JP6522377B2 - Grinding coolant supply device, grinding equipment, grinding method - Google Patents

Grinding coolant supply device, grinding equipment, grinding method Download PDF

Info

Publication number
JP6522377B2
JP6522377B2 JP2015049234A JP2015049234A JP6522377B2 JP 6522377 B2 JP6522377 B2 JP 6522377B2 JP 2015049234 A JP2015049234 A JP 2015049234A JP 2015049234 A JP2015049234 A JP 2015049234A JP 6522377 B2 JP6522377 B2 JP 6522377B2
Authority
JP
Japan
Prior art keywords
grinding
water
coolant
reforming
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015049234A
Other languages
Japanese (ja)
Other versions
JP2016168640A (en
Inventor
宏幸 河西
宏幸 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2015049234A priority Critical patent/JP6522377B2/en
Priority to CN201680014543.6A priority patent/CN107405753B/en
Priority to PCT/JP2016/057866 priority patent/WO2016143906A1/en
Priority to EP16761871.9A priority patent/EP3269507B1/en
Publication of JP2016168640A publication Critical patent/JP2016168640A/en
Priority to US15/700,811 priority patent/US10300579B2/en
Application granted granted Critical
Publication of JP6522377B2 publication Critical patent/JP6522377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • B24B55/03Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant designed as a complete equipment for feeding or clarifying coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

この発明は、転がり軸受、等速ジョイント、ボールねじ、転がり直動軸受等の転動体を有する機械部品の要素を研削加工するに際して、改質水を用いた研削クーラントを生成して供給する研削クーラント供給装置、並びにその研削設備および研削方法に関する。   The present invention is a grinding coolant that generates and supplies a grinding coolant using modified water when grinding elements of machine parts having rolling elements such as rolling bearings, constant velocity joints, ball screws, rolling linear motion bearings, etc. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feeding device and a grinding facility and a grinding method thereof.

研削加工では、加工物と砥石の接触により高温が発生し、加工物、砥石に熱ダメージを与えるため、通常、クーラントによる放熱を行う。クーラントに求められる能力として、研削抵抗を減らして熱の発生を抑えるための潤滑性、加工物及び砥石から熱を奪う冷却性が求められる。クーラントには大別して3つあり、ソリューブル系(水溶性)、オイルベース系及びその中間的なエマルジョン系がある。   In the grinding process, high temperature is generated by the contact between the workpiece and the grindstone, and the workpiece and the grindstone are thermally damaged. Therefore, the heat is usually dissipated by the coolant. The ability required for the coolant is required to have lubricity to reduce the grinding resistance and to suppress the generation of heat, and to have a cooling property to take heat from the workpiece and the grindstone. There are three major types of coolants, which are soluble (water soluble), oil based and emulsion systems in between.

ソリューブル系は冷却性には優れるものの、潤滑性に劣る。また、オイルベース系は潤滑性に優れるものの、冷却性に劣る。エマルジョン系は、中間的な性能を有する。熱影響の大きい加工物や品質精度を要求される加工物にはソリューブル系を選択し、加工時間の短さを求められる加工物にはオイルベース系を選択する。現状では、潤滑性と冷却性の両方を高度に有するクーラントは存在しない。   Soluble systems are excellent in cooling performance but poor in lubricity. In addition, although oil based systems are excellent in lubricity, they are inferior in cooling performance. Emulsion systems have intermediate performance. Select a soluble system for thermally affected workpieces and workpieces that require quality accuracy, and select an oil-based system for workpieces that require a short processing time. At present, there is no coolant that has a high degree of lubricity and cooling.

なお、研削用ではないが、切削を行うクーラントとしては、改質水で希釈する方法が提案されている(例えば、特許文献1)。   In addition, although it is not for grinding, as a coolant which cuts, the method of diluting with reforming water is proposed (for example, patent document 1).

特開2011−174064号公報JP, 2011-174064, A

従来の研削クーラントは、いずれも、研削時に出る熱を効果的に除去することが、いま一つできず、砥石の切れ味の向上、加工時間の短縮、砥石寿命の延長、および加工精度の向上を図ることが難しい。
切削のクーラントとしては、油性クーラントではあるが、改質水を用いて生成する方法が特許文献1等に提案されている。しかし、切削と研削とでは、クーラントに求められる性状が異なり、通常では、切削クーラントをそのまま研削に使うことができない。
すなわち、切削では単一の刃物が常に加工物と接触しており、加工時の潤滑性とクーラント切れを起こさない粘度が必要になる。よって、切削クーラントに求められる重要特性は、潤滑性である。
The conventional grinding coolant can not effectively remove the heat generated at the time of grinding, and it is impossible to improve the sharpness of the grinding wheel, shorten the processing time, prolong the grinding wheel life, and improve the processing accuracy. It is difficult to plan.
Although it is an oil-based coolant as a coolant for cutting, the method of producing using reforming water is proposed by patent documents 1 grade. However, the properties required for the coolant are different between cutting and grinding, and normally, the cutting coolant can not be used for grinding as it is.
That is, in cutting, a single blade is always in contact with the workpiece, and lubricity at the time of processing and viscosity that does not cause coolant breakage are required. Therefore, an important characteristic required of the cutting coolant is lubricity.

これに対し、研削加工では、砥粒による無数の刃先でかつ自生作用により常に新しい刃物で砥石を回転させて加工するため、潤滑性と粘度はそれほど要求されない。その一方、加工面に求められる表面粗さ精度が切削加工に求められるRa0.5μm以上に対し、研削加工では、転動体を用いる機械部品では、Ra0.4μm以下と精度が要求されるが、研削加工では切削加工以上に発熱を伴う為、熱膨張を抑えないと加工精度を満足することができない。そのため、研削クーラントに求められる重要特性は冷却性となる。切削と研削とでは、上記のように夫々に求められる性能が違う為、切削クーラントをそのまま研削クーラントに使用することができない。
特許文献1のクーラントでは、研削に用いた場合、冷却性が不十分となる。
On the other hand, in the grinding process, since the grindstone is always rotated with a new cutting tool with an infinite number of cutting edges by abrasive grains and a self-generating action, lubricity and viscosity are not required so much. On the other hand, while the surface roughness accuracy required for the machined surface is required to be cut for Ra 0.5 μm or more, in the case of grinding, mechanical components using rolling elements are required to have an accuracy of Ra 0.4 μm or less. Since machining involves heat generation more than cutting, machining accuracy can not be satisfied unless thermal expansion is suppressed. Therefore, the important characteristic required for the grinding coolant is the cooling property. The cutting coolant can not be used as it is for the grinding coolant because the performances required for the cutting and the grinding are different as described above.
The coolant of Patent Document 1 has insufficient cooling when used for grinding.

この発明の目的は、研削時に出る熱を効果的に除去することができて、砥石の切れ味の向上、加工時間の短縮、砥石寿命の延長、および加工精度の向上を図ることが可能な研削クーラント供給装置・研削設備・研削方法を提供することである。   The object of the present invention is to effectively remove the heat generated at the time of grinding, and improve the sharpness of the grinding wheel, shorten the processing time, extend the life of the grinding wheel, and improve the machining accuracy. Supplying equipment · Grinding equipment · Grinding method.

