけ体積は、それぞれ、1μL、16μL、1000μL、8000μL)に切断したものを用いた以外は、実施例2と同様にして行った。その結果を表3に示す。
また、SVを2000h−1、3000h−1、10000h−1に変化させて行った。その結果を表3に示す。
(Example 4)
1 mm square, 2.5 mm square, 10 mm square, 20 mm square (apparent volume per unit is 1 μL, 16 μL, 1000 μL, respectively) with 85 mL of platinum group metal (palladium) -supported monolithic anion exchanger A in water-wet state , 8000 .mu.L) was used, in the same manner as in Example 2. The results are shown in Table 3.
Further, 2000h -1 and SV, 3000h -1, was performed by changing the 10000h -1. The results are shown in Table 3.
(実施例5)
粒状イオン交換樹脂混合物Aの混合量が異なる以外は、実施例1と同様にして行った。すなわち、先ず、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL(充填体積に相当)切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aと粒状イオン交換樹脂混合物A 595mL(水湿潤状態の充填体積(タッピング体積))とを目板12が設置されている内径57mmの触媒充填カラムに充填し、白金族金属担持モノリスアニオン交換体Aと、それらの間を埋める粒状イオン交換樹脂混合物Aと、からなる触媒担持多孔質体層を形成させた。
次いで、触媒充填カラムに過酸化水素を15μg/L含有する超純水を、SV5000h−1で通水し、得られた処理水中の過酸化水素濃度を定量した。その結果を表4に示す。
また、粒状イオン交換樹脂混合物Aの混合量(水湿潤状態の充填体積(タッピング体積))を、それぞれ、255mL、85mL、43mL、28mLとした以外は、上記と同様にして行った。その結果を表4に示す。
(Example 5)
The procedure was carried out in the same manner as Example 1 except that the mixing amount of the particulate ion exchange resin mixture A was different. That is, first, 85 mL (corresponding to the filling volume) of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above is cut out in a water wet state, and a cube of 5 mm square (apparent volume per piece is 125 μL) The platinum group metal-supported monolithic anion exchanger A and 595 mL of particulate ion exchange resin mixture A (fill volume (tapping volume in water wet state)) are cut to an inner diameter of 57 mm at which the plate 12 is installed. A catalyst-loaded porous body layer was formed, which was packed in a catalyst-packed column and composed of a platinum group metal-supported monolithic anion exchanger A and a particulate ion exchange resin mixture A filling in between them.
Next, ultrapure water containing 15 μg / L of hydrogen peroxide was passed through a catalyst-packed column at SV 5000 h −1 , and the concentration of hydrogen peroxide in the obtained treated water was quantified. The results are shown in Table 4.
Moreover, it carried out in the same manner as described above except that the mixing amount of the particulate ion exchange resin mixture A (filled volume in water wet state (tapping volume)) was 255 mL, 85 mL, 43 mL, and 28 mL, respectively. The results are shown in Table 4.
(比較例1)
粒状イオン交換樹脂混合物Aを用いない以外は、実施例1と同様にして行った。すなわち、先ず、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aを目板12が設置されている内径57mmの触媒充填カラムに充填し、白金族金属担持モノリスアニオン交換体Aのみからなる触媒担持多孔質体層を形成させた。このとき、白金族金属担持モノリスアニオン交換体A層の厚みは70mmであった。
次いで、触媒充填カラムに過酸化水素を15μg/L含有する超純水を通水し、得られた処理水中の過酸化水素濃度を定量した。その結果を表4に示す。
また、白金族金属担持モノリスアニオン交換体A 85mLを、それぞれ、1mm角、2.5mm角、10mm角、20mm角(1個当たりの見かけ体積は、それぞれ、1μL、16μL、1000μL、8000μL)に切断したものを用いた以外は、上記と同様にして行った。その結果を表5に示す。
(Comparative example 1)
The procedure of Example 1 was repeated except that the particulate ion exchange resin mixture A was not used. That is, first, 85 mL of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above is cut out in a water-wet state, and further cut into cubes of 5 mm square (apparent volume per piece is 125 μL) The platinum group metal supported monolithic anion exchanger A is packed in a catalyst-filled column having an inner diameter of 57 mm on which the plate 12 is installed to form a catalyst supported porous body layer consisting only of the platinum group metal supported monolithic anion exchanger A I did. At this time, the thickness of the platinum group metal-supported monolithic anion exchanger A layer was 70 mm.
