JP6529375B2 - Metal catalyst, production method thereof and regeneration method thereof - Google Patents

Metal catalyst, production method thereof and regeneration method thereof Download PDF

Info

Publication number
JP6529375B2
JP6529375B2 JP2015149145A JP2015149145A JP6529375B2 JP 6529375 B2 JP6529375 B2 JP 6529375B2 JP 2015149145 A JP2015149145 A JP 2015149145A JP 2015149145 A JP2015149145 A JP 2015149145A JP 6529375 B2 JP6529375 B2 JP 6529375B2
Authority
JP
Japan
Prior art keywords
metal
catalyst
metal catalyst
oxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015149145A
Other languages
Japanese (ja)
Other versions
JP2017029874A (en
Inventor
岡村 淳志
淳志 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2015149145A priority Critical patent/JP6529375B2/en
Publication of JP2017029874A publication Critical patent/JP2017029874A/en
Application granted granted Critical
Publication of JP6529375B2 publication Critical patent/JP6529375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Description

本発明は、水素化反応等の各種反応に用いることができる金属触媒およびその再生方法に関する。   The present invention relates to a metal catalyst that can be used for various reactions such as a hydrogenation reaction and a regeneration method thereof.

金属触媒は、水素化、水素化分解、脱水素反応などの各種反応における触媒として広く利用されている。金属種としては、白金、パラジウム等の貴金属、ニッケル、コバルト、銅、鉄等の遷移金属が金属成分として利用されている。なかでも、安価な遷移金属を主体とする金属触媒が実用的であり、広く用いられている。
金属触媒の反応形式としては、反応原料と触媒を密閉した反応容器に充填し、所定の温度、圧力条件下で反応を行うバッチ式反応形式や所定の温度、圧力条件に設定した触媒充填層に原料を流通して連続的に反応を行う流通形式等があり、連続操作が可能な流通形式が工業的に有利である場合が多い。
これら金属触媒を用いて水素化、水素化分解、脱水素反応など行う場合、特に、工業的に有利な反応形式である流通形式で連続的に反応操作を行う場合、反応時間の経過とともに、触媒上にコーク様物質のような活性阻害物質が蓄積し、徐々に触媒活性が低下するという問題がある。その解決策として、炭化水素油水素化処理触媒上に析出したコークを酸化燃焼して再生する方法において、再生後の触媒上の残留コーク量が0.5〜10.0重量%の範囲になるようにコークの酸化燃焼を制御する炭化水素油水素化処理触媒の再生方法が提案されている(特許文献1)。
Metal catalysts are widely used as catalysts in various reactions such as hydrogenation, hydrocracking and dehydrogenation reactions. As the metal species, noble metals such as platinum and palladium, and transition metals such as nickel, cobalt, copper and iron are used as the metal component. Among them, metal catalysts based on inexpensive transition metals are practical and widely used.
As a reaction form of the metal catalyst, the reaction raw material and the catalyst are packed in a closed reaction vessel, and a batch type reaction form in which the reaction is carried out under a predetermined temperature and pressure condition, and a catalyst packed bed set to a predetermined temperature and pressure condition. There is a distribution form in which the raw materials are distributed and the reaction is continuously performed, and the distribution form in which the continuous operation can be performed is often industrially advantageous.
When carrying out hydrogenation, hydrogenolysis, dehydrogenation reaction, etc. using these metal catalysts, in particular, when carrying out the reaction operation continuously in the flow format which is an industrially advantageous reaction format, the catalyst with the passage of reaction time There is a problem that an activity inhibitor such as coke-like substance accumulates on the top, and the catalytic activity is gradually reduced. As a solution, in the method of oxidizing and burning the coke deposited on the hydrocarbon oil hydrotreating catalyst to regenerate it, the amount of residual coke on the catalyst after regeneration is in the range of 0.5 to 10.0% by weight. Thus, there has been proposed a method for regenerating a hydrocarbon oil hydrotreating catalyst which controls the oxidation combustion of coke (Patent Document 1).

特開平5−123586号公報JP-A-5-123586

前記した特許文献1においては、酸化燃焼処理により金属成分が過度に酸化されて酸化物の状態に変化することを抑制することにより、再生時の触媒の損傷を抑えて繰り返し使用に耐える炭化水素油水素化処理触媒の再生方法を提供することを目的としているものの、十分に残留コークを除去できないため、反応開始時(初期)の触媒活性と比べて再生処理後の触媒活性の方が低くなる、また、再生処理後に反応を再開しても残留コークを核にして再度コークが形成されやすくなるため再生処理後の使用期間が短くなるといった問題が残る。   In Patent Document 1 described above, a hydrocarbon oil that withstands repeated use by suppressing damage to the catalyst at the time of regeneration by suppressing excessive oxidation of the metal component and changing to the state of oxide due to oxidative combustion treatment. Although the purpose is to provide a method for regenerating a hydrotreating catalyst, since residual coke can not be removed sufficiently, the catalyst activity after regeneration treatment is lower than the catalyst activity at the start of the reaction (initial), In addition, even if the reaction is resumed after the regeneration treatment, residual coke is used as a nucleus to easily form coke again, which causes a problem that the period of use after the regeneration treatment becomes short.

さらには、特許文献1の実施例に開示された触媒は、無機物担体に担持された金属成分の含有量が高くても8wt%程度であり、触媒成分の大部分は無機物担体成分である。
該触媒における金属は、無機物担体上に担持された状態であるため、残留コークの燃焼時に金属成分の過度な酸化は抑制されても、金属成分の少なからず一部は酸化を受けてしまう。そうなると、酸化された金属成分は、それ自身が担持されている無機物担体と複合酸化物を形成し、その後の還元処理でも金属に還元されない状態となり、この質的変化により金属成分の触媒活性が損なわれる虞がある。
このような問題に対して、触媒自体が主に金属成分から構成される金属成分を50重量%以上含有するような高活性型金属触媒では、再生時の酸化燃焼処理において金属成分の一部が酸化されても、特許文献1の触媒のように金属が無機物担体上に担持された状態でないので、複合酸化物を形成する虞がない、あるいは、一部の金属成分が複合酸化物形成に使われたとしても、複合酸化物形成に関与した金属成分の全金属成分に占める比率はごく小さく抑えられる。したがって、その後の還元処理で酸化状態となった金属成分を金属状態とすることができるので、質的変化により金属成分の触媒活性が損なわれることがない。
一方で、触媒自体が主に金属成分から構成される金属成分を50重量%以上含有するような高活性型金属触媒は、一般的に熱負荷により容易に金属粒子の凝集が進行し物性低下を生じやすい。特に、酸化燃焼処理後に還元処理を行うことで触媒性能を再生させる場合、還元処理温度が高いとその熱負荷により触媒活性が低下するという問題が依然として残る。
Furthermore, in the catalyst disclosed in the example of Patent Document 1, the content of the metal component supported on the inorganic carrier is at most about 8 wt%, and most of the catalyst component is the inorganic carrier component.
Since the metal in the catalyst is supported on the inorganic carrier, even if excessive oxidation of the metal component is suppressed at the time of combustion of the residual coke, not a little of the metal component is oxidized. In that case, the oxidized metal component forms a complex oxide with the inorganic support on which it is supported, and it is not reduced to metal even by the subsequent reduction treatment, and this qualitative change impairs the catalytic activity of the metal component. There is a risk of
With respect to such problems, in a highly active metal catalyst in which the catalyst itself contains 50% by weight or more of a metal component mainly composed of a metal component, a part of the metal component is present in the oxidation combustion treatment during regeneration. Even if oxidized, there is no possibility of forming a composite oxide because the metal is not supported on the inorganic support as in the catalyst of Patent Document 1, or some metal components are used for the composite oxide formation. Even if this is the case, the ratio of the metal component involved in complex oxide formation to the total metal component can be minimized. Therefore, since the metal component which has been in the oxidized state in the subsequent reduction treatment can be made into the metal state, the catalytic activity of the metal component is not impaired by the qualitative change.
On the other hand, a highly active metal catalyst in which the catalyst itself contains 50% by weight or more of a metal component mainly composed of a metal component generally causes aggregation of the metal particles to easily proceed due to heat load, and the physical properties are degraded. It is easy to occur. In particular, in the case where the catalyst performance is regenerated by performing the reduction treatment after the oxidation combustion treatment, there still remains the problem that when the reduction treatment temperature is high, the heat load reduces the catalyst activity.

本発明者は、従来の金属触媒に見られた上記問題点を解決するため鋭意検討を重ねた結果、ニッケル、コバルト鉄から選ばれる少なくとも一種である金属成分Aと、白金ロジウム、イリジウム、ルテニウムから選ばれる少なくとも一種である金属成分B、および難還元性金属酸化物Cを含み、金属成分Aが50〜94質量%、金属成分Bが0.1〜5質量%、金属酸化物成分Cが1〜49.9質量%である金属触媒とすることで、金属成分Aを50質量%以上含有するような高活性型金属触媒においても、金属成分の還元処理温度を低温化できるため、還元処理における金属粒子凝集による物性低下を抑制できることを見出した。
すなわち、還元処理を繰り返すことで触媒性能を再生させる場合であっても、その還元処理毎に触媒活性が低下することを抑制できることを見出して、本発明を完成した。
As a result of intensive studies to solve the above problems found in conventional metal catalysts, the present inventor has found that metal component A, which is at least one selected from nickel, cobalt and iron, platinum , rhodium, iridium, 50 to 94% by mass of metal component A, 0.1 to 5% by mass of metal component B, and metal oxide component C containing metal component B which is at least one kind selected from ruthenium, and non-reducible metal oxide C The reduction treatment temperature of the metal component can be lowered even in a highly active metal catalyst containing 50% by mass or more of the metal component A by setting the metal catalyst having 1 to 49.9 mass%, so It has been found that the reduction in physical properties due to metal particle aggregation in the treatment can be suppressed.
That is, even when the catalyst performance is regenerated by repeating the reduction treatment, it has been found that the reduction of the catalyst activity can be suppressed for each reduction treatment, and the present invention has been completed.