この発明の研削クーラント供給装置は、転動体を有する機械部品の要素を研削する研削盤へ研削クーラントを供給する装置であって、
水溶性のクーラント原液、水粒子の平均粒子径が80nm以上、150nm以下である第1の改質水、および水粒子の平均粒子径が5nm以上、80nm未満の混合水である研削クーラントを生成する研削クーラント生成装置と、この生成された研削クーラントを前記研削盤へ研削クーラント送り手段とを備える。
The grinding coolant supply device according to the present invention is a device for supplying a grinding coolant to a grinding machine for grinding an element of a machine part having rolling elements,
A water-soluble coolant stock solution, a first modified water having an average particle diameter of 80 nm or more and 150 nm or less, and a grinding coolant which is a mixed water having an average particle diameter of 5 nm or more and less than 80 nm A grinding coolant generating device and grinding coolant feeding means for feeding the generated grinding coolant to the grinding machine.

なお、改質水における上記「粒子径」とは、粒子径とは動的光錯乱法で求められる径を
言う。
上記「転動体を有する機械部品」は、転がり軸受、等速ジョイント、ボールねじ、転がり直動軸受などの転がり接触する要素である転動体を有する部品を言う。前記「機械部品の要素」は、前記機械部品を構成する軌道輪等の構成部品を言う。研削加工する部位は、例えば転動体が接触する転走面であるが、他の面であっても良い。
In addition, the said "particle diameter" in modified water means the diameter calculated | required by a dynamic light confusion method with a particle diameter.
The above-mentioned "mechanical component having rolling elements" refers to a component having rolling elements which are rolling contact elements such as rolling bearings, constant velocity joints, ball screws, rolling and linear bearings. The "element of machine part" refers to a component such as a bearing ring that constitutes the machine part. The portion to be ground is, for example, a rolling contact surface with which the rolling element contacts, but may be another surface.

この構成によると、第1の改質水は、平均粒子径が80〜150nmであるため、加工点への浸透性が高く、冷却効果を得られ易い。第2の改質水は、平均粒子径が5nm以上、80nm未満と、第1の改質水よりもさらに粒子径が微細であるため、加工点への浸透性が高く且つ、蒸発しやすく、熱を奪う効果は第1の改質水よりも大きい。また、第1の改質水に比べて運動エネルギーが高く、ブラウン運動が激しい為、加工点への浸透性が第1の改質水よりも高い。第1の改質水は、第2の改質水よりも浸透性は低いが、研削抵抗を減らして熱の発生を抑えるための潤滑性に優れる。
このような性質の第1および第2の改質水を含む研削クーラントで冷却するため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。
なお、第1の改質水と第2の改質水との中間の粒子径を持つ改質水を用いても、ある程度優れた冷却性が得られるが、潤滑性に優れる第1の改質水と、より浸透性に優れて冷却性に優れる第2の改質水とを併存させることで、冷却性および潤滑性が、共により一層優れる。
なお、第2の改質水(K3)は、第1の改質水(K1)に比べて酸化還元電位が高く、濃度が高くなると錆が発生する。逆に第1の改質水(K1)は水道水に比べて酸化還元電位が低く、錆が発生しにくくなる。よって、粒子径、ブラウン運動、発錆性などを考慮した配合比率での運用が必要になる。第1の改質水(K1)は、言えば、微細なだけであるが、浸透しやすい粒子径、クーラント原液を拡散しやすい性状を特徴として持つ。第2の改質水(K3)は、粒子径が更に微細で浸透しやすいのはもちろんであるが、微細であるがためにブラウン運動が大きく、クーラント全体への運動エネルギーを与える役目を持つ。この運動エネルギーの元が酸化還元電位である。但し、酸化還元電位が高いと錆の発生原因となるため、第1の改質水(K1)への運動エネルギーの働きかけと錆のバランスを保つ配分が必要になる。
According to this configuration, since the first modified water has an average particle diameter of 80 to 150 nm, the permeability to the processing point is high, and the cooling effect can be easily obtained. The second modified water has a finer particle size than the first modified water, having an average particle size of 5 nm or more and less than 80 nm, so the permeability to the processing point is high and it is easy to evaporate. The heat removal effect is greater than the first reforming water. In addition, since the kinetic energy is higher than that of the first reformed water and the Brownian movement is intense, the permeability to the processing point is higher than that of the first reformed water. Although the first modified water has lower permeability than the second modified water, it has excellent lubricity for reducing the grinding resistance and suppressing the generation of heat.
By cooling with the grinding coolant containing the first and second reforming water of such nature, it is possible to effectively remove the heat generated at the time of grinding. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.
In addition, even if it uses the reforming water which has an intermediate particle diameter of the 1st reforming water and the 2nd reforming water, although the cooling property which was excellent to some extent is obtained, the 1st reforming which is excellent in lubricity By coexistence of water and the second reformed water which is more excellent in permeability and excellent in cooling property, both the cooling property and the lubricating property are more excellent.
The second reforming water (K3) has a higher redox potential than the first reforming water (K1), and rusting occurs when the concentration is high. Conversely, the first reforming water (K1) has a lower redox potential than tap water, and rust is less likely to occur. Therefore, it is necessary to operate at a blending ratio in consideration of particle diameter, browning motion, rusting property, and the like. The first reforming water (K1) is, although speaking only fine, it is characterized by a particle diameter that easily penetrates, and a property that the undiluted coolant solution tends to diffuse. The second modified water (K3) is, of course, smaller in particle size and easier to penetrate, but is fine and therefore has a large Brownian motion, and has a role of giving kinetic energy to the entire coolant. The source of this kinetic energy is the redox potential. However, if the redox potential is high, it causes rusting, so it is necessary to have a distribution that maintains the balance between the action of kinetic energy to the first reforming water (K1) and the rusting.

この発明の他の研削クーラント供給装置は、転動体を有する機械部品の要素を研削する研削盤へ研削クーラントを供給する装置であって、
複数種の水を混合して研削クーラントとする混合手段と、水溶性のクーラント原液を前記混合手段へ供給するクーラント原液供給手段と、水粒子の粒子径が80〜150nmである第1の改質水を前記混合手段へ供給する第1の改質水供給手段と、前記第1の改質水をさらに粒子径を小さく改質した第2の改質水を前記混合手段へ供給する第2の改質水供給手段とを備える。
Another grinding coolant supply device according to the present invention is a device for supplying a grinding coolant to a grinding machine for grinding an element of a machine part having rolling elements,
A mixing means for mixing a plurality of types of water to obtain a grinding coolant, a coolant stock solution feeding means for supplying a water-soluble coolant stock solution to the mixing means, and a first reforming in which the particle diameter of water particles is 80 to 150 nm. A first reforming water supply means for supplying water to the mixing means; and a second reforming water for further reducing the particle diameter of the first reforming water to be supplied to the mixing means And a reforming water supply means.

この構成の場合、上記と同様に、クーラント原液、粒子径が80〜150nmである第1の改質水、およびさらに粒子径を小さくした第2の改質水の混合水である研削クーラントを用いて研削することになるため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。   In the case of this configuration, similarly to the above, a grinding coolant is used which is a mixed water of the undiluted coolant solution, the first modified water having a particle diameter of 80 to 150 nm, and the second modified water having a further reduced particle diameter. Since the grinding is performed, the heat generated during the grinding can be effectively removed. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.