Next, ultrapure water containing 15 μg / L of hydrogen peroxide was passed through a catalyst packed column, and the concentration of hydrogen peroxide in the obtained treated water was quantified. The results are shown in Table 4.
In addition, 85 mL of platinum group metal-supported monolithic anion exchanger A is cut into 1 mm square, 2.5 mm square, 10 mm square and 20 mm square (apparent volume per piece is 1 μL, 16 μL, 1000 μL, 8000 μL, respectively) The same procedure as described above was carried out except using the above. The results are shown in Table 5.
<パラジウム担持粒子状アニオン交換樹脂Aの製造>
水分保有能力がOH形基準において60〜70%であり、ゲル形である粒子状の強塩基アニオン交換樹脂(I型)に公知の方法でパラジウムナノ粒子を担持して、パラジウム担持粒子状アニオン交換樹脂Aを得た。Cl形の粒子状アニオン交換樹脂を塩化パラジウムの塩酸水溶液に浸漬し、水洗後にヒドラジン水溶液にて浸漬し、還元処理を行い、パラジウム担持粒子状アニオン交換樹脂Aを得た。 このとき、パラジウムナノ粒子担持量は、水湿潤状態のパラジウム担持粒子状アニオン交換樹脂1Lに対するパラジウムナノ粒子担持量で、910mgであった。
<Manufacture of palladium-supported particulate anion exchange resin A>
Palladium-supported particulate anion exchange wherein palladium nanoparticles are supported by a known method on particulate strong base anion exchange resin (type I) having a water retention ability of 60 to 70% based on OH form and in gel form Resin A was obtained. The particulate anion exchange resin of the Cl form was immersed in a hydrochloric acid aqueous solution of palladium chloride, washed with water, and then immersed in a hydrazine aqueous solution to conduct reduction treatment to obtain a palladium-supported particulate anion exchange resin A. At this time, the supported amount of palladium nanoparticles was 910 mg in terms of the supported amount of palladium nanoparticles with respect to 1 L of palladium-loaded particulate anion exchange resin in a water-wet state.
(比較例2)
上記で得たパラジウム担持粒子状アニオン交換樹脂Aを85mL(水湿潤状態の充填体積(タッピング体積))と粒状イオン交換樹脂混合物A 765mL(水湿潤状態の充填体積(タッピング体積))とを目板12が設置されている内径57mmの触媒充填カラムに混合充填した。
次いで、触媒充填カラムに過酸化水素を15μg/L含有する超純水を、SV5000h−1で通水し、得られた処理水中の過酸化水素濃度を定量した。その結果を表6に示す。
(Comparative example 2)
85 mL of the palladium-supported particulate anion exchange resin A obtained above (filled volume in water wet state (tapping volume)) and 765 mL of particulate ion exchange resin mixture A (filled volume in water wet state (tapping volume)) The mixture was packed and packed in a catalyst-filled column with an inner diameter of 57 mm in which 12 was installed.
Next, ultrapure water containing 15 μg / L of hydrogen peroxide was passed through a catalyst-packed column at SV 5000 h −1 , and the concentration of hydrogen peroxide in the obtained treated water was quantified. The results are shown in Table 6.
