JP6523350B2 - Radar apparatus and object recognition method - Google Patents

Radar apparatus and object recognition method Download PDF

Info

Publication number
JP6523350B2
JP6523350B2 JP2017008069A JP2017008069A JP6523350B2 JP 6523350 B2 JP6523350 B2 JP 6523350B2 JP 2017008069 A JP2017008069 A JP 2017008069A JP 2017008069 A JP2017008069 A JP 2017008069A JP 6523350 B2 JP6523350 B2 JP 6523350B2
Authority
JP
Japan
Prior art keywords
antenna
receiving
main
antennas
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017008069A
Other languages
Japanese (ja)
Other versions
JP2018116000A (en
Inventor
満 桐田
満 桐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017008069A priority Critical patent/JP6523350B2/en
Publication of JP2018116000A publication Critical patent/JP2018116000A/en
Application granted granted Critical
Publication of JP6523350B2 publication Critical patent/JP6523350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays

Description

この発明は、複数の受信アンテナを用いて物標から反射された電波(反射波)を受信することで、物標が存在する位置(距離および角度)を検出するレーダ装置および物体認識方法に関するものである。   The present invention relates to a radar device and an object recognition method for detecting a position (distance and angle) at which a target exists by receiving radio waves (reflected waves) reflected from the target using a plurality of receiving antennas. It is.

複数のアンテナで受信される反射波の振幅、位相情報を用いて、物標から反射波の到来方向(物標が存在する角度)を高精度で算出できる測角技術がある(非特許文献1参照)。
レーダ装置は、複数のアンテナ数を多く、またアンテナが存在する領域、つまりアンテナ開口長を大きくすることで、物標からの反射波の到来角度をより精度良く測角することができる(非特許文献2参照)。
There is an angle measurement technology that can calculate with high accuracy the arrival direction (the angle at which a target exists) of a reflected wave from a target using the amplitude and phase information of the reflected wave received by a plurality of antennas (Non-Patent Document 1) reference).
The radar apparatus can measure the angle of arrival of the reflected wave from the target more accurately by increasing the number of antennas and increasing the area where the antennas are present, that is, the antenna aperture (non-patent) Reference 2).

ところで、限られたアンテナの数で物標からの反射波の到来角度を精度よく測角するためには、複数のアンテナ間隔を広げる必要がある。しかし、複数のアンテナ間隔を使用周波数の半波長以上にするとメインビームと同じ振幅、位相情報を持ったグレーティングローブが発生し、反射波の到来方向を一意に特定できない、つまり物標を間違った位置に誤測角する問題がある(非特許文献3、特許文献1参照)。   By the way, in order to accurately measure the arrival angle of the reflected wave from the target with a limited number of antennas, it is necessary to widen the intervals between the plurality of antennas. However, if multiple antenna spacing is set to a half wavelength or more of the used frequency, grating lobes with the same amplitude and phase information as the main beam are generated, and the arrival direction of the reflected wave can not be identified uniquely. There is a problem of erroneous measurement angle (see Non-Patent Document 3 and Patent Document 1).

特許第4143007号公報Patent No. 4143 007

電子情報通信学会編 「アンテナ工学ハンドブック(第2版)」オーム社 2008年7月 P492〜P515The Institute of Electronics, Information and Communication Engineers "Antenna Engineering Handbook (2nd edition)" Ohmsha July 2008 P492-P515 Steven M. Kay 著 「Fundamentals of Statistical Signal Processing Estimation Theory」 P57〜P59Steven M. Kay "Fundamentals of Statistical Signal Processing Estimation Theory" P57-P59 電子情報通信学会編 「改訂 レーダ技術」コロナ社 P119〜P123The Institute of Electronics, Information and Communication Engineers "Revision Radar Technology" Corona P119-P123

以上のように複数のアンテナを用いたレーダ装置では誤測角を発生させないためにアンテナ間隔を使用周波数の半波長以下で、アンテナを配列することが望ましいが、実用上は限られたアンテナ数で構成されることになり、グレーティングローブの誤測角を許容しない場合、目標とする測角精度を実現できるアンテナ開口長を確保できない課題がある。   As described above, in the radar apparatus using a plurality of antennas, it is desirable to arrange the antennas at half the wavelength of the used frequency or less, in order to prevent occurrence of erroneous measurement angles, but in practice, with a limited number of antennas If the measurement error of grating lobes is not permitted, there is a problem that it is impossible to secure the antenna opening length that can achieve the target measurement accuracy.

この発明は、上記のような課題を解決するためになされたものであり、限られたアンテナ数において、グレーティングローブによる誤測角を排除し、測角精度の向上を図ったレーダ装置および物体認識方法を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and a radar device and an object recognition capable of improving the measurement accuracy by eliminating an erroneous measurement angle due to a grating lobe with a limited number of antennas It aims to provide a method.

