JP6528056B2 - Method of producing stress sensitive cells using nucleic acid - Google Patents

Method of producing stress sensitive cells using nucleic acid Download PDF

Info

Publication number
JP6528056B2
JP6528056B2 JP2014125587A JP2014125587A JP6528056B2 JP 6528056 B2 JP6528056 B2 JP 6528056B2 JP 2014125587 A JP2014125587 A JP 2014125587A JP 2014125587 A JP2014125587 A JP 2014125587A JP 6528056 B2 JP6528056 B2 JP 6528056B2
Authority
JP
Japan
Prior art keywords
cells
gas5
environmental stress
idi2
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014125587A
Other languages
Japanese (ja)
Other versions
JP2015027290A (en
Inventor
英典 谷
英典 谷
鳥村 政基
政基 鳥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014125587A priority Critical patent/JP6528056B2/en
Publication of JP2015027290A publication Critical patent/JP2015027290A/en
Application granted granted Critical
Publication of JP6528056B2 publication Critical patent/JP6528056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生命科学分野,環境分析分野の技術に関し、特に、培養細胞を用いた環境ストレスの生物学的影響の評価方法の技術に関する。   The present invention relates to technology in the life science field and environmental analysis field, and in particular, to a technology of a method of evaluating biological effects of environmental stress using cultured cells.

化学物質を代表とする環境ストレスの生物学的影響の評価法(バイオアッセイ)として、マウスなどを用いた動物実験を代替するために、哺乳動物等の培養細胞を用い、細胞増殖率や細胞生存率を測定することで環境ストレスを評価する方法が知られている。しかしながら、この方法では、培養細胞が環境ストレスに応答して、最終的に細胞死などの表現型を示すまでには時間がかかるため、本測定を高感度化することが求められていた。   As a method of evaluating the biological effects of environmental stress represented by chemical substances (bioassay), using cultured cells such as mammals to substitute for animal experiments using mice, etc., cell proliferation rate and cell survival Methods are known to assess environmental stress by measuring rates. However, in this method, it takes time for the cultured cells to finally exhibit a phenotype such as cell death in response to environmental stress, and therefore, it has been required to enhance the sensitivity of this measurement.

この問題点を解決する方法として、生体内外の異物の代謝に関与するUGT(UDPグルクロン酸転移酵素)に対して、RNA干渉法を用いてその遺伝子発現を抑制することで、細胞における化学物質の細胞毒性評価の高感度化を実現した方法が報告されている(特許文献1)。しかしながら、RNA干渉法は目的の遺伝子以外の発現をも抑制させてしまう副作用が起こることが知られており、また、使用する2本鎖siRNAは大変高価である。   As a method to solve this problem, UGT (UDP glucuronyltransferase), which is involved in the metabolism of foreign substances inside and outside the body, is a chemical substance in cells by suppressing its gene expression using RNA interference method. A method has been reported that achieves high sensitivity of cytotoxicity evaluation (Patent Document 1). However, RNA interference method is known to have a side effect of suppressing the expression of genes other than the target gene, and the double stranded siRNA used is very expensive.

また、特定の化学物質により発現が誘導されることが知られているタンパク質(例えばリポ多糖により発現が誘導されるHSP90βタンパク質等)のプロモーター配列を利用して、当該プロモーターの下流にルシフェラーゼ等のレポーター遺伝子を導入した配列を細胞内に導入することで、培養細胞における当該特定の化学物質の存在を鋭敏に検出し、これによって細胞毒性評価の高感度化を実現した方法(レポーターアッセイ法)が多数報告されている(特許文献2、3)。しかしながら、これらの方法は、特定の化学物質に応答する特定のプロモーターの特性を利用し、当該特定の化学物質の存在を個別に測定するためのものであり、様々な種類の環境ストレスの存在を測定するためには、それらのストレスに応答する仕組みを、それぞれ個別に構築する必要がある。   Also, using a promoter sequence of a protein whose expression is known to be induced by a specific chemical substance (for example, HSP90β protein whose expression is induced by lipopolysaccharide), a reporter such as luciferase is downstream of the promoter. By introducing the gene-introduced sequence into cells, the presence of the specific chemical substance in the cultured cells can be detected sharply, thereby achieving a high sensitivity of cytotoxicity evaluation (reporter assay method). It is reported (patent documents 2, 3). However, these methods make use of the properties of a specific promoter in response to a specific chemical substance to individually measure the presence of the specific chemical substance, and the presence of various types of environmental stress In order to measure, it is necessary to construct individually the mechanism which responds to those stress.

特開2010-265190号Unexamined-Japanese-Patent No. 2010-265190 国際公開2007/004361号International Publication 2007/004361 特開2011-087497号JP 2011-087497

Mourtada-Maarabouni et al., Oncogene 28,195-208, 2009Mourtada-Maarabouni et al., Oncogene 28, 195-208, 2009 Kino et al., Sci Signal. 3, ra8, 2010Kino et al., Sci Signal. 3, ra8, 2010 Tani et al., Genome Res. 22, 947-956, 2012Tani et al., Genome Res. 22, 947-956, 2012

本発明は、上記哺乳動物等の培養細胞を用いる環境ストレスの評価法を高感度化するにあたり、上述の副作用などの問題のあるRNA干渉法を使用せず、また、レポーターアッセイ法のようにある特定の化学物質の存在を個別に測定するのではなく、培養細胞を、環境ストレスに対し総合的に高感度化させるための手段を提供することを課題とする。   The present invention does not use the problematic RNA interference method such as the above-mentioned side effects, etc., in enhancing the sensitivity of the environmental stress evaluation method using cultured cells such as mammals described above, and is also a reporter assay. It is an object of the present invention to provide a means for comprehensively sensitizing cultured cells to environmental stress rather than individually measuring the presence of a specific chemical substance.

本発明者らは、上記課題を解決すべく鋭意検討した結果、哺乳動物等の培養細胞において、GAS5および/またはこれと同様の機能を有するRNA分子を高発現させることにより、培養細胞が、化学物質、紫外線などの環境ストレスに対し高感度化されることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the inventors of the present invention have found that cultured cells are chemically expressed by highly expressing GAS5 and / or RNA molecules having similar functions in cultured cells such as mammals. The present invention has been completed by finding that it is highly sensitive to environmental stress such as substances and ultraviolet light.

ヒト培養細胞内において、アポトーシス(細胞死)抑制遺伝子の発現制御に関与するGAS5(Growth arrest-specific 5)遺伝子のRNA発現量を増加させることで、細胞がアポトーシスを起こしやすくなることが報告されている(非特許文献1、2)。
本発明者らは、このことを培養細胞による各種環境ストレスの評価に利用することができるのではないかとの発想の下、検討した結果、哺乳動物の培養細胞においてGAS5のRNA発現量を増加させることにより、Mercury(II)Chloride、Cycloheximideなどの環境ストレスとされる化学物質に対し、培養細胞が、より迅速かつ鋭敏に反応し、高感度化することを見出した(図4)。
It has been reported that cells become more susceptible to apoptosis by increasing the amount of RNA expression of GAS (Growth arrest-specific 5) gene involved in the regulation of expression of apoptosis (cell death) suppressor gene in cultured human cells. (Non-Patent Documents 1 and 2).
The present inventors examined this under the idea that it could be used for the evaluation of various environmental stresses by cultured cells, and as a result, increased the amount of RNA expression of GAS5 in cultured cells of mammals. Thus, it was found that cultured cells react more rapidly and sensitively to sensitize chemical substances to environmental stress such as Mercury (II) Chloride and Cycloheximide (FIG. 4).

また、本発明者らは、先に、哺乳動物の細胞内では、タンパク質をコードしないノンコーディングRNAが多種類、発現しており、これらは細胞内で分解速度が速いものとそうでないものに大別できること、そして、このようなノンコーディングRNAの一つであるGAS5は細胞内で分解速度が速いことを見出している(非特許文献3)。
このようなノンコーディングRNAの多くはその機能が未だ知られていないが、本発明者らは、これらの中には、GAS5と同様の機能を有するものが含まれているのではないかとの発想の下、上記細胞内で分解速度が速いRNAについて、細胞の環境ストレスへの感受性に関しGAS5と同様の機能を有するものを探索した。
In addition, the present inventors previously expressed many types of non-coding RNAs that do not encode proteins in mammalian cells, and these are widely regarded as having high degradation rates in cells and those that do not. In addition, GAS5, which is one of such noncoding RNAs, has been found to be rapidly degraded in cells (Non-patent Document 3).
Although many of such noncoding RNAs are not yet known for their function, the present inventors have the idea that some of them may have the same function as GAS5. Below, with regard to RNAs with high degradation rates in the above cells, those with similar functions to GAS5 were searched for sensitivity to environmental stress of cells.

探索は、以下のように行った。
すなわち、GAS5は飢餓細胞において発現量が増加することが知られている。そこで、哺乳動物細胞であるHEK293細胞にモデル化学物質の暴露を行い、細胞内で分解速度が速いことが報告されている機能未知のノンコーディングRNAについて、GAS5と同様に発現量が顕著に増加するRNAを特定した(図1および2)。
次いで、特定されたノンコーディングRNAの塩基配列を有するRNAの存在量を細胞内で人工的に増加させることで、細胞が環境ストレスにより細胞死を起こしやすくなることを確認した。
具体的には、組換えDNAの手法により上述の特定のノンコーディングRNAの塩基配列を有する核酸を含んだ発現プラスミドベクターを作製し、核酸導入試薬等の使用により哺乳動物細胞内に発現プラスミドベクターを導入し、一定時間を経ることで、哺乳動物細胞内で当該特定の塩基配列を有する核酸の発現量を通常の細胞よりも数倍以上に増加させた(図3〜5)。その後、これらの特定の塩基配列を有する核酸の存在量が通常の細胞よりも数倍以上に増加した細胞が、通常の培養条件下では、細胞増殖率について通常の細胞と有意の差がないことを確認し(図6)、一方、化学物質をはじめとする各種の環境ストレスを与えることで、総じて、通常の細胞よりも迅速かつ高感度に細胞死を測定することができることを確認した(図7〜10)。
このような手順により、細胞内で分解速度が速い2つのRNA分子、IDI2-AS1およびSNHG15について、細胞の環境ストレスへの感受性に関し、GAS5と同様の機能を有することが確認できた。
また、これらの特定のRNA分子の複数種を組み合わせてその発現量を増加させた細胞について同様の試験を行うことにより、これらを単独で増加させた場合よりもさらに優れた環境ストレスへの感受性を有する細胞が得られることが確認できた(図11、12)。
The search was performed as follows.
That is, GAS5 is known to be increased in expression level in starved cells. Therefore, exposure of model chemicals to HEK293 cells, which are mammalian cells, significantly increases the expression level of non-coding RNAs of unknown function that are reported to have a high degradation rate in cells, as in GAS5. RNA was identified (Figures 1 and 2).
Subsequently, by artificially increasing the abundance of RNA having the specified base sequence of non-coding RNA in cells, it was confirmed that the cells were more likely to cause cell death due to environmental stress.
Specifically, an expression plasmid vector containing a nucleic acid having the specific non-coding RNA base sequence described above is prepared by the method of recombinant DNA, and the expression plasmid vector is used in mammalian cells by using a nucleic acid transfer reagent or the like. By introducing and passing through for a certain period of time, the expression amount of the nucleic acid having the specific base sequence was increased several times or more in normal mammalian cells (FIGS. 3 to 5). Thereafter, cells whose abundance of nucleic acids having these specific base sequences has increased several times or more than normal cells are not significantly different from normal cells in cell growth rate under normal culture conditions. (Fig. 6), while it was confirmed that cell death can be measured more quickly and sensitively than general cells by applying various environmental stress including chemicals (Fig. 6) (Fig. 6). 7-10).
According to such a procedure, it was confirmed that two RNA molecules with high degradation rates in cells, IDI2-AS1 and SNHG15, have the same function as GAS5 with respect to the sensitivity of cells to environmental stress.
In addition, similar tests are performed on cells in which the expression level is increased by combining multiple species of these specific RNA molecules, and thus the sensitivity to environmental stress is better than when these are increased alone. It could be confirmed that the cells possessed were obtained (FIGS. 11 and 12).

すなわち、この出願は以下の発明を提供するものである。
〈1〉培養細胞において、GAS5、IDI2-AS1およびSNHG15から選ばれた1またはそれ以上のRNA分子を高発現させることにより、培養細胞を環境ストレスに対し高感度化する方法。
〈2〉RNA分子がGAS5であることを特徴とする、〈1〉に記載の方法。
〈3〉RNA分子がIDI2-AS1またはSNHG15であることを特徴とする、〈1〉に記載の方法。
〈4〉RNA分子がGAS5およびIDI2-AS1であることを特徴とする、〈1〉に記載の方法。
〈5〉RNA分子がGAS5およびSNHG15であることを特徴とする、〈1〉に記載の方法。
〈6〉培養細胞が哺乳動物の培養細胞であることを特徴とする、〈1〉〜〈3〉に記載の方法。
〈7〉環境ストレスが化学物質による環境ストレスであることを特徴とする、〈1〉〜〈6〉に記載の方法。
〈8〉環境ストレスが紫外線による環境ストレスであることを特徴とする、〈1〉〜〈6〉に記載の方法。
〈9〉〈1〉〜〈8〉に記載の方法により、環境ストレスに対し高感度化された培養細胞。
〈10〉〈9〉に記載の培養細胞を用いることを特徴とする、環境ストレスの評価方法。
〈11〉〈9〉に記載の培養細胞を備えることを特徴とする、環境ストレスの評価装置。
〈12〉哺乳動物細胞に環境ストレスを加え、哺乳動物細胞内において分解速度が速いノンコーディングRNA分子について、その発現量が増加するRNA分子を同定し、当該RNA分子が環境ストレスに対し細胞を高感度化するか否かを検定することを特徴とする、細胞を環境ストレスに対し高感度化するRNA分子のスクリーニング方法。
That is, this application provides the following invention.
<1> A method for enhancing the sensitivity of cultured cells to environmental stress by highly expressing one or more RNA molecules selected from GAS5, IDI2-AS1 and SNHG15 in cultured cells.
<2> The method according to <1>, wherein the RNA molecule is GAS5.
<3> The method according to <1>, wherein the RNA molecule is IDI2-AS1 or SNHG15.
<4> The method according to <1>, wherein the RNA molecule is GAS5 and IDI2-AS1.
<5> The method according to <1>, wherein the RNA molecule is GAS5 and SNHG15.
<6> The method according to <1> to <3>, wherein the cultured cells are mammalian cultured cells.
<7> The method according to <1> to <6>, wherein the environmental stress is an environmental stress caused by a chemical substance.
<8> The method according to <1> to <6>, wherein the environmental stress is an environmental stress caused by ultraviolet light.
The cultured cell sensitized to environmental stress by the method as described in <9><1>-<8>.
The evaluation method of environmental stress characterized by using the cultured cell as described in <10><9>.
<11> An apparatus for evaluating environmental stress comprising the cultured cell according to <9>.
<12> With regard to non-coding RNA molecules that exert environmental stress on mammalian cells and have a high degradation rate in mammalian cells, an RNA molecule whose expression level is increased is identified, and the RNA molecule raises the cells against environmental stress. A method of screening an RNA molecule that sensitizes a cell to environmental stress, comprising assaying whether to sensitize or not.

本発明によれば、培養細胞内で特定のノンコーディングRNAの塩基配列を有するRNAの存在量を人工的に増加させることで、通常の細胞に比べて、環境ストレスに対して高い感受性を有する機能性細胞を作製することができ、これを用いることにより、各種の環境ストレスによる生物学的影響を迅速かつ高感度で測定し、評価することができる。
本発明によれば、レポーターアッセイ法のようにある特定の化学物質の存在を個別に測定するのではなく、哺乳動物細胞に対する環境ストレスの生物学的影響を総合的に高感度化することが可能である。
According to the present invention, by artificially increasing the abundance of RNA having a specific non-coding RNA base sequence in a cultured cell, it has a function having higher sensitivity to environmental stress than normal cells. Sex cells can be generated, and by using this, the biological effects of various environmental stresses can be measured and evaluated rapidly and with high sensitivity.
According to the present invention, it is possible to comprehensively sensitize the biological effects of environmental stress on mammalian cells, rather than individually measuring the presence of certain chemical substances as in the reporter assay. It is.

化学物質の暴露により発現量が顕著に増加するノンコーディングRNAのスクリーニング結果を示す図。The figure which shows the screening result of the non coding RNA whose expression level increases notably by exposure of a chemical substance. 化学物質の暴露により発現量が顕著に増加するノンコーディングRNAの発現量と化学物質濃度との相関関係を示す図。The figure which shows the correlation with the expression level of a non-coding RNA in which the expression level increases notably by exposure to a chemical substance, and a chemical substance concentration. GAS5を組み込んだ発現ベクターによるGAS5の過剰発現を示す図。The figure which shows the overexpression of GAS5 by the expression vector which integrated GAS5. IDI2-AS1を組み込んだ発現ベクターによるIDI2-AS1の過剰発現を示す図。FIG. 6 shows overexpression of IDI2-AS1 by an expression vector incorporating IDI2-AS1. SNHG15を組み込んだ発現ベクターによるSNHG15の過剰発現を示す図。The figure which shows the overexpression of SNHG15 by the expression vector which integrated SNHG15. GAS5、IDI2-AS1、SNHG15の発現量増加による細胞増殖率への影響を示す図。The figure which shows the influence on the cell proliferation rate by the increase in expression level of GAS5, IDI2-AS1, and SNHG15. GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞におけるシクロヘキシミドの作用を示す図。The figure which shows the effect | action of cycloheximide in the cell which overexpressed GAS5, IDI2-AS1, and SNHG15, respectively. GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞における塩化水銀の作用を示す図。The figure which shows the effect | action of the mercury chloride in the cell which overexpressed GAS5, IDI2-AS1, and SNHG15, respectively. GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞における過酸化水素水の作用を示す図。The figure which shows the effect | action of the hydrogen-peroxide solution in the cell which overexpressed GAS5, IDI2-AS1, and SNHG15, respectively. GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞における紫外線の作用を示す図。The figure which shows the effect | action of the ultraviolet-ray in the cell which overexpressed GAS5, IDI2-AS1, and SNHG15, respectively. GAS5、GAS5およびIDI2-AS1、GAS5およびSNHG15をそれぞれ過剰発現させた細胞における紫外線の作用を示す図。The figure which shows the effect | action of the ultraviolet-ray in the cell which overexpressed GAS5, GAS5 and IDI2-AS1, GAS5, and SNHG15, respectively. GAS5、GAS5およびIDI2-AS1、GAS5およびSNHG15をそれぞれ過剰発現させた細胞における紫外線の照射後経過時間とその作用の関係を示す図。The figure which shows the relationship of the elapsed time after the irradiation of an ultraviolet-ray in the cell which overexpressed GAS5, GAS5 and IDI2-AS1, GAS5, and SNHG15, respectively, and the effect.

次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

(実施例1)化学物質の暴露により発現量が顕著に増加するノンコーディングRNAのスクリーニング(その1)
ヒト細胞株であるHEK293細胞(2×105 cells/12 well plate)に対して、細胞培液に、Cycloheximide(Wako)を0または100μMを添加した系を準備した。それぞれの試薬はDMSOで希釈した。
この状態で、37℃、5%CO2条件下で24時間インキュベートした後、RNAiso plus(TaKaRa)を用いて、細胞回収及びtotal RNA抽出を行った。
得られたtotal RNA 500ngについて、PrimeScript RT Master Mix (Perfect Real Time)を用いて逆転写反応を行い、THUNDERBIRD SYBR qPCR Mix(TOYOBO)を用いてリアルタイムPCRを行うことで、先行研究により細胞内で分解速度が速いことが報告されている、機能既知および機能未知を含むノンコーディングRNA 24種類、並びにGAPDHの発現量を測定し、それぞれのノンコーディングRNAの定量値をGAPDH遺伝子の定量値でノーマライズした(図1)。
その結果、化学物質添加時に、GAS5、IDI2-AS1、SNHG15の3種類のRNAの発現量が、化学物質を添加していないときに比べて8倍以上増加していることがわかった。
なお、リアルタイムPCRで用いたプライマーは以下の通りである。
CDKN2B-AS1 forward primer: 5’- TTGTTAGAAACCAGGCTGCAC -3’
CDKN2B-AS1 reverse primer: 5’- TTCTCTCTTTCTGTGGTTTCTCAAT -3’
HOTAIR forward primer: 5’- CAGTGGGGAACTCTGACTCG -3’
HOTAIR reverse primer: 5’- GTGCCTGGTGCTCTCTTACC -3’
TUG1 forward primer: 5’- CCAGACCCTCAGTGCAAACT -3’
TUG1 reverse primer: 5’- AATCAGGAGGCACAGGACA -3’
GAS5 forward primer: 5’- CTTGCCTGGACCAGCTTAAT -3’
GAS5 reverse primer: 5’- CAAGCCGACTCTCCATACCT -3’
MIR22HG forward primer: 5’- CGGACGCAGTGATTTGCT -3’
MIR22HG reverse primer: 5’- GCTTTAGCTGGGTCAGGACA -3’
FLJ43663 forward primer: 5’- GGGATAATTTGCCATCTGGA -3’
FLJ43663 reverse primer: 5’- CCGTTTCTTCCATTTTCCTCT -3’
LOC100216545 forward primer: 5’- CAGCCAAAATCTGGCCTACT -3’
LOC100216545 reverse primer: 5’- GTCCAGCAATCATTTTCTCGT -3’
LINC00667 forward primer: 5’- AGTTTGCGCCTTTTGGTCT -3’
LINC00667 reverse primer: 5’- GGCCATGTGCAAAGGATTT -3’
HCG18 forward primer: 5’- CTGCCTTCTAGGGGCTCACT -3’
HCG18 reverse primer: 5’- ACATGCTCCACCAACTTTCA -3’
LOC550112 forward primer: 5’- CTGAAATCAGAGCCTGCACA -3’
LOC550112 reverse primer: 5’- TCAAGGACCTGGAAATGACC -3’
LINC00662 forward primer: 5’- GTTTGATTTCTCGCAGACCAG -3’
LINC00662 reverse primer: 5’- GCGAGGTCTAACCCAGGTG -3’
GABPB1-AS1 forward primer: 5’- AGGGAAAGAAAATATGCCATTTCTA -3’
GABPB1-AS1 reverse primer: 5’- ATCATTCCGCCGCTTTCT -3’
FLJ33630 forward primer: 5’- GCAATTATCACGGGAAACCTAT -3’
FLJ33630 reverse primer: 5’- AAATCTTATCTGCTTCCCTATTTGTAA -3’
TTN-AS1 forward primer: 5’- TCCTTAGGCATCACCTAGCC -3’
TTN-AS1 reverse primer: 5’- GATGGAGGAAGTAGAGTCATTGG -3’
LOC728431 forward primer: 5’- CACTCCCTAACCCGTGTCC -3’
LOC728431 reverse primer: 5’- TCCATCAAAGCAGCCAGAC -3’
LINC00473_v1 forward primer: 5’- TATGCGCGTCAGCATACTTT -3’
LINC00473_v1 reverse primer: 5’- TGTCCTGTGCCTCCCTGT -3’
LINC00473_v2 forward primer: 5’- TATGCGCGTCAGCATACTTT -3’
LINC00473_v2 reverse primer: 5’- TCTCCCAAAGCACAACGAG -3’
FAM222A-AS1 forward primer: 5’- CAACATGGAAATGGAGACCA -3’
FAM222A-AS1 reverse primer: 5’- CTTCCGGGATCCCAGTGT -3’
LINC00152 forward primer: 5’- GAGCCACCAGCCTCTCCT -3’
LINC00152 reverse primer: 5’- AAAAACGATCTTGCCGACAC -3’
LINC0541471_v1 forward primer: 5’- CAGATCTTCACAGCACAGTTCC -3’
LINC0541471_v1 reverse primer: 5’- TGCTGATCCACTTTGCTTGT -3’
LINC0541471_v2 forward primer: 5’- CACCAGCCTCTCCCTGAA -3’
LINC0541471_v2 reverse primer: 5’- TTCGATCAAGTGTGTCATAGAGC -3’
IDI2-AS1 forward primer: 5’- GTGTTAAACAAGACAACGCTGAA -3’
IDI2-AS1 reverse primer: 5’- AAGAGCGCTGGAAAAACCTT -3’
SNHG15 forward primer: 5’- GCAACTCCTTTGCAAGATGC -3’
SNHG15 reverse primer: 5’- CTCAAGGAGGGACCTCAGC -3’
ZFP91-CNTF forward primer: 5’- TTGTTCATACTTGGCGGTGA -3’
ZFP91-CNTF reverse primer: 5’- GGCGGGCCTAATCATTTT -3’
GAPDH forward primer: 5’- GCACCGTCAAGGCTGAGAAC -3’
GAPDH reverse primer: 5’- TGGTGAAGACGCCAGTGGA -3’
(Example 1) Screening of non-coding RNA whose expression level is significantly increased by chemical exposure (Part 1)
For human cell line HEK 293 cells (2 × 10 5 cells / 12 well plate), a system was prepared in which 0 or 100 μM of Cycloheximide (Wako) was added to the cell culture medium. Each reagent was diluted with DMSO.
In this state, after incubating at 37 ° C., 5% CO 2 for 24 hours, cell recovery and total RNA extraction were performed using RNAiso plus (TaKaRa).
Reverse transcription reaction was performed using PrimeScript RT Master Mix (Perfect Real Time) on 500 ng of total RNA obtained, and real-time PCR was performed using THUNDERBIRD SYBR qPCR Mix (TOYOBO), thereby causing intracellular degradation by previous research The expression levels of 24 types of noncoding RNAs with known functions and unknown functions, and GAPDH, which have been reported to be fast, were measured, and the quantified value of each noncoding RNA was normalized with the quantified value of the GAPDH gene ( Figure 1).
As a result, it was found that the expression levels of the three types of RNAs of GAS5, IDI2-AS1 and SNHG15 increased by at least 8-fold as compared with the case where no chemical substance was added when the chemical substance was added.
The primers used in real-time PCR are as follows.
CDKN2B-AS1 forward primer: 5'- TTGTTAGAAACCAGGCTGCAC-3 '
CDKN2B-AS1 reverse primer: 5'-TTCTCTCTTTTCTGTGGTTTCTCAAT-3 '
HOTAIR forward primer: 5'- CAGTGGGGAACTCTGACTCG-3 '
HOTAIR reverse primer: 5 '-GTGCCTGGTGCTCTCTTACC -3'
TUG1 forward primer: 5'- CCAGACCCTCAGTGCAAACT-3 '
TUG1 reverse primer: 5'- AATCAGGAGGCACAGGACA-3 '
GAS5 forward primer: 5'- CTTGCTCTGGACCAGCTTAAT-3 '
GAS5 reverse primer: 5 '-CAAGCGGACTCTCCATACCT -3'
MIR22HG forward primer: 5 '-CGGACGCAGTGATTTGCT-3'
MIR22HG reverse primer: 5'- GCTTTAGCTGGTCAGGACA-3 '
FLJ43663 forward primer: 5'- GGGATAATTTGCCATCTGGA -3 '
FLJ43663 reverse primer: 5 '-CCGTTTCTTCCTTTTCTCTCT-3'
LOC100216545 forward primer: 5 '-CAGCAAAATCTGGCCTACT -3'
LOC100216545 reverse primer: 5 '-GTCCAGCAATCTTTTCTCGT -3'
LINC00667 forward primer: 5'- AGTTTGCGCCTTTTGGTCT-3 '
LINC00667 reverse primer: 5 '-GGCCATGTGCAAAGGATTT -3'
HCG18 forward primer: 5'- CTGCCTTCTAGGGGCTCACT -3 '
HCG18 reverse primer: 5'- ACATGCTCCCACCAACTTTCA-3 '
LOC550112 forward primer: 5'- CTGAAATCAGAGCCCTCACA-3 '
LOC550112 reverse primer: 5'- TCAAGGACCTGGAAATGACC -3 '
LINC00662 forward primer: 5 '-GTTTGATTTCTCGCAGACCAG -3'
LINC00662 reverse primer: 5'- GCGAGGTCTAACCCAGGTG -3 '
GABPB1-AS1 forward primer: 5'- AGGGAAAGAAATATATGCCATTTCTA-3 '
GABPB1-AS1 reverse primer: 5'- ATCATTCCCGCCGCTTTCT-3 '
FLJ33630 forward primer: 5'- GCAATTATCACGGGAACCTAT-3 '
FLJ33630 reverse primer: 5'- AAATCTTATCTGCTTCCATTATTTGTAA-3 '
TTN-AS1 forward primer: 5'- TCCTTAGGCATCACCTAGCC-3 '
TTN-AS1 reverse primer: 5'- GATGGAGGAAGTAGAGTCATTGG -3 '
LOC728431 forward primer: 5 '-CATTCCCTAACCCGTGTCC -3'
LOC728431 reverse primer: 5'- TCCATCAAAGCCAGAC-3 '
LINC00473_v1 forward primer: 5'- TATGCGCGTCAGCATACTTT -3 '
LINC00473_v1 reverse primer: 5 '-TGTCCTGGCTCCCTGT -3'
LINC00473_v2 forward primer: 5'- TATGCGCGTCAGCATACTTT -3 '
LINC00473_v2 reverse primer: 5'-TCTCCCAAAGCACAACGAG-3 '
FAM222A-AS1 forward primer: 5'- CAACATGGAATGGAGACCA-3 '
FAM222A-AS1 reverse primer: 5'- CTTCCGGGATCCCAGTGT-3 '
LINC00152 forward primer: 5 '-GAGCCACCAGCTCTCCCT -3'
LINC00152 reverse primer: 5'- AAAAACGATCTTGCCGACAC-3 '
LINC0541471_v1 forward primer: 5 '-CAGATCTTCACAGCACAGTTCC -3'
LINC0541471_v1 reverse primer: 5 '-TGCTGATCCACTTTGCTTGT -3'
LINC0541471_v2 forward primer: 5 '-CACCAGCCTCTCCTGAA-3'
LINC0541471_v2 reverse primer: 5 '-TTCGATCAAGTGTGTCATAGAGC -3'
IDI2-AS1 forward primer: 5'- GTGTTAACAAAGACAACGCTGAA-3 '
IDI2-AS1 reverse primer: 5 '-AAGAGGCCTGAAAAAACCTT -3'
SNHG15 forward primer: 5 '-GCAACTCCTTTGCAAGATGC -3'
SNHG15 reverse primer: 5'- CTCAAGGAGGGACCTCAGC-3 '
ZFP91-CNTF forward primer: 5'- TTGTTCATACTTGGCGGTGA-3 '
ZFP91-CNTF reverse primer: 5 '-GGCGGGCCTAATCATTTT -3'
GAPDH forward primer: 5'- GCACCGTCAAGGCTGAGAAC-3 '
GAPDH reverse primer: 5'- TGGTGAAGCGCCAGTGGA -3 '

(実施例2)化学物質の暴露により発現量が顕著に増加するノンコーディングRNAのスクリーニング(その2)
実施例1において化学物質添加時にRNAの発現量が顕著に増加した、GAS5、IDI2-AS1、SNHG15の3種について、それらの発現量と化学物質の添加量との相関性をさらに詳細に調べた。
ヒト細胞であるHEK293細胞(2×105 cells/12 well plate)に対して、細胞培液に、Cycloheximide(Wako)を0、1、10、または100μM添加した系を、それぞれ準備した。それぞれの試薬はDMSOで希釈した。
この状態で、37℃、5%CO2条件下で24時間インキュベートした後、RNAiso plus(TaKaRa)を用いて、細胞回収及びtotal RNA抽出を行った。得られたtotal RNA 500ngを、PrimeScript RT Master Mix(Perfect Real Time)を用いて逆転写反応を行い、THUNDERBIRD SYBR qPCR Mix(TOYOBO)を用いてリアルタイムPCRを行うことで、機能既知のノンコーディングRNAであるGAS5、機能未知のノンコーディングRNAであるIDI2-AS1およびSNHG15、並びにGAPDHの発現量を測定し、それぞれのノンコーディングRNAの定量値をGAPDH遺伝子の定量値でノーマライズした(図2)。
その結果、上記のGAS5、IDI2-AS1、SNHG15の3種類のRNAの発現量は、それぞれ化学物質濃度依存的に増加していることがわかった。
さらに、これらのRNAの配列の共通性を探索した結果、RNAの不安定性に寄与するとされているAU-rich element(AUUUAモチーフ)を、GAS5は1つ、IDI2-AS1は1つ、SNHG15は2つ、3’側に有している事を見出した。従って、これらのRNAは配列に共通性を有する。
(Example 2) Screening of non-coding RNA whose expression level is significantly increased by chemical exposure (Part 2)
In Example 1, the correlation between the expression level of each of GAS5, IDI2-AS1 and SNHG15 and the addition level of the chemical substance was examined in more detail for the three types of GAS5, IDI2-AS1 and SNHG15 in which the expression level of RNA significantly increased upon chemical substance addition. .
For HEK 293 cells (2 × 10 5 cells / 12 well plate) which are human cells, systems in which cycloheximide (Wako) was added at 0, 1, 10 or 100 μM in cell culture medium were prepared respectively. Each reagent was diluted with DMSO.
In this state, after incubating at 37 ° C., 5% CO 2 for 24 hours, cell recovery and total RNA extraction were performed using RNAiso plus (TaKaRa). Perform reverse transcription reaction using PrimeScript RT Master Mix (Perfect Real Time) with 500 ng of total RNA obtained, and perform real-time PCR using THUNDERBIRD SYBR qPCR Mix (TOYOBO) to obtain non-coding RNA with known function The expression levels of GAS5, non-coding RNAs of unknown function IDI2-AS1 and SNHG15, and GAPDH were measured, and the quantitative value of each non-coding RNA was normalized with the quantitative value of the GAPDH gene (FIG. 2).
As a result, it was found that the expression levels of the above three types of RNA, GAS5, IDI2-AS1 and SNHG15, increased in a chemical substance concentration-dependent manner.
Furthermore, as a result of searching for commonality of the sequences of these RNAs, one AU-rich element (AUUUA motif) that is considered to contribute to the instability of RNA, one for GAS5, one for IDI2-AS1, and two for SNHG15 I found that I had on the 3 'side. Thus, these RNAs share sequence identity.

(実施例3)GAS5を組み込んだ発現ベクターによるGAS5の過剰発現
哺乳動物細胞用発現ベクターであるpcDNA3.1(+)(Invitrogen)を用いて、T7プロモーター直下にヒトのGAS5の塩基配列(NCBI番号:NR_002578の1塩基目から631塩基目まで)を組み込んだベクターを作製した。
GAS5が挿入されたベクターおよびGAS5が挿入されていないベクター(Mockベクター)2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で48時間インキュベートした後、RNAiso plus(TaKaRa)を用いて、細胞回収及びtotal RNA抽出を行った。
得られたtotal RNA 500ngについて、PrimeScript RT Master Mix (Perfect Real Time)を用いて逆転写反応を行い、THUNDERBIRD SYBR qPCR Mix(TOYOBO)を用いてリアルタイムPCRを行うことで、GAS5およびGAPDHの発現量を測定し、GAS5の定量値をGAPDHの定量値でノーマライズした(図3)。
その結果、GAS5が挿入されていないベクターを導入したものに比べ、GAS5が挿入されたベクターを導入したものでは、GAS5が約66倍高く発現していることがわかった。
Example 3 Overexpression of GAS5 by Expression Vector Incorporating GAS5 Using pcDNA3.1 (+) (Invitrogen), an expression vector for mammalian cells, the nucleotide sequence of human GAS5 (NCBI number) directly under the T7 promoter : A vector incorporating the first to the 631st bases of NR_002578 was prepared.
GAS5 is inserted vector and GAS5 is not inserted vector (Mock vector) 2.5 [mu] g, respectively introduced into HEK293 cells (10 6 cells / 60 mm dish ) using Lipofectamine 2000 Reagent (Invitrogen), 37 ℃, After incubation for 48 hours under 5% CO 2 conditions, cell recovery and total RNA extraction were performed using RNAiso plus (TaKaRa).
Perform reverse transcription reaction using PrimeScript RT Master Mix (Perfect Real Time) for 500 ng of total RNA obtained, and perform real-time PCR using THUNDERBIRD SYBR qPCR Mix (TOYOBO) to express the expression levels of GAS5 and GAPDH. It measured and the quantified value of GAS5 was normalized by the quantified value of GAPDH (FIG. 3).
As a result, it was found that GAS5 was expressed about 66 times as high as that in which the vector in which GAS5 was inserted was introduced compared to that in which the vector in which GAS5 was not inserted was introduced.

(実施例4)IDI2-AS1を組み込んだ発現ベクターによるIDI2-AS1の過剰発現
哺乳動物細胞用発現ベクターであるpcDNA3.1(+)(Invitrogen)を用いて、T7プロモーター直下にヒトのIDI2-AS1の塩基配列(NCBI番号:NR_024628の1塩基目から1088塩基目まで)を組み込んだベクターを作製した。
IDI2-AS1が挿入されたベクターおよびIDI2-AS1が挿入されていないベクター(Mockベクター)2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で48時間インキュベートした後、RNAiso plus(TaKaRa)を用いて、細胞回収及びtotal RNA抽出を行った。
得られたtotal RNA 500ngについて、PrimeScript RT Master Mix (Perfect Real Time)を用いて逆転写反応を行い、THUNDERBIRD SYBR qPCR Mix(TOYOBO)を用いてリアルタイムPCRを行うことで、IDI2-AS1およびGAPDHの発現量を測定し、IDI2-AS1の定量値をGAPDHの定量値でノーマライズした(図4)。
その結果、IDI2-AS1が挿入されていないベクターを導入したものに比べ、IDI2-AS1が挿入されたベクターを導入したものでは、IDI2-AS1が約41497倍高く発現していることがわかった。
(Example 4) Overexpression of IDI2-AS1 by Expression Vector Incorporating IDI2-AS1 Using pcDNA3.1 (+) (Invitrogen), an expression vector for mammalian cells, human IDI2-AS1 was obtained just under the T7 promoter. A vector was constructed in which the nucleotide sequence of SEQ ID NO: (NCBI number: the first base to the 1088th base of NR_024628) was incorporated.
Use Lipofectamine 2000 Reagent (Invitrogen) to introduce HEK293 cells (10 6 cells / 60 mm dish) with 2.5 μg of the vector into which IDI2-AS1 has been inserted and the vector into which IDI2-AS1 has not been inserted (Mock vector). After incubation for 48 hours at 37 ° C., 5% CO 2 , cell recovery and total RNA extraction were performed using RNAiso plus (TaKaRa).
Reverse transcription reaction was performed using PrimeScript RT Master Mix (Perfect Real Time) on 500 ng of total RNA obtained, and real-time PCR was performed using THUNDERBIRD SYBR qPCR Mix (TOYOBO) to express IDI2-AS1 and GAPDH. The amount was measured, and the quantitative value of IDI2-AS1 was normalized with the quantitative value of GAPDH (FIG. 4).
As a result, it was found that IDI2-AS1 was expressed approximately 41,497 times higher in the one into which the vector into which IDI2-AS1 was inserted was introduced than in the vector into which the vector into which IDI2-AS1 was not inserted was introduced.

(実施例5)SNHG15を組み込んだ発現ベクターによるSNHG15の過剰発現
哺乳動物細胞用発現ベクターであるpcDNA3.1(+)(Invitrogen)を用いて、T7プロモーター直下にヒトのSNHG15の塩基配列(NCBI番号:NR_003697の1塩基目から808塩基目まで)を組み込んだベクターを作製した。
SNHG15が挿入されたベクターおよびSNHG15が挿入されていないベクター(Mockベクター)2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で48時間インキュベートした後、RNAiso plus(TaKaRa)を用いて、細胞回収及びtotal RNA抽出を行った。
得られたtotal RNA 500ngについて、PrimeScript RT Master Mix (Perfect Real Time)を用いて逆転写反応を行い、THUNDERBIRD SYBR qPCR Mix(TOYOBO)を用いてリアルタイムPCRを行うことで、SNHG15およびGAPDHの発現量を測定し、SNHG15の定量値をGAPDHの定量値でノーマライズした(図5)。
その結果、SNHG15が挿入されていないベクターを導入したものに比べ、SNHG15が挿入されたベクターを導入したものでは、SNHG15が約56倍高く発現していることがわかった。
(Example 5) The nucleotide sequence (NCBI number) of human SNHG15 directly under the T7 promoter using pcDNA3.1 (+) (Invitrogen), which is an expression vector for mammalian cells overexpressing SNHG15 by an expression vector incorporating SNHG15 : A vector incorporating 1st to 808th bases of NR_003697) was prepared.
SNHG15 is inserted vector and SNHG15 is not inserted vector (Mock vector) 2.5 [mu] g, respectively introduced into HEK293 cells (10 6 cells / 60 mm dish ) using Lipofectamine 2000 Reagent (Invitrogen), 37 ℃, After incubation for 48 hours under 5% CO 2 conditions, cell recovery and total RNA extraction were performed using RNAiso plus (TaKaRa).
Perform reverse transcription reaction using PrimeScript RT Master Mix (Perfect Real Time) for 500 ng of total RNA obtained, and perform real-time PCR using THUNDERBIRD SYBR qPCR Mix (TOYOBO) to obtain the expression levels of SNHG15 and GAPDH. The measured value of SNHG15 was normalized with the measured value of GAPDH (FIG. 5).
As a result, it was found that SNHG15 was expressed approximately 56 times as high as that in which the vector into which SNHG15 was inserted was introduced compared to that into which the vector into which SNHG15 was not inserted was introduced.

(実施例6)GAS5、IDI2-AS1、SNHG15の発現量増加による細胞増殖率への影響
実施例3、4、5で用いたGAS5、IDI2-AS1またはSNHG15が挿入されたベクターおよび空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
また、実施例3で用いたGAS5が挿入されたベクター2.5μg、実施例3で用いたGAS5が挿入されたベクター2.5μgおよび実施例4で用いたIGIDI2-AS1が挿入されたベクター2.5μg、実施例3で用いたGAS5が挿入されたベクター2.5μgおよび実施例4で用いたSNHG15が挿入されたベクター2.5μg、および空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で0、24、48、または72時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図6Aおよび図6B)。n=4で実験を行った。
その結果、GAS5、IDI2-AS1またはSNHG15が挿入されたベクターを導入したもの、及びGAS5、GAS5およびIDI2-AS1、GAS5およびSNHG15が挿入されたベクターを導入したものは、空ベクターを導入したものに比べて、いずれも細胞増殖率に統計的に有意な差はみられなかった(t-test:p>0.01)。
(Example 6) Effect on cell proliferation rate by increasing expression amount of GAS5, IDI2-AS1, SNHG15 Vector used in Example 3, 4, 5 GAS5, IDI2-AS1 or SNHG15 inserted vector and empty vector 2.5 μg and using Lipofectamine 2000 Reagent (Invitrogen) were respectively introduced into HEK293 cells (10 6 cells / 60 mm dish ), 37 ℃, after 4 hours at 5% CO2 conditions, 96 well plate the cells from 60 mm dish It was replanted.
In addition, 2.5 μg of the vector into which GAS5 used in Example 3 was inserted, 2.5 μg of the vector into which GAS5 used in Example 3 was inserted, and 2.5 μg of the vector into which IGIDI2-AS1 used in Example 4 was inserted, HEK 293 cells (10 6 using Lipofectamine 2000 Reagent (Invitrogen), 2.5 μg of the vector into which GAS5 used in Example 3 was inserted, 2.5 μg of the vector into which SNHG 15 used in Example 4 was inserted, and 2.5 μg of empty vector The cells were introduced into cells / 60 mm dish) and incubated at 37 ° C., 5% CO 2 for 4 hours, and then the cells were replated from 60 mm dishes to 96 well plates.
Subsequently, viable cell counts were performed using Cell Counting Kit-8 (Dojindo) after incubation at 37 ° C., 5% CO 2 for 0, 24, 48, or 72 hours (FIG. 6A and FIG. 6B). . The experiment was performed at n = 4.
As a result, those into which a vector into which GAS5, IDI2-AS1 or SNHG15 has been inserted, or into which GAS5, GAS5 and IDI2-AS1, GAS5 and SNHG15 have been inserted, are vectors into which an empty vector has been introduced. In comparison, none of them showed a statistically significant difference in cell proliferation rate (t-test: p> 0.01).

(実施例7)GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞におけるシクロヘキシミドの作用
実施例3、4、5で用いたGAS5、IDI2-AS1またはSNHG15が挿入されたベクターおよび空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で20時間インキュベートした後、細胞培液にシクロヘキシミド(Wako)を0、1、10または100μM添加した。それぞれの試薬はDMSOで希釈した。その後、37℃、5%CO2条件下で24時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図7)。n=4で実験を行った。
その結果、GAS5、IDI2-AS1またはSNHG15が挿入されたベクターを導入したものについて、それぞれ、空ベクターを導入したものに比べ、生細胞の数の減少が見られ、特にGAS5が挿入されたベクターを導入したものでは、シクロヘキシミドの添加量が1μMにおいてすでに生細胞の数が統計的に有意に減少していることがわかった(t-test:p<0.01)。
(Example 7) Effect of cycloheximide in cells overexpressing GAS5, IDI2-AS1 and SNHG15 respectively GAS5, IDI2-AS1 or SNHG15 used in Examples 3, 4 and 5 and empty vector 2.5 μg and using Lipofectamine 2000 Reagent (Invitrogen) were respectively introduced into HEK293 cells (10 6 cells / 60 mm dish ), 37 ℃, after 4 hours incubation under 5% CO 2, 96 well cells from 60 mm dish It was replanted on a plate.
Subsequently, after incubating at 37 ° C., 5% CO 2 for 20 hours, cycloheximide (Wako) was added to the cell culture medium at 0, 1, 10 or 100 μM. Each reagent was diluted with DMSO. Then, after incubating at 37 ° C., 5% CO 2 conditions for 24 hours, viable cell count was performed using Cell Counting Kit-8 (Dojindo) (FIG. 7). The experiment was performed at n = 4.
As a result, in the vector into which GAS5, IDI2-AS1 or SNHG15 was inserted, the number of viable cells was reduced compared to the vector into which empty vector was introduced, especially the vector into which GAS5 was inserted It was found that the introduced cells had a statistically significant decrease in the number of viable cells when the addition amount of cycloheximide was 1 μM (t-test: p <0.01).

(実施例8)GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞における塩化水銀の作用
実施例3、4、5で用いたGAS5、IDI2-AS1またはSNHG15が挿入されたベクターおよび空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で20時間インキュベートした後、細胞培液に塩化水銀(Mercury (II) Chloride)を0、0.1、1、または10μg/mL添加した。それぞれの試薬はDMSOで希釈した。その後、37℃、5%CO2条件下で24時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図8)。n=4で実験を行った。
その結果、塩化水銀の添加量1μg/mLにおいて、GAS5、IDI2-AS1またはSNHG15が挿入されたベクターを導入したものについて、それぞれ、空ベクターを導入したものに比べ、生細胞の数が統計的に有意に減少していることがわかった(t-test:p<0.01)。
(Example 8) Effect of mercury chloride in cells overexpressing GAS5, IDI2-AS1, and SNHG15 respectively GAS5, IDI2-AS1 or SNHG15 used in Examples 3, 4 and 5, and empty vector 2.5 μg is introduced into HEK 293 cells (10 6 cells / 60 mm dish) using Lipofectamine 2000 Reagent (Invitrogen) and incubated at 37 ° C., 5% CO 2 for 4 hours, and then the cells are grown from 60 mm dishes to 96 mm. Replanted on a well plate.
Subsequently, the cells were incubated at 37 ° C., 5% CO 2 for 20 hours, and 0, 0.1, 1, or 10 μg / mL of mercury chloride (Mercury (II) Chloride) was added to the cell culture. Each reagent was diluted with DMSO. Then, after incubating at 37 ° C. under 5% CO 2 conditions for 24 hours, viable cell count was performed using Cell Counting Kit-8 (Dojindo) (FIG. 8). The experiment was performed at n = 4.
As a result, the number of viable cells was statistically higher than that of the vector into which GAS5, IDI2-AS1 or SNHG15 had been introduced at the amount of 1 μg / mL of mercury chloride introduced, respectively. It was found to be significantly decreased (t-test: p <0.01).

(実施例9)GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞における過酸化水素水の作用
実施例3、4、5で用いたGAS5、IDI2-AS1またはSNHG15が挿入されたベクターおよび空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で20時間インキュベートした後、細胞培液に過酸化水素水(H2O2)を0、20、40、60または80μM添加した。それぞれの試薬は水で希釈した。その後、37℃、5%CO2条件下で24時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図9)。n=4で実験を行った。
その結果、GAS5、IDI2-AS1またはSNHG15が挿入されたベクターを導入したものについて、それぞれ、過酸化水素水の添加量が20μMにおいて、すでに、空ベクターを導入したものに比べ、生細胞の数が統計的に有意に減少していることがわかった(t-test:p<0.01)。
(Example 9) Effect of aqueous hydrogen peroxide in cells overexpressing GAS5, IDI2-AS1 and SNHG15 respectively GAS5, IDI2-AS1 or SNHG15 used in Example 3, 4 and 5 and empty vector the vector 2.5 [mu] g, respectively introduced into HEK293 cells (10 6 cells / 60 mm dish ) using Lipofectamine 2000 Reagent (Invitrogen), 37 ℃, after 4 hours incubation under 5% CO 2, the cells 60 mm dish It was replanted to 96 well plate.
Subsequently, after incubating at 37 ° C. under 5% CO 2 for 20 hours, 0, 20, 40, 60 or 80 μM of hydrogen peroxide solution (H 2 O 2 ) was added to the cell culture medium. Each reagent was diluted with water. Thereafter, the cells were incubated at 37 ° C. under 5% CO 2 for 24 hours, and then viable cell count was performed using Cell Counting Kit-8 (Dojindo) (FIG. 9). The experiment was performed at n = 4.
As a result, the number of viable cells in each of the vectors into which GAS5, IDI2-AS1 or SNHG15 was inserted was smaller than that in which the empty vector had already been introduced when the amount of hydrogen peroxide solution added was 20 μM. It was found that there was a statistically significant decrease (t-test: p <0.01).