(実施例6)
図6に示す形態例の処理装置を用いて試験を行った。
先ず、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL(充填体積に相当)切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aを目板12が設置されている内径57mmの触媒充填カラムに入れた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を、触媒充填カラムに入れ、タッピングして、白金族金属担持モノリスアニオン交換体Aの間に粒状イオン交換樹脂混合物Aを充填させて、白金族金属担持モノリスアニオン交換体Aと、それらの間を埋める粒状イオン交換樹脂混合物Aと、からなる触媒担持多孔質体層を形成させた。次いで、粒状イオン交換樹脂混合物A 85mL(水湿潤状態の充填体積(タッピング体積))を触媒充填カラムに充填し、触媒担持多孔質体層の上に流入側粒状イオン交換樹脂層を形成させた。このとき、触媒担持多孔質体充填層の厚みは70mm、流入側粒状イオン交換樹脂層の厚みは50mmであった。また、触媒担持多孔質体充填層における、白金族金属担持モノリスアニオン交換体Aの充填体積及び粒粒状イオン交換樹脂混合物Aの充填体積の合計に対する白金族金属担持モノリスアニオン交換体Aの充填体積の割合は、50体積%であった。
次いで、溶存酸素を30μg/L含有する超純水に、水素溶解膜を用いて水素ガスを溶解させ、溶存水素を50μg/L含有する被処理水とし、この被処理水を触媒充填カラムに通水し、得られた処理水中の溶存酸素濃度を定量した。その結果を表7に示す。
(Example 6)
The test was conducted using the processing apparatus of the embodiment shown in FIG.
First, 85 mL (corresponding to the filling volume) of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above are cut out in a water-wet state, and a 5 mm square cube (apparent volume per piece is 125 μL) The platinum group metal-supported monolithic anion exchanger A was placed in a catalyst-filled column with an inner diameter of 57 mm on which the screen 12 was installed. Next, 85 mL of particulate ion exchange resin mixture A (water wet packed volume (tapping volume)) is placed in a catalyst packed column and tapped to separate the particulate ion exchange resin mixture between platinum group metal-supported monolithic anion exchanger A. A was charged to form a catalyst-supporting porous body layer composed of a platinum group metal-supported monolithic anion exchanger A and a particulate ion exchange resin mixture A filling in between them. Next, 85 mL of particulate ion exchange resin mixture A (filled volume in water wet state (tapping volume)) was packed in a catalyst packed column to form an inflow side particulate ion exchange resin layer on the catalyst-supporting porous material layer. At this time, the thickness of the catalyst-supporting porous material packed bed was 70 mm, and the thickness of the inflow side granular ion exchange resin layer was 50 mm. Also, in the packed volume of the platinum group metal-supported monolithic anion exchanger A and the packed volume of the particulate ion exchange resin mixture A in the catalyst-supported porous material packed bed, the packed volume of the platinum group metal-supported monolithic anion exchanger A The proportion was 50% by volume.
Next, hydrogen gas is dissolved in ultrapure water containing 30 μg / L of dissolved oxygen using a hydrogen dissolving film to make the water to be treated containing 50 μg / L of dissolved hydrogen, and this water to be treated is passed through the catalyst packed column. The water was drained, and the dissolved oxygen concentration in the obtained treated water was quantified. The results are shown in Table 7.
(比較例3)
粒状イオン交換樹脂混合物Aを用いない以外は、実施例5と同様にして行った。すなわち、先ず、上記で得た白金族金属(パラジウム)担持モノリスアニオン交換体Aを水湿潤状態で85mL(充填体積に相当)切り出し、更に、5mm角の立方体(1個当たりの見かけ体積が125μL)となるように切断し、その白金族金属担持モノリスアニオン交換体Aを目板12が設置されている内径57mmの触媒充填カラムに充填し、白金族金属担持モノリスアニオン交換体Aのみからなる触媒担持多孔質体層を形成させた。
次いで、溶存酸素を30μg/L含有する超純水に、水素溶解膜を用いて水素ガスを溶解させ、溶存水素を50μg/L含有する被処理水とし、この被処理水を触媒充填カラムに通水し、得られた処理水中の溶存酸素濃度を定量した。その結果を表7に示す。
(Comparative example 3)
Example 5 was carried out in the same manner as Example 5, except that the particulate ion exchange resin mixture A was not used. That is, first, 85 mL (corresponding to the filling volume) of the platinum group metal (palladium) -supporting monolithic anion exchanger A obtained above is cut out in a water wet state, and a cube of 5 mm square (apparent volume per piece is 125 μL) The platinum group metal-supported monolithic anion exchanger A is packed into a catalyst-filled column with an inner diameter of 57 mm on which the plate 12 is installed, and the catalyst-supported monolith anion exchanger A alone is loaded. A porous layer was formed.