この発明に係わるレーダ装置は、物標に反射した反射波を受信する複数の受信アンテナを備えたレーダ装置において、前記複数の受信アンテナの内、受信アンテナ間隔が使用周波数の半波長以上の等間隔d1で配列され、前記反射波を受信する主アンテナと、前記複数の受信アンテナの内、所定の受信アンテナが等間隔d2で配列され、前記主アンテナのメインビームと同方向にビームを形成し、前記主アンテナのグレーティングローブ発生角度で受信強度を抑圧した振幅パターンで前記反射波を受信する副アンテナと、前記主アンテナおよび前記副アンテナの受信信号の振幅差を計算し、予め設定された閾値に基づき物標の存在を判定する信号処理部を備え、前記副アンテナの数を3個とし、前記副アンテナの振幅パターンを同相励振により形成して前記受信アンテナの間隔をd1=3d2の関係が成り立つようにし、または、前記副アンテナの振幅パターンを中央逆相励振により形成して前記受信アンテナの間隔をd1=6d2の関係が成り立つようにしたものである。 A radar apparatus according to the present invention is a radar apparatus having a plurality of receiving antennas for receiving a reflected wave reflected by a target, wherein among the plurality of receiving antennas, the receiving antenna spacing is equal to or more than a half wavelength of the used frequency. A main antenna for receiving the reflected wave and a predetermined receiving antenna among the plurality of receiving antennas arranged at d1 are arranged at equal intervals d2 to form a beam in the same direction as the main beam of the main antenna, The amplitude difference between the received signal of the main antenna and the sub antenna and the sub antenna that receives the reflected wave is calculated with an amplitude pattern in which the reception intensity is suppressed at the grating lobe generation angle of the main antenna, and the threshold is set in advance. comprising a determining signal processor of the presence of the basis target object, wherein the three the number of sub-antennas, the amplitude pattern of the sub antenna in phase excitation The distance between the receiving antennas is set so that the relationship of d1 = 3d2 holds, or the amplitude pattern of the sub antenna is formed by central reverse phase excitation so that the distance between the receiving antennas holds the relationship d1 = 6d2 The

この発明に係わる物体認識方法は、複数の受信アンテナの内、受信アンテナ間隔が等間隔d1で使用周波数の半波長以上の主アンテナで物標に反射した反射波を受信する第1のステップと、前記主アンテナのメインビームと同方向にビームを形成し、前記主アンテナの受信により発生したグレーティングローブ発生角度で受信強度を抑圧した振幅パターンを持つ、所定の受信アンテナが等間隔d2の副アンテナで反射波を受信する第2のステップと、前記第1のステップおよび前記第2のステップの受信波の振幅差を計算し、予め設定された閾値に基づき物体の存在を認識する第3のステップを備え、前記副アンテナの数を3個とし、前記副アンテナの振幅パターンを同相励振により形成して前記受信アンテナの間隔をd1=3d2の関係が成り立つようにし、または、前記副アンテナの振幅パターンを中央逆相励振により形成して前記受信アンテナの間隔をd1=6d2の関係が成り立つようにしたものである。

The object recognition method according to the present invention comprises a first step of receiving a reflected wave reflected by a target at a main antenna having a half wavelength of a used frequency or more at equal intervals d1 among the plurality of receiving antennas; wherein forming a main beam and the beam in the same direction of the main antenna, with an amplitude pattern of suppressing the reception intensity by the grating lobe occurrence angle generated by the reception of the main antenna, a predetermined receiving antenna in the sub antenna equidistant d2 A second step of receiving a reflected wave, and a third step of calculating an amplitude difference between the received waves of the first step and the second step, and recognizing the presence of an object based on a preset threshold. wherein the number of sub-antennas 3 and the distance the relationship d1 = 3d2 of the receiving antenna is formed by in-phase excitation of the amplitude pattern of the auxiliary antenna Ri and so stand, or the one in which the amplitude pattern of the sub antenna to the distance of the receiving antenna is formed by a central reversed-phase excitation as the relationship d1 = 6d2 is established.

この発明に係るレーダ装置によれば、限られたアンテナ数において、測角精度を向上させ、グレーティングローブによる誤側角を適確に排除できるレーダ装置を提供することができる。   According to the radar apparatus according to the present invention, it is possible to provide a radar apparatus capable of improving the angle measurement accuracy and accurately eliminating the erroneous side angle due to the grating lobe with a limited number of antennas.

この発明の実施の形態におけるレーダ装置の共通部分を示す受信系のブロック図である。It is a block diagram of a receiving system which shows a common part of a radar installation in an embodiment of this invention. この発明の実施の形態におけるレーダ装置の共通部分を示すフローチャート図である。It is a flowchart figure which shows the common part of the radar apparatus in embodiment of this invention. レーダ装置を構成する等間隔アレーアンテナの構成を示す図である。It is a figure which shows the structure of the equally-spaced array antenna which comprises a radar apparatus. 受信アンテナ開口長とビーム幅の関係を示す図である。It is a figure which shows the relationship between receiving antenna aperture length and beam width. 受信アンテナ間隔とグレーティングローブ、ナル発生角度の関係を示す図である。It is a figure which shows the relationship between a receiving antenna space | interval, a grating lobe, and a null generation | occurrence | production angle. この発明の実施の形態1におけるレーダ装置を示す受信系のブロック図である。It is a block diagram of a receiving system which shows a radar installation in Embodiment 1 of this invention. この発明の実施の形態1におけるレーダ装置の主アンテナおよび副アンテナ(同相励振)の振幅パターンを示す図A figure showing an amplitude pattern of a main antenna and a sub antenna (in-phase excitation) of a radar device in a first embodiment of the present invention この発明の実施の形態1におけるレーダ装置の主アンテナおよび副アンテナ(中央逆相励振)の振幅パターンを示す図である。It is a figure which shows the amplitude pattern of the main antenna of the radar apparatus in Embodiment 1 of this invention, and a subantenna (center reverse phase excitation). この発明の実施の形態2におけるレーダ装置の主アンテナおよび副アンテナ(同相励振)でビームシフトさせたときの振幅パターンを示す図である。It is a figure which shows an amplitude pattern when making a beam shift with the main antenna and subantenna (in-phase excitation) of the radar apparatus in Embodiment 2 of this invention. この発明の実施の形態3におけるレーダ装置を示す受信系のブロック図である。It is a block diagram of the receiving system which shows the radar apparatus in Embodiment 3 of this invention.