この発明のさらに他の研削クーラント供給装置は、転動体を有する機械部品の要素を研削する研削盤へ研削クーラントを供給する装置であって、
複数種の水を混合して研削クーラントとする混合手段と、水溶性のクーラント原液を前記混合手段へ供給するクーラント原液供給手段と、第1の改質水を前記混合手段へ供給する第1の改質水供給手段と、第2の改質水を前記混合手段へ供給する第2の改質水供給手段とを備え、
前記第1の改質水供給手段は、化学成分がSIO2:73〜77%、Al2O3:13〜15%、CaO:1〜2%、MnO:0.65〜0.77%、その他7.3〜9%である多孔質の鉱石を充填した1次フィルタと、前記化学成分の前記多孔質の鉱石から生成したセラミックボールを充填した2次フィルタと、これら1次フィルタと2次フィルタとに順に水を通過させる水送り手段とを有し、
前記第2の改質水供給手段は、前記化学成分の前記多孔質の鉱石から生成し、ナノ銀を担持したセラミックボールを充填したフィルタと、このフィルタに水を通す水送り手段とを有する、ことを特徴とする。なお、上記化学成分の%は、重量%である。
Still another grinding coolant supply device according to the present invention is a device for supplying a grinding coolant to a grinding machine for grinding an element of a machine part having rolling elements,
A mixing means for mixing a plurality of types of water to obtain a grinding coolant, a coolant stock solution supplying means for supplying a water-soluble coolant stock solution to the mixing means, and a first one for supplying a first reforming water to the mixing means A reforming water supply means, and a second reforming water supply means for supplying a second reforming water to the mixing means,
The first reforming water supply means contains chemical components of SIO2: 73 to 77%, Al2O3: 13 to 15%, CaO: 1 to 2%, MnO: 0.65 to 0.77%, and others 7.3. A primary filter filled with porous ore of ~ 9%, a secondary filter filled with ceramic balls generated from the porous ore of the chemical component, and these primary filter and secondary filter in order And water feeding means for passing water;
The second modified water supply means includes a filter filled with ceramic balls supporting nano silver, which is produced from the porous ore of the chemical component, and a water feed means for passing water through the filter. It is characterized by In addition,% of the said chemical component is weight%.

前記鉱石は、多孔質の天然セラミックスであり、水を加圧通過させることにより、水粒子がナノレベルまで微細化されて界面張力が低下し、浸透性を向上させる。このような充填物のフィルタを用いた前記第1、第2の改質水供給手段を備える場合、上記と同様の粒子径を持つ第1の改質水および第2の改質水の混合水である研削クーラントを用いて研削することになるため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。
なお、上記「ナノ銀」とは、10nm程度、例えば1〜20nm程度の粒子径の銀を言う。また、上記「セラミックボール」には大別して素焼体と焼成体がある。素焼体とは、抗火石の粉末を7〜10mm程度の球形形状にして、1000℃から1500℃程度の温度で焼結したものであり、焼成体とは素焼体の表面に抗火石粉末入りの釉薬を塗布し1000℃から1500℃程度の温度で焼成したものである。
The ore is a porous natural ceramic, and by passing water under pressure, water particles are refined to the nano level, the interfacial tension is reduced, and the permeability is improved. In the case of providing the first and second reforming water supply means using a filter of such packing, a mixed water of the first reforming water and the second reforming water having the same particle diameter as above. Since the grinding coolant is used for grinding, it is possible to effectively remove the heat generated at the time of grinding. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.
The above "nano silver" refers to silver having a particle diameter of about 10 nm, for example, about 1 to 20 nm. The above "ceramic balls" are roughly classified into unglazed bodies and sintered bodies. The unglazed body is a powder of fireproof stone made into a spherical shape of about 7 to 10 mm and sintered at a temperature of about 1000 ° C. to 1500 ° C. The fired body is a powder containing fireproof stone powder on the surface of the sintered body. A glaze is applied and fired at a temperature of about 1000 ° C. to about 1500 ° C.

この発明の上記いずれかの構成の研削クーラント供給装置において、前記研削クーラントは、前記クーラント原液:2〜5%、前記第1の改質水:85〜93%、前記第2の改質水:5〜10%であっても良い。なお、上記割合の%は容量%である。
クーラント原液、第1の改質水、および第2の改質水の比率が上記の割合である場合に、研削加工時に最も効果的に冷却できることが試験により確認された。
In the grinding coolant supply device according to any one of the above-described configurations of the present invention, the grinding coolant includes the coolant stock solution: 2 to 5%, the first reforming water: 85 to 93%, and the second reforming water: It may be 5 to 10%. In addition,% of the said ratio is volume%.
It was confirmed by tests that cooling can be performed most effectively at the time of grinding when the ratio of the coolant stock solution, the first reforming water, and the second reforming water is the above ratio.

この発明の研削設備は、この発明の前記のいずれかの構成の研削クーラント供給装置と、前記研削盤とを備える。
この構成の研削設備によると、この発明の研削クーラント供給装置を用いるため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。
A grinding facility according to the present invention includes the grinding coolant supply device according to any one of the above-described configurations according to the present invention, and the grinding machine.
According to the grinding equipment of this configuration, the heat generated at the time of grinding can be effectively removed since the grinding coolant supply device of the present invention is used. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.

この発明の研削方法は、転動体を有する機械部品の要素を研削する研削方法であって、水溶性のクーラント原液と、水粒子の平均粒子径が80nm以上、150nm以下である第1の改質水と、水粒子の平均粒子径が5nm以上、80nm未満ある第2の改質水との混合水である研削クーラントを生成し、この生成した研削クーラントを用いて研削加工する方法である。
この研削方法によると、前記範囲の粒子径を持つ第1の改質水および第2の改質水を混合した研削クーラントを用いるため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。
前記第2の改質水は、第1の改質水を、さらに水粒子を小さく改質した水であっても良い。
The grinding method according to the present invention is a grinding method for grinding an element of a machine part having rolling elements, and is a first modification in which the water-soluble coolant stock solution and the average particle diameter of water particles are 80 nm or more and 150 nm or less. This is a method of producing a grinding coolant which is a mixed water of water and a second modified water having an average particle diameter of water particles of 5 nm or more and less than 80 nm, and grinding processing using the produced grinding coolant.
According to this grinding method, since the grinding coolant in which the first reforming water and the second reforming water having the particle diameter in the above-mentioned range are mixed is used, the heat generated at the time of grinding can be effectively removed. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.
The second reforming water may be water obtained by further reforming the first reforming water into smaller water particles.

この発明の研削クーラント供給装置・研削設備・研削方法は、前記範囲の粒子径を持つ第1の改質水および第2の改質水を混合した研削クーラントを用いるため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。   Since the grinding coolant supply device, grinding equipment, and grinding method of the present invention use the grinding coolant in which the first reforming water and the second reforming water having particle diameters in the above range are mixed, the heat generated during grinding is effective. Can be removed. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.

この発明の第1の実施形態に係る研削クーラント供給装置および研削設備を示す模式図である。It is a schematic diagram which shows the grinding coolant supply apparatus and grinding equipment which concern on the 1st Embodiment of this invention. 同研削クーラント供給装置における第1の改質水供給手段の概念構成の断面図である。It is a sectional view of a conceptual composition of the 1st modification water supply means in the grinding coolant supply device. 同研削クーラント供給装置における第2の改質水供給手段の概念構成の断面図である。It is sectional drawing of the conceptual structure of the 2nd reforming water supply means in the grinding coolant supply device. 同研削クーラント供給装置における各過程の水のイメージを示す説明図である。It is explanatory drawing which shows the image of the water of each process in the grinding coolant supply apparatus. 研削機の一例の説明図である。It is explanatory drawing of an example of a grinder. この発明の他の実施形態に係る研削クーラント供給装置および研削設備を示す模式図である。It is a schematic diagram which shows the grinding coolant supply apparatus and grinding equipment which concern on other embodiment of this invention. 実施形態の研削クーラント供給装置で得た研削クーラント(改質水)と他のクーラントとなる液との効果を加工精度で比較したグラフである。It is the graph which compared the effect of the grinding coolant (reforming water) obtained with the grinding coolant supply device of an embodiment, and the liquid used as other coolant by processing accuracy.

この発明の第1の実施形態を図1ないし図5と共に説明する。この研削クーラント供給装置は、研削盤1へ研削クーラントを供給する装置であって、複数種の水を混合して研削クーラントとする混合手段2と、クーラント原液供給手段3と、第1の改質水供給手段4と、第2の改質水供給手段5と、研削クーラント送り手段6とを備える。前記混合手段2、クーラント原液供給手段3、第1の改質水供給手段4、および第2の改質水供給手段4により、研削クーラント生成装置7が構成される。この研削クーラント供給装置から供給する研削クーラントの供給先となる研削盤1は、1台であっても、複数台であっても良い。   A first embodiment of the present invention will be described in conjunction with FIGS. This grinding coolant supply device is a device for supplying the grinding coolant to the grinding machine 1, which is a mixing means 2 for mixing a plurality of types of water to make the grinding coolant, a coolant undiluted solution supplying means 3, and a first reforming. A water supply means 4, a second reforming water supply means 5, and a grinding coolant feed means 6 are provided. The mixing means 2, the undiluted solution supply means 3, the first reforming water supply means 4 and the second reforming water supply means 4 constitute a grinding coolant generator 7. The number of grinding machines 1 to which the grinding coolant is supplied from the grinding coolant supply device may be one or plural.

前記研削盤1は、転動体を有する機械部品の要素を研削する研削盤である。前記転動体を有する機械部品は、例えば転がり軸受、等速ジョイント、ボールねじ、転がり直動軸受等である。前記機械部品の要素は、前記機械部品を構成する構成部品を言い、例えば転がり軸受であれば、その内輪または外輪等の軌道輪である。   The grinding machine 1 is a grinding machine for grinding elements of machine parts having rolling elements. The mechanical component having the rolling element is, for example, a rolling bearing, a constant velocity joint, a ball screw, a rolling linear motion bearing, or the like. The element of the machine part refers to a component that constitutes the machine part, and in the case of a rolling bearing, for example, a bearing ring such as an inner ring or an outer ring thereof.

図5は、研削盤1の一例を示す。この研削盤1は、機械部品の要素である加工物Wが転がり軸受の外輪であって、その内径面を研削する装置であり、研削ワークである加工物Wをシュー21で支持し、バッキングプレート22を介してワーク駆動用モータ23により加工物Wをその中心O回りに回転させる。この加工物Wの軌道面となる内径面を、加工物Wを回転させながら回転砥石24で研削する。回転砥石24は、砥石駆動用モータ25で回転させる。砥石駆動用モータ25は、砥石移動機構26により、水平な直交2軸方向に移動させる。ワーク駆動用モータ23は基台28に設置されている。回転砥石24における加工物Wとの接触面付近に、クーラントノズル27から研削クーラントを吐出させる。研削クーラントは、図1の研削クーラント供給装置から供給される。   FIG. 5 shows an example of the grinding machine 1. The grinding machine 1 is an apparatus for grinding an inner diameter surface of a rolling bearing as a workpiece W, which is an element of a machine component, and supporting the workpiece W, which is a grinding workpiece, with a shoe 21, a backing plate The workpiece W is rotated about its center O by the workpiece driving motor 23 via 22. The inner diameter surface, which becomes the raceway surface of the workpiece W, is ground by the rotary grindstone 24 while rotating the workpiece W. The rotary grindstone 24 is rotated by the grindstone drive motor 25. The grinding wheel drive motor 25 is moved by the grinding wheel moving mechanism 26 in the horizontal orthogonal two axial directions. The workpiece drive motor 23 is installed on the base 28. The grinding coolant is discharged from the coolant nozzle 27 in the vicinity of the contact surface with the workpiece W in the rotary grindstone 24. The grinding coolant is supplied from the grinding coolant supply device of FIG.

図1において、混合手段2は、クーラントタンク2aにより構成される。クーラントタンク2a内またはクーラントタンク2aの前段に、攪拌装置(図示せず)が設けられていても良い。
前記研削クーラント送り手段6は、水道水等のクーラントタンク2a内の研削クーラントを研削盤1へ送る配管6aおよびポンプ6bにより構成される。
クーラント原液供給手段3は、水道水等のクーラント原液を溜めるタンク3aと、このタンク3a内のクーラント原液を前記クーラントタンク2aへ送る配管3bおよびポンプ3cにより構成される。
In FIG. 1, the mixing means 2 is comprised by the coolant tank 2a. A stirring device (not shown) may be provided in the coolant tank 2a or in the front stage of the coolant tank 2a.
The grinding coolant feeding means 6 is composed of a pipe 6 a for feeding grinding coolant in a coolant tank 2 a such as tap water to the grinding machine 1 and a pump 6 b.
The coolant undiluted solution supply means 3 comprises a tank 3a for storing a coolant undiluted solution such as tap water, and a pipe 3b and a pump 3c for sending the undiluted solution in the tank 3a to the coolant tank 2a.

第1の改質水供給手段4は、第1の改質水を生成する第1の造水器4aと、その造水された第1の改質水を前記クーラントタンク2aへ送る配管4bおよびポンプ4cにより構成される。第1の造水器4aへの原料となる水は、水道8から供給される。
第2の改質水供給手段4は、第2の改質水を生成する第2の造水器4aと、その造水された第2の改質水を前記クーラントタンク2aへ送る配管4bおよびポンプ4cにより構成される。第2の造水器4aへの原料となる水は、第1の改質水供給手段4から供給される。
The first reforming water supply means 4 includes a first water producing unit 4a for producing a first reforming water, a pipe 4b for feeding the first reforming water produced to the coolant tank 2a, and It comprises the pump 4c. Water as a raw material to the first water maker 4 a is supplied from the water supply 8.
The second reforming water supply means 4 includes a second water producing unit 4a for producing a second reforming water, a pipe 4b for sending the second reforming water produced to the second tank to the coolant tank 2a, and It comprises the pump 4c. Water as a raw material to the second water maker 4 a is supplied from the first reforming water supply means 4.

前記第1の改質水は、K1改質水と呼ばれることがあり、図では「K1水」と略称している。前記第2の改質水は、K3改質水と呼ばれることがあり、図では「K3水」と略称している。K1改質水およびK3改質水は、特定の規格によって称される名称である。その規格では、改質水は次の表1のように、成分・構成によってK1,K2,K3の3種類に分類されているが、この実施形態の研削クーラント供給装置ではK2改質水は用いず、K3改質水を第2の改質水として用いる。なお、第1、第2の改質水は、表1のK1,K3改質水と粒子径が異なっていても良い。   The first reforming water may be called K1 reforming water, and is abbreviated as “K1 water” in the figure. The second reforming water may be called K3 reforming water, and is abbreviated as "K3 water" in the figure. K1 reformed water and K3 reformed water are names designated by specific standards. According to the standard, reformed water is classified into three types of K1, K2, and K3 according to components and constitution as shown in Table 1 below, but in the grinding coolant supply device of this embodiment, K2 reformed water is used Then, K3 reformed water is used as the second reformed water. The particle sizes of the first and second modified waters may be different from those of the K1 and K3 modified waters of Table 1.

Figure 0006522377
Figure 0006522377

図2に概念構成を示すように、第1の改質水供給手段4における第1の造水器4aは、金属製の容器10A,10B内にそれぞれ充填した1次フィルタ11と2次フィルタ12とを、配管等の中間経路10Cを介して直列に配置し、これらのフィルタ11,12内に改質前の水をポンプ13で加圧通過させる構造である。前記1次フィルタ11は、所定の化学成分の多孔質の鉱石の原石を充填したフィルタである。前記2次フィルタは、前記鉱石から生成したセラミックボールを充填したフィルタである。上記「セラミックボール」には大別して素焼体と焼成体がある。素焼体とは、抗火石の粉末を7〜10mm程度の球形形状にして、1000℃から1500℃程度の温度で焼結したものであり、焼成体とは素焼体の表面に抗火石粉末入りの釉薬を塗布し1000℃から1500℃程度の温度で焼成したものである。   As the conceptual configuration is shown in FIG. 2, the first fresh water generator 4 a in the first reformed water supply means 4 is a primary filter 11 and a secondary filter 12 filled in metal containers 10 A and 10 B, respectively. Are arranged in series via an intermediate path 10C such as a pipe, and the water before reforming is pressure-passed by the pump 13 in the filters 11 and 12. The primary filter 11 is a filter filled with a porous ore raw stone of a predetermined chemical component. The secondary filter is a filter filled with ceramic balls produced from the ore. The above-mentioned "ceramic balls" are roughly classified into a sintered body and a sintered body. The unglazed body is a powder of fireproof stone made into a spherical shape of about 7 to 10 mm and sintered at a temperature of about 1000 ° C. to 1500 ° C. The fired body is a powder containing fireproof stone powder on the surface of the sintered body A glaze is applied and fired at a temperature of about 1000 ° C. to about 1500 ° C.

図3に概念構成を示すように、第2の改質水供給手段5における第2造水器5aは、金属製の容器14内にフィルタ15を配置し、その中に改質前の水をポンプ16で加圧通過させる構造である。フィルタ15は、前記所定の化学成分の多孔質の鉱石から生成し、ナノ銀を担持したセラミックボールを充填したものである。セラミックボールは、ナノ銀を担持していることの他は、第1の改質水供給手段4に用いたセラミックボールと同様である。前記の「ナノ銀」は、10nm程度、例えば1〜20nm程度の粒子径の銀を言う。   As the conceptual configuration is shown in FIG. 3, the second water maker 5a in the second reforming water supply means 5 arranges the filter 15 in the metal container 14, in which the water before reforming is The pump 16 is configured to pass pressure. The filter 15 is made of porous ore of the predetermined chemical component and is filled with a ceramic ball supporting nano silver. The ceramic ball is the same as the ceramic ball used for the first modified water supply means 4 except that it carries nano silver. The above-mentioned "nano silver" refers to silver having a particle diameter of about 10 nm, for example, about 1 to 20 nm.

前記所定の化学成分の鉱石には、例えば天城抗火石等の抗火石が用いられる。抗火石とは、伊豆半島等で産出する流紋岩の一種で、火山の噴火活動によって黒曜石が超高温で焼かれた後、急冷されて水蒸気とガスの噴出により微細孔な気泡を有する軽石上になったものである。その化学成分は、前記所定の化学成分であり、SIO:73〜77%、Al:13〜15%、CaO:1〜2%、MnO:0.65〜0.77%、その他7.3〜9%である。前記天城抗火石は、抗火石のうちで、天城山で算出されるのを言う。
なお、前記各フィルタ11,12,15に用いる鉱石は、抗火石に限らず、前記化学成分を備える多孔質の鉱石であれば良い。
As the ore of the predetermined chemical component, for example, an anti-glare such as Amagi anti-glare is used. Anti-pite is a type of rhyolite produced in Izu Peninsula, etc. After obsidian is burned at ultra-high temperature by volcanic eruptive activity, it is quenched and pumice with fine pores by the expulsion of water vapor and gas. It has become. Its chemical composition is the a predetermined chemical components, SIO 2: 73~77%, Al 2 O 3: 13~15%, CaO: 1~2%, MnO: 0.65~0.77%, other 7.3 to 9%. The Amagi fireproof stone is said to be calculated at Amagiyama among fireproof stones.
In addition, the ore used for each said filter 11, 12, 15 should just be a porous ore provided with the said chemical component not only in a fireproof.

前記第1の造水器4aにおいて、前記1次,2次のフィルタ11,12の充填物が水に与える影響を説明すると、抗火石から放射する赤外線(4〜14μm)により、水の水素結合が遮断され、図4にそのイメージを示すように、改質前の200nm程度の水道水(図4(A))は、100nm程度、例えば80〜150以下nmの水分子(微細水分子)となる(図4(B))。その水粒子は、比重が1以上となり、気体が抜けて六環結合が安定する。なお、ここで言う「水粒子」は、水の分子(H0)が集まって粒子状となっている集団を言う。 To explain the influence of the fillings of the primary and secondary filters 11 and 12 on water in the first water cooler 4a, the hydrogen bonding of water by infrared rays (4 to 14 μm) emitted from the fireproof stone As shown in FIG. 4, the tap water of about 200 nm before modification (FIG. 4A) is about 100 nm, for example, 80 to 150 nm or less of water molecules (fine water molecules) and (FIG. 4 (B)). The specific gravity of the water particle is 1 or more, the gas is released, and the six-ring bond is stabilized. Here, the term "water particles" refers to a population of water molecules (H 2 0) has become a particulate gathered.

前記第2の造水器5aにおいて、前記フィルタ16の充填物が水に与える影響を説明すると、第2の造水器5a内に第1の改質水(K1改質水)を通過させると、水粒子は10nm程度、例えば5〜80未満nm程度までさらに微細化されると共に、量子ふるい効果により、運動エネルギーが増加し、水のブラウン運動が活性化する(図4(C))。
このような各改質水とクーラント原液が混合されて、図4(D)のような研削クーラントとなる。
In the second water maker 5a, to explain the influence of the filling of the filter 16 on water, the first reforming water (K1 reforming water) is allowed to pass through the second water making machine 5a. The water particles are further refined to about 10 nm, for example, about 5 to less than 80 nm, and the kinetic energy is increased by the quantum sieving effect, and the brown motion of water is activated (FIG. 4 (C)).
Such respective reforming water and the coolant stock solution are mixed to form a grinding coolant as shown in FIG. 4 (D).