Next, hydrogen gas is dissolved in ultrapure water containing 30 μg / L of dissolved oxygen using a hydrogen dissolving film to make the water to be treated containing 50 μg / L of dissolved hydrogen, and this water to be treated is passed through the catalyst packed column. The water was drained, and the dissolved oxygen concentration in the obtained treated water was quantified. The results are shown in Table 7.
1、31 被処理液の処理装置
2、32 処理容器
3、23 触媒担持多孔質体充填層
4、24 流入側粒状イオン交換樹脂層
5、25 流出側粒状イオン交換樹脂層
6 触媒担持多孔質体
7 粒状のイオン交換樹脂
10 被処理液供給管
11 処理液排出管
21 被処理液
22 処理液
26 パラジウム担持モノリスアニオン交換体A
27 粒状イオン交換樹脂混合物A
1, 31 treatment apparatus for liquid to be treated 2, 32 treatment vessel 3, 23 catalyst-supporting porous material packed bed 4, 24 inflow side granular ion exchange resin layer 5, 25 outflow side granular ion exchange resin layer 6 catalyst supporting porous body 7 Particulate ion exchange resin 10 treated liquid supply pipe 11 treated liquid discharge pipe 21 treated liquid 22 treated liquid 26 palladium supported monolithic anion exchanger A
27 Particulate ion exchange resin mixture A
Claims (9)
該触媒担持多孔質体が、モノリス状有機多孔質体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体、又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質イオン交換体であること、
該触媒担持多孔質体充填層において、該触媒担持多孔質体の充填体積及び該粒状のイオン交換樹脂の充填体積の合計に対する該触媒担持多孔質体の充填体積の割合が、25〜67体積%であること、
を特徴とする被処理液の処理方法。 The liquid to be treated is supplied to a catalyst-supported porous body packed bed comprising a catalyst-supporting porous body in which a catalyst is supported on a porous body and a particulate ion exchange resin filling the space between the catalyst-supporting porous bodies. And a method of treating the treatment liquid in which the treatment liquid is allowed to pass through the catalyst-supporting porous material packed bed,
The catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body in which a platinum group metal catalyst is supported on a monolithic organic porous body, or a platinum group metal catalyst as a monolithic organic porous ion exchanger Being a supported platinum group metal supported monolithic organic porous ion exchanger;
In the catalyst-supported porous body packed bed, the ratio of the packed volume of the catalyst-supported porous body to the total of the packed volume of the catalyst-supported porous body and the packed volume of the particulate ion exchange resin is 25 to 67% by volume To be
The processing method of the to-be-processed liquid characterized by the above.
該処理塔又は処理容器には、多孔質体に触媒が担持されている触媒担持多孔質体と、該触媒担持多孔質体の間を埋める粒状のイオン交換樹脂と、からなる触媒担持多孔質体充填層が形成されており、
該触媒担持多孔質体が、モノリス状有機多孔質体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質体、又はモノリス状有機多孔質イオン交換体に白金族金属触媒が担持されている白金族金属担持モノリス状有機多孔質イオン交換体であること、
該触媒担持多孔質体充填層において、該触媒担持多孔質体の充填体積及び該粒状のイオン交換樹脂の充填体積の合計に対する該触媒担持多孔質体の充填体積の割合が、25〜67体積%であること、
を特徴とする被処理液の処理装置。 It has a treatment tower or treatment vessel through which the liquid to be treated flows.