以下、本発明を示す。
[1]ニッケル、コバルト鉄から選ばれる少なくとも一種である金属成分Aと、白金ロジウム、イリジウム、ルテニウムから選ばれる少なくとも一種である金属成分Bおよび、難還元性金属酸化物Cを含み、金属成分Aが50〜94質量%、金属成分Bが0.1〜5質量%、金属酸化物成分Cが1〜49.9質量%である金属触媒。
[2]前記金属触媒の金属露出表面積が、30〜60m/gである[1]に記載の金属触媒。
[3]前記難還元性金属酸化物Cが、アルミナ、シリカ、チタニア、ジルコニア、セリアから選ばれる少なくとも一種である[1]または[2]に記載の金属触媒。
[4]前記金属触媒中に含まれるアルカリ金属および/またはアルカリ土類金属の含有量が、100ppm以下である[1]〜[3]のいずれかに記載の金属触媒。
[5]前記金属触媒の金属露出表面積が最大となる還元処理温度が、200〜350℃の範囲である[1]〜[4]のいずれかに記載の金属触媒
[6]請求項[1]〜[4]のいずれかに記載の金属触媒の再生方法であって、金属触媒上に蓄積した蓄積物を酸化燃焼により除去する酸化工程と、酸化工程後に金属触媒を還元処理する還元工程を含むことを特徴とする金属触媒の再生方法。

Hereinafter, the present invention is described.
[1] A metal comprising a metal component A which is at least one selected from nickel, cobalt and iron, a metal component B which is at least one selected from platinum , rhodium, iridium and ruthenium, and a non-reducible metal oxide C, and a metal The metal catalyst whose component A is 50-94 mass%, the metal component B is 0.1-5 mass%, and the metal oxide component C is 1-49.9 mass%.
[2] The metal catalyst according to [1], wherein a metal exposed surface area of the metal catalyst is 30 to 60 m 2 / g.
[3] The metal catalyst according to [1] or [2], wherein the non-reducible metal oxide C is at least one selected from alumina, silica, titania, zirconia and ceria.
[4] The metal catalyst according to any one of [1] to [3], wherein the content of the alkali metal and / or the alkaline earth metal contained in the metal catalyst is 100 ppm or less.
[5] the reduction treatment temperature metal exposed surface area of the metal catalyst is maximized is in the range of 200 to 350 ° C. [1] metal catalyst according to any one of - [4].
[6] The method for regenerating a metal catalyst according to any one of [1] to [4], which comprises an oxidation step of removing accumulated matter accumulated on the metal catalyst by oxidation combustion, and a metal catalyst after the oxidation step. A method of regenerating a metal catalyst, comprising a reduction step of reduction treatment.

本発明の金属触媒は、金属成分の酸化物を金属へ還元する際の還元処理温度をより低下させることができる。そのため、還元処理における金属粒子凝集による物性低下を抑制することができ、高活性を得ることができる。特に、長時間の反応で触媒上に蓄積するコーク様物質のような活性阻害物質(蓄積物)の酸化燃焼処理操作と還元処理操作(再生処理)を繰り返し行う場合でも、還元処理後の金属触媒の物性低下が少なく抑えられるので、還元処理後の触媒活性を高く維持することが可能となり、長期に渡り触媒を使用することができる。   The metal catalyst of the present invention can further lower the reduction treatment temperature when reducing the oxide of the metal component to the metal. Therefore, the physical property fall by metal particle aggregation in reduction processing can be suppressed, and high activity can be obtained. In particular, even when the oxidative combustion treatment operation and the reduction treatment operation (regeneration treatment) of an activity inhibitor (accumulated matter) such as coke-like substance accumulated on the catalyst in a long reaction time are repeatedly performed, the metal catalyst after the reduction treatment Since the decrease in the physical properties of the catalyst can be suppressed to a low level, the catalyst activity after the reduction treatment can be maintained high, and the catalyst can be used for a long time.

以下、本発明にかかる金属触媒およびその再生方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, the metal catalyst according to the present invention and the regeneration method thereof will be described in detail, but the scope of the present invention is not limited by these descriptions, and other than the following examples, it is possible to appropriately It can be changed and implemented.

<金属触媒>
本発明における金属触媒は、ニッケル、コバルト、銅、鉄から選ばれる少なくとも一種である金属成分Aと、白金、パラジウム、ロジウム、イリジウム、ルテニウム、銀、金から選ばれる少なくとも一種である金属成分Bおよび、難還元性金属酸化物Cを含み、金属成分Aが50〜94質量%、金属成分Bが0.1〜5質量%、金属酸化物成分Cが1〜49.9質量%である金属触媒である。
金属成分Aとしては、ニッケル、コバルト、銅、鉄の少なくとも一種の金属成分を含むものであればよいが、なかでも、ニッケル、コバルト、銅の少なくとも一種の金属成分を含むものが好ましい。
金属成分Aの含有量としては、金属触媒に対して50〜94質量%であり、好ましくは、60〜90質量%(金属として)である。
<Metal catalyst>
The metal catalyst in the present invention includes at least one metal component A selected from nickel, cobalt, copper and iron, and a metal component B selected from platinum, palladium, rhodium, iridium, ruthenium, silver and gold. A metal catalyst containing hard-reducible metal oxide C, 50 to 94% by mass of metal component A, 0.1 to 5% by mass of metal component B, and 1 to 49.9% by mass of metal oxide component C It is.
The metal component A may be any one containing at least one metal component of nickel, cobalt, copper and iron, and among them, one containing at least one metal component of nickel, cobalt and copper is preferable.
As content of the metal component A, it is 50-94 mass% with respect to a metal catalyst, Preferably, it is 60-90 mass% (as a metal).

金属成分Bとしては、白金、パラジウム、ロジウム、イリジウム、ルテニウム、銀、金から選ばれる少なくとも一種であればよいが、好ましくは、銀、パラジウム、白金、ロジウムである。その理由は明らかではないが、金属成分Bが存在すると、低温域でも金属成分B上で活性化された水素が発生し、該活性化された水素が金属成分Aの酸化物にもスピルオーバーすることで、金属成分Aの酸化物を金属へ還元する際の還元処理温度が低下するものと推定される。   The metal component B may be at least one selected from platinum, palladium, rhodium, iridium, ruthenium, silver and gold, preferably silver, palladium, platinum and rhodium. Although the reason is not clear, in the presence of the metal component B, activated hydrogen is generated on the metal component B even in the low temperature range, and the activated hydrogen also spills over to the oxide of the metal component A. Thus, it is presumed that the reduction treatment temperature at the time of reducing the oxide of the metal component A to metal is lowered.

なお、前記した「還元処理温度がより低下する」効果の確認方法としては、例えば、熱重量分析装置を用いて、金属成分Bを含んでいる場合と金属成分Bを含んでいない場合とで還元処理雰囲気下での試料重量の温度に対する変化を測定し、その変化速度の最大値(以後、「還元ピーク温度」と称する場合がある)を測定することで還元処理温度がどの程度低下するかをおおよそ判別することができる。   In addition, as a confirmation method of the above-mentioned "reduction treatment temperature is lowered" effect, for example, using a thermogravimetric analyzer, reduction is carried out depending on when metal component B is contained and metal component B is not contained. The change of the sample weight in the treatment atmosphere with respect to temperature is measured, and by measuring the maximum value of the change rate (hereinafter sometimes referred to as "reduction peak temperature"), how much the reduction treatment temperature decreases It can be roughly determined.

上記還元ピーク温度を測定し、還元処理温度の低温化の効果を確認したのち、還元処理温度を決定する(以後、「還元処理温度の設定」と称する場合がある)。本発明でいう還元処理温度とは、金属成分の金属露出表面積が最大となる温度とする。この金属成分の金属露出表面積は、金属表面へのCOガス吸着量から算出することができ、COガスの吸着量の測定は、例えば、COパルス吸着法により測定することができる。したがって、前記還元ピーク温度より低いいくつかの温度において、還元処理した金属触媒の金属成分の金属露出表面積を測定し、この金属成分の金属露出表面積が最大となる温度を還元処理温度とする。   The reduction peak temperature is measured, and after confirming the effect of lowering the reduction treatment temperature, the reduction treatment temperature is determined (hereinafter, may be referred to as “setting of reduction treatment temperature”). The reduction treatment temperature in the present invention is a temperature at which the metal exposed surface area of the metal component is maximized. The metal exposed surface area of the metal component can be calculated from the amount of CO gas adsorbed onto the metal surface, and the amount of CO gas adsorbed can be measured, for example, by a CO pulse adsorption method. Therefore, the metal exposed surface area of the metal component of the reduced metal catalyst is measured at several temperatures lower than the reduction peak temperature, and the temperature at which the metal exposed surface area of the metal component is maximized is taken as the reduction processing temperature.

すなわち、本発明における「還元処理温度がより低下する」効果とは、金属成分Bを含んでいない場合の上記方法により決定した還元処理温度に対して、金属成分Bを含んでいる場合の上記方法により決定した還元処理温度が何℃低下したかという意味であり、具体的には、金属成分Bを含んでいない場合の還元処理温度が400℃であり、金属成分Bを含んでいる場合の還元処理温度が350℃の時、還元処理温度は50℃低下したといえる。   That is, the effect of “lowering the reduction treatment temperature” according to the present invention means the above method in which the metal component B is contained relative to the reduction treatment temperature determined by the above method when the metal component B is not contained. The reduction treatment temperature is determined by how much ° C. The reduction treatment temperature when not containing metal component B is 400.degree. C. and the reduction when metal component B is contained. It can be said that the reduction treatment temperature decreased by 50 ° C. when the treatment temperature was 350 ° C.

金属成分Bの含有量としては、金属触媒に対して0.1〜5質量%であり、好ましくは、0.5〜3質量%(金属として)である。   As content of the metal component B, it is 0.1-5 mass% with respect to a metal catalyst, Preferably, it is 0.5-3 mass% (as a metal).