前記各改質水について説明する。
<第1の改質水(K1改質水)>
・特徴
粒子径が80〜150nmであるため、加工点への浸透性が高く、冷却効果を得られ易い。また、6員環結合が安定しており、不純物やガスが侵入しにくい。また、クーラント原液を6員環の中に取り込むため、水とクーラント原液が分離しにくく、安定する。
第1の改質水の平均粒子径は、100nm程度、例えば90〜110nmであることが好ましい。
・特定方法
比重1以上。6員環結合を顕微鏡観察。水分子の運動は少ない。
<第2の改質水(K3改質水)>
・特徴
粒子径が5〜80未満nmと超微粒子であるため、加工点への浸透性が高く且つ、蒸発しや易く熱を奪う効果は第1の改質水より大きい。また、第1の改質水に比べて運動エネルギーが高く、ブラウン運動が激しい為、加工点への浸透性が第1の改質水よりも高い。
・特定方法
比重1以上。6員環結合を顕微鏡観察。水分子の運動が非常に多い。
なお、第2の改質水の平均粒子径は、10nm程度、例えば9〜11nmであることが好ましい。
また、第1の改質水と第2の改質水とは、互いにゼータ電位が異なる改質水を用いても良い。
The respective reforming waters will be described.
<First reformed water (K1 reformed water)>
-Characteristics Since the particle diameter is 80 to 150 nm, the permeability to the processing point is high, and the cooling effect can be easily obtained. In addition, the six-membered ring bond is stable, and it is difficult for impurities and gases to penetrate. In addition, since the undiluted solution of coolant is taken into the six-membered ring, the undiluted solution of water and undiluted solution of coolant hardly separates and becomes stable.
The average particle size of the first modified water is preferably about 100 nm, for example, 90 to 110 nm.
-Specific method Specific gravity 1 or more. Microscopic observation of 6-membered ring bond. There is little movement of water molecules.
<Second reformed water (K3 reformed water)>
-Characteristics Since the particle diameter is 5 to 80 nm and ultrafine particles, the permeability to the processing point is high, and the effect of evaporating easily and taking heat is larger than that of the first modified water. In addition, since the kinetic energy is higher than that of the first reformed water and the Brownian movement is intense, the permeability to the processing point is higher than that of the first reformed water.
-Specific method Specific gravity 1 or more. Microscopic observation of 6-membered ring bond. There is a lot of movement of water molecules.
The average particle diameter of the second modified water is preferably about 10 nm, for example, 9 to 11 nm.
Further, the first reforming water and the second reforming water may use reforming water having different zeta potentials.

この構成の研削クーラント供給装置によると、第1の改質水は、粒子径が10〜150nmであるため、加工点への浸透性が高く、冷却効果を得られ易い。第2の改質水は、粒子径が5〜80 未満 nmと、第1の改質水よもさらに粒子径が微細であるため、加工点への浸透性が高く且つ、蒸発しやすく、熱を奪う効果は第1の改質水よりも大きい。また、第1の改質水に比べて運動エネルギーが高く、ブラウン運動が激しい為、加工点への浸透性が第1の改質水よりも高い。第1の改質水は、第2の改質水よりも浸透性は低いが、研削抵抗を減らして熱の発生を抑えるための潤滑性に優れる。
このような性質の第1および第2の改質水を含む研削クーラントで冷却するため、研削時に出る熱を効果的に除去することができる。それにより砥石の切れ味が向上し、加工時間の短縮、砥石寿命の延長及び加工精度向上を図ることが可能となる。
なお、第1の改質水と第2の改質水との中間の粒子径を持つ改質水を用いても、ある程度優れた冷却性が得られるが、潤滑性に優れる第1の改質水とより浸透性に優れて冷却性に優れる第2の改質水とを併存させることで、冷却性および潤滑性が、共により一層優れる。
また、前述のように、第2の改質水(K3)は、第1の改質水(K1)に比べて酸化還元電位が高く、濃度が高くなると錆が発生する。逆に第1の改質水(K1)は水道水に比べて酸化還元電位が低く、錆が発生しにくくなる。よって、粒子径、ブラウン運動、発錆性などを考慮した配合比率での運用が必要になる。
According to the grinding coolant supply device of this configuration, since the first modified water has a particle diameter of 10 to 150 nm, the permeability to the processing point is high, and the cooling effect can be easily obtained. The second modified water has a particle size of 5 to less than 80 nm and is finer than the first modified water, so the permeability to the processing point is high and it is easy to evaporate. The depriving effect is greater than the first reformed water. In addition, since the kinetic energy is higher than that of the first reformed water and the Brownian movement is intense, the permeability to the processing point is higher than that of the first reformed water. Although the first modified water has lower permeability than the second modified water, it has excellent lubricity for reducing the grinding resistance and suppressing the generation of heat.
By cooling with the grinding coolant containing the first and second reforming water of such nature, it is possible to effectively remove the heat generated at the time of grinding. As a result, the sharpness of the grindstone is improved, and the processing time can be shortened, the life of the grindstone can be extended, and the processing accuracy can be improved.
In addition, even if it uses the reforming water which has an intermediate particle diameter of the 1st reforming water and the 2nd reforming water, although the cooling property which was excellent to some extent is obtained, the 1st reforming which is excellent in lubricity By coexistence of water and the second reforming water which is more excellent in permeability and excellent in cooling property, both the cooling property and the lubricity are more excellent.
Further, as described above, the second reforming water (K3) has a higher redox potential than the first reforming water (K1), and rusting occurs when the concentration is high. Conversely, the first reforming water (K1) has a lower redox potential than tap water, and rust is less likely to occur. Therefore, it is necessary to operate at a blending ratio in consideration of particle diameter, browning motion, rusting property, and the like.

図7に、水溶性クーラント、水道水、油性クーラント、およびこの実施形態の研削クーラント供給装置で得た改質水である研削クーラントを用いてそれぞれ200個ずつノンドレスで研削架構した場合の、寸法変化の推移を示す。
同図に示すように、この実施形態の研削クーラント供給装置による改質水を用いた研削クーラントによると、加工数が増加しても、水溶性クーラント、水道水、油性クーラントのいずれを用いた場合よりも、寸法の変化が少ないことが分かる。これより、この上記改質水による研削クーラントを用いると、砥石の脱落も少なく、切れ味が続いていると考えられる。
FIG. 7 shows dimensional changes in the case where 200 pieces of each are constructed in a non-dressing manner using a water-soluble coolant, tap water, an oil-based coolant, and a grinding coolant which is reforming water obtained by the grinding coolant supply device of this embodiment. Show the transition of
As shown in the figure, according to the grinding coolant using the reforming water by the grinding coolant supply device of this embodiment, when any of the water-soluble coolant, the tap water and the oil-based coolant is used even if the number of machining increases It can be seen that the dimensional change is smaller than that. From this, it is considered that when the grinding coolant using the above-mentioned reformed water is used, the falling off of the grindstone is small and the sharpness continues.

