JP6525154B2 - Method of manufacturing fiber reinforced cured resin - Google Patents

Method of manufacturing fiber reinforced cured resin Download PDF

Info

Publication number
JP6525154B2
JP6525154B2 JP2015212279A JP2015212279A JP6525154B2 JP 6525154 B2 JP6525154 B2 JP 6525154B2 JP 2015212279 A JP2015212279 A JP 2015212279A JP 2015212279 A JP2015212279 A JP 2015212279A JP 6525154 B2 JP6525154 B2 JP 6525154B2
Authority
JP
Japan
Prior art keywords
resin
fiber
cured resin
carbon fiber
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212279A
Other languages
Japanese (ja)
Other versions
JP2017082105A (en
Inventor
雄一 冨永
雄一 冨永
太介 島本
太介 島本
祐介 今井
祐介 今井
裕司 堀田
裕司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015212279A priority Critical patent/JP6525154B2/en
Publication of JP2017082105A publication Critical patent/JP2017082105A/en
Application granted granted Critical
Publication of JP6525154B2 publication Critical patent/JP6525154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、再生炭素繊維を利用した繊維強化硬化樹脂の製造方法及び物品の製造方法に関する。   The present invention relates to a method of producing a fiber reinforced cured resin using recycled carbon fibers and a method of producing an article.

炭素繊維強化樹脂(CFRP:Carbon Fiber Reinforced Plastic)は、軽量で機械的特性に優れる成形体を作製できることから、輸送形態を含む製品の多くで利用されている。その一方で、製品を製造する時に発生する大量の端材や使用済みのCFRPの廃棄処理が大きな問題となっている。   BACKGROUND OF THE INVENTION Carbon fiber reinforced plastic (CFRP) is used in many products including transport forms because it can produce molded articles that are lightweight and have excellent mechanical properties. On the other hand, the disposal of a large amount of offcuts and used CFRP generated during product manufacture has become a major problem.

一般に、CFRP等の複合材料は、それぞれの構成成分を分離して再利用又は再使用することが、コストやエネルギー効率の点から有効ではなかった。そのため、廃棄物の大部分が埋立て、焼却等によって廃棄処理されていた。しかしながら、環境保護等の観点から、複合材料の構成成分を如何に再利用するかが大きな課題となっている。   Generally, in composite materials such as CFRP, it has not been effective from the viewpoint of cost and energy efficiency to separate and reuse or reuse each component. Therefore, most of the waste has been disposed of by landfilling or incineration. However, from the viewpoint of environmental protection etc., how to reuse the components of the composite material has become a major issue.

現状、熱分解法、化学分解法等によってCFRPから再生炭素繊維を回収する方法が報告されている。   At present, methods of recovering regenerated carbon fibers from CFRP by thermal decomposition method, chemical decomposition method, etc. have been reported.

しかしながら、CFRPから再生炭素繊維を回収する過程において、炭素繊維からサイジング剤が除去されてしまう。このため、再生炭素繊維を用いてCFRPを作製すると、再生炭素繊維と樹脂の界面の密着性が不十分であるという問題があった。   However, in the process of recovering regenerated carbon fibers from CFRP, the sizing agent is removed from the carbon fibers. For this reason, when CFRP is produced using regenerated carbon fibers, there is a problem that the adhesion between the regenerated carbon fibers and the resin is insufficient.

特許文献1には、炭素繊維と熱硬化性樹脂とからなる繊維強化プラスチックのリサイクル方法として、繊維強化プラスチックを熱処理して熱硬化性樹脂を燃焼させて無害化材を製造する第1の工程と、無害化材と熱可塑性樹脂を混練しながらリサイクル材を製造する第2の工程と、からなる方法が開示されている。また、特許文献1には、第2の工程において、無害化材にサイジング剤を塗布もしくは散布し、次いで、無害化材と熱可塑性樹脂を混練しながら無害化材を構成する炭素繊維を粉砕して短繊維の炭素繊維を有するリサイクル材を製造することが開示されている。   Patent Document 1 discloses, as a method of recycling fiber reinforced plastic comprising carbon fiber and thermosetting resin, a first step of producing a harmless material by heat treating the fiber reinforced plastic and burning the thermosetting resin. And a second step of producing a recycled material while kneading the detoxifying material and the thermoplastic resin. Further, in Patent Document 1, in the second step, a sizing agent is applied or dispersed to the detoxifying agent, and then, while kneading the detoxifying agent and the thermoplastic resin, carbon fibers constituting the detoxifying agent are pulverized. It has been disclosed to produce recycled material having carbon fiber of short fiber.