難還元性金属酸化物Cとしては、前記した金属成分Aの酸化物を金属へ還元する還元処理条件下であっても還元されにくい酸化物であれば特に限定されず、例えば、アルミナ、シリカ、チタニア、ジルコニア、セリアから選ばれる少なくとも一種、あるいは複合酸化物を用いることができる。ここで、難還元性とは、金属成分の酸化物を金属へ還元する還元処理条件下であっても、95質量%以上が酸化物のままで存在することをいう。
難還元性金属酸化物Cの含有量としては、金属触媒に対して1〜49.9質量%であり、好ましくは、5〜35質量%(金属酸化物として)である。
The non-reducible metal oxide C is not particularly limited as long as it is an oxide which is difficult to be reduced even under the reduction treatment conditions for reducing the above-mentioned oxide of the metal component A to a metal, for example, alumina, silica, At least one selected from titania, zirconia, ceria, or a composite oxide can be used. Here, the non-reducibility means that 95% by mass or more of the metal component oxide is present as an oxide even under reduction processing conditions for reducing the oxide of the metal component to the metal.
The content of the non-reducible metal oxide C is 1 to 49.9% by mass, preferably 5 to 35% by mass (as metal oxide) with respect to the metal catalyst.

前記した金属成分の金属露出表面積としては、触媒活性の観点から30〜60m/gであるものが好ましく、35〜50m/gであるものがより好ましい。金属露出表面積が60m/gを超えても触媒活性面では問題ないが、本発明の金属成分を50重量%以上含有するような高活性型金属触媒では、金属露出表面積が60m/gとするためにはより厳密な調製条件の管理等が必要であり、金属触媒の量産化などの踏まえると60m/gまでのものが好ましい。金属成分の金属露出表面積は前記したCOパルス吸着法により測定することができる。 The metal exposed surface area of the metal component described above is preferably 30 to 60 m 2 / g from the viewpoint of catalytic activity, and more preferably 35 to 50 m 2 / g. Even if the metal exposed surface area exceeds 60 m 2 / g, there is no problem in the catalytically active surface, but in the highly active metal catalyst containing 50% by weight or more of the metal component of the present invention, the metal exposed surface area is 60 m 2 / g and In order to achieve this, more strict control of preparation conditions, etc. are required, and in consideration of mass production of metal catalysts, those up to 60 m 2 / g are preferable. The metal exposed surface area of the metal component can be measured by the above-mentioned CO pulse adsorption method.

前記した金属触媒のBET比表面積としては、40〜300m/gであるものが好ましく、60〜300m/gであるものがより好ましい。金属触媒のBET比表面積は、窒素ガスを用いたBET法により測定することができる。 The BET specific surface area of the metal catalyst is preferably those which are 40 to 300 m 2 / g, it is more preferable in 60~300m 2 / g. The BET specific surface area of the metal catalyst can be measured by the BET method using nitrogen gas.

上記の金属触媒の形状としては、特に限定はなく、粉体状、粒塊状、ブロック状、一定の形状に成型した成型体などが挙げられる。   The shape of the above-mentioned metal catalyst is not particularly limited, and examples thereof include powder, lumps of particles, block, and a molded body molded into a predetermined shape.

前記した金属触媒としては、金属触媒のアルカリ金属および/またはアルカリ土類金属の含有量が、100ppm(重量基準)以下であることが好ましく、実質的に含まないことがより好ましい。その理由としては、アルカリ金および/またはアルカリ土類金属は、微量でも触媒活性等に大きな影響を与えるため、触媒ロット毎にアルカリ金属および/またはアルカリ土類金属の含有量が異なると、ロット毎に触媒活性が異なることになり触媒活性が安定しなくなるなどの虞がある。なお、ここで、「実質的に含まない」とは、元素分析における検出下限未満であることをいい、本発明においては、蛍光X線分析装置(株式会社リガク社製RIX−2000)の測定において、アルカリ金属、アルカリ土類金属がその検出下限未満であることをいう。   As the above-mentioned metal catalyst, the content of the alkali metal and / or alkaline earth metal of the metal catalyst is preferably 100 ppm (by weight) or less, and it is more preferable that the metal catalyst is substantially not contained. The reason is that since the amount of alkaline gold and / or alkaline earth metal has a large effect on the catalytic activity etc even if it is a trace amount, if the content of alkali metal and / or alkaline earth metal differs from one catalyst lot to another, There is a possibility that the catalyst activity will be different and the catalyst activity will not be stable. Here, "not substantially contained" means that it is less than the detection limit in elemental analysis, and in the present invention, in the measurement of a fluorescent X-ray analyzer (RIX-2000 manufactured by Rigaku Corporation) , Alkali metals and alkaline earth metals below the lower limit of their detection.

<金属触媒の製造方法>
本発明の金属触媒を得るための方法としては、この種の触媒の調製に一般的に用いられる方法を用いることができる。以下に、具体的な調製方法の一例を(1)〜(5)の手順(工程)で示すが、本発明は、前記した金属触媒が得られる限り、以下に例示される調製方法に限定されるものではない。
<Method of producing metal catalyst>
As methods for obtaining the metal catalyst of the present invention, methods generally used for the preparation of this type of catalyst can be used. Although an example of a specific preparation method is shown by the procedure (step) of (1)-(5) below, this invention is limited to the preparation method illustrated below, as long as the above-mentioned metal catalyst is obtained. It is not a thing.

(1)金属成分Aを含む原料化合物から金属成分Aの酸化物を得る工程
金属成分Aを含む原料としては、特に限定はなく、金属成分Aを含む、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなどを用いることができ、乾燥および/または焼成などの加熱処理を行い、金属成分Aの酸化物を得られればよい。当然ながら、はじめから金属成分Aの酸化物を原料として用いてもよく、その場合は、必ずしも加熱処理を行わなくてもよい。前記した加熱処理を行う場合は、金属成分Aを含む原料の種類や量に応じて適宜変更すればよく、例えば80℃以上で1時間以上加熱すればよい。
また、その加熱装置については特に限定はなく、加熱装置の特性によって適宜選択すればよく、例えば、スプレードライヤー、ドラムドライヤー、箱型焼成炉、管型焼成炉、トンネル型焼成炉等を用いることができる。
(1) Step of Obtaining Oxide of Metal Component A from Raw Material Compound Containing Metal Component A The raw material containing metal component A is not particularly limited, and hydroxides, ammonium salts, nitrates, carbonates containing metal component A A salt such as a salt, a sulfate or an organic acid salt, an aqueous solution thereof or a sol can be used, and heat treatment such as drying and / or calcination may be performed to obtain an oxide of the metal component A. Naturally, the oxide of the metal component A may be used as a raw material from the beginning, and in that case, the heat treatment may not necessarily be performed. When the heat treatment described above is performed, the heat treatment may be appropriately changed according to the type and amount of the raw material containing the metal component A. For example, heating may be performed at 80 ° C. or more for one hour or more.
The heating device is not particularly limited and may be appropriately selected depending on the characteristics of the heating device. For example, a spray dryer, a drum dryer, a box type baking furnace, a tube type baking furnace, a tunnel type baking furnace or the like may be used. it can.

得られる金属成分Aの酸化物の形状としては、特に限定はないが、粉体状であることが好ましい。ブロック状である場合には、適宜粉砕することで、粉体状としてもよい。
ここで、金属成分Aの酸化物は、BET比表面積が50m/g以上となるように調製することが好ましい。金属成分Aの酸化物のBET比表面積が50m/g以上のものを使用することで、最終的に得られる金属触媒の露出金属表面積を高めることができる。
The form of the resulting oxide of the metal component A is not particularly limited, but is preferably in the form of powder. When it is in the form of a block, it may be in the form of powder by appropriately grinding it.
Here, the oxide of the metal component A is preferably prepared so as to have a BET specific surface area of 50 m 2 / g or more. By using an oxide having a BET specific surface area of 50 m 2 / g or more of the oxide of the metal component A, the exposed metal surface area of the finally obtained metal catalyst can be increased.

(2)金属成分Bを添加する工程
前記(1)工程で得られた金属成分Aの酸化物に、金属成分Bを含む原料を添加できれば、その方法に特に限定はなく、金属成分Aの酸化物の粉体等に直接添加したり、金属成分Aの酸化物を水やアルコール水溶液等の水性媒体に分散させたところに添加する方法が挙げられる。
金属成分Bを含む原料としては、特に限定はなく、金属成分Bを含む、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなどを用いることができる。
(2) The process of adding the metal component B If the raw material containing the metal component B can be added to the oxide of the metal component A obtained at the said (1) process, there will be no limitation in particular in the method, Oxidation of the metal component A The method may be added directly to the powder or the like of the substance, or added to the place where the oxide of the metal component A is dispersed in an aqueous medium such as water or an aqueous alcohol solution.
The raw material containing metal component B is not particularly limited, and hydroxides, ammonium salts, nitrates, carbonates, sulfates, salts of organic acid salts and the like, their aqueous solutions, sols, etc. containing metal component B It can be used.

(3)難還元性金属酸化物Cを添加する工程
前記(1)工程で得られた金属成分Aの酸化物に、難還元性金属酸化物Cを添加できれば、その方法に特に限定はなく、金属成分Aの酸化物の粉体等に直接添加したり、金属成分Aの酸化物を水やアルコール水溶液等の水性媒体に分散させたところに添加する方法が挙げられる。
難還元性金属酸化物Cは、最終的に金属触媒となった際に金属酸化物となっていればよく、その原料に特に限定はない。例えば、初めから酸化物の状態のものを用いてもよいし、最終的に金属酸化物の状態になりさえすれば、難還元性金属酸化物Cの金属成分を含む水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなどを用いることができる。なかでも、アルミ、ケイ素、チタン、ジルコニウム、セリウムの少なくとも一種のアルコキシドの加水分解により水性溶媒中で生成されるものであることが好ましい。
前記した(2)工程との順序に限定はなくどちらが先でよく、また同時でもよい。
(3) Step of Adding Non-Reducible Metal Oxide C If the non-reducible metal oxide C can be added to the oxide of the metal component A obtained in the above (1) step, the method is not particularly limited, The method may be added directly to the powder of the oxide of the metal component A or the like, or may be added to the point of dispersing the oxide of the metal component A in an aqueous medium such as water or an aqueous alcohol solution.
The non-reducible metal oxide C may be a metal oxide when it finally becomes a metal catalyst, and there is no particular limitation on its raw material. For example, hydroxides or ammonium salts containing the metal component of the non-reducible metal oxide C may be used from the beginning in the form of an oxide, or only in the final state of a metal oxide. Salts such as nitrates, carbonates, sulfates and organic acid salts, their aqueous solutions, sols and the like can be used. Among them, those produced in an aqueous solvent by hydrolysis of at least one alkoxide of aluminum, silicon, titanium, zirconium and cerium are preferable.
There is no limitation on the order of the step (2) described above, and which may be first or may be simultaneous.