図7は、この発明の他の実施形態を示す。この実施形態は、上記第1の実施形態において、回収手段9および改質水再生手段10を追加して構成される。回収手段9は、研削機1で研削加工に使用された研削クーラントを回収して前記混合手段2のクーラントタンク2aに戻す手段であり、配管およびポンプ(図示せず)で構成される。改質水再生手段10は、前記混合手段2のクーラントタンク2a内の研削クーラントを循環させて再生する手段であり、改質水再生器10aと、この改質水再生器10aとクーラントタンク2aとの間で研削クーラントを循環させる配管10bと、ポンプ10cとで構成される。   FIG. 7 shows another embodiment of the present invention. This embodiment is configured by adding the recovery means 9 and the reformed water regenerating means 10 in the first embodiment. The recovery means 9 is a means for recovering the grinding coolant used for grinding processing by the grinder 1 and returning it to the coolant tank 2a of the mixing means 2, and is constituted by piping and a pump (not shown). The reforming water regenerating means 10 is a means for circulating and regenerating the grinding coolant in the coolant tank 2a of the mixing means 2, and includes the reforming water regenerator 10a, the reforming water regenerator 10a, and the coolant tank 2a. Between the pipe 10b for circulating the grinding coolant and the pump 10c.

改質水再生器10aは、回収した研削クーラントを含むクーラントタンク2a内の研削クーラントを、前記第2の造水器5aで生成した状態の研削クーラントと同様な状態に戻す手段であり、例えば第1の造水器5aにおける2次フィルタ12(図2参照)と第2の造水器5a(図3参照)におけるフィルタ14とを並列に配置し、これらのフィルタに、クーラントタンク2a(図6)から得た研削クーラントを分岐させて、ポンプ(図示せず)で圧送して通す構成とされる。   The reformed water regenerator 10a is a means for returning the grinding coolant in the coolant tank 2a including the collected grinding coolant to the same state as the grinding coolant in the state generated by the second water heater 5a, for example, The secondary filter 12 (see FIG. 2) in the first fresh water generator 5a and the filter 14 in the second fresh water generator 5a (see FIG. 3) are arranged in parallel, and the coolant tank 2a (FIG. 6) And the pump coolant (not shown) is pumped and let through.

このように改質水再生手段10を設けた場合、研削機1で研削加工に使用された研削クーラントを回収して再利用する場合にも、研削機1へ供給する研削クーラントを元の粒子径を持つ状態に維持することができる。   Thus, when the reforming water regenerating means 10 is provided, the particle diameter of the original grinding coolant to be supplied to the grinding machine 1 can be recovered even when the grinding coolant used in the grinding process is collected and reused by the grinding machine 1 It can be maintained in a state of having

以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.

1…研削盤
2…混合手段
2a…クーラントタンク
3…クーラント原液供給手段
4…第1の改質水供給手段
4a…第1の造水器
5…第2の改質水供給手段
5a…第2の造水器
6…研削クーラント送り手段
7…研削クーラント生成装置
10…改質水再生手段
10a…改質水再生器
11…1次フィルタ
12…2次フィルタ
15…フィルタ
DESCRIPTION OF SYMBOLS 1 ... Grinding machine 2 ... Mixing means 2a ... Coolant tank 3 ... Coolant undiluted | stock solution supply means 4 ... 1st reforming water supply means 4a ... 1st water maker 5 ... 2nd reforming water supply means 5a ... 2nd Water-making device 6 ... Grinding coolant feeding means 7 ... Grinding coolant generation device 10 ... Reformed water regenerating means 10a ... Reformed water regenerator 11 ... Primary filter 12 ... Secondary filter 15 ... Filter

Claims (6)

転動体を有する機械部品の要素を研削する研削盤へ研削クーラントを供給する装置であって、
水溶性のクーラント原液、水粒子の平均粒子径が80nm以上、150nm以下である第1の改質水、および水粒子の平均粒子径が5nm以上、80nm未満である第2の改質水の混合水である研削クーラントを生成する研削クーラント生成装置と、この生成された研削クーラントを前記研削盤へ研削クーラント送り手段とを備える研削クーラント供給装置。
An apparatus for supplying a grinding coolant to a grinding machine for grinding an element of a machine part having rolling elements, comprising:
A mixture of a water-soluble coolant stock solution, a first modified water having an average particle diameter of 80 nm or more and 150 nm or less, and a second modified water having an average particle diameter of 5 nm or more and less than 80 nm A grinding coolant supply device comprising: a grinding coolant generation device for generating a grinding coolant which is water; and grinding coolant feeding means for grinding the generated grinding coolant to the grinding machine.
転動体を有する機械部品の要素を研削する研削盤へ研削クーラントを供給する装置であって、
複数種の水を混合して研削クーラントとする混合手段と、水溶性のクーラント原液を前記混合手段へ供給するクーラント原液供給手段と、水粒子の平均粒子径が80nm以上、150nm以下である第1の改質水を前記混合手段へ供給する第1の改質水供給手段と、前記第1の改質水をさらに粒子径を小さく改質した第2の改質水を前記混合手段へ供給する第2の改質水供給手段とを備える研削クーラント供給装置。
An apparatus for supplying a grinding coolant to a grinding machine for grinding an element of a machine part having rolling elements, comprising:
A mixing means for mixing a plurality of types of water to form a grinding coolant, a coolant stock solution feeding means for supplying a water-soluble coolant stock solution to the mixing means, and a first water particle having an average particle diameter of 80 nm or more and 150 nm or less A first reforming water supply means for supplying the reforming water to the mixing means, and a second reforming water obtained by further reforming the first reforming water to a smaller particle diameter is supplied to the mixing means A grinding coolant supply device comprising a second reforming water supply means.
転動体を有する機械部品の要素を研削する研削盤へ研削クーラントを供給する装置であって、
複数種の水を混合して研削クーラントとする混合手段と、水溶性のクーラント原液を前記混合手段へ供給するクーラント原液供給手段と、第1の改質水を前記混合手段へ供給する第1の改質水供給手段と、第2の改質水を前記混合手段へ供給する第2の改質水供給手段とを備え、
前記第1の改質水供給手段は、化学成分がSIO2:73〜77%、Al2O3:13〜15%、CaO:1〜2%、MnO:0.65〜0.77%、その他7.3〜9%である多孔質の鉱石を充填した1次フィルタと、前記化学成分の前記多孔質の鉱石から生成したセラミックボールを充填した2次フィルタと、これら1次フィルタと2次フィルタとに順に水を通過させる水送り手段とを有し、
前記第2の改質水供給手段は、前記化学成分の前記多孔質の鉱石から生成し、ナノ銀を担持したセラミックボールを充填したフィルタと、このフィルタに水を通す水送り手段とを有する、
ことを特徴とする研削クーラント供給装置。
An apparatus for supplying a grinding coolant to a grinding machine for grinding an element of a machine part having rolling elements, comprising:
A mixing means for mixing a plurality of types of water to obtain a grinding coolant, a coolant stock solution supplying means for supplying a water-soluble coolant stock solution to the mixing means, and a first one for supplying a first reforming water to the mixing means A reforming water supply means, and a second reforming water supply means for supplying a second reforming water to the mixing means,
The first reforming water supply means contains chemical components of SIO2: 73 to 77%, Al2O3: 13 to 15%, CaO: 1 to 2%, MnO: 0.65 to 0.77%, and others 7.3. A primary filter filled with porous ore of ~ 9%, a secondary filter filled with ceramic balls generated from the porous ore of the chemical component, and these primary filter and secondary filter in order And water feeding means for passing water;
The second modified water supply means includes a filter filled with ceramic balls supporting nano silver, which is produced from the porous ore of the chemical component, and a water feed means for passing water through the filter.
Grinding coolant supply device characterized in that.
請求項1ないし請求項3のいずれか1項の研削クーラント供給装置において、前記研削クーラントは、前記クーラント原液:2〜5%、前記第1の改質水:85〜93%、前記第2の改質水:5〜10%である研削クーラント供給装置。   The grinding coolant supply device according to any one of claims 1 to 3, wherein the grinding coolant comprises the coolant raw solution: 2 to 5%, the first reforming water: 85 to 93%, the second Reforming water: Grinding coolant supply device that is 5 to 10%. 請求項1ないし請求項4のいずれか1項の研削クーラント供給装置と、前記研削盤とを備えた研削設備。   The grinding installation provided with the grinding coolant supply apparatus of any one of Claim 1 thru | or 4, and the said grinder. 転動体を有する機械部品の要素を研削する研削方法であって、
水溶性のクーラント原液と、水粒子の平均粒子径が80nm以上、150nm以下である第1の改質水と、平均粒子径が5nm以上、80nm未満である第2の改質水との混合水である研削クーラントを生成し、この生成した研削クーラントを用いて研削加工する機械部品の研削方法。
A grinding method for grinding an element of a machine part having rolling elements, comprising:
Mixed water of a water-soluble coolant stock solution, a first modified water having an average particle diameter of 80 nm or more and 150 nm or less, and a second modified water having an average particle diameter of 5 nm or more and less than 80 nm A grinding method of a machine part which generates a grinding coolant and grinds using the generated grinding coolant.
JP2015049234A 2015-03-12 2015-03-12 Grinding coolant supply device, grinding equipment, grinding method Active JP6522377B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015049234A JP6522377B2 (en) 2015-03-12 2015-03-12 Grinding coolant supply device, grinding equipment, grinding method
CN201680014543.6A CN107405753B (en) 2015-03-12 2016-03-11 Grinding coolant feedway, equipment for grinding and method for grinding
PCT/JP2016/057866 WO2016143906A1 (en) 2015-03-12 2016-03-11 Grinding coolant supplier, grinding system and grinding method
EP16761871.9A EP3269507B1 (en) 2015-03-12 2016-03-11 Grinding coolant supplier, grinding system and grinding method
US15/700,811 US10300579B2 (en) 2015-03-12 2017-09-11 Grinding coolant supplier, grinding system and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049234A JP6522377B2 (en) 2015-03-12 2015-03-12 Grinding coolant supply device, grinding equipment, grinding method