特開2009−138143号公報JP, 2009-138143, A

しかしながら、再生炭素繊維の原料となるCFRPを製造する過程やCFRPから再生炭素繊維を回収する過程において、炭素繊維が切断されてしまうため、再生炭素繊維は、繊維長が短く、ボビン巻きにすることは困難である。そのため、通常のサイジング工程で利用されるロール式装置を利用することができず、再生炭素繊維にサイジング剤を均一に塗布することが困難であり、その結果、再生炭素繊維と硬化樹脂の界面の密着性を十分に向上させることができない。   However, since carbon fibers are cut in the process of producing CFRP as a raw material of regenerated carbon fibers and in the process of recovering regenerated carbon fibers from CFRP, regenerated carbon fibers have a short fiber length and are bobbin wound. It is difficult. Therefore, it is difficult to use the roll type apparatus used in the normal sizing process, and it is difficult to uniformly apply the sizing agent to the regenerated carbon fiber, and as a result, the interface between the regenerated carbon fiber and the cured resin Adhesion can not be sufficiently improved.

本発明の一態様は、上記の従来技術が有する問題に鑑み、再生炭素繊維と硬化樹脂の界面の密着性に優れる繊維強化硬化樹脂を提供することを目的とする。   One aspect of the present invention aims at providing a fiber reinforced cured resin which is excellent in the adhesion of the interface between the regenerated carbon fiber and the cured resin, in view of the problems of the above-mentioned prior art.

本発明の一態様は、繊維強化硬化樹脂の製造方法において、再生炭素繊維と熱硬化性樹脂を含む樹脂複合材料にマイクロ波を照射する工程を有し、前記再生炭素繊維の体積に対する前記マイクロ波の出力の比が0.01W/mm 以上9000W/mm 以下である

One aspect of the present invention is a method of manufacturing a fiber reinforced cured resin, have a step of irradiating a microwave to the resin composite material containing recycled carbon fibers and a thermosetting resin, wherein the microwave to the volume of the recycled carbon fiber the ratio of the output of the is 0.01 W / mm 3 or more 9000 W / mm 3 or less.

本発明の一態様によれば、再生炭素繊維と硬化樹脂の界面の密着性に優れる繊維強化硬化樹脂を提供することができる。   According to one aspect of the present invention, it is possible to provide a fiber reinforced cured resin which is excellent in the adhesion of the interface between the recycled carbon fiber and the cured resin.

次に、本発明を実施するための形態を説明する。   Next, an embodiment of the present invention will be described.

繊維強化硬化樹脂の製造方法は、再生炭素繊維と熱硬化性樹脂を含む樹脂複合材料にマイクロ波を照射する工程を有する。   The manufacturing method of fiber reinforced cured resin has the process of irradiating a microwave to the resin composite material containing a regenerated carbon fiber and a thermosetting resin.

樹脂複合材料は、硬化剤をさらに含むことが好ましい。   The resin composite material preferably further contains a curing agent.

ここで、樹脂複合材料にマイクロ波を照射すると、樹脂複合材料中の再生炭素繊維が加熱され、再生炭素繊維の近傍の熱硬化性樹脂が硬化するため、再生炭素繊維と硬化樹脂の界面の密着性を向上させることができ、その結果、繊維強化硬化樹脂の機械的特性を向上させることができる。   Here, when the resin composite material is irradiated with microwaves, the regenerated carbon fibers in the resin composite material are heated, and the thermosetting resin in the vicinity of the regenerated carbon fibers is cured, so the adhesion of the interface between the regenerated carbon fibers and the cured resin As a result, the mechanical properties of the fiber reinforced cured resin can be improved.

再生炭素繊維の体積に対するマイクロ波の出力の比は、0.01〜9000W/mmであることが好ましく、2500〜7000W/mmであることがさらに好ましい。再生炭素繊維の体積に対するマイクロ波の出力の比が0.01W/mm以上であることにより、再生炭素繊維と硬化樹脂の界面の密着性をさらに向上させることができ、9000W/mm以下であることにより、再生炭素繊維の破断及び再生炭素繊維の近傍の熱硬化性樹脂の熱劣化を抑制することができる。 The ratio of the output of the microwave to the volume of the recycled carbon fiber is preferably 0.01~9000W / mm 3, and more preferably a 2500~7000W / mm 3. When the ratio of the microwave output to the volume of the regenerated carbon fiber is 0.01 W / mm 3 or more, the adhesion of the interface between the regenerated carbon fiber and the cured resin can be further improved, and is 9000 W / mm 3 or less By being present, it is possible to suppress the breakage of the recycled carbon fiber and the thermal deterioration of the thermosetting resin in the vicinity of the recycled carbon fiber.

樹脂複合材料にマイクロ波を照射する時間は、通常、10秒間以上であり、5分間〜1時間であることが好ましい。樹脂複合材料にマイクロ波を照射する時間が5分間以上であることにより、再生炭素繊維と硬化樹脂の界面の密着性をさらに向上させることができ、1時間以下であることにより、再生炭素繊維の破断及び再生炭素繊維の近傍の熱硬化性樹脂の熱劣化を抑制することができる。   The time for which the resin composite material is irradiated with the microwave is usually 10 seconds or more, preferably 5 minutes to 1 hour. The adhesion of the interface between the regenerated carbon fiber and the cured resin can be further improved by applying the microwave to the resin composite material for 5 minutes or more, and the regeneration time of the regenerated carbon fiber can be 1 hour or less. Thermal degradation of the thermosetting resin in the vicinity of the broken and regenerated carbon fibers can be suppressed.

なお、樹脂複合材料を半硬化させた後、半硬化した樹脂複合材料にマイクロ波を照射してもよい。   Alternatively, after semi-curing the resin composite material, the semi-cured resin composite material may be irradiated with microwaves.

また、マイクロ波が照射された樹脂複合材料をさらに硬化させてもよい。   In addition, the resin composite material irradiated with the microwave may be further cured.

樹脂複合材料を半硬化させる方法及びマイクロ波が照射された樹脂複合材料を硬化させる方法としては、特に限定されないが、オーブンを用いて加熱する方法等が挙げられる。   The method for semi-curing the resin composite material and the method for curing the resin composite material irradiated with microwaves are not particularly limited, and examples thereof include a method of heating using an oven.

再生炭素繊維の作製方法、即ち、炭素繊維の再生方法としては、特に限定されないが、熱分解法、化学分解法、超・亜臨界分解法、電界酸化法、過熱水蒸気法等により、炭素繊維を含む廃棄物を処理する方法が挙げられる。   The method for producing the regenerated carbon fiber, that is, the method for regenerating the carbon fiber is not particularly limited, but the carbon fiber may be formed by a thermal decomposition method, a chemical decomposition method, a super / subcritical decomposition method, an electrolytic oxidation method, a superheated steam method There is a method of treating the waste contained.

なお、再生炭素繊維の形状は、特に限定されず、不織布、チョップ及びミルドのいずれであってもよい。   In addition, the shape of a regenerated carbon fiber is not specifically limited, Any of a nonwoven fabric, a chop, and a milled may be sufficient.

また、再生炭素繊維は、サイジング剤が塗布されていてもよいし、有機溶剤処理、高分子分解処理等の処理が施されていてもよい。   In addition, the regenerated carbon fiber may be coated with a sizing agent, or may be subjected to a treatment such as an organic solvent treatment or a polymer decomposition treatment.

さらに、再生炭素繊維は、再生されていない炭素繊維と組み合わせて用いてもよいし、異なる方法により再生されている再生炭素繊維と組み合わせて用いてもよい。   Furthermore, regenerated carbon fibers may be used in combination with unregenerated carbon fibers, or may be used in combination with regenerated carbon fibers regenerated by different methods.

熱硬化性樹脂としては、特に限定されないが、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ユリア樹脂、メラミン樹脂、ジアリルフタレート、ケイ素樹脂、ビニルエステル、ポリイミド等が挙げられ、二種以上併用してもよい。   The thermosetting resin is not particularly limited, and epoxy resin, phenol resin, unsaturated polyester, urea resin, melamine resin, diallyl phthalate, silicon resin, vinyl ester, polyimide and the like can be mentioned, and two or more kinds may be used in combination. Good.

繊維強化硬化樹脂の形状は、特に限定されず、用途に応じて、任意に適用することができる。   The shape of the fiber reinforced cured resin is not particularly limited, and can be optionally applied according to the application.

繊維強化硬化樹脂は、自動車、建築構造材料、スポーツ機材、医療機器、モバイル機器の筺体材料等の物品に適用することができる。   The fiber-reinforced curing resin can be applied to articles such as automobiles, construction structural materials, sports equipment, medical devices, housing materials of mobile devices, and the like.

以下、本発明を実施例に基づいて、さらに詳細に説明するが、本発明は、実施例により限定されない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited by the examples.

[再生炭素繊維シートの作製]
炭素繊維シートBT70−20(東レ社製)を4枚重ね、真空含浸工法(VaRTM)により、エポキシ樹脂をシートに含浸させた後、硬化させ、繊維強化硬化樹脂を得た。
[Preparation of recycled carbon fiber sheet]
Four sheets of carbon fiber sheet BT70-20 (manufactured by Toray Industries, Inc.) were stacked, and after impregnating the sheet with an epoxy resin by a vacuum impregnation method (VaRTM), the sheet was cured to obtain a fiber reinforced cured resin.

2体積%の酸素を含む700℃の過熱水蒸気雰囲気下で繊維強化硬化樹脂を20分間処理し、再生炭素繊維シートを得た。   The fiber reinforced cured resin was treated for 20 minutes in a superheated steam atmosphere at 700 ° C. containing 2% by volume of oxygen to obtain a regenerated carbon fiber sheet.

[実施例1]
ビスフェノールF型液状エポキシ樹脂JER806(三菱化学社製)と硬化剤JERキュアST11(三菱化学社製)を質量比が5:3となるように計量し、ミキサーを用いて混合した後、真空脱泡し、マトリックス樹脂を得た。
Example 1
Measure the weight ratio of bisphenol F type liquid epoxy resin JER 806 (made by Mitsubishi Chemical Corporation) and curing agent JER Cure ST11 (made by Mitsubishi Chemical Corporation) to be 5: 3 and mix them using a mixer, then vacuum degassing To obtain a matrix resin.

JIS K6251に規定されているダンベル状7号型のキャビティを有する長さ35mm、幅15mm、厚さ約2mmのシリコンシートを作製し、フィルム上に置いた。次に、再生炭素繊維シートから、単繊維を傷つけないように慎重にサンプリングし、キャビティの長手方向の中心に、単繊維1本をたるみがないように固定した。さらに、空気が入らないように、キャビティにマトリックス樹脂を流し込んだ後、室温で12時間エポキシ樹脂を半硬化させ、繊維強化半硬化樹脂の試験片を得た。   A 35 mm long, 15 mm wide, and approximately 2 mm thick silicon sheet having a dumbbell-like No. 7 cavity defined in JIS K6251 was prepared and placed on a film. Next, the regenerated carbon fiber sheet was carefully sampled so as not to damage the single fiber, and one single fiber was fixed at the longitudinal center of the cavity so as not to be slackened. Furthermore, after pouring a matrix resin into the cavity so as to prevent air from entering, the epoxy resin was semi-cured at room temperature for 12 hours to obtain a test piece of a fiber-reinforced semi-cured resin.

マルチモードの周波数が2.45GHzのマイクロ波を繊維強化半硬化樹脂の試験片に5分間照射した後、120℃のオーブンで3時間加熱し、繊維強化硬化樹脂の試験片を得た。このとき、再生炭素繊維の体積に対するマイクロ波の出力の比を6875W/mmとした。 The test piece of the fiber-reinforced semi-cured resin was irradiated with microwaves having a multimode frequency of 2.45 GHz for 5 minutes, and then heated in an oven at 120 ° C. for 3 hours to obtain a test piece of the fiber-reinforced cured resin. At this time, the ratio of the microwave output to the volume of the regenerated carbon fiber was 6875 W / mm 3 .

[比較例1]
マイクロ波を繊維強化半硬化樹脂の試験片に照射しなかった以外は、実施例1と同様にして、繊維強化硬化樹脂の試験片を得た。
Comparative Example 1
A test piece of a fiber-reinforced cured resin was obtained in the same manner as in Example 1 except that the test piece of the fiber-reinforced semi-cured resin was not irradiated with microwaves.

次に、繊維強化硬化樹脂の試験片を用いて、繊維強化硬化樹脂の界面せん断応力を求め、再生炭素繊維と硬化樹脂の界面の密着性を評価した。   Next, the interface shear stress of the fiber reinforced cured resin was determined using a test piece of the fiber reinforced cured resin, and the adhesion of the interface between the regenerated carbon fiber and the cured resin was evaluated.

[再生炭素繊維の平均直径D]
走査型電子顕微鏡S−4300(日立ハイテクノロジーズ社製)を用いて、再生炭素繊維の平均直径Dを測定したところ、6.24μmであった。
[Average diameter D of regenerated carbon fiber]
The average diameter D of the regenerated carbon fiber was measured using a scanning electron microscope S-4300 (manufactured by Hitachi High-Technologies Corporation) and found to be 6.24 μm.

[再生炭素繊維の引張強度σ
再生炭素繊維シートから、単繊維を傷つけないように慎重にサンプリングし、紙枠に単繊維1本を貼り付け、試験片を得た。
[Tensile strength σ f of regenerated carbon fiber]
The recycled carbon fiber sheet was carefully sampled so as not to damage single fibers, and one single fiber was attached to a paper frame to obtain a test piece.