(4)金属成分Aの酸化物を含む混合物(以後、「金属触媒前駆体」と称する場合がある)を還元して金属触媒を得る工程
前記(1)〜(3)の工程により得られた金属成分Aの酸化物、金属成分Bを含む化合物および難還元性金属酸化物Cを含む混合物は、必要に応じて、乾燥および/または焼成などの加熱処理を行い、金属触媒前駆体とする。具体的には、当該混合物が液状あるいはスラリー状である場合には、加熱処理をすることで固形状の金属触媒前駆体にすることができる。その加熱処理の条件としては(1)工程と同様の装置を用い、各原料の種類や量に応じて適宜変更すればよく、例えば、80℃以上で1時間以上加熱すればよい。前記(1)〜(3)の工程により得られた混合物がはじめから固形物である場合は、必ずしも加熱処理を行わなくてもよく、この固形物が金属触媒前駆体となる。金属触媒前駆体は、粉体状、粒塊状、ブロック状でもよく、一定の形状に成型したものであってもよい。
(4) A step of reducing a mixture containing an oxide of the metal component A (hereinafter sometimes referred to as "metal catalyst precursor") to obtain a metal catalyst obtained by the steps of (1) to (3) above The oxide containing the metal component A, the compound containing the metal component B, and the mixture containing the non-reducible metal oxide C are subjected to heat treatment such as drying and / or calcination, if necessary, to form a metal catalyst precursor. Specifically, when the mixture is liquid or slurry, the mixture can be heat treated to form a solid metal catalyst precursor. The conditions for the heat treatment may be appropriately changed according to the type and amount of each raw material using the same apparatus as in step (1), and for example, heating may be performed at 80 ° C. or more for one hour or more. When the mixture obtained in the steps (1) to (3) is a solid from the beginning, the heat treatment may not be necessarily performed, and the solid becomes a metal catalyst precursor. The metal catalyst precursor may be in the form of powder, particles, blocks, or may be molded into a predetermined shape.

上記金属触媒前駆体を還元処理することで金属触媒を得ることができる。還元処理に必要となる温度は金属種により異なるため、前記した「還元処理温度の設定」の方法に従って決定すればよいが、水素気流下、200〜350℃の範囲で1〜24時間還元処理することが好ましい。使用できる装置としては、特に限定はなく、例えば、箱型還元炉、管型還元炉、トンネル型還元炉等を用いることができる。還元処理をする前に、金属触媒前駆体を、空気流通下で180〜580℃で焼成しても良い。
また、当該工程においては、還元後に不動態化処理を行っても良い。例えば、還元後の金属触媒を1%程度の酸素を含む窒素ガスと室温下で1〜20時間接触させることで、不動態化することができる。
A metal catalyst can be obtained by reducing the metal catalyst precursor. Since the temperature required for the reduction treatment varies depending on the metal species, it may be determined according to the method of “setting the reduction treatment temperature” described above, but the reduction treatment is carried out in a hydrogen stream at 200 to 350 ° C. for 1 to 24 hours Is preferred. The apparatus that can be used is not particularly limited, and for example, a box-type reduction furnace, a tubular reduction furnace, a tunnel-type reduction furnace, and the like can be used. Before reduction treatment, the metal catalyst precursor may be calcined at 180 to 580 ° C. in an air stream.
In addition, in the step, passivation may be performed after the reduction. For example, the metal catalyst after reduction can be passivated by contacting it with nitrogen gas containing about 1% of oxygen at room temperature for 1 to 20 hours.

上記金属触媒中のアルカリ金属および/またはアルカリ土類金属の含有量を100ppm(重量基準)以下、より好ましくは、実質的に含まないようにするためには、前記した触媒の製造方法の過程でアルカリ金属および/またはアルカリ土類金属の混入を避けるとともに、以下(a)〜(c)の方法などが挙げられる。
(a)原料等にアルカリ金属やアルカリ土類金属を実質的に含まないものを用いる。
(b)原料等にアルカリ金属やアルカリ土類金属を含んだとしても不純物程度の質量割合(1000ppm以下)のものを用いる・
(c)多量の純水あるいはイオン交換水で水洗する。
なかでも、アルカリ金属および/またはアルカリ土類金属の完全な除去は難しく、多量の廃水処理が必要になるといったことから、(a)の方法が好ましい。
In order to make the content of the alkali metal and / or the alkaline earth metal in the above-mentioned metal catalyst not more than 100 ppm (by weight), more preferably, substantially not contain, The following methods (a) to (c) and the like can be mentioned while avoiding the mixing of alkali metals and / or alkaline earth metals.
(A) A raw material or the like that does not substantially contain an alkali metal or an alkaline earth metal is used.
(B) Even if alkali metals or alkaline earth metals are contained in the raw material etc., use a material with a mass ratio of about 1000 ppm or less of impurities
(C) Washing with a large amount of pure water or ion exchange water.
Among them, the method (a) is preferable because complete removal of alkali metals and / or alkaline earth metals is difficult and a large amount of waste water treatment is required.

上記の金属触媒の形状としては、特に限定はなく、粉体状、粒塊状、ブロック状、一定の形状に成型した成型体などが挙げられる。また、得られた粉体状の金属触媒を、さらに成型加工して、リング状あるいはペレット状にすることもでき、それらを破砕した破砕体とすることもできる。   The shape of the above-mentioned metal catalyst is not particularly limited, and examples thereof include powder, lumps of particles, block, and a molded body molded into a predetermined shape. In addition, the obtained powdery metal catalyst can be further shaped and processed into a ring or pellet, or they can be crushed into a crushed body.

<金属触媒の再生方法>
本発明の金属触媒は、長時間の反応により反応原料に含まれる不純物や反応時の副反応に起因して発生するコーク様物質のような活性阻害物質(以後、「蓄積物」と称することがある)が触媒上に蓄積することで活性低下した金属触媒を再生処理することができる。
その再生方法としては、活性低下した金属触媒に酸素含有ガスを供給し、触媒上に堆積した活性阻害物質を酸化燃焼処理する酸化工程と、酸化工程後に、活性阻害物質の酸化燃焼処理で酸化された金属触媒を還元処理する還元工程を含むことが重要である。
<Regeneration method of metal catalyst>
The metal catalyst of the present invention may be referred to as an activity inhibitor (hereinafter referred to as "accumulated matter" such as coke-like substance generated due to impurities contained in the reaction raw material by reaction for a long time or side reaction during reaction. There is a possibility that the metal catalyst with reduced activity can be regenerated by accumulation on the catalyst.
As the regeneration method, an oxygen-containing gas is supplied to the metal catalyst whose activity has been reduced, and the oxidation inhibiting process which oxidizes and burns the activity inhibiting substance deposited on the catalyst, and the oxidation burning process of the activity inhibiting substance after the oxidation process It is important to include a reduction step of reducing the metal catalyst.

前記した酸化工程において用いられる酸素含有ガスとしては、特に限定はないが、経済的な面から空気を用いることが好ましく、酸化燃焼処理による発熱抑制の観点から酸素を窒素等の不活性ガスで希釈して酸素濃度を2%以下に低下したものがより好ましい。さらに、流量を制御して蓄積物の燃焼速度をコントロールして触媒層温度の上昇を抑えながら酸化工程を行う。
酸化工程における処理温度、処理時間としては、効果的に蓄積物が燃焼除去できるように適宜決定すれば良く、通常、180〜450℃、1〜24時間の範囲であることが好ましい。
The oxygen-containing gas used in the oxidation step described above is not particularly limited, but air is preferably used from the economical point of view, and oxygen is diluted with an inert gas such as nitrogen from the viewpoint of suppressing heat generation by oxidation combustion treatment. More preferably, the oxygen concentration is reduced to 2% or less. Furthermore, the oxidation process is performed while controlling the flow rate to control the burning rate of the accumulated matter to suppress the increase in the temperature of the catalyst layer.
The treatment temperature and treatment time in the oxidation step may be appropriately determined so that the accumulated matter can be burned and removed effectively, and usually, it is preferably in the range of 180 to 450 ° C. and 1 to 24 hours.

前記した還元工程の条件としては、金属触媒の触媒調製時の還元処理条件と同じであればよく、水素気流下、200〜350℃の範囲で1〜24時間還元処理することが好ましい。   The conditions for the reduction step described above may be the same as the reduction treatment conditions at the time of catalyst preparation of the metal catalyst, and the reduction treatment is preferably performed in a hydrogen stream at 200 to 350 ° C. for 1 to 24 hours.

反応に供した触媒の活性が低下する毎に、上記した再生方法を実施することで還元処理後の触媒活性を高く維持することが可能となり、長期に渡り触媒を使用することができる。   Every time the activity of the catalyst used for the reaction decreases, it is possible to maintain high catalytic activity after reduction treatment by carrying out the regeneration method described above, and the catalyst can be used for a long time.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is naturally not limited by the following examples, and modifications are appropriately made within the scope which can be applied to the spirit of the present invention. It is also possible that they are all included in the technical scope of the present invention.