実施の形態
以下、この発明の実施の形態に係るレーダ装置および物体認識方法について説明する。
図1はこの発明の実施の形態におけるレーダ装置の共通部分を示す受信系のブロック図である。
図1において、レーダ装置は、主アンテナ2と副アンテナ3からなる受信アンテナ1、受信アンテナ1からの信号を受信するRF(無線周波数)受信機4、RF受信機4で受信された信号を処理して物標の位置を検出する信号処理部5で構成されている。なお、送信系も当然、必要であるがこの発明は送信系の構成に依らないため記載を省略する。
Embodiment Hereinafter, a radar apparatus and an object recognition method according to an embodiment of the present invention will be described.
FIG. 1 is a block diagram of a reception system showing a common part of a radar device according to an embodiment of the present invention.
In FIG. 1, the radar apparatus processes a signal received by a receiving antenna 1 including a main antenna 2 and a sub antenna 3, an RF (radio frequency) receiver 4 that receives a signal from the receiving antenna 1, and an RF receiver 4. The signal processing unit 5 detects the position of the target. Of course, the transmission system is also necessary, but this invention does not depend on the configuration of the transmission system, so the description will be omitted.

主アンテナ2はA1〜Amの合計m個の受信アンテナ1で構成され、それぞれの受信ア
ンテナ1の間隔が使用周波数の半波長以上の間隔d1で配列された等間隔アレーアンテナである。また副アンテナ3はB1〜Bnの合計n個の受信アンテナ1で構成され、それぞれの所定の受信アンテナ1の間隔d2で配列された等間隔アレーアンテナである。なお、受信アンテナ1は1つのアンテナ素子、または複数のアンテナ素子が給電回路で接続されたアレーアンテナで構成してもよい。
The main antenna 2 is configured by a total of m reception antennas 1 of A1 to Am, and the reception antennas 1 are equally spaced array antennas arranged at an interval d1 of a half wavelength or more of the used frequency. Further, the sub antenna 3 is configured by a total of n receiving antennas 1 of B1 to Bn, and is an equidistant array antenna arranged at an interval d2 of each predetermined receiving antenna 1. Note that the receiving antenna 1 may be configured of one antenna element or an array antenna in which a plurality of antenna elements are connected by a feeding circuit.

RF受信機4は、主アンテナ2と副アンテナ3に接続される構成であり、夫々の受信アンテナ1から得た受信信号を、例えばスーパーヘトロダイン方式(送信信号と受信信号をミキシング)で高周波周波数から中間周波数に変換・増幅し、最終的にA/D変換でデジタル信号を出力する機能を持つものである。   The RF receiver 4 is configured to be connected to the main antenna 2 and the sub antenna 3, and the received signal obtained from each of the receiving antennas 1 is, for example, a high frequency frequency by superhetrodyne method (mixing of transmitted signal and received signal) It converts and amplifies to an intermediate frequency, and finally has a function of outputting a digital signal by A / D conversion.

信号処理部5はRF受信機4に接続され、RF受信機4から出力されるデジタル信号を図2に示すフローチャートに基づいて信号処理を行い、物体(物標)の認識を行う。この信号処理動作を以下に説明する。
図2において、ステップS1は、それぞれの受信アンテナ1から得られたデジタル信号を周波数軸へ高速フーリエ変換(FFT)する。
ステップS2は、主アンテナ2の受信アンテナ1から得られたFFT信号を所定の重みづけを行い、足し合わせるデジタル ビームフォーミング(Digital Beam Forming=DBF)合成を行う。
The signal processing unit 5 is connected to the RF receiver 4, performs signal processing on the digital signal output from the RF receiver 4 based on the flowchart shown in FIG. 2, and recognizes an object (target). This signal processing operation is described below.
In FIG. 2, step S1 performs fast Fourier transform (FFT) of the digital signal obtained from each receiving antenna 1 to the frequency axis.
Step S2 performs predetermined weighting on the FFT signals obtained from the receiving antenna 1 of the main antenna 2 and performs digital beam forming (digital beam forming = DBF) combining.

ステップS3およびS4は、DBF合成で得られたFFT信号のピークを検出し、このピークの振幅、位相情報から物標からの反射波の到来方向を測角する。
ステップS5は、主アンテナ2からのFFT信号のピークの周波数に該当する副アンテナ3の受信アンテナ1のFFT信号を所定の重みづけを行い、足し合わせるDBF合成を行う。
ステップS6は、主アンテナ2のDBF合成後のFFT信号の振幅と副アンテナ3のDBF合成後のFFT信号の振幅を比較し、その振幅差を計算する。
Steps S3 and S4 detect the peak of the FFT signal obtained by DBF synthesis, and measure the arrival direction of the reflected wave from the target from the amplitude and phase information of this peak.
Step S5 performs predetermined weighting on the FFT signal of the receiving antenna 1 of the sub antenna 3 corresponding to the peak frequency of the FFT signal from the main antenna 2, and performs DBF combining to be added.
A step S6 compares the amplitude of the FFT signal after DBF combination of the main antenna 2 with the amplitude of the FFT signal after DBF combination of the sub antenna 3, and calculates the difference in amplitude.

ステップS7は、主アンテナ2と副アンテナ3のDBF合成後のFFT信号の振幅差が予め設定された閾値α以上であれば物標は測角方向に物体なしと判定し、振幅差が閾値α以下であれば物標は測角方向に物体ありとして、物標情報(位置、測角値)を出力する。
なお、主アンテナ2、副アンテナ3の受信アンテナ1の合成は、RF受信機4に接続される前にアンテナ部でRF(無線周波数)合成を行ってもよい。この場合の信号処理は図2の主アンテナ2、副アンテナ3のDBF合成が省かれるだけなので、記載を省略する。
In step S7, if the amplitude difference between the main antenna 2 and the sub antenna 3 after DBF combining is equal to or greater than a predetermined threshold α, the target is determined to have no object in the angle measurement direction, and the amplitude difference is the threshold α If it is the following, it will be output as target information (position, angle measurement value) with the object being an object in the angle measurement direction.
Note that the combination of the main antenna 2 and the reception antenna 1 of the sub antenna 3 may be performed by RF (radio frequency) combination at the antenna unit before being connected to the RF receiver 4. The signal processing in this case is omitted because the DBF combination of the main antenna 2 and the sub antenna 3 in FIG. 2 is simply omitted.

次に主アンテナ2、副アンテナ3で得られるDBF合成後の振幅パターン(放射パターン)について説明する。
図3に示すm個(m≧2)の受信アンテナ1が間隔dで等間隔に配列されたアレーアンテナで夫々の受信アンテナ1の受信信号に重みづけ係数W()を掛け合わせて、合成器6で足し合わせた時のアレーアンテナの振幅パターンを考える。夫々の受信アンテナ1の重みづけ係数Wを1、つまり同振幅で足し合わせた時の振幅パターンは次式(1)で表される。
Next, the amplitude pattern (radiation pattern) after DBF synthesis obtained by the main antenna 2 and the sub antenna 3 will be described.
An array antenna in which m (m ≧ 2) reception antennas 1 shown in FIG. 3 are arranged at equal intervals with an interval d is multiplied by weighting coefficients W ( 1 to m ) to the reception signals of the respective reception antennas 1. Consider the amplitude pattern of the array antenna when added together by the combiner 6. The amplitude pattern when the weighting factors W of the respective receiving antennas 1 are added at 1, ie, the same amplitude, is expressed by the following equation (1).

Figure 0006523350
但し、kは使用周波数での波数、θは反射波の角度、βは受信アンテナ1の重みづけ係数で与える初期位相成分である。
Figure 0006523350
Where k is the wave number at the frequency used, θ is the angle of the reflected wave, and β is the initial phase component given by the weighting factor of the receiving antenna 1.

また上記の同振幅等間隔アレーアンテナのビーム幅は次式(3)(4)で近似される。

Figure 0006523350
但し、λは使用周波数での波長、Lは受信アンテナ開口長、θはビームシフト角である。 The beam widths of the above-mentioned equal-amplitude equidistant array antennas are approximated by the following equations (3) and (4).
Figure 0006523350
Where λ is the wavelength at the used frequency, L is the receiving antenna aperture length, and θ S is the beam shift angle.

図4は、ビームシフト角θ=0度の時の式(3)、式(4)より求められる波長で規格化した受信アンテナ1の開口長Lに対するビーム幅を示す。レーダ装置の測角精度は受信アンテナ1のビーム幅に反比例するため、受信アンテナ1の開口長Lを大きくすれば、ビーム幅が小さくなり、測角精度を向上することができる。 FIG. 4 shows the beam width with respect to the aperture length L of the receiving antenna 1 normalized by the wavelength obtained from the equations (3) and (4) when the beam shift angle θ S = 0 degrees. Since the angle measurement accuracy of the radar apparatus is inversely proportional to the beam width of the receiving antenna 1, the beam width can be reduced by increasing the aperture length L of the receiving antenna 1, and the angle measurement accuracy can be improved.

次に図3に示すm個(m≧2)の受信アンテナ1の数が奇数個で、同振幅かつ中央((m−1)/2+1番目)の受信アンテナ1が他の受信アンテナと逆相になるように重みづけ係数を掛け合わせて、合成器6で足し合わせた時のアレーアンテナの振幅パターンは次式(5)で表される。

Figure 0006523350
Next, the number of m (m22) receiving antennas 1 shown in FIG. 3 is an odd number, and the same amplitude and center ((m-1) / 2 + 1) receiving antennas 1 have an opposite phase to the other receiving antennas. The amplitude pattern of the array antenna when multiplied by the weighting factor so as to be and added by the synthesizer 6 is expressed by the following equation (5).
Figure 0006523350

式(1)、式(5)から同一方向(β=0の場合はθ=0度方向)にビームを持つことがわかる。また式(1)、式(5)からアレーアンテナの受信アンテナ間隔に対するグレーティングローブと受信強度を抑圧したナルの発生角度が求められる。例えば、m=3のときの式(1)のグレーティングローブとナル発生角度および式(5)のナル発生角度は次式(6)(7)(8)となる。   From equations (1) and (5), it can be seen that beams are in the same direction (in the case of β = 0, θ = 0 direction). Further, from Eqs. (1) and (5), it is possible to obtain the incidence angle of null in which the grating lobe and the reception intensity are suppressed with respect to the receiving antenna spacing of the array antenna. For example, when m = 3, the grating lobe and the null generation angle of equation (1) and the null generation angle of equation (5) become the following equations (6), (7) and (8).

Figure 0006523350

ここでβ=0の時の受信アンテナ間隔に対する、式(1)における第1グレーティングローブ発生角度(式(6)でn=1)、第1ナル発生角度(式(7)でn=1)と式(5)における第1ナル発生角度(式(8)でn=0)の関係を図5に示す。
Figure 0006523350

Here, the first grating lobe generation angle in the equation (1) (n = 1 in the equation (6)) and the first null generation angle (n = 1 in the equation (7)) with respect to the receiving antenna spacing when β = 0 The relationship between the first null generation angle in equation (5) and n = 0 in equation (8) is shown in FIG.

図5から式(1)で発生する第1グレーティングローブを、受信アンテナ間隔を適切に選べば、グレーティングローブ発生角度にナルを同方向に向けられることがわかる。
以上より主アンテナ2がグレーティングローブが発生する受信アンテナ間隔でも、副アンテナ3の受信アンテナ間隔および重みづけ係数を変えることで、主アンテナ2のメインビーム方向にビームを持った状態でグレーティングローブ発生角度に受信強度を抑圧したナルを向けることができ、主アンテナ2と副アンテナ3の振幅パターンの振幅差を計算し、所定の閾値で判定することでメインビーム方向に物標の存在判定が可能となる。
It can be seen from FIG. 5 that, if the first grating lobe generated in equation (1) is appropriately selected for the receiving antenna spacing, nulls can be directed in the same direction to the grating lobe generation angle.
From the above, even when the main antenna 2 receives the receiving antenna spacing at which grating lobes occur, the grating lobe generation angle with the beam in the main beam direction of the main antenna 2 by changing the receiving antenna spacing and weighting coefficient of the sub antenna 3 It is possible to target null in the main beam direction by calculating the amplitude difference between the amplitude patterns of the main antenna 2 and the sub antenna 3 and judging with a predetermined threshold. Become.

また主アンテナ2のグレーティングローブの発生を許容することで、主アンテナ2における受信アンテナ1の開口長を大きくすることができ、主アンテナ2のビーム幅が細くなるため、レーダ装置の測角精度を向上させることができる。
次にこの発明の具体的な実施の形態を説明する。
Further, by permitting generation of grating lobes of the main antenna 2, the aperture length of the receiving antenna 1 in the main antenna 2 can be increased, and the beam width of the main antenna 2 becomes narrow. It can be improved.
Next, specific embodiments of the present invention will be described.

実施の形態1.
以下、この発明の実施の形態1におけるレーダ装置について図6から図8に基づいて説明する。
図6は実施の形態1のレーダ装置を示す受信系のブロック図、図7は実施の形態1の主アンテナおよび副アンテナ(同相励振)の振幅パターンを示す図、図8は実施の形態1の主アンテナおよび副アンテナ(中央逆相励振)の振幅パターンを示す図である。
図6には、主アンテナ2の受信アンテナ1を6列、副アンテナ3の受信アンテナ1を3列、配列した実施例を示し、受信アンテナ1にRF受信機4および信号処理部5がそれぞれ接続されている。
Embodiment 1
The radar apparatus according to the first embodiment of the present invention will be described below with reference to FIGS.
6 is a block diagram of a reception system showing a radar apparatus according to the first embodiment, FIG. 7 shows an amplitude pattern of a main antenna and a sub antenna (in-phase excitation) according to the first embodiment, and FIG. It is a figure which shows the amplitude pattern of a main antenna and a subantenna (center reverse phase excitation).
FIG. 6 shows an embodiment in which six receiving antennas 1 of the main antenna 2 and three receiving antennas 1 of the sub antenna 3 are arranged, and the RF receiver 4 and the signal processing unit 5 are connected to the receiving antenna 1 respectively. It is done.

主アンテナ2の受信アンテナ間隔d1と、副アンテナ3の受信アンテナ間隔d2は式(6)=式(7)および式(6)=式(8)が成立する条件がそれぞれの適正な受信アンテナ間隔となり、下記の関係式(9)(10)が成り立つ。
副アンテナ3が式(1)の振幅パターンの場合(同相励振) :d1=3d2 (9)
副アンテナ3が式(5)の振幅パターンの場合(中央逆相励振):d1=6d2(10)
式(9)、式(10)より、主アンテナ2の受信アンテナ間隔d1を1.5λとすると、副アンテナ3の受信アンテナ間隔d2が同相励振の場合は0.5λ、副アンテナ3が中央逆相励振の場合は0.25λとなる。これより中央逆相励振の副アンテナ3が同相励振よりもアンテナ開口長を小さくできることがわかる。
The receiving antenna spacing d1 of the main antenna 2 and the receiving antenna spacing d2 of the subantenna 3 are respectively appropriate receiving antenna spacings under the conditions that the equations (7) and (6) and the formula (8) are satisfied. And the following relational expressions (9) and (10) hold.
When the secondary antenna 3 has the amplitude pattern of equation (1) (in-phase excitation): d1 = 3 d2 (9)
When the secondary antenna 3 has the amplitude pattern of equation (5) (center antiphase excitation): d1 = 6 d2 (10)
Assuming that the receiving antenna spacing d1 of the main antenna 2 is 1.5λ according to the equations (9) and (10), the receiving antenna spacing d2 of the subantenna 3 is 0.5λ if the receiving antenna spacing d2 is in-phase excitation. In the case of phase excitation, it is 0.25 λ. From this, it can be seen that the sub-antenna 3 with center-in-phase excitation can make the antenna aperture length smaller than in-phase excitation.

この時の主アンテナ2、副アンテナ3のDBF合成後の振幅パターンを図7、図8に示す。同図により主アンテナ2のグレーティングローブの発生角度で副アンテナ3はナルを形成していることがわかる。
そして信号処理部5で主アンテナ2と副アンテナ3のFFT信号の振幅差を計算し、所定の閾値α以上になる場合は、物標がメインビーム方向で測角したものではなく、グレーティングローブで誤測角した結果と判断することができる。この時の振幅差の所定の閾値αとしては、例えば主アンテナ2の最小サイドローブレベルである−22dBに設定することが望ましい。
The amplitude patterns after DBF synthesis of the main antenna 2 and the sub antenna 3 at this time are shown in FIG. 7 and FIG. From the figure, it can be seen that the sub antenna 3 forms a null at the generation angle of the grating lobe of the main antenna 2.
Then, the signal processing unit 5 calculates the difference in amplitude between the FFT signals of the main antenna 2 and the sub antenna 3 and, if it exceeds the predetermined threshold α, the target does not measure in the main beam direction, and It can be judged as the result of an erroneous measurement. As the predetermined threshold value α of the amplitude difference at this time, for example, it is desirable to set to -22 dB which is the minimum side lobe level of the main antenna 2.