顕微鏡用延伸ステージ10073B(ジャパンハイテック社製)を用いて、20本の試験片を3μm/sの引張速度で引張り、引張試験を実施した。   A tensile test was performed on 20 test pieces at a tensile speed of 3 μm / s using a microscope stretching stage 10073 B (manufactured by Japan High Tech Co., Ltd.).

繊維の引張強度の分布は、通常、ワイブル分布に従うとされており、逆に、繊維の引張強度の分布がワイブル分布に従えば、その試験方法が適切であると判断することができる。長さLの繊維が応力σ以下で破断する確率累積分布関数F(σ)は、引張強度がワイブル分布に従う場合、式   The distribution of tensile strength of fibers is generally considered to follow the Weibull distribution, and conversely, if the distribution of tensile strength of fibers follows the Weibull distribution, it can be judged that the test method is appropriate. The probability cumulative distribution function F (σ) that fibers with a length L break at stress σ or less is expressed by the formula when the tensile strength follows the Weibull distribution

Figure 0006525154
Figure 0006525154

(式中、γは、尺度パラメータ、βは、形状パラメータ、Lは、レファレンス長であり、ここでは、L=Lとする。)
で表される(W.Weibull,J.Appl.Mech.,9,(1951)293)。上記式を変形すると、式
(Wherein γ is a scale parameter, β is a shape parameter, and L 0 is a reference length, where L = L 0 ).
(W. Weibull, J. Appl. Mech., 9, (1951) 293). When the above equation is transformed, the equation

Figure 0006525154
Figure 0006525154

が得られる。   Is obtained.

したがって、上記式の左項を縦軸(Y)、lnσを横軸(X)としてプロットしたときに直線関係が得られれば、繊維の引張強度の分布はワイブル分布に従っていると判断することができる。さらに、直線の傾きと切片から尺度パラメータγ、形状パラメータβを求めることができる。   Therefore, if a linear relationship is obtained when the left term of the above equation is plotted with the vertical axis (Y) and lnσ as the horizontal axis (X), it can be determined that the distribution of tensile strength of fibers follows the Weibull distribution. . Furthermore, the scale parameter γ and the shape parameter β can be obtained from the slope and the intercept of the straight line.

再生炭素繊維の引張強度の分布を作成した結果、ワイブル分布に従っていることが明らかとなった。また、再生炭素繊維の尺度パラメータγ及び形状パラメータβを求めたところ、それぞれ2.28及び5.03であった。さらに、再生炭素繊維の引張強度σが2100MPaであった。 As a result of creating the distribution of tensile strength of the regenerated carbon fiber, it became clear that it follows the Weibull distribution. Further, when the scale parameter γ and the shape parameter β of the regenerated carbon fiber were obtained, they were 2.28 and 5.03, respectively. Furthermore, the tensile strength σ f of the regenerated carbon fiber was 2100 MPa.

[破断した再生炭素繊維の繊維長の平均値]
顕微鏡用延伸ステージ10073B(ジャパンハイテック社製)を用いて、繊維強化硬化樹脂の試験片のフラグメンテーション試験を実施した。具体的には、繊維強化硬化樹脂の試験片を0.1μm/sの速度で引張った後、ひずみ1.0%毎に破断数を観察する操作を繰り返し、再生炭素繊維の破断数が飽和した時点でフラグメンテーション試験を終了した。このとき、光学顕微鏡を用いて、繊維強化硬化樹脂の試験片中の再生炭素繊維の破断を観察すると共に、破断した再生炭素繊維の繊維長を測定した。次に、破断した再生炭素繊維の繊維長の平均値を算出した。
[Average fiber length of fractured recycled carbon fiber]
The fragmentation test of the test piece of the fiber reinforced cured resin was carried out using a microscope drawing stage 10073 B (manufactured by Japan High Tech Co., Ltd.). Specifically, after the test piece of the fiber reinforced cured resin was pulled at a speed of 0.1 μm / s, the operation of observing the number of breakage at every strain of 1.0% was repeated, and the number of breakage of regenerated carbon fiber was saturated At the end of the fragmentation test. At this time, using an optical microscope, the fracture of the regenerated carbon fiber in the test piece of the fiber reinforced cured resin was observed, and the fiber length of the fractured regenerated carbon fiber was measured. Next, the average value of the fiber length of the broken recycled carbon fiber was calculated.

[繊維強化硬化樹脂の界面せん断応力τ
[Interfacial shear stress τ i of fiber reinforced cured resin]
formula

Figure 0006525154
Figure 0006525154

(式中、σは、再生炭素繊維の引張強度、Dは、再生炭素繊維の平均直径、Lは、再生炭素繊維の臨界繊維長である。)
により、繊維強化硬化樹脂の界面せん断応力τを算出した。ここで、再生炭素繊維の臨界繊維長は、式
(Wherein, σ f is the tensile strength of the regenerated carbon fiber, D is the average diameter of the regenerated carbon fiber, and L c is the critical fiber length of the regenerated carbon fiber.)
The interfacial shear stress τ i of the fiber reinforced cured resin was calculated by Here, the critical fiber length of the regenerated carbon fiber is the formula

Figure 0006525154
Figure 0006525154

(式中、Lは、破断した再生炭素繊維の繊維長の平均値である。)
により、算出した。
(In the formula, L is an average value of the fiber length of the broken recycled carbon fiber.)
Calculated.

表1に、繊維強化硬化樹脂の製造条件及び再生炭素繊維と硬化樹脂の界面の密着性の評価結果を示す。   Table 1 shows the evaluation results of the production conditions of the fiber reinforced cured resin and the adhesion of the interface between the recycled carbon fiber and the cured resin.

Figure 0006525154
Figure 0006525154

なお、マイクロ波照射における出力は、再生炭素繊維の体積に対するマイクロ波の出力の比を意味する。   In addition, the output in microwave irradiation means the ratio of the output of the microwave with respect to the volume of a regenerated carbon fiber.

表1から、実施例1の繊維強化硬化樹脂は、マイクロ波が照射されていない比較例1の繊維強化硬化樹脂に対して、再生炭素繊維と硬化樹脂の界面の密着性が優れることがわかる。   It is understood from Table 1 that the fiber reinforced cured resin of Example 1 is excellent in the adhesion of the interface between the recycled carbon fiber and the cured resin to the fiber reinforced cured resin of Comparative Example 1 which is not irradiated with the microwave.

[実施例2]
ビスフェノールF型液状エポキシ樹脂JER806(三菱化学社製)と硬化剤JERキュアST11(三菱化学社製)を質量比が5:3となるように計量し、ミキサーを用いて混合した後、真空脱泡し、マトリックス樹脂を得た。
Example 2
Measure the weight ratio of bisphenol F type liquid epoxy resin JER 806 (made by Mitsubishi Chemical Corporation) and curing agent JER Cure ST11 (made by Mitsubishi Chemical Corporation) to be 5: 3 and mix them using a mixer, then vacuum degassing To obtain a matrix resin.

再生炭素繊維シートを4枚重ね、VaRTMにより、マトリックス樹脂をシートに含浸させた後、室温で12時間エポキシ樹脂を半硬化させ、繊維強化半硬化樹脂を得た。   Four regenerated carbon fiber sheets were stacked, and the matrix resin was impregnated into the sheet by VaRTM, and then the epoxy resin was semi-cured at room temperature for 12 hours to obtain a fiber-reinforced semi-cured resin.

マルチモードの周波数が2.45GHzのマイクロ波を繊維強化半硬化樹脂に20分間照射して、繊維強化硬化樹脂を得た。このとき、繊維強化半硬化樹脂の試験片の温度が120℃になるように、炭素繊維の体積に対するマイクロ波の出力の比を0.04W/mmとした。ここで、放射温度計、赤外センサーを用いて、繊維強化半硬化樹脂の試験片の温度を測定した。 The fiber-reinforced semi-cured resin was irradiated with microwaves having a multimode frequency of 2.45 GHz for 20 minutes to obtain a fiber-reinforced cured resin. At this time, the ratio of microwave output to carbon fiber volume was set to 0.04 W / mm 3 so that the temperature of the test piece of the fiber reinforced semi-cured resin would be 120 ° C. Here, the temperature of the test piece of fiber reinforced semi-hardened resin was measured using a radiation thermometer and an infrared sensor.

[比較例2]
マイクロ波を繊維強化半硬化樹脂に照射しなかった以外は、実施例2と同様にして、繊維強化硬化樹脂を得た。
Comparative Example 2
A fiber-reinforced cured resin was obtained in the same manner as Example 2, except that the fiber-reinforced semi-cured resin was not irradiated with microwaves.

[比較例3]
マイクロ波を繊維強化半硬化樹脂に照射する代わりに、120℃のオーブンで繊維強化半硬化樹脂を3時間加熱した以外は、実施例2と同様にして、繊維強化硬化樹脂を得た。
Comparative Example 3
A fiber-reinforced cured resin was obtained in the same manner as in Example 2, except that the fiber-reinforced semi-cured resin was heated for 3 hours in an oven at 120 ° C., instead of irradiating the fiber-reinforced semi-cured resin with microwaves.