[BET比表面積の測定方法]
株式会社マウンテック社製の全自動BET比表面積測定装置 Macsorb1210を用いて、以下条件にてBET1点法で測定した。
前処理温度:200℃
前処理時間:1時間
測定手法:流動法
吸着ガス:窒素(30vol%N/He)
測定温度:−195.8℃
[Method of measuring BET specific surface area]
Using a fully automatic BET specific surface area measuring device Macsorb 1210 manufactured by Mounttech Co., Ltd., measurement was performed by the BET one-point method under the following conditions.
Pretreatment temperature: 200 ° C
Pretreatment time: 1 hour Measurement method: Flow method Adsorption gas: Nitrogen (30vol% N 2 / He)
Measurement temperature: -195.8 ° C

[還元特性の測定方法]
株式会社リガク社製の熱重量分析装置 TG8120を用いて、以下条件での測定データをもとに還元特性を評価した。
昇温速度:10℃/min.
測定温度:25〜800℃
ガス:5vol%H/N
基準物質:α−アルミナ
測定試料:15mg
5vol%H/Nガス流通下、一定速度での昇温測定における試料の質量変化を連続的に計測することで、試料質量の温度変化データを得た。この試料質量の温度変化データを図微分することで昇温還元特性を評価した。
[Method of measuring reduction characteristics]
The reduction characteristics were evaluated based on the measurement data under the following conditions using a thermogravimetric analyzer TG 8120 manufactured by Rigaku Corporation.
Temperature rising rate: 10 ° C./min.
Measurement temperature: 25 to 800 ° C
Gas: 5vol% H 2 / N 2
Reference material: α-alumina Measurement sample: 15 mg
The temperature change data of the sample mass was obtained by continuously measuring the mass change of the sample in the temperature rising measurement at a constant speed under 5 vol% H 2 / N 2 gas flow. The temperature rising reduction characteristics were evaluated by graphically differentiating the temperature change data of the sample mass.

[COパルス吸着量の測定方法]
マイクロトラックベル株式会社製 触媒分析装置 BELCATを用いて、以下の測定条件にて測定した。
測定手法:流動法
吸着ガス:CO(10vol%CO/He)
測定温度:50℃
以下に示す、実施例、比較例で用いた原料はいずれも、蛍光X線分析装置(株式会社リガク社製RIX−2000)の測定において、アルカリ金属、アルカリ土類金属の含有量が、その検出下限未満であるものを用いた。
[Measurement method of CO pulse adsorption amount]
It measured on condition of the following measurement using catalyst analysis equipment BELCAT made from micro track bell Co., Ltd. product.
Measurement method: Flow method Adsorption gas: CO (10 vol% CO / He)
Measurement temperature: 50 ° C
The raw materials used in Examples and Comparative Examples described below are all detected by measuring the content of alkali metal and alkaline earth metal in the measurement of a fluorescent X-ray analyzer (RIX-2000 manufactured by Rigaku Corporation) The one below the lower limit was used.

[比較例1]
塩基性炭酸ニッケル(キシダ化学株式会社製)を空気流通下、5℃/分で300℃まで昇温し、1時間保持して酸化ニッケルとした。この酸化ニッケル粉末5gを、50質量%エタノール水溶液40g中に加え、超音波により十分に分散させた。次いで、酸化ニッケル分散エタノール水溶液をマグネティックスターラーで攪拌しながら、ケイ酸テトラエチル2.04gを加え、1時間攪拌を継続した。次いで、25質量%アンモニア水3.33gを加えて12時間攪拌を行った後、ろ過、水洗により粉末を回収し、120℃で乾燥させた。次いで、得られた粉末を圧縮成型し、25メッシュ〜16メッシュにて篩分けたのち、300℃で焼成して金属酸化物触媒1’を得た。金属酸化物触媒1’に含まれるNiOの還元特性を上記還元特性の測定方法にしたがって測定したところ、還元ピーク:約410℃であることがわかった。
したがって、還元処理温度300、325、350、375℃にて還元処理して、それぞれのCOパルス吸着量を測定したところ、金属露出表面積は29、33、38、35m/gとなり、350℃で最大となった。300、325℃では、NiO種の還元が不十分でNiOが残存し、一方、375℃以上では、還元は十分に進行するが、熱負荷により生成金属Ni粒子が凝集すると推定される。
よって、還元処理温度として選定した350℃で、5vol%H/Nの混合ガスを金属酸化物触媒1’に1時間流通して還元処理した後、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化して、金属触媒1を得た。
得られた金属触媒1の組成を蛍光X線分析装置で測定したところ、Ni:87質量%、SiO:13質量%であった。この金属触媒1のBET比表面積を測定したところ、111m/gであった。
Comparative Example 1
Basic nickel carbonate (manufactured by Kishida Chemical Co., Ltd.) was heated to 300 ° C. at 5 ° C./min under air flow, and held for 1 hour to obtain nickel oxide. 5 g of this nickel oxide powder was added to 40 g of a 50% by mass aqueous ethanol solution, and sufficiently dispersed by ultrasonic waves. Next, 2.04 g of tetraethyl silicate was added while stirring the nickel oxide-dispersed ethanol aqueous solution with a magnetic stirrer, and the stirring was continued for 1 hour. Next, 3.33 g of 25 mass% ammonia water was added, and the mixture was stirred for 12 hours, and then the powder was recovered by filtration and washing with water, and dried at 120 ° C. Subsequently, the obtained powder was compression-molded, sieved with 25 mesh to 16 mesh, and fired at 300 ° C. to obtain a metal oxide catalyst 1 ′. The reduction characteristic of NiO contained in the metal oxide catalyst 1 ′ was measured according to the method of measuring the reduction characteristic above, and it was found that the reduction peak was about 410 ° C.
Therefore, when the reduction treatment temperature is reduced at 300, 325, 350 and 375 ° C. and the CO pulse adsorption amount is measured, the metal exposed surface area is 29, 33, 38 and 35 m 2 / g and 350 ° C. It became the largest. At 300 and 325 ° C., the reduction of NiO species is insufficient and NiO remains, while at 375 ° C. and above, the reduction proceeds sufficiently, but it is presumed that the metal Ni particles formed are aggregated due to heat load.
Therefore, after the mixed gas of 5 vol% H 2 / N 2 is circulated through the metal oxide catalyst 1 ′ for 1 hour at 350 ° C. selected as the reduction treatment temperature, it is switched to a nitrogen stream and cooled to room temperature The metal catalyst 1 was obtained by passivating with nitrogen containing 1% by volume of oxygen.
When the composition of the obtained metal catalyst 1 was measured by a fluorescent X-ray analyzer, it was Ni: 87% by mass, SiO 2 : 13% by mass. It was 111 m < 2 > / g when the BET specific surface area of this metal catalyst 1 was measured.

[実施例1]
塩基性炭酸ニッケル(キシダ化学株式会社製)を空気流通下、5℃/分で300℃まで昇温し、1時間保持して酸化ニッケルとした。この酸化ニッケル粉末5gを、50質量%エタノール水溶液40g中に加え、超音波により十分に分散させた。次いで、酸化ニッケル分散エタノール水溶液をマグネティックスターラーで攪拌しながら、ケイ酸テトラエチル2.04gを加え、1時間攪拌を継続した。次いで、25質量%アンモニア水3.33gを加えて12時間攪拌を行った後、ろ過、水洗により粉末を回収し、120℃で乾燥させた。次いで、乾燥後の粉体に、硝酸白金溶液(白金含有率:8.19質量%)1.25gを含浸して白金を添加した。その後、120℃で乾燥し、得られた粉末を圧縮成型し、25メッシュ〜16メッシュにて篩分けたのち、300℃で焼成して金属酸化物触媒2’を得た。金属酸化物触媒2’に含まれるNiOの還元特性を上記還元特性の測定方法にしたがって測定したところ、還元ピーク:約275℃であることがわかった。
この結果から、還元処理温度250、275、300、325℃にて還元処理して、調製例1同様にそれぞれのCOパルス吸着量を測定したところ、金属露出表面積は40、47、46、43m/gとなり、275℃で最大となった。調製例1と比較して還元処理温度が75℃低減することがわかった。
還元処理温度として選定した275℃で、5vol%H/Nの混合ガスを金属酸化物触媒2’に1時間流通して還元処理した後、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化して、金属触媒2を得た。
得られた金属触媒2の組成を蛍光X線分析装置で測定したところ、Pt:2.2質量%、Ni:85質量%、SiO:12.8質量%であった。この金属触媒2のBET比表面積を測定したところ、131m/gであった。
Example 1
Basic nickel carbonate (manufactured by Kishida Chemical Co., Ltd.) was heated to 300 ° C. at 5 ° C./min under air flow, and held for 1 hour to obtain nickel oxide. 5 g of this nickel oxide powder was added to 40 g of a 50% by mass aqueous ethanol solution, and sufficiently dispersed by ultrasonic waves. Next, 2.04 g of tetraethyl silicate was added while stirring the nickel oxide-dispersed ethanol aqueous solution with a magnetic stirrer, and the stirring was continued for 1 hour. Next, 3.33 g of 25 mass% ammonia water was added, and the mixture was stirred for 12 hours, and then the powder was recovered by filtration and washing with water, and dried at 120 ° C. Then, to the powder after drying, 1.25 g of a platinum nitrate solution (platinum content: 8.19% by mass) was impregnated, and platinum was added. Thereafter, the powder was dried at 120 ° C., and the obtained powder was compression molded, sieved at 25 mesh to 16 mesh, and fired at 300 ° C. to obtain a metal oxide catalyst 2 ′. The reduction characteristic of NiO contained in the metal oxide catalyst 2 ′ was measured according to the above-mentioned method of measuring the reduction characteristic, and it was found that the reduction peak: about 275 ° C.
From this result, reduction treatment was carried out at a reduction treatment temperature of 250, 275, 300 and 325 ° C., and the CO pulse adsorption amount was measured in the same manner as in Preparation Example 1. The metal exposed surface area was 40, 47, 46, 43 m 2 It became / g and became the maximum at 275 ° C. It was found that the reduction treatment temperature was reduced by 75 ° C. as compared to Preparation Example 1.
A mixture gas of 5 vol% H 2 / N 2 is circulated through the metal oxide catalyst 2 ′ for 1 hour at 275 ° C. selected as the reduction treatment temperature, then reduced to a nitrogen stream and cooled to room temperature. Passivation with nitrogen containing% oxygen gave metal catalyst 2.
When the composition of the obtained metal catalyst 2 was measured by a fluorescent X-ray analyzer, it was Pt: 2.2% by mass, Ni: 85% by mass, and SiO 2 : 12.8% by mass. It was 131 m < 2 > / g when the BET specific surface area of this metal catalyst 2 was measured.

参考例1
実施例1における硝酸白金溶液(白金含有率:8.19質量%)1.25gをジニトロジアンミンパラジウムの硝酸溶液(パラジウム含有率:8.29質量%)1.24gに変更した以外は、調製例1と同様にして金属酸化物触媒3’を得た。金属酸化物触媒3’に含まれるNiOの還元特性を上記還元特性の測定方法にしたがって測定したところ、還元ピーク:約265℃であることがわかった。この結果から、還元処理温度250、275、300、325℃にて還元処理して、調製例1同様にCOパルス吸着量を測定したところ、金属露出表面積は37、46、44、41m/gとなり、300℃で最大となった。調製例1と比較して還元処理温度が50℃低減することがわかった。
還元処理温度として選定した300℃で、5vol%H/Nの混合ガスを金属酸化物触媒3’に1時間流通して還元処理した後、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化して、金属触媒3を得た。
得られた触媒3の組成を蛍光X線分析装置で測定したところ、Pd:2.2質量%、Ni:85質量%、SiO:12.8質量%であった。この金属触媒3のBET比表面積を測定したところ、118m/gであった。

[ Reference Example 1 ]
Preparation Example except that 1.25 g of the platinum nitrate solution (platinum content: 8.19% by mass) in Example 1 was changed to 1.24 g of a dinitrodiammine palladium nitrate solution (palladium content: 8.29% by mass) In the same manner as in 1, a metal oxide catalyst 3 'was obtained. The reduction characteristic of NiO contained in the metal oxide catalyst 3 'was measured according to the method of measuring the above reduction characteristic, and it was found that the reduction peak was about 265 ° C. From this result, reduction treatment was performed at a reduction treatment temperature of 250, 275, 300, 325 ° C., and the CO pulse adsorption amount was measured in the same manner as in Preparation Example 1. The metal exposed surface area was 37, 46, 44, 41 m 2 / g It became the maximum at 300 ° C. It was found that the reduction treatment temperature was reduced by 50 ° C. as compared to Preparation Example 1.
After a mixed gas of 5 vol% H 2 / N 2 was circulated through metal oxide catalyst 3 'for 1 hour at 300 ° C. selected as the reduction treatment temperature, it was switched to a nitrogen stream and cooled to room temperature. Passivation with nitrogen containing 0% oxygen gave metal catalyst 3.
The composition of the obtained catalyst 3 was measured by a fluorescent X-ray analyzer, and found to be Pd: 2.2% by mass, Ni: 85% by mass, and SiO 2 : 12.8% by mass. It was 118 m < 2 > / g when the BET specific surface area of this metal catalyst 3 was measured.

[実施例3]
塩基性炭酸ニッケル(キシダ化学株式会社製)を空気流通下、5℃/分で300℃まで昇温し、1時間保持して酸化ニッケルとした。この酸化ニッケル粉末5gを、50質量%エタノール水溶液40g中に加え、超音波により十分に分散させた。次いで、酸化ニッケル分散エタノール水溶液をマグネティックスターラーで攪拌しながら、ケイ酸テトラエチル11.5gを加え、1時間攪拌を継続した。次いで、25質量%アンモニア水18.8gを加えて12時間攪拌を行った後、ろ過、水洗により粉末を回収し、120℃で乾燥させた。次いで、乾燥後の粉体に、硝酸白金溶液(白金含有率:8.19質量%)2.0gを含浸して白金を添加した。その後、120℃で乾燥し、得られた粉末を圧縮成型し、25メッシュ〜16メッシュにて篩分けたのち、300℃で焼成して金属酸化物触媒4’を得た。金属酸化物触媒4’に含まれるNiOの還元特性を上記還元特性の測定方法にしたがって測定したところ、還元ピーク:約275℃であることがわかった。
この結果から、還元処理温度250、275、300、325℃にて還元処理して、調製例1同様にそれぞれのCOパルス吸着量を測定したところ、金属露出表面積は24、29、26、23m/gとなり、275℃で最大となった。調製例1と比較して還元処理温度が75℃低減することがわかった。
還元処理温度として選定した275℃で、5vol%H/Nの混合ガスを金属酸化物触媒4’に1時間流通して還元処理した後、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化して、金属触媒4を得た。
得られた金属触媒4の組成を蛍光X線分析装置で測定したところ、Pt:2.2質量%、Ni:53質量%、SiO:44.8質量%であった。この金属触媒4のBET比表面積を測定したところ、175m/gであった。
[Example 3]
Basic nickel carbonate (manufactured by Kishida Chemical Co., Ltd.) was heated to 300 ° C. at 5 ° C./min under air flow, and held for 1 hour to obtain nickel oxide. 5 g of this nickel oxide powder was added to 40 g of a 50% by mass aqueous ethanol solution, and sufficiently dispersed by ultrasonic waves. Subsequently, 11.5 g of tetraethyl silicate was added while stirring the nickel oxide-dispersed ethanol aqueous solution with a magnetic stirrer, and the stirring was continued for 1 hour. Next, 18.8 g of 25% by mass ammonia water was added and stirring was carried out for 12 hours, then the powder was recovered by filtration and washing with water, and dried at 120 ° C. Next, 2.0 g of a platinum nitrate solution (platinum content: 8.19% by mass) was impregnated into the powder after drying to add platinum. Thereafter, the powder was dried at 120 ° C., and the obtained powder was compression molded, sieved at 25 mesh to 16 mesh, and fired at 300 ° C. to obtain a metal oxide catalyst 4 ′. The reduction characteristic of NiO contained in the metal oxide catalyst 4 ′ was measured according to the method of measuring the reduction characteristic above, and it was found that the reduction peak was about 275 ° C.
From this result, reduction treatment was carried out at a reduction treatment temperature of 250, 275, 300, 325 ° C., and the CO pulse adsorption amount of each was measured as in Preparation Example 1. The metal exposed surface area was 24, 29, 26, 23 m 2 It became / g and became the maximum at 275 ° C. It was found that the reduction treatment temperature was reduced by 75 ° C. as compared to Preparation Example 1.
A mixture gas of 5 vol% H 2 / N 2 is circulated through the metal oxide catalyst 4 ′ for 1 hour at 275 ° C. selected as the reduction treatment temperature, then reduced to a nitrogen stream and cooled to room temperature. The metal catalyst 4 was obtained by passivation with nitrogen containing% oxygen.
When the composition of the obtained metal catalyst 4 was measured by a fluorescent X-ray analyzer, it was Pt: 2.2% by mass, Ni: 53% by mass, SiO 2 : 44.8% by mass. It was 175 m < 2 > / g when the BET specific surface area of this metal catalyst 4 was measured.

[実施例4]
塩基性炭酸ニッケル(キシダ化学株式会社製)を空気流通下、5℃/分で300℃まで昇温し、1時間保持して酸化ニッケルとした。この酸化ニッケル粉末4gを、50質量%エタノール水溶液40g中に加え、超音波により十分に分散させた。次いで、酸化ニッケル分散エタノール水溶液をマグネティックスターラーで攪拌しながら、ケイ酸テトラエチル3.0gを加え、1時間攪拌を継続した。次いで、25質量%アンモニア水4.8gを加えて12時間攪拌を行った後、ろ過、水洗により粉末を回収し、120℃で乾燥させた。次いで、乾燥後の粉体に、硝酸白金溶液(白金含有率:8.19質量%)1.0gを含浸して白金を添加した。その後、120℃で乾燥し、得られた粉末を圧縮成型し、25メッシュ〜16メッシュにて篩分けたのち、300℃で焼成して金属酸化物触媒5’を得た。金属酸化物触媒5’に含まれるNiOの還元特性を上記還元特性の測定方法にしたがって測定したところ、還元ピーク:約275℃であることがわかった。
この結果から、還元処理温度250、275、300、325℃にて還元処理して、調製例1同様にそれぞれのCOパルス吸着量を測定したところ、金属露出表面積は43、49、47、44m/gとなり、275℃で最大となった。調製例1と比較して還元処理温度が75℃低減することがわかった。
還元処理温度として選定した275℃で、5vol%H/Nの混合ガスを金属酸化物触媒5’に1時間流通して還元処理した後、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化して、金属触媒5を得た。
得られた金属触媒5の組成を蛍光X線分析装置で測定したところ、Pt:2.0質量%、Ni:77質量%、SiO:21.0質量%であった。この金属触媒5のBET比表面積を測定したところ、258m/gであった。
Example 4
Basic nickel carbonate (manufactured by Kishida Chemical Co., Ltd.) was heated to 300 ° C. at 5 ° C./min under air flow, and held for 1 hour to obtain nickel oxide. 4 g of this nickel oxide powder was added to 40 g of a 50% by mass aqueous solution of ethanol, and sufficiently dispersed by ultrasonic waves. Next, 3.0 g of tetraethyl silicate was added while stirring the nickel oxide-dispersed ethanol aqueous solution with a magnetic stirrer, and the stirring was continued for 1 hour. Next, 4.8 g of 25% by mass ammonia water was added and stirring was carried out for 12 hours, then the powder was recovered by filtration and washing with water, and dried at 120 ° C. Next, 1.0 g of a platinum nitrate solution (platinum content: 8.19% by mass) was impregnated into the powder after drying to add platinum. Thereafter, the powder was dried at 120 ° C., and the obtained powder was compression molded, sieved at 25 mesh to 16 mesh, and fired at 300 ° C. to obtain a metal oxide catalyst 5 ′. The reduction characteristic of NiO contained in the metal oxide catalyst 5 ′ was measured according to the method of measuring the reduction characteristic above, and it was found that the reduction peak was about 275 ° C.
From this result, reduction treatment was carried out at a reduction treatment temperature of 250, 275, 300 and 325 ° C., and the CO pulse adsorption amount was measured in the same manner as in Preparation Example 1. The metal exposed surface area was 43, 49, 47 and 44 m 2. It became / g and became the maximum at 275 ° C. It was found that the reduction treatment temperature was reduced by 75 ° C. as compared to Preparation Example 1.
A mixture gas of 5 vol% H 2 / N 2 is circulated through metal oxide catalyst 5 ′ for 1 hour at 275 ° C. selected as a reduction treatment temperature, then reduced to a nitrogen stream and cooled to room temperature, 1 volume The metal catalyst 5 was obtained by passivation with nitrogen containing% oxygen.
When the composition of the obtained metal catalyst 5 was measured by a fluorescent X-ray analyzer, it was Pt: 2.0% by mass, Ni: 77% by mass, and SiO 2 : 21.0% by mass. It was 258 m < 2 > / g when the BET specific surface area of this metal catalyst 5 was measured.

[実施例5]
塩基性炭酸ニッケル(キシダ化学株式会社製)を空気流通下、5℃/分で300℃まで昇温し、1時間保持して酸化ニッケルとした。この酸化ニッケル粉末5gを、50質量%エタノール水溶液40g中に加え、超音波により十分に分散させた。次いで、酸化ニッケル分散エタノール水溶液をマグネティックスターラーで攪拌しながら、ケイ酸テトラエチル0.58gを加え、1時間攪拌を継続した。次いで、25質量%アンモニア水1.0gを加えて12時間攪拌を行った後、ろ過、水洗により粉末を回収し、120℃で乾燥させた。次いで、乾燥後の粉体に、硝酸白金溶液(白金含有率:8.19質量%)1.0gを含浸して白金を添加した。その後、120℃で乾燥し、得られた粉末を圧縮成型し、25メッシュ〜16メッシュにて篩分けたのち、300℃で焼成して金属酸化物触媒6’を得た。金属酸化物触媒6’に含まれるNiOの還元特性を上記還元特性の測定方法にしたがって測定したところ、還元ピーク:約250℃であることがわかった。
この結果から、還元処理温度225、250、275、300℃にて還元処理して、調製例1同様にそれぞれのCOパルス吸着量を測定したところ、金属露出表面積は32、39、34、30m/gとなり、250℃で最大となった。調製例1と比較して還元処理温度が100℃低減することがわかった。
還元処理温度として選定した250℃で、5vol%H/Nの混合ガスを金属酸化物触媒6’に1時間流通して還元処理した後、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化して、金属触媒6を得た。
得られた金属触媒6の組成を蛍光X線分析装置で測定したところ、Pt:2.0質量%、Ni:94質量%、SiO:4.0質量%であった。この金属触媒6のBET比表面積を測定したところ、56m/gであった。
[Example 5]
Basic nickel carbonate (manufactured by Kishida Chemical Co., Ltd.) was heated to 300 ° C. at 5 ° C./min under air flow, and held for 1 hour to obtain nickel oxide. 5 g of this nickel oxide powder was added to 40 g of a 50% by mass aqueous ethanol solution, and sufficiently dispersed by ultrasonic waves. Next, 0.58 g of tetraethyl silicate was added while stirring the nickel oxide-dispersed ethanol aqueous solution with a magnetic stirrer, and the stirring was continued for 1 hour. Next, 1.0 g of 25% by mass ammonia water was added and the mixture was stirred for 12 hours, and then the powder was recovered by filtration and washing with water, and dried at 120 ° C. Next, 1.0 g of a platinum nitrate solution (platinum content: 8.19% by mass) was impregnated into the powder after drying to add platinum. Thereafter, the powder was dried at 120 ° C., and the obtained powder was compression molded, sieved at 25 mesh to 16 mesh, and fired at 300 ° C. to obtain a metal oxide catalyst 6 ′. The reduction characteristic of NiO contained in the metal oxide catalyst 6 ′ was measured according to the method of measuring the reduction characteristic above, and it was found that the reduction peak was about 250 ° C.
From this result, reduction treatment was carried out at reduction treatment temperatures 225, 250, 275 and 300 ° C., and the CO pulse adsorption amount of each was measured in the same manner as in Preparation Example 1. The metal exposed surface area was 32, 39, 34 and 30 m 2 It became / g and became the maximum at 250 ° C. It was found that the reduction treatment temperature was reduced by 100 ° C. as compared to Preparation Example 1.
A mixed gas of 5 vol% H 2 / N 2 is circulated through the metal oxide catalyst 6 ′ for 1 hour at 250 ° C. selected as the reduction treatment temperature, then reduced to a nitrogen stream and cooled to room temperature. Passivation with nitrogen containing 0% oxygen gave metal catalyst 6.
When the composition of the obtained metal catalyst 6 was measured by a fluorescent X-ray analyzer, it was Pt: 2.0% by mass, Ni: 94% by mass, SiO 2 : 4.0% by mass. It was 56 m < 2 > / g when the BET specific surface area of this metal catalyst 6 was measured.

[模擬再生実験]
反応により触媒上に蓄積するコーク様物質のような活性阻害物質の酸化燃焼を行う酸化工程とその後の還元工程からなる再生処理は、触媒の酸化、それに引き続く還元処理と類似の操作であるので、空気雰囲気下での酸化処理とHガスによる還元処理からなる一連の操作を模擬再生実験として金属触媒1〜6に対して2回実施した。
[Simulation reproduction experiment]
The regeneration process consisting of an oxidation step of oxidizing and burning an activity inhibitor such as coke-like substance accumulated on the catalyst by the reaction and a subsequent reduction step is an operation similar to oxidation of the catalyst and subsequent reduction treatment. A series of operations consisting of oxidation treatment in an air atmosphere and reduction treatment with H 2 gas were performed twice on the metal catalysts 1 to 6 as a simulated regeneration experiment.

具体的には、反応管内径8mmφのSUS製反応管に、金属触媒1〜6を約1g充填して、空気雰囲気下での酸化処理(酸化工程)は、300℃で1時間行い、その後の還元処理(還元工程)は、触媒1については、350℃、触媒2については、275℃、触媒3については300℃、触媒4については275℃、触媒5については275℃、触媒6については250℃で5vol%H/Nの混合ガスを1時間流通させることで行った。還元処理後の触媒は、窒素気流に切り替えて室温まで降温し、1体積%の酸素を含有させた窒素にて不動態化後、反応管から取出し、COパルス吸着により金属露出表面積の測定を行った。COパルス吸着測定における各触媒の前処理還元温度は、触媒1については、350℃、触媒2については、275℃、触媒3については300℃、触媒4については275℃、触媒5については275℃、触媒6については250℃とした。測定結果を表1に記載する。 Specifically, about 1 g of metal catalyst 1 to 6 is filled in a reaction tube made of SUS having an inner diameter of 8 mmφ, oxidation treatment (oxidation step) in an air atmosphere is performed at 300 ° C. for 1 hour, and then The reduction treatment (reduction step) is performed at 350 ° C. for catalyst 1, 275 ° C. for catalyst 2, 300 ° C. for catalyst 3, 275 ° C. for catalyst 4, 275 ° C. for catalyst 5, and 250 for catalyst 6. A mixed gas of 5 vol% H 2 / N 2 was passed at 1 ° C. for 1 hour. The catalyst after reduction treatment is switched to a nitrogen stream, cooled to room temperature, passivated with nitrogen containing 1% by volume of oxygen, removed from the reaction tube, and metal exposed surface area is measured by CO pulse adsorption. The The pretreatment reduction temperature of each catalyst in CO pulse adsorption measurement is 350 ° C for catalyst 1, 275 ° C for catalyst 2, 300 ° C for catalyst 3, 275 ° C for catalyst 4, and 275 ° C for catalyst 5. And 250 ° C. for catalyst 6. The measurement results are described in Table 1.

Figure 0006529375
Figure 0006529375

金属触媒1は、その金属露出表面積は、フレッシュ状態では、38m/gの金属表面積を有しているが、その後、模擬再生により、20m/g(1回目)、13m/g(2回目)と大きく金属表面積が低下している。
他方、金属触媒2、金属触媒3および金属触媒5は、金属成分AであるNiの酸化物NiOの金属Niへの還元処理温度を低温化する金属成分Bとして、Pt、Pdを含有するので、より低温で還元することができ、模擬再生毎の金属表面積低下が金属触媒1と比べて大幅に抑制されていることがわかる。
金属触媒4は、金属成分AであるNi含有率が53質量%と低いため、フレッシュ時の金属露出表面積は29m/gと金属触媒1よりも低いものの、金属成分AであるNiの酸化物NiOの金属Niへの還元処理温度を低温化する金属成分Bとして、Ptを含有するので、より低温で還元することができ、模擬再生毎の金属表面積低下が金属触媒1と比べて抑制され、模擬再生1回、2回後の金属露出表面積は金属触媒1より高い値を維持できた。
金属触媒6は、金属成分AであるNiの含有率が94質量%と高いが、難還元性金属酸化物CであるSiO2の含有率が4.0質量%と低くなるので、金属成分Niの粒子成長が進みやすく、フレッシュ時の金属露出表面積は39m/gとNi含有率が85、77質量%である金属触媒2、5よりも低くなり、金属触媒1と同等の値であるが、金属成分AであるNiの酸化物NiOの金属Niへの還元処理温度を低温化する金属成分Bとして、Ptを含有するので、より低温で還元することができ、模擬再生毎の金属表面積低下が金属触媒1と比べて抑制され、模擬再生1回、2回後の金属露出表面積は金属触媒1より高い値を維持できた。
The metal catalyst 1 has a metal surface area of 38 m 2 / g in the fresh state, but after that, 20 m 2 / g (first time), 13 m 2 / g (2 times) by simulated regeneration. And the metal surface area is greatly reduced.
On the other hand, the metal catalyst 2, metal catalyst 3 and metal catalyst 5 contain Pt and Pd as the metal component B which lowers the reduction treatment temperature of the oxide NiO of the metal component A to the metal Ni. It can be understood that reduction can be performed at a lower temperature, and reduction in metal surface area for each simulated regeneration is significantly suppressed as compared with the metal catalyst 1.
Since the metal catalyst 4 has a low Ni content of 53% by mass as the metal component A, the metal exposed surface area at the time of freshness is 29 m 2 / g, which is lower than that of the metal catalyst 1, but an oxide of Ni as the metal component A Since Pt is contained as the metal component B which lowers the reduction treatment temperature of NiO to metal Ni, Pt can be reduced at a lower temperature, and the reduction in metal surface area for each simulated regeneration is suppressed compared to the metal catalyst 1, The metal exposed surface area after one and two times of the simulated regeneration could maintain a higher value than the metal catalyst 1.
The metal catalyst 6 has a high content of Ni as the metal component A of 94% by mass, but a low content of SiO 2 as the non-reducible metal oxide C is as low as 4.0% by mass. Particle growth is easy to proceed, and the exposed metal surface area at fresh time is 39 m 2 / g and Ni content is lower than that of metal catalysts 2 and 5 with 85 and 77 mass%, and the value is equivalent to metal catalyst 1 Since Pt is contained as the metal component B which lowers the reduction treatment temperature of the oxide NiO of the metal component A to the metal Ni of the oxide NiO, reduction is possible at a lower temperature, and the metal surface area decreases for each simulated regeneration As compared with the metal catalyst 1, the surface area exposed to metal after 1 time and 2 times of simulated regeneration could maintain a higher value than that of the metal catalyst 1.