また実施の形態1では主アンテナ2のアンテナ開口長は7.5λである一方、受信アンテナ数(主アンテナ6個、副アンテナ3個)が同じで、グレーティングローブを許容しない場合のレーダ装置のビーム幅は、受信アンテナ間隔を0.5λとした場合、アンテナ開口長は4λとなるため、図4から実施の形態1は従来のレーダと比較して、約0.5倍のビーム幅となり、その結果、測角精度が2倍改善される効果を奏する。   Further, in the first embodiment, while the antenna aperture length of the main antenna 2 is 7.5λ, the beam of the radar apparatus in the case where the number of receiving antennas (six main antennas and three sub antennas) is the same and grating lobes are not permitted Since the antenna aperture length is 4λ when the receiving antenna spacing is 0.5λ, the beam width is about 0.5 times that of the conventional radar in FIG. 4 to FIG. As a result, the angle measurement accuracy is improved twice.

以上のように実施の形態1の発明は、主アンテナ2は受信アンテナ間隔が使用周波数の半波長以上の間隔で配列し、副アンテナ3は主アンテナ2のメインビームと同方向にビームを形成し、主アンテナ2のグレーティングローブ発生角度で受信強度を抑圧した振幅パターンで反射波を受信し、物標の認識手段である信号処理部5は主アンテナ2および副アンテナ3の受信信号の振幅差を計算し、予め設定された閾値に基づき物標の存在を判定するようにしたから、グレーティングローブによる誤側角を適確に排除して測角精度を向上させたレーダ装置および物体認識方法が得られる。   As described above, according to the invention of the first embodiment, the main antennas 2 are arranged at intervals of a half wavelength or more of the used frequency, and the sub antenna 3 forms a beam in the same direction as the main beam of the main antenna 2. The reflected wave is received in an amplitude pattern in which the reception intensity is suppressed at the grating lobe generation angle of the main antenna 2, and the signal processing unit 5 which is a recognition means of the target detects the difference in amplitude between the reception signals of the main antenna 2 and the sub antenna 3. Since the calculation is made to determine the presence of a target based on a preset threshold, a radar apparatus and an object recognition method are obtained in which the erroneous side angle due to the grating lobe is properly eliminated to improve the angle measurement accuracy. Be

またその際、主アンテナ2はRF合成またはDBF合成で振幅パターンを形成し、副アンテナは、受信アンテナ数が奇数かつ中央の受信アンテナを他の受信アンテナと逆相、またはすべての受信アンテナを同相でRF合成またはDBF合成することにより振幅パターンを形成することで、受信信号の振幅差を計算するだけで簡単に物体の認識ができるレーダ装置が得られる。
次に受信アンテナ1をDBF合成する時の重みづけ係数の位相項を変えてビームシフトを行う場合を考える。ビームシフトする場合の副アンテナ3は同相励振の場合が最適であり、その一例を実施の形態2として以下に図面を用いて説明する。
Also, at that time, the main antenna 2 forms an amplitude pattern by RF combining or DBF combining, and the sub antenna is an odd number of receiving antennas and the central receiving antenna is in opposite phase to other receiving antennas, or all receiving antennas are in phase. By forming an amplitude pattern by performing RF combining or DBF combining, a radar device capable of easily recognizing an object can be obtained simply by calculating the amplitude difference of the received signal.
Next, consider the case of performing beam shift by changing the phase term of the weighting factor when DBF combining the receiving antenna 1 is performed. In the case of the in-phase excitation, the sub antenna 3 in the case of the beam shift is optimum, and an example thereof will be described as a second embodiment with reference to the drawings.

実施の形態2.
次に、この発明の実施の形態2のレーダ装置について図9に基づいて説明する。
図9は実施の形態2におけるレーダ装置の主アンテナ2および副アンテナ3(同相励振)でビームシフトさせたときの振幅パターンを示す図である。
主アンテナ2および副アンテナ3は実施の形態1と同じく、主アンテナ2は6列で受信アンテナ間隔が1.5λ、副アンテナ3は3列の受信アンテナ間隔が0.5λであるレーダ装置で、ビームシフトを10度〜90度まで行った時の振幅パターンを図9に示す。
図9に示すようにビームシフト+90degまで主アンテナ2で発生するグレーティングローブに副アンテナ3のナルを向けることができることがわかる。
Second Embodiment
Next, a radar apparatus according to a second embodiment of the present invention will be described based on FIG.
FIG. 9 is a diagram showing an amplitude pattern when beam shifting is performed by the main antenna 2 and the sub antenna 3 (in-phase excitation) of the radar device in the second embodiment.
As in the first embodiment, the main antenna 2 and the sub antenna 3 are radar apparatuses in which six columns of the main antenna 2 have a receiving antenna spacing of 1.5 λ and three sub antennas 3 have a receiving antenna spacing of 0.5 λ. An amplitude pattern when beam shift is performed to 10 degrees to 90 degrees is shown in FIG.
As shown in FIG. 9, it can be seen that the null of the sub antenna 3 can be directed to the grating lobe generated in the main antenna 2 up to the beam shift of +90 deg.

これは主アンテナ2で測角精度を保ったままビームシフトすることで物標の検知角度領域を広げることができ、かつ副アンテナ3も同様にビームシフトさせることで副アンテナ3のナルを主アンテナ2のグレーティングローグ発生角度に向けることができることでグレーティングローブによる誤測角を除去できる。しかしながら、ビームシフト量を増やすと副アンテナ3の振幅パターンにも高いサイドローブが発生するため、実用上は副アンテ
ナ3のサイドローブレベルが主アンテナ2のサイドローブレベルを超えないビームシフト量40度にすることが望ましい。
This is because the main antenna 2 can shift the detection angle area of the target by beam shifting while maintaining the angle measurement accuracy, and the sub antenna 3 can also be beam shifted similarly to the main antenna of the sub antenna 3 The fact that it can be directed to the grating log generation angle of 2 can eliminate the mismeasurement angle due to the grating lobe. However, if the beam shift amount is increased, high side lobes are also generated in the amplitude pattern of the sub antenna 3, so in practice the side lobe level of the sub antenna 3 does not exceed the side lobe level of the main antenna 2 It is desirable to

実施の形態3.
次に、この発明の実施の形態3のレーダ装置について図10に基づいて説明する。
図10は実施の形態3のレーダ装置を示す受信系のブロック図である。主アンテナ2と副アンテナ3の振幅パターン形成をDBF合成で行う場合は、一部の受信アンテナ1を主アンテナ2と副アンテナ3で共用して使用することが可能である。
Third Embodiment
Next, a radar system according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 10 is a block diagram of a reception system showing a radar system according to the third embodiment. When amplitude pattern formation of the main antenna 2 and the sub antenna 3 is performed by DBF combination, it is possible to share and use a part of the receiving antenna 1 by the main antenna 2 and the sub antenna 3.