(実施例10)GAS5、IDI2-AS1、SNHG15をそれぞれ過剰発現させた細胞における紫外線の作用
実施例3、4、5で用いたGAS5、IDI2-AS1またはSNHG15が挿入されたベクターおよび空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で20時間インキュベートした後、細胞培液に紫外線を0、20,000、40,000、60,000または80,000 μJ/cm2照射した後、培地交換を行った。その後、37℃、5%CO2条件下で24時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図10)。n=4で実験を行った。
その結果、GAS5またはIDI2-AS1が挿入されたベクターを導入したものについて、それぞれ、空ベクターを導入したものに比べ、生細胞の数の減少が見られ、特にIDI2-AS1が挿入されたベクターを導入したものでは、紫外線強度40,000μJ/cm2において、すでに生細胞の数が統計的に有意に減少していることがわかった(t-test:p<0.01)。
(Example 10) Effect of ultraviolet light on cells overexpressing GAS5, IDI2-AS1 and SNHG15 respectively The vector into which GAS5, IDI2-AS1 or SNHG15 was inserted used in Example 3, 4 and 5 and empty vector 2.5 μg and using Lipofectamine 2000 Reagent (Invitrogen) were respectively introduced into HEK293 cells (10 6 cells / 60 mm dish ), 37 ℃, after 4 hours incubation under 5% CO 2, 96 well cells from 60 mm dish It was replanted on a plate.
Subsequently, the cells were incubated at 37 ° C., 5% CO 2 for 20 hours, and the cell culture medium was irradiated with 0, 20,000, 40,000, 60,000 or 80,000 μJ / cm 2 of ultraviolet light, followed by medium exchange. Then, after incubating at 37 ° C. under 5% CO 2 conditions for 24 hours, viable cell count was performed using Cell Counting Kit-8 (Dojindo) (FIG. 10). The experiment was performed at n = 4.
As a result, for the vector into which GAS5 or IDI2-AS1 was inserted, the number of living cells was reduced compared to the vector into which empty vector was introduced, and in particular, the vector into which IDI2-AS1 was inserted In the introduced product, it was found that the number of living cells was already statistically significantly decreased at an ultraviolet intensity of 40,000 μJ / cm 2 (t-test: p <0.01).

(実施例11)GAS5、GAS5およびIDI2-AS1、GAS5およびSNHG15をそれぞれ過剰発現させた細胞における紫外線の作用
実施例3で用いたGAS5が挿入されたベクター2.5μg、実施例3で用いたGAS5が挿入されたベクター2.5μgおよび実施例4で用いたIGIDI2-AS1が挿入されたベクター2.5μg、実施例3で用いたGAS5が挿入されたベクター2.5μgおよび実施例4で用いたSNHG15が挿入されたベクター2.5μg、および空ベクター2.5μgを、Lipofectamine 2000 Reagent(Invitrogen)を用いてHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で20時間インキュベートした後、細胞培液に紫外線を0、20,000、40,000、60,000または80,000μJ/cm2照射した後、培地交換を行った。その後、37℃、5%CO2条件下で24時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図11)。n=4で実験を行った。
その結果、GAS5が挿入されたベクター、GAS5が挿入されたベクター及びIDI2-AS1が挿入されたベクター、または、GAS5が挿入されたベクター及びSNHG15が挿入されたベクターを導入したものについて、それぞれ、空ベクターを導入したものに比べ、生細胞の数の減少が見られ、特にGAS5が挿入されたベクター及びIDI2-AS1が挿入されたベクター、または、GAS5が挿入されたベクター及びSNHG15が挿入されたベクターを導入したものでは、20,000μJ/cm2から80,000μJ/cm2において、空ベクターやGAS5が挿入されたベクターを導入したものでは生細胞の数が90%以上に対して、それぞれ、生細胞の数が50%以下であり、統計的に有意に減少していることがわかった(t-test:p<0.01)。このように、紫外線については、GAS5が挿入されたベクターを単独導入したものに比べて、GAS5が挿入されたベクター及びIDI2-AS1が挿入されたベクター、または、GAS5が挿入されたベクター及びSNHG15が挿入されたベクターを導入したもので、生細胞の数が顕著に減少していることがわかった。
(Example 11) Effect of ultraviolet light on cells overexpressing GAS5, GAS5 and IDI2-AS1, GAS5 and SNHG15 respectively 2.5 μg of vector inserted with GAS5 used in Example 3, GAS5 used in Example 3 2.5 μg of the inserted vector and 2.5 μg of the vector into which IGIDI2-AS1 used in Example 4 was inserted, 2.5 μg of the vector into which GAS5 used in Example 3 was inserted, and SNHG15 used in Example 4 were inserted 2.5 μg of vector and 2.5 μg of empty vector were respectively introduced into HEK 293 cells (10 6 cells / 60 mm dish) using Lipofectamine 2000 Reagent (Invitrogen) and incubated for 4 hours at 37 ° C., 5% CO 2 After that, the cells were replated from a 60 mm dish to a 96 well plate.
Subsequently, the cells were incubated at 37 ° C., 5% CO 2 for 20 hours, and the cell culture medium was irradiated with 0, 20,000, 40,000, 60,000 or 80,000 μJ / cm 2 of ultraviolet light, followed by medium exchange. Then, after incubating at 37 ° C. under 5% CO 2 conditions for 24 hours, viable cell count was performed using Cell Counting Kit-8 (Dojindo) (FIG. 11). The experiment was performed at n = 4.
As a result, the vector into which GAS5 is inserted, the vector into which GAS5 is inserted and the vector into which IDI2-AS1 is inserted, or the vector into which GAS5 is inserted and into which the vector into which SNHG15 is inserted are empty respectively A decrease in the number of living cells was observed compared to those in which the vector was introduced, and in particular, a vector into which GAS5 was inserted and a vector into which IDI2-AS1 was inserted, or a vector into which GAS5 was inserted and a vector into which SNHG15 was inserted The number of viable cells is greater than 90% when the vector into which the empty vector or the vector into which GAS5 has been introduced is introduced at 20,000 μJ / cm 2 to 80,000 μJ / cm 2 , respectively. It was found that the number was 50% or less and statistically significantly decreased (t-test: p <0.01). Thus, with regard to ultraviolet light, the vector into which GAS5 has been inserted and the vector into which IDI2-AS1 has been inserted, or the vector into which GAS5 has been inserted and SNHG15, as compared to those into which a vector into which GAS5 has been inserted has been introduced alone. It was found that the number of living cells was significantly reduced when the inserted vector was introduced.

(実施例12)GAS5、GAS5およびIDI2-AS1、GAS5およびSNHG15をそれぞれ過剰発現させた細胞における紫外線の照射後経過時間とその作用の関係
実施例11と同様に、各ベクターをHEK293細胞(106 cells/60 mm dish)にそれぞれ導入し、37℃、5%CO2条件下で4時間インキュベートした後、細胞を60mm dishから96 well plateに植え替えた。
続いて、37℃、5%CO2条件下で20時間インキュベートした後、細胞培液に紫外線を80,000 μJ/cm2照射した。その後、37℃、5%CO2条件下で0、6、24時間インキュベートした後、Cell Counting Kit-8(Dojindo)を用いて生細胞カウントを行った(図12)。n=4で実験を行った。
その結果、GAS5が挿入されたベクター及びIDI2-AS1が挿入されたベクターを導入したもの、および、GAS5が挿入されたベクター及びSNHG15が挿入されたベクターを導入したものでは、空ベクターを導入したものに比べて、6時間の時点ですでに生細胞の数が統計的に有意に減少していることがわかった(t-test:p<0.01)。
(Example 12) Relationship between elapsed time after irradiation of ultraviolet light and its action in cells overexpressing GAS5, GAS5 and IDI2-AS1, GAS5 and SNHG15 respectively As in Example 11, HEK293 cells (10 6 The cells were introduced into cells / 60 mm dish) and incubated at 37 ° C., 5% CO 2 for 4 hours, and then the cells were replated from a 60 mm dish to a 96 well plate.
Subsequently, after incubating at 37 ° C. under 5% CO 2 for 20 hours, the cell culture medium was irradiated with 80,000 μJ / cm 2 of ultraviolet light. Then, after incubating at 37 ° C., 5% CO 2 conditions for 0, 6, 24 hours, viable cell count was performed using Cell Counting Kit-8 (Dojindo) (FIG. 12). The experiment was performed at n = 4.
As a result, the vector into which GAS5 has been inserted and the vector into which IDI2-AS1 has been introduced, and into which the vector into which GAS5 has been inserted and the vector into which SNHG15 has been introduced, the vector into which an empty vector has been introduced It was found that the number of viable cells was statistically significantly decreased at 6 hours as compared to (t-test: p <0.01).

本発明の方法は、環境ストレスが生体に与える影響について迅速かつ高感度で、総合的な知見を得ることができ、環境ストレスについての診断分野、検査分野、研究分野などにおいて使用できる。   The method of the present invention can obtain comprehensive knowledge on the influence of environmental stress on living body quickly and highly sensitively, and can be used in the field of diagnosis, inspection, research and the like for environmental stress.

Claims (12)

培養細胞において、IDI2-AS1のRNA分子、若しくは、これに加えてさらにGAS5のRNA分子を、当該RNA分子を発現する発現ベクターを導入し、発現させることによって、高発現させることにより、培養細胞を環境ストレスに対し高感度化する方法。   By introducing an expression vector that expresses the RNA molecule of IDI2-AS1 or, in addition thereto, an RNA molecule of GAS5 in the cultured cell, the cultured cell can be highly expressed by expressing it. How to increase sensitivity to environmental stress. RNA分子がIDI2-AS1であることを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that the RNA molecule is IDI2-AS1. RNA分子がGAS5およびIDI2-AS1であることを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that the RNA molecule is GAS5 and IDI2-AS1. 培養細胞において、SNHG15のRNA分子およびGAS5のRNA分子、若しくは、これに加えてさらにIDI2-AS1のRNA分子を、当該RNA分子を発現する発現ベクターを導入し、発現させることによって、高発現させることにより、培養細胞を環境ストレスに対し高感度化する方法。   In cultured cells, to highly express the RNA molecule of SNHG15 and the RNA molecule of GAS5, or additionally, the RNA molecule of IDI2-AS1, by introducing and expressing an expression vector that expresses the RNA molecule. A method to sensitize cultured cells to environmental stress. 環境ストレスが化学物質による環境ストレスであることを特徴とする、請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the environmental stress is an environmental stress caused by a chemical substance. 環境ストレスが紫外線による環境ストレスであることを特徴とする、請求項1〜のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the environmental stress is an environmental stress due to ultraviolet light. 培養細胞において、SNHG15のRNA分子、若しくは、これに加えてさらにIDI2-AS1のRNA分子を、当該RNA分子を発現する発現ベクターを導入し、発現させることによって、高発現させることにより、培養細胞を化学物質による環境ストレスに対し高感度化する方法。   By introducing an expression vector that expresses the RNA molecule of the RNA molecule of SNHG15 or, in addition to this, in addition to the RNA molecule of IDI2-AS1 in the cultured cell, the cultured cell can be expressed by high expression. How to increase sensitivity to environmental stress caused by chemical substances. 培養細胞が哺乳動物の培養細胞であることを特徴とする、請求項1〜7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, wherein the cultured cells are mammalian cultured cells. 請求項1〜8のいずれか一項に記載の方法により、環境ストレスに対し高感度化された培養細胞。   The cultured cell sensitized to environmental stress by the method as described in any one of Claims 1-8. 請求項9に記載の培養細胞を用いることを特徴とする、環境ストレスの評価方法。   A method for evaluating environmental stress, which comprises using the cultured cell according to claim 9. 請求項9に記載の培養細胞を備えることを特徴とする、環境ストレスの評価装置。   An apparatus for evaluating environmental stress, comprising the cultured cell according to claim 9. 哺乳動物細胞に環境ストレスを加え、哺乳動物細胞内において分解速度が速いノンコーディングRNA分子について、その発現量が増加するRNA分子を同定し、当該RNA分子を発現ベクターを用いて細胞内で高発現させることで当該細胞が環境ストレスに対し高感度化するか否かを検定することを特徴とする、細胞を環境ストレスに対し高感度化するRNA分子のスクリーニング方法。   With regard to non-coding RNA molecules that exert environmental stress on mammalian cells and have a high degradation rate in mammalian cells, identify RNA molecules that increase their expression level, and highly express the RNA molecules in cells using expression vectors And screening the RNA molecule to sensitize the cell to environmental stress, which comprises assaying whether the cell sensitizes to environmental stress or not.
JP2014125587A 2013-06-27 2014-06-18 Method of producing stress sensitive cells using nucleic acid Active JP6528056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125587A JP6528056B2 (en) 2013-06-27 2014-06-18 Method of producing stress sensitive cells using nucleic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013134659 2013-06-27
JP2013134659 2013-06-27
JP2014125587A JP6528056B2 (en) 2013-06-27 2014-06-18 Method of producing stress sensitive cells using nucleic acid

Publications (2)

Publication Number Publication Date
JP2015027290A JP2015027290A (en) 2015-02-12
JP6528056B2 true JP6528056B2 (en) 2019-06-12

Family

ID=52491517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125587A Active JP6528056B2 (en) 2013-06-27 2014-06-18 Method of producing stress sensitive cells using nucleic acid

Country Status (1)

Country Link
JP (1) JP6528056B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317872A (en) * 2019-07-15 2019-10-11 汕头大学医学院第一附属医院 It is used to prepare the molecular marked compound and kit of detection, prognosis and Diagnosis of Breast cancer product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117617B (en) * 2015-08-26 2017-10-24 大连海事大学 A kind of method for screening environmental sensitivity biomolecule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317872A (en) * 2019-07-15 2019-10-11 汕头大学医学院第一附属医院 It is used to prepare the molecular marked compound and kit of detection, prognosis and Diagnosis of Breast cancer product

Also Published As

Publication number Publication date
JP2015027290A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
Lü et al. Long noncoding RNA BC032469, a novel competing endogenous RNA, upregulates hTERT expression by sponging miR-1207-5p and promotes proliferation in gastric cancer
Mauer et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability
Wolf et al. Functional genomic analysis of human mitochondrial RNA processing
Wang et al. RNA structure probing uncovers RNA structure-dependent biological functions
Rutnam et al. The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs
Akaike et al. HuR regulates alternative splicing of the TRA2 β gene in human colon cancer cells under oxidative stress
Zacharewicz et al. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle
Muniyappa et al. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines
Ahsani et al. WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma
Tang et al. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs
Poganik et al. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1
Mohan et al. A splicing-independent function of RBM10 controls specific 3′ UTR processing to regulate cardiac hypertrophy
Tenzer et al. Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-biotinylation-pulldown-quant (iBioPQ) approach
Zhang et al. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition
Faigenbaum-Romm et al. Hierarchy in Hfq chaperon occupancy of small RNA targets plays a major role in their regulation
Deffrasnes et al. Genome-wide siRNA screening at biosafety level 4 reveals a crucial role for fibrillarin in henipavirus infection
Tan et al. Validation of synthetic CRISPR reagents as a tool for arrayed functional genomic screening
Zell et al. Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: an in vitro model of kidney transplant fibrosis
Wang et al. Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas
Chu et al. A highly conserved circular RNA, circRasGEF1B, enhances antiviral immunity by regulating the miR-21-3p/MITA pathway in lower vertebrates
Hanna et al. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma
Shin et al. Knockdown of BC200 RNA expression reduces cell migration and invasion by destabilizing mRNA for calcium-binding protein S100A11
Child et al. Recruitment of endoplasmic reticulum-targeted and cytosolic mRNAs into membrane-associated stress granules
Zu et al. MiR-590-3p suppresses epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma by inhibiting SIP1 expression
Xiao et al. Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6528056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250