次に、繊維強化硬化樹脂の曲げ弾性率、曲げ強度を測定した。   Next, the flexural modulus and the flexural strength of the fiber reinforced cured resin were measured.

[繊維強化硬化樹脂の曲げ弾性率、曲げ強度]
幅15mm、長さ60mm、厚さ1mmに繊維強化硬化樹脂を成形し、繊維強化硬化樹脂の試験片を得た。
[Flexural modulus and flexural strength of fiber reinforced cured resin]
The fiber reinforced cured resin was molded to a width of 15 mm, a length of 60 mm, and a thickness of 1 mm to obtain a test piece of the fiber reinforced cured resin.

精密万能試験機AG−IS(島津製作所社製)を用いて、繊維強化硬化樹脂の試験片の三点曲げ試験を実施し、繊維強化硬化樹脂の曲げ弾性率、曲げ強度を測定した。このとき、クロスヘッドスピードを5mm/minとした。   Using a precision universal testing machine AG-IS (manufactured by Shimadzu Corporation), a three-point bending test of the test piece of the fiber reinforced cured resin was conducted to measure the flexural modulus and the flexural strength of the fiber reinforced cured resin. At this time, the crosshead speed was 5 mm / min.

表2に、繊維強化硬化樹脂の製造条件、曲げ弾性率及び曲げ強度の測定結果を示す。   Table 2 shows the measurement conditions of the fiber reinforced cured resin, the measurement results of the flexural modulus and the flexural strength.

Figure 0006525154
Figure 0006525154

なお、マイクロ波照射における出力は、再生炭素繊維の体積に対するマイクロ波の出力の比を意味する。   In addition, the output in microwave irradiation means the ratio of the output of the microwave to the volume of a regenerated carbon fiber.

表2から、実施例2の繊維強化硬化樹脂は、曲げ弾性率及び曲げ強度が優れることがわかる。   Table 2 shows that the fiber reinforced cured resin of Example 2 is excellent in flexural modulus and flexural strength.

これに対して、比較例2の繊維強化硬化樹脂は、マイクロ波が照射されていないため、曲げ強度が低い。   On the other hand, since the fiber reinforced cured resin of Comparative Example 2 is not irradiated with the microwave, the bending strength is low.

また、比較例3の繊維強化硬化樹脂は、マイクロ波が照射される代わりに、オーブンで加熱されているため、曲げ強度が低い。   Moreover, since the fiber reinforced cured resin of Comparative Example 3 is heated in an oven instead of being irradiated with microwaves, the bending strength is low.

なお、繊維強化硬化樹脂の曲げ弾性率は、連続繊維を織物にしたプリフォーム構造に起因するため、加熱条件が変わってもほとんど変わらない。
In addition, since it originates in the preform structure which made continuous fiber the woven fabric, the bending elastic modulus of fiber reinforced cured resin hardly changes even if a heating condition changes.

Claims (5)

再生炭素繊維と熱硬化性樹脂を含む樹脂複合材料にマイクロ波を照射する工程を有し、
前記再生炭素繊維の体積に対する前記マイクロ波の出力の比が0.01W/mm 以上9000W/mm 以下であることを特徴とする繊維強化硬化樹脂の製造方法。
Have a step of irradiating a microwave to the resin composite material containing recycled carbon fibers and a thermosetting resin,
Method for producing a fiber reinforced cured resin, wherein the ratio of the output of the microwave to the volume of the recycled carbon fiber is not more than 0.01 W / mm 3 or more 9000 W / mm 3.
前記樹脂複合材料を半硬化させる工程をさらに有し、
該半硬化した樹脂複合材料に前記マイクロ波を照射することを特徴とする請求項1に記載の繊維強化硬化樹脂の製造方法。
The method further includes the step of semi-curing the resin composite material,
Method for producing a fiber-reinforced curable resin according to claim 1, characterized by irradiating the microwave to the semi-cured resin composite material.
前記マイクロ波が照射された樹脂複合材料を硬化させる工程をさらに有することを特徴とする請求項1又は2に記載の繊維強化硬化樹脂の製造方法。 The method of producing a fiber reinforced cured resin according to claim 1 or 2 , further comprising the step of curing the resin composite material irradiated with the microwave. 前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル、ユリア樹脂、メラミン樹脂、ジアリルフタレート、ケイ素樹脂、ビニルエステル又はポリイミドであることを特徴とする請求項1乃至のいずれか一項に記載の繊維強化硬化樹脂の製造方法。 The said thermosetting resin is an epoxy resin, a phenol resin, unsaturated polyester, a urea resin, a melamine resin, a diallyl phthalate, a silicone resin, a vinyl ester, or a polyimide, The any one of the Claims 1 thru | or 3 characterized by the above-mentioned. The manufacturing method of the fiber reinforced cured resin as described in. 請求項1乃至のいずれか一項に記載の繊維強化硬化樹脂の製造方法を用いて繊維強化硬化樹脂を製造する工程を有することを特徴とする物品の製造方法。 A method for producing an article, comprising the step of producing a fiber-reinforced cured resin using the method for producing a fiber-reinforced cured resin according to any one of claims 1 to 4 .
JP2015212279A 2015-10-28 2015-10-28 Method of manufacturing fiber reinforced cured resin Active JP6525154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212279A JP6525154B2 (en) 2015-10-28 2015-10-28 Method of manufacturing fiber reinforced cured resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212279A JP6525154B2 (en) 2015-10-28 2015-10-28 Method of manufacturing fiber reinforced cured resin

Publications (2)

Publication Number Publication Date
JP2017082105A JP2017082105A (en) 2017-05-18
JP6525154B2 true JP6525154B2 (en) 2019-06-05

Family

ID=58711716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212279A Active JP6525154B2 (en) 2015-10-28 2015-10-28 Method of manufacturing fiber reinforced cured resin

Country Status (1)

Country Link
JP (1) JP6525154B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813510B2 (en) * 1989-01-06 1996-02-14 富士重工業株式会社 Microwave heating method for conductive fiber reinforced plastics
JPH0912730A (en) * 1995-06-30 1997-01-14 Kobe Steel Ltd Profile fiber-reinforced plastic
JP2005307121A (en) * 2004-04-26 2005-11-04 Toho Tenax Co Ltd Reclaimed carbon fiber and method for recovering the same
JP5619547B2 (en) * 2010-09-17 2014-11-05 日信工業株式会社 Method for producing carbon fiber composite material and carbon fiber composite material
JP6044946B2 (en) * 2012-05-31 2016-12-14 独立行政法人国立高等専門学校機構 Method for recovering carbon fiber from carbon fiber composite material
JP6179983B2 (en) * 2013-07-30 2017-08-16 国立研究開発法人産業技術総合研究所 Thermosetting sheet
JP6164583B2 (en) * 2013-07-30 2017-07-19 国立研究開発法人産業技術総合研究所 Method for producing thermosetting rod

Also Published As

Publication number Publication date
JP2017082105A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
KR102292011B1 (en) Fiber-reinforced resin material and fiber-reinforced resin compact using same
CN108560243B (en) Carbon fiber surface treatment method and application
Gkikas et al. Nano-enhanced composite materials under thermal shock and environmental degradation: A durability study
JP6300487B2 (en) Method for producing recycled carbon fiber reinforced plastic molding
Han et al. Evaluation of the impregnation characteristics of carbon fiber-reinforced composites using dissolved polypropylene
Azim et al. Optimizing the fabric architecture and effect of γ-radiation on the mechanical properties of jute fiber reinforced polyester composites
Pang et al. Interfacial shear strength and thermal properties of electron beam-treated henequen fibers reinforced unsaturated polyester composites
Mahesha et al. Biodegradable natural fiber reinforced polymer matrix composites: Technical updates
JP6729593B2 (en) Carbon fiber nonwoven fabric, method for producing carbon fiber nonwoven fabric, carbon fiber multilayer fabric, and composite material
JP6163485B2 (en) Molding material, molded body thereof, and method for producing the molded body
JP6525154B2 (en) Method of manufacturing fiber reinforced cured resin
Nam et al. Effect of natural fiber reinforced polypropylene composite using resin impregnation
JP6340619B2 (en) Method for producing superheated steam-treated carbon fiber
JP6429614B2 (en) Method for producing fiber-reinforced cured resin
RU2516526C2 (en) Method of obtaining preparation for composite materials
JP6164583B2 (en) Method for producing thermosetting rod
KR101852921B1 (en) Menufacturing method for molded article using fiber reinforcerd plastic waste
JPS59107913A (en) Manufacture of composite carbon-carbon material
RU2687930C1 (en) Method of reinforcing reinforced with carbon fiber polymer composite materials
JP2018069524A (en) Method for producing regenerated carbon fibers
JP6959721B2 (en) Carbon fiber heat treatment method
CN107073844B (en) Molding materials and methods of forming the same
JP2019178185A (en) Method for production of polyamide type carbon fiber-reinforced resin
Ram et al. Dynamic mechanical analysis of Asian Palmyra Sprouts fiber reinforced epoxy composites
JP2016141913A (en) Method for producing fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6525154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250