図10に示すように1列目の受信アンテナ1を主アンテナ2、副アンテナ3を共用で使用し、主アンテナ2の広い受信アンテナ間隔(A1とA2の間隔)の間に、その他の副アンテナ3の受信アンテナ1(B1〜B3)を配列する。このようにすることにより、主アンテナ2と副アンテナ3の受信アンテナ1の総数を減らし、且つ全体のアンテナ開口長の面積を小さくすることができる効果を奏する。   As shown in FIG. 10, the first receiving antenna 1 is shared by the main antenna 2 and the sub antenna 3, and the other sub antennas are used during a wide receiving antenna interval (interval between A 1 and A 2) of the main antenna 2. Three receiving antennas 1 (B1 to B3) are arrayed. By doing so, the total number of the receiving antennas 1 of the main antenna 2 and the sub antenna 3 can be reduced, and the area of the entire antenna aperture length can be reduced.

以上、この発明の実施の形態を記述したが、この発明は実施の形態に限定されるものではなく、種々の設計変更を行うことが可能であり、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   As mentioned above, although the embodiment of this invention was described, this invention is not limited to the embodiment, It is possible to make various design changes, and within the scope of the invention, each embodiment Can be combined freely, and each embodiment can be appropriately modified or omitted.

1:受信アンテナ、 2:主アンテナ、 3:副アンテナ、4:RF受信機、
5:信号処理部
1: Receive antenna, 2: Main antenna, 3: Secondary antenna, 4: RF receiver,
5: Signal processing unit

Claims (4)

物標に反射した反射波を受信する複数の受信アンテナを備えたレーダ装置において、
前記複数の受信アンテナの内、受信アンテナ間隔が使用周波数の半波長以上の等間隔d1で配列され、前記反射波を受信する主アンテナと、
前記複数の受信アンテナの内、所定の受信アンテナが等間隔d2で配列され、前記主アンテナのメインビームと同方向にビームを形成し、前記主アンテナのグレーティングローブ発生角度で受信強度を抑圧した振幅パターンで前記反射波を受信する副アンテナと、
前記主アンテナおよび前記副アンテナの受信信号の振幅差を計算し、予め設定された閾値に基づき物標の存在を判定する信号処理部を備え、
前記副アンテナの数を3個とし、
前記副アンテナの振幅パターンを同相励振により形成して前記受信アンテナの間隔をd1=3d2の関係が成り立つようにし、または、
前記副アンテナの振幅パターンを中央逆相励振により形成して前記受信アンテナの間隔をd1=6d2の関係が成り立つようにしたことを特徴とするレーダ装置。
In a radar device provided with a plurality of receiving antennas for receiving a reflected wave reflected by a target,
Among the plurality of receiving antennas, receiving antenna intervals are arranged at equal intervals d1 equal to or more than a half wavelength of a used frequency, and a main antenna that receives the reflected wave;
Among the plurality of receiving antennas, predetermined receiving antennas are arranged at equal intervals d2 , and a beam is formed in the same direction as the main beam of the main antenna, and the amplitude is obtained by suppressing the receiving strength at the grating lobe generating angle of the main antenna A secondary antenna that receives the reflected wave in a pattern;
The signal processing unit calculates an amplitude difference between reception signals of the main antenna and the sub antenna, and determines the presence of a target based on a preset threshold value.
The number of secondary antennas is three ,
The distance of the receiving antenna is formed by in-phase excitation of the amplitude pattern of the sub antenna as relation of d1 = 3d2 is established, or,
A radar apparatus characterized in that the amplitude pattern of the sub antenna is formed by central reverse phase excitation so that the distance between the receiving antennas is in the relationship of d1 = 6 d2 .
前記主アンテナは、RF合成またはDBF合成で振幅パターンを形成することを特徴とする請求項1に記載のレーダ装置。   The radar apparatus according to claim 1, wherein the main antenna forms an amplitude pattern by RF combination or DBF combination. 主アンテナと副アンテナはDBF合成により共通した受信アンテナを使用して振幅パターンを形成することを特徴とする請求項1に記載のレーダ装置。   The radar apparatus according to claim 1, wherein the main antenna and the sub antenna form an amplitude pattern using a common receiving antenna by DBF combination. 複数の受信アンテナの内、受信アンテナ間隔が等間隔d1で使用周波数の半波長以上の主アンテナで物標に反射した反射波を受信する第1のステップと、
前記主アンテナのメインビームと同方向にビームを形成し、前記主アンテナの受信により発生したグレーティングローブ発生角度で受信強度を抑圧した振幅パターンを持つ、所定の受信アンテナが等間隔d2の副アンテナで反射波を受信する第2のステップと、
前記第1のステップおよび前記第2のステップの受信波の振幅差を計算し、予め設定された閾値に基づき物体の存在を認識する第3のステップを備え、
前記副アンテナの数を3個とし、
前記副アンテナの振幅パターンを同相励振により形成して前記受信アンテナの間隔をd1=3d2の関係が成り立つようにし、または、
前記副アンテナの振幅パターンを中央逆相励振により形成して前記受信アンテナの間隔をd1=6d2の関係が成り立つようにしたことを特徴とする物体認識方法。
Among the plurality of receiving antennas, a first step of receiving a reflected wave reflected on a target by a main antenna having a receiving antenna interval of equally spaced d1 and a half wavelength or more of a used frequency;
Wherein forming a main beam and the beam in the same direction of the main antenna, with an amplitude pattern of suppressing the reception intensity by the grating lobe occurrence angle generated by the reception of the main antenna, a predetermined receiving antenna in the sub antenna equidistant d2 A second step of receiving the reflected wave;
Calculating a difference in amplitude between the received waves in the first step and the second step, and recognizing a presence of an object based on a preset threshold value;
The number of secondary antennas is three ,
The distance of the receiving antenna is formed by in-phase excitation of the amplitude pattern of the sub antenna as relation of d1 = 3d2 is established, or,
A method of object recognition characterized in that the amplitude pattern of the sub antenna is formed by central reverse phase excitation so that the distance between the receiving antennas is in the relationship of d1 = 6 d2 .
JP2017008069A 2017-01-20 2017-01-20 Radar apparatus and object recognition method Active JP6523350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008069A JP6523350B2 (en) 2017-01-20 2017-01-20 Radar apparatus and object recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008069A JP6523350B2 (en) 2017-01-20 2017-01-20 Radar apparatus and object recognition method

Publications (2)

Publication Number Publication Date
JP2018116000A JP2018116000A (en) 2018-07-26
JP6523350B2 true JP6523350B2 (en) 2019-05-29

Family

ID=62984073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008069A Active JP6523350B2 (en) 2017-01-20 2017-01-20 Radar apparatus and object recognition method

Country Status (1)

Country Link
JP (1) JP6523350B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985414A1 (en) * 2020-10-13 2022-04-20 Aptiv Technologies Limited Radar system with sparse primary array and dense auxiliary array
US11619705B2 (en) 2020-10-20 2023-04-04 Aptiv Technologies Limited Radar system with modified orthogonal linear antenna subarrays
US11714180B2 (en) 2021-01-29 2023-08-01 Aptiv Technologies Limited Radar system to detect angles in bistatic and monostatic scenarios
US11774570B2 (en) 2020-02-04 2023-10-03 Aptiv Technologies Limited Radar device
US11808846B2 (en) 2021-02-12 2023-11-07 Aptiv Technologies Limited Angle-finding process for sparse uniform arrays

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630767B2 (en) * 2005-08-29 2011-02-09 株式会社東芝 Radar equipment
JP2011064584A (en) * 2009-09-17 2011-03-31 Denso Corp Array antenna device and radar device
JP2012120144A (en) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp Array antenna device
JP6164950B2 (en) * 2013-06-26 2017-07-19 三菱電機株式会社 Antenna device
WO2016003516A2 (en) * 2014-04-10 2016-01-07 Massachusetts Institute Of Technology Radio frequency localization
CN106415931B (en) * 2014-05-29 2019-08-16 丰田自动车株式会社 Array antenna device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774570B2 (en) 2020-02-04 2023-10-03 Aptiv Technologies Limited Radar device
EP3985414A1 (en) * 2020-10-13 2022-04-20 Aptiv Technologies Limited Radar system with sparse primary array and dense auxiliary array
US11644565B2 (en) 2020-10-13 2023-05-09 Aptiv Technologies Limited Radar system with sparse primary array and dense auxiliary array
US11619705B2 (en) 2020-10-20 2023-04-04 Aptiv Technologies Limited Radar system with modified orthogonal linear antenna subarrays
US11921228B2 (en) 2020-10-20 2024-03-05 Aptiv Technologies Limited Radar system with modified orthogonal linear antenna subarrays
US11714180B2 (en) 2021-01-29 2023-08-01 Aptiv Technologies Limited Radar system to detect angles in bistatic and monostatic scenarios
US11808846B2 (en) 2021-02-12 2023-11-07 Aptiv Technologies Limited Angle-finding process for sparse uniform arrays

Also Published As

Publication number Publication date
JP2018116000A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6523350B2 (en) Radar apparatus and object recognition method
US8049660B2 (en) Radar apparatus configured to suppress effects of grating lobes upon detection of direction of target based on phase difference between received reflected waves
CN107037396B (en) Angle of arrival estimation
US8941533B2 (en) Method and device for detecting azimuth
US10809366B2 (en) Multimodal radar system
US20110063158A1 (en) Array antenna apparatus and radar apparatus
US11275145B2 (en) Antenna device and target detecting device
JP6844525B2 (en) Antenna device
US20220326347A1 (en) Sparse antenna arrays for automotive radar
US20210149035A1 (en) Radar device and target angle measurement method
US20180038934A1 (en) Discrimination of signal angle of arrival using at least two antennas
TWI646732B (en) Antenna architecture consisting of multiple sub-arrays and baseband signal processors
WO2015151836A1 (en) Position-detecting system
JP2009204501A (en) Wavenumber estimating device
JP7150388B2 (en) Array antenna and array antenna signal processor
US20210119348A1 (en) Array antenna apparatus using spatial power spectrum combining and method of controlling the same
US20210215815A1 (en) Angle-resolving radar sensor
WO2020012591A1 (en) Direction estimation device and wireless device
KR101240415B1 (en) Method for processing sidelobe blanking in adaptive array radar
RU2158001C1 (en) Method for radio direction-finding
JP2018204974A (en) Radar device
JP2010101694A (en) Azimuth detector
JP2001203525A (en) Antenna system
RU2346288C1 (en) Method for radio direction finding and direction finder for implementation thereof
JP2005283167A (en) Beam switching radar equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R151 Written notification of patent or utility model registration

Ref document number: 6523350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250