以上から、反応により金属触媒上に蓄積するコーク様物質のような活性阻害物質の酸化燃焼を行う酸化工程とその後の還元工程からなる再生処理除去と還元からなる再生操作を繰り返し行う場合、本願触媒であれば、再生操作毎の物性低下が抑制されるため、再生後も触媒活性を高く維持することが可能となり、長期に渡り触媒を使用することができる。   From the above, when the regeneration process consisting of the regeneration process removal and reduction consisting of the oxidation process of oxidizing and burning the activity inhibiting substance such as coke-like substance accumulated on the metal catalyst by the reaction and the subsequent reduction process is repeated, If this is the case, the decrease in physical properties for each regeneration operation is suppressed, so that the catalyst activity can be maintained high even after regeneration, and the catalyst can be used for a long time.

本発明の触媒は、水素化反応、水素化分解反応、脱水素化反応など各種反応に用いることができ、特に接触気相水素化反応のような連続的に反応を行う流通形式の反応に好適に用いることができる。   The catalyst of the present invention can be used for various reactions such as hydrogenation reaction, hydrocracking reaction, dehydrogenation reaction, and in particular, it is suitable for flow type reactions in which continuous reactions such as catalytic gas phase hydrogenation reaction are carried out It can be used for

Claims (6)

ニッケル、コバルト鉄から選ばれる少なくとも一種である金属成分Aと、
白金ロジウム、イリジウム、ルテニウムから選ばれる少なくとも一種である金属成分Bおよび、
難還元性金属酸化物Cを含み、金属成分Aが50〜94質量%、金属成分Bが0.1〜5質量%、金属酸化物成分Cが1〜49.9質量%である金属触媒。
A metal component A which is at least one selected from nickel, cobalt and iron;
A metal component B which is at least one selected from platinum , rhodium, iridium and ruthenium, and
The metal catalyst which contains the non-reducible metal oxide C, 50-94 mass% of the metal component A, 0.1-5 mass% of the metal component B, and 1-49.9 mass% of the metal oxide component C.
前記金属触媒の金属露出表面積が、30〜60m/gである請求項1に記載の金属触媒。 The metal catalyst according to claim 1, wherein the metal exposed surface area of the metal catalyst is 30 to 60 m 2 / g. 前記難還元性金属酸化物Cが、アルミナ、シリカ、チタニア、ジルコニア、セリアから選ばれる少なくとも一種である請求項1または2に記載の金属触媒。 The metal catalyst according to claim 1 or 2, wherein the non-reducible metal oxide C is at least one selected from alumina, silica, titania, zirconia and ceria. 前記金属触媒中に含まれるアルカリ金属および/またはアルカリ土類金属の含有量が、100ppm以下である請求項1〜3のいずれかに記載の金属触媒。 The metal catalyst according to any one of claims 1 to 3, wherein the content of the alkali metal and / or the alkaline earth metal contained in the metal catalyst is 100 ppm or less. 前記金属触媒の金属露出表面積が最大となる還元処理温度が、200〜350℃の範囲である請求項1〜4のいずれかに記載の金属触媒 The metal reduction treatment temperature metal exposed surface area is maximized catalyst, a metal catalyst according to claim 1 in the range of 200 to 350 ° C.. 請求項1〜4のいずれかに記載の金属触媒の再生方法であって、
金属触媒上に蓄積した蓄積物を酸化燃焼により除去する酸化工程と、酸化工程後に金属触媒を還元処理する還元工程を含むことを特徴とする金属触媒の再生方法。
A method for regenerating a metal catalyst according to any one of claims 1 to 4, wherein
What is claimed is: 1. A method for regenerating a metal catalyst comprising: an oxidation step of removing accumulated matter accumulated on the metal catalyst by oxidation combustion; and a reduction step of reducing the metal catalyst after the oxidation step.
JP2015149145A 2015-07-29 2015-07-29 Metal catalyst, production method thereof and regeneration method thereof Active JP6529375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149145A JP6529375B2 (en) 2015-07-29 2015-07-29 Metal catalyst, production method thereof and regeneration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149145A JP6529375B2 (en) 2015-07-29 2015-07-29 Metal catalyst, production method thereof and regeneration method thereof

Publications (2)

Publication Number Publication Date
JP2017029874A JP2017029874A (en) 2017-02-09
JP6529375B2 true JP6529375B2 (en) 2019-06-12

Family

ID=57986893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149145A Active JP6529375B2 (en) 2015-07-29 2015-07-29 Metal catalyst, production method thereof and regeneration method thereof

Country Status (1)

Country Link
JP (1) JP6529375B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064155A (en) * 2021-11-01 2023-05-05 中国石油化工股份有限公司 Method and system for deep desulfurization of gasoline
CN115722232A (en) * 2022-12-09 2023-03-03 贵州重力科技环保股份有限公司 Regeneration method of inactivated acetylene ruthenium hydrochloride-based catalyst

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110525B2 (en) * 1991-11-05 2000-11-20 出光興産株式会社 Method for regenerating hydrocarbon oil hydrotreating catalyst
JPH0725795A (en) * 1993-06-24 1995-01-27 Ind Technol Res Inst Vapor phase one-step production of 1,4-butanediol and gamma-butyrolactone
US6300268B1 (en) * 1999-09-10 2001-10-09 Exxon Research And Engineering Company Process for the reactivation of sulfur deactivated cobalt titania catalysts
JP2001279259A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
KR100457416B1 (en) * 2001-11-01 2004-11-18 삼성전자주식회사 Process for preparing 1,3-alkanediols from 3-hydroxyester compounds
EP1211234A3 (en) * 2000-11-29 2003-11-26 Samsung Electronics Co., Ltd. Process for preparing 1,3-alkandiols from 3-hydroxyesters
US6617478B2 (en) * 2000-11-29 2003-09-09 Samsung Electronics Co., Ltd. Process for preparing a 1,3-alkandiol from 3-hydroxyester
JP4896766B2 (en) * 2006-02-24 2012-03-14 コスモ石油株式会社 Hydrocarbon desulfurization agent
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
HUE041763T2 (en) * 2010-08-30 2019-05-28 Btg Biomass Tech Group B V Process for the hydrotreatment of vegetal materials
JP5966973B2 (en) * 2013-03-04 2016-08-10 マツダ株式会社 Method for producing exhaust gas purifying catalyst

Also Published As

Publication number Publication date
JP2017029874A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
AU2011366455B2 (en) Catalysts
JP5261801B2 (en) Nickel catalysts for selective hydrogenation
JP4660093B2 (en) Regeneration of carbon monoxide hydrogenation catalyst
RU2629940C2 (en) Method of producing fischer-tropsch synthesis catalyst
JP4808688B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, catalyst regeneration method, and method for producing hydrocarbons from synthesis gas
KR20140096279A (en) Nickel hydrogenation catalyst
EP3496856B1 (en) A cobalt-containing catalyst composition
EA013215B1 (en) Catalyst manufacture
US9327273B2 (en) Catalysts
JP4625635B2 (en) Strengthening the catalyst
JP5336235B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
CN111036201A (en) Supported monatomic Pt catalyst and preparation method and application thereof
JP2013248609A (en) Process for preparation of catalyst using at least one rapid drying stage and at least one fluidised bed drying stage and use thereof for fischer-tropsch synthesis
JP2010221082A (en) Supported body of noble metal, and method of producing carboxylate ester using the same as catalyst
JP6529375B2 (en) Metal catalyst, production method thereof and regeneration method thereof
JP5100151B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, method for producing hydrocarbons from synthesis gas, and catalyst regeneration method
JP5937677B2 (en) Method for preparing cobalt-containing hydrocarbon synthesis catalyst precursor
RU2602803C2 (en) Method of fischer-tropsch synthesis cobalt-containing catalyst producing
JP5919145B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, method for producing hydrocarbons from synthesis gas, and method for regenerating catalyst
JP6719363B2 (en) Method for producing catalyst for methane oxidation removal and catalyst for methane oxidation removal
JP2010069451A (en) Perovskite type oxidation catalyst and method for producing the same
JP2007160250A (en) Method of manufacturing catalyst, catalytic cracking catalyst and method of producing low-sulfur catalytically-cracked gasoline
JP6920952B2 (en) Catalysts for producing hydrocarbons from syngas, methods for producing catalysts, and methods for producing hydrocarbons from syngas
JP7018754B2 (en) A catalyst for producing a hydrocarbon from syngas, a method for producing the catalyst, a method for producing a hydrocarbon from syngas, and a catalyst carrier.
JP7012596B2 (en) A method for producing a catalyst for producing a hydrocarbon from syngas, and a method for producing a hydrocarbon from syngas.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150