Publications (2)

Publication Number Publication Date
JP2016168640A JP2016168640A (en) 2016-09-23
JP6522377B2 true JP6522377B2 (en) 2019-05-29

Family

ID=56879603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049234A Active JP6522377B2 (en) 2015-03-12 2015-03-12 Grinding coolant supply device, grinding equipment, grinding method

Country Status (5)

Country Link
US (1) US10300579B2 (en)
EP (1) EP3269507B1 (en)
JP (1) JP6522377B2 (en)
CN (1) CN107405753B (en)
WO (1) WO2016143906A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109434692A (en) * 2018-12-12 2019-03-08 彩虹(合肥)液晶玻璃有限公司 A kind of coolant liquid make-up system and method
JP6934580B1 (en) * 2021-01-25 2021-09-15 創美環境技研合同会社 How to regenerate water-soluble coolant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098661B2 (en) * 1993-07-28 2000-10-16 キヤノン株式会社 Abrasive composition and polishing method using the same
JP2000356440A (en) * 1999-06-16 2000-12-26 Ishikawajima Harima Heavy Ind Co Ltd Ice storage apparatus
CN2678821Y (en) * 2003-07-08 2005-02-16 横店集团东磁股份有限公司 Special grinder for grinding hole of deflection magnetic ring
US7820066B2 (en) * 2004-06-08 2010-10-26 Honeywell International Inc. Fluid composition having enhanced heat transfer efficiency
JP5023635B2 (en) * 2006-09-27 2012-09-12 株式会社ジェイテクト Coolant supply device for grinding machine
JP2011174064A (en) * 2010-01-26 2011-09-08 Sawamoto Shoji:Kk Method and apparatus for reforming cutting oil
CN104263326A (en) * 2014-09-04 2015-01-07 陈德全 Nano long-acting liquid coolant

Also Published As

Publication number Publication date
CN107405753B (en) 2019-07-19
EP3269507A1 (en) 2018-01-17
US20170368662A1 (en) 2017-12-28
EP3269507A4 (en) 2018-11-21
US10300579B2 (en) 2019-05-28
WO2016143906A1 (en) 2016-09-15
CN107405753A (en) 2017-11-28
JP2016168640A (en) 2016-09-23
EP3269507B1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
Sharma et al. Mechanism of nanoparticles functioning and effects in machining processes: a review
Wang et al. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids
Sharma et al. Progress of nanofluid application in machining: a review
Lv et al. Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO 2 hybrid nanoparticle water-based lubricants as cutting fluids
Setti et al. Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids
Sharma et al. Improved machining performance with nanoparticle enriched cutting fluids under minimum quantity lubrication (MQL) technique: a review
JP4964636B2 (en) Super Abrasive Metal Bond Wheel
WO2014192837A1 (en) Continuous-generation gear-wheel grinding method
Huang et al. Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping
CN110129118B (en) Grinding fluid special for ELID grinding aluminum-based composite material and preparation method thereof
JP6522377B2 (en) Grinding coolant supply device, grinding equipment, grinding method
Nadolny et al. Modern approach to delivery coolants, lubricants and antiadhesives in the environmentally friendly grinding processes
Hou et al. Effect of porosity on the grinding performance of vitrified bond diamond wheels for grinding PCD blades
JP5955429B1 (en) Continuously generating gear grinding method
Dambatta et al. Grinding with minimum quantity lubrication: a comparative assessment
Setti et al. An investigation into the application of Al2O3nanofluid–based minimum quantity lubrication technique for grinding of Ti–6Al–4V
JP6162649B2 (en) Super finishing method
Öztürk Microstructural analysis of metal‐bond diamond tools in grinding of flat glass: Gefügeanalyse von metallisch gebundenen Diamantwerkzeugen beim Schleifen von Flachglas
US20120315104A1 (en) Machine Tool, Working Fluid Supply Apparatus, and Working Fluid
WO2015156033A1 (en) Dry barrel polishing method, and medium production method
WO2019051596A1 (en) Polymer stabilized nanoparticle containing compositions for use as cutting fluids and/or coolants
JP2010076094A (en) Metal bond diamond grinding wheel and method of manufacturing the same
CN104497886B (en) Special polishing liquid for diamond compact and preparation method of special polishing liquid
JP2019104079A (en) Metal blade, cutting processing device and manufacturing method for metal blade
Jeet et al. Sustainable Implementation of MQL Technique in Metal Grinding Operation Employing Conventional & Nano-Particles Enriched Metal-Working Fluids: A Conceptual Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250