A catalyst-supporting porous body comprising a catalyst-supporting porous body in which a catalyst is supported on a porous body, and a particulate ion exchange resin filling the space between the catalyst-supporting porous body in the treatment tower or treatment vessel A packed bed is formed,
The catalyst-supporting porous body is a platinum group metal-supporting monolithic organic porous body in which a platinum group metal catalyst is supported on a monolithic organic porous body, or a platinum group metal catalyst as a monolithic organic porous ion exchanger Being a supported platinum group metal supported monolithic organic porous ion exchanger;
In the catalyst-supported porous body packed bed, the ratio of the packed volume of the catalyst-supported porous body to the total of the packed volume of the catalyst-supported porous body and the packed volume of the particulate ion exchange resin is 25 to 67% by volume To be
An apparatus for treating a liquid to be treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015052243A JP6529793B2 (en) | 2015-03-16 | 2015-03-16 | Method of treating liquid to be treated and treatment apparatus of liquid to be treated |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015052243A JP6529793B2 (en) | 2015-03-16 | 2015-03-16 | Method of treating liquid to be treated and treatment apparatus of liquid to be treated |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016172206A JP2016172206A (en) | 2016-09-29 |
JP6529793B2 true JP6529793B2 (en) | 2019-06-12 |
Family
ID=57007846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015052243A Active JP6529793B2 (en) | 2015-03-16 | 2015-03-16 | Method of treating liquid to be treated and treatment apparatus of liquid to be treated |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6529793B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111318266B (en) * | 2020-02-14 | 2022-01-28 | 南京师范大学 | Two-dimensional covalent organic framework modified ion exchange resin and preparation method and application thereof |
JP2022163533A (en) * | 2021-04-14 | 2022-10-26 | オルガノ株式会社 | Platinum group metal-supported catalyst column and carbon-carbon bond formation method |
CN113800672A (en) * | 2021-08-27 | 2021-12-17 | 中电华创电力技术研究有限公司 | Desulfurization wastewater standard discharge treatment device and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5045099B2 (en) * | 2004-03-31 | 2012-10-10 | 栗田工業株式会社 | Ultrapure water production apparatus and operation method of ultrapure water production apparatus |
JP5329463B2 (en) * | 2009-03-18 | 2013-10-30 | オルガノ株式会社 | Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method |
JP5567958B2 (en) * | 2010-09-17 | 2014-08-06 | オルガノ株式会社 | Method for producing platinum group metal supported catalyst |
-
2015
- 2015-03-16 JP JP2015052243A patent/JP6529793B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016172206A (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI476048B (en) | Platinum metal-supported catalyst, hydrogen peroxide decomposition method, dissolved oxygen removal method, and electronic part washing method | |
TWI583631B (en) | Cleaning method and cleaning system for copper-exposed substrate | |
TWI794494B (en) | Metal impurity content analysis method and analysis kit for analysis target water | |
JP5943744B2 (en) | Carbon-carbon bond forming method and platinum group metal supported catalyst for carbon-carbon bond forming reaction | |
TWI758266B (en) | Method of refining organic solvent | |
JP6042278B2 (en) | Platinum group metal supported catalytic hydrogenation reduction catalyst and catalytic hydrogenation reduction method | |
JP6529793B2 (en) | Method of treating liquid to be treated and treatment apparatus of liquid to be treated | |
JP6178461B2 (en) | Carbon-carbon bond formation method | |
JP5525754B2 (en) | Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components | |
JP6042277B2 (en) | Platinum group metal supported catalyst and reactor | |
JP7081974B2 (en) | Liquid purification cartridge and liquid purification method | |
JP5567958B2 (en) | Method for producing platinum group metal supported catalyst | |
CN107850837B (en) | Process for producing organic acid ester liquid, and process for producing resist solvent or cleaning solution for electronic part production | |
WO2020230555A1 (en) | Method for forming carbon-carbon bond | |
WO2022264471A1 (en) | Method of catalytic hydrogenation and reduction | |
WO2022219870A1 (en) | Platinum group metal supported catalyst column and method for forming carbon-carbon bond | |
TWI447150B (en) | Monolithic organic porous material, monolithic organic porous ion exchanger, and method of producing same | |
JP6100664B2 (en) | Hydrofluoric acid aqueous solution purification method, substrate processing method and substrate processing apparatus | |
WO2022153604A1 (en) | Catalyst having platinum-group metal ion supported thereon, and carbon-carbon bond formation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170602 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6529793 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |