JP2011174064A - Method and apparatus for reforming cutting oil - Google Patents

Method and apparatus for reforming cutting oil Download PDF

Info

Publication number
JP2011174064A
JP2011174064A JP2011020181A JP2011020181A JP2011174064A JP 2011174064 A JP2011174064 A JP 2011174064A JP 2011020181 A JP2011020181 A JP 2011020181A JP 2011020181 A JP2011020181 A JP 2011020181A JP 2011174064 A JP2011174064 A JP 2011174064A
Authority
JP
Japan
Prior art keywords
cutting oil
cutting
fluorite
oil
processed product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011020181A
Other languages
Japanese (ja)
Inventor
Tetsuo Nomura
哲雄 野村
Haruo Kikuta
晴夫 菊田
Satohiro Sawamoto
悟博 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIKUSUI KOGAKU KK
SAWAMOTO SHOJI KK
Original Assignee
KIKUSUI KOGAKU KK
SAWAMOTO SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIKUSUI KOGAKU KK, SAWAMOTO SHOJI KK filed Critical KIKUSUI KOGAKU KK
Priority to JP2011020181A priority Critical patent/JP2011174064A/en
Publication of JP2011174064A publication Critical patent/JP2011174064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for reforming a cutting oil that can improve lubricating and cooling performance essential to a cutting oil; reduce the cost by reducing an additive, extending a tool life, extending a use cycle of a cutting oil, reducing an amount of use of a cutting oil and reducing unit power consumption in machining resulting from improved machining efficiency; reduce an environmental load in disposal; and improve a working environment. <P>SOLUTION: Reforming of a cutting oil to be used in a cutting machine in machining centers is carried out by the apparatus for reforming a cutting oil that includes a step of bringing the cutting oil diluted with reforming water and stored in an oil tank of the cutting machine into contact with an anti-Tues stone article preferably under a pressure of 3-30 kg/cm<SP>2</SP>and then subjecting the cutting oil to turbulent flow agitation, and a step of bringing the cutting oil again into contact with another anti-Tues stone article and then subjecting the cutting oil to jet flow agitation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属加工に用いられる切削油を改質して切削油の有する潤滑性、冷却性能を向上させることにより、加工工具の寿命の延長、加工物への熱影響を削減するとともに切削油の使用量の削減および切削油の使用サイクルの延長により環境負荷の低減、有毒ガスの排出を低下させ作業環境を改善する切削油改質方法及び切削油の改質装置に関する。また、切削油タンクに堆積するスラッジの発生量の削減ならびにスラッジを軟質化する切削油の改質方法および切削油の改質装置に関する。  The present invention improves the lubricity and cooling performance of the cutting oil by modifying the cutting oil used in metal processing, thereby extending the life of the machining tool and reducing the thermal effect on the work piece. The present invention relates to a cutting oil reforming method and a cutting oil reforming apparatus that reduce the environmental load by reducing the usage amount of the gas and extending the use cycle of the cutting oil, and reduce the discharge of toxic gas to improve the working environment. The present invention also relates to a reduction method of sludge generated in a cutting oil tank, a cutting oil reforming method and a cutting oil reforming device for softening sludge.

切削油は金属加工に用いられ、工具と加工物の間に介在し工具と加工物の摩擦の減少、摩擦により発生する熱を冷却することにより工具の寿命の延長や加工精度の向上を目的として使用される。  Cutting oil is used for metalworking, and is intended to extend the tool life and improve machining accuracy by interposing between the tool and the workpiece, reducing friction between the tool and workpiece, and cooling the heat generated by the friction. used.

近年、切削装置等の工作機械の進歩は目覚しく、加工工具を高速回転させて高精度の加工が可能となり、様々な添加剤が配合された切削油が開発されているが、工具先端の加工点に切削油が十分に浸透しないため工具と加工物との摩擦により生ずる熱を十分に冷却しきれず、工具の寿命の短命化や摩擦熱による加工物のそりが生じ、再加工をせざるを得ないなどの問題があり、加工コストの上昇を招いた。  In recent years, the progress of machine tools such as cutting machines has been remarkable, and high-precision machining is possible by rotating the machining tool at high speed, and cutting oils with various additives have been developed. Since the cutting oil does not penetrate sufficiently, the heat generated by the friction between the tool and the workpiece cannot be sufficiently cooled, resulting in a shortened tool life and warpage of the workpiece due to frictional heat, which requires rework. There was a problem such as not having caused the processing cost to rise.

また、切削油に配合される例えば硫黄系の添加剤は摩擦熱などにより硫黄ガスとして発生し、最悪の場合は致死濃度に達するほど作業環境を悪化させている。
また、切削油タンクに堆積するスラッジを清掃するためには切削装置を停止し、固形化したスラッジを人手でスコップ等を使って除去しなければならず、時間と労力を伴い生産性の低下を招いていた。
Further, for example, a sulfur-based additive blended in cutting oil is generated as sulfur gas due to frictional heat or the like, and in the worst case, the working environment is deteriorated as the lethal concentration is reached.
In addition, in order to clean the sludge accumulated in the cutting oil tank, the cutting device must be stopped and the solidified sludge must be removed manually using a scoop or the like, resulting in a reduction in productivity with time and labor. I was invited.

切削油は大別すると不水溶性の切削油と水溶性の切削油に分けられ、加工物により使い分けられている。しかし、切削油は最終的に金属紛を含んだ汚泥となって産業廃棄物として処理されるため、廃棄物レスの分野からも、その使用量の低減が求められており、切削油の消費量は年間13万トンといわれ、廃油にいたっては年間42万トン(希釈後含む)発生するといわれている。  The cutting oil is roughly classified into a water-insoluble cutting oil and a water-soluble cutting oil, and they are properly used depending on the workpiece. However, since cutting oil eventually becomes sludge containing metal powder and is processed as industrial waste, there is a demand for reduction in the amount of cutting oil consumption even in the field of waste-less. Is said to be 130,000 tons per year, and 420,000 tons (including after dilution) of waste oil is said to be generated annually.

一方、地球温暖化防止京都会議において取りまとめられた京都議定書に基づき、先進各国の温暖化効果ガスの削減目標が割り当てられている。日本においては、エネルギー消費量の約50%を産業分野がしめているため、産業分野におけるエネルギー使用の合理化や環境負荷の低減が求められ、特に、工作機械は全国で約70万台が稼動しており、その消費エネルギーの低減が課題といわれている。自動車メーカーのデータでは工作機械の消費エネルギーの53%が切削油(クーラント)に関するものであると報告されており、とりわけ金属加工工場の切削油を低減することが重要な課題となっている。  On the other hand, based on the Kyoto Protocol compiled at the Kyoto Conference on Global Warming Prevention, reduction targets for greenhouse gases in advanced countries are assigned. In Japan, the industrial sector accounts for about 50% of energy consumption, so rationalization of energy use in the industrial sector and reduction of environmental burdens are required. Especially, about 700,000 machine tools are operating nationwide. The reduction of energy consumption is said to be a problem. According to automaker data, 53% of machine tool energy consumption is related to cutting oil (coolant), and in particular, reducing cutting oil in metalworking factories is an important issue.

また、環境マネージメント標準のグローバリゼーションとあいまって、切削油の問題は年々クローズアップされてきている。  Also, coupled with the globalization of environmental management standards, the problem of cutting oil has been getting closer year by year.

このような、問題に対応するため、特開2008−189796号公報には工作機械で使用された廃油を高電界中に置き切削油等の廃油に含まれる微小な不純物や金属粉等を電極に付着させ除去することにより略完全に元の状態に戻すことが可能な廃油再生方法が開示されている。  In order to deal with such problems, Japanese Patent Application Laid-Open No. 2008-189796 discloses that waste oil used in machine tools is placed in a high electric field and minute impurities or metal powder contained in waste oil such as cutting oil are used as electrodes. Disclosed is a method for reclaiming waste oil that can be almost completely restored to its original state by adhering and removing.

しかし、この廃油再生方法では既存の使用された切削油中の微小な不純物や金属粉を除去するだけなので、工具先端の加工点に切削油を十分に浸透させることができないため、加工時に発生する摩擦熱による影響を回避することはできない。  However, this waste oil regeneration method only removes minute impurities and metal powder in the existing used cutting oil, so that the cutting oil cannot sufficiently penetrate into the machining point at the tip of the tool. The effect of frictional heat cannot be avoided.

また、油メーカーからは上記問題を解決するために様々な添加剤が添加された水溶性切削油が開発されている。しかしながら、これらの切削油が使用され廃棄され最終処理される際には、添加された添加剤が障害となり多大なコストがかかることが原因で普及が促進されない。また、水溶性の切削油は腐敗しやすいばかりではなく、加工中に添加剤がガス化し作業環境を悪化せているとの報告もあるが、切削油自体を改質することによりその性能を向上させ、切削油の使用サイクルを延長させる技術は開発されてはいないのが現状である。  In addition, oil manufacturers have developed water-soluble cutting oils with various additives added to solve the above problems. However, when these cutting oils are used, discarded and finally processed, the spread of the additives is not promoted because the added additives become an obstacle and a great cost is required. In addition, water-soluble cutting oil is not only prone to spoilage, but there are reports that additives are gasified during processing and the working environment is deteriorated, but its performance is improved by modifying the cutting oil itself. However, the present situation is that a technique for extending the use cycle of the cutting oil has not been developed.

発明者らは抗火石ならびに抗火石加工品に水を接触させることにより水の改質に関する研究を永年行っている。  The inventors have been conducting research on water reforming for a long time by bringing water into contact with anti-fluorite and processed anti-fluorite.

ここで、抗火石とは、伊豆半島等で産出する流紋岩の一種で、その組成は、所謂火山性ガラスを主とし、石英、長石、雲母およびその他成分を含有し、火山性活動により、主成分であるケイ酸(シリカ)が縦横に交走し、ガラス繊維化した多孔質性の海綿状火成岩として構成されている。そして、約70%以上のケイ酸成分を含有するものである。  Here, anti-fluorite is a kind of rhyolite produced in the Izu Peninsula, etc., the composition of which mainly consists of so-called volcanic glass, containing quartz, feldspar, mica and other components, by volcanic activity, Silica (silica), which is the main component, crosses vertically and horizontally, and is constructed as a porous spongy igneous rock made into glass fiber. And about 70% or more of a silicic acid component is contained.

また、抗火石の加工品には素焼体と焼成体があり、素焼体は抗火石を比較的粗い粒径に調整した粉末を略球形形状として1000℃から1500℃程度の温度で焼結したものであり、焼成体は素焼体の表面に抗火石粉末入りの釉薬を塗布し1000℃から1500℃の温度で焼成したものである。In addition, the processed products of anti-fluorite include unglazed bodies and calcined bodies, which are sintered at a temperature of about 1000 ° C. to 1500 ° C., with the powder of anti-fluorite adjusted to a relatively coarse particle size in a substantially spherical shape. The fired body is obtained by applying a glaze containing anti-fluorite powder on the surface of the unfired body and firing it at a temperature of 1000 ° C to 1500 ° C.

発明者らの研究では、特開2008−63355号公報には抗火石の加工品に水を接触させることにより、接触前の水の表面張力が71.0mN/mであったものが、抗火石加工品焼成体ならびに素焼体に接触後の水の表面張力は58.0mN/mと改質されて低下することを見出した。また、特開2007−40924号公報に開示されている液状物性質分析電波分光装置(アクアアナライザー)の測定による波形図ならびに特許第3728314号公報に開示される水溶液中の懸濁物質の模様の光学顕微鏡観察方法を使用した水溶液の評価方法による水の微乾燥顕微鏡写真から判断すると、抗火石加工品に接触後の水のアクアアナライザーの波形図(図1)は、抗火石加工品に接触前の水の波形図(図2)と比較すると波形幅が200kHzを越える部分で複雑化し大きく広がり、また水の微乾燥顕微鏡写真の観察においても抗火石加工品に接触した水(図3)と抗火石加工品に接触する前の水(図4)を比較すると模様が小紋状化し微粒子集合物が増え、全体域に薄く分布していることから水クラスターが微小化されているものと判断される。  According to the inventors' research, Japanese Patent Application Laid-Open No. 2008-63355 discloses that the surface tension of water before contact is 71.0 mN / m by bringing water into contact with the processed product of anti-fluorite. It has been found that the surface tension of water after contact with the calcined product and the calcined product is reduced to 58.0 mN / m. Further, a waveform diagram measured by a liquid property analyzing radio wave spectrometer (Aqua Analyzer) disclosed in Japanese Patent Application Laid-Open No. 2007-40924 and an optical pattern of a suspended substance in an aqueous solution disclosed in Japanese Patent No. 3728314. Judging from the micro-drying micrograph of water by the aqueous solution evaluation method using the microscopic observation method, the water aqua analyzer waveform after contact with the anti-fluorite processed product (Fig. 1) shows the waveform before contact with the anti-fluorite processed product. Compared with the waveform diagram of water (Fig. 2), the waveform width is more complicated and widened at the part exceeding 200 kHz, and the water (Fig. 3) and the anti-fluorite stone in contact with the processed anti-fluorite product also in the micro-drying micrograph of water When water before contact with the processed product (Fig. 4) is compared, the pattern becomes smaller and the aggregate of fine particles increases, and the water cluster is miniaturized because it is thinly distributed throughout the whole area. It is determined that the objects.

このように抗火石加工品に水が接触することにより水の粒子(クラスター)が小さくなるという明らかな変化が起きている事を発明者らは承知し、抗火石原石および抗火石加工品に接触させた改質水と抗火石加工品に接触させた改質燃料油を撹拌して油中に微細な水滴が細かく均一に分散して長時間にわたりエマルジョン状態を維持して、着火安定性に優れたエマルジョン燃料を製造する油中水滴型エマルジョン燃料の製造方法、及び油中水滴型エマルジョン燃料の製造装置を特開2008−63355号に開示している。  In this way, the inventors know that there is a clear change that water particles (clusters) become smaller when water comes into contact with the anti-fluorite processed product, and contact with the anti-fluorite stone and the anti-fluorite processed product. Stir the reformed fuel oil brought into contact with the modified water and anti-fluorite processed product, fine water droplets are finely and evenly dispersed in the oil and maintain an emulsion state for a long time, and excellent ignition stability Japanese Patent Application Laid-Open No. 2008-63355 discloses a method for producing a water-in-oil emulsion fuel and an apparatus for producing a water-in-oil emulsion fuel.

また、摂南大学宮田教授の研究において、600MHzの核磁気共鳴装置・日本電子(株)製核磁気共鳴装置(MNR)JNM・ECA・600を用いて、抗火石加工品(素焼体)(粒径:7mm)の10粒を35mLの水道水に一日間浸漬させた後に、その浸漬水道水について計測した。本計測では、水クラスターの大きさを評価するために、NMRによる天然酸素の同位体である原子量が17の酸素(17O)について核磁気共鳴スペクトル(17O・MNR)を計測した。その結果、図5に示すように浸漬させていない水道水の水クラスターの半幅値は70ヘルツ(Hz)であるのに対して、図6に示されるように抗火石加工品(素焼体)を浸漬させた水道水の水クラスターの反幅値は62Hzであり、抗火石加工品(素焼体)水道水の水クラスターは、著しく微細化していることが観察された。In addition, in the research of Prof. Miyata at Setan University, a 600MHz nuclear magnetic resonance apparatus and a JNR / NMR JNM / ECA / 600 were used to process an anti-fluorite processed product (ceramic). : 7 mm) was immersed in 35 mL of tap water for one day, and the immersion tap water was measured. In this measurement, in order to evaluate the size of the water cluster, a nuclear magnetic resonance spectrum ( 17 O · MNR) was measured for oxygen ( 17 O) having an atomic weight of 17 which is an isotope of natural oxygen by NMR. As a result, the half-width value of the water cluster of tap water that is not immersed as shown in FIG. 5 is 70 hertz (Hz), whereas the anti-calcite processed product (unfired body) is used as shown in FIG. The inverse width value of the water cluster of the soaked tap water was 62 Hz, and it was observed that the water cluster of the anti-calcite processed product (unfired body) tap water was remarkably refined.

また、油脂においてもディーゼル車の燃料として用いられている軽油成分中の芳香族化合物のモデルとしてエチルベンゼンを用い、抗火石加工品(素焼体)との接触による変化を調べた。調査方法としては、エチルベンゼン35mLを入れた100mLの三角フラスコに、抗火石加工品(素焼体)(粒径:7mm)の10粒を加えた後、一日間浸漬させた。次に、600MHzの核磁気共鳴装置・日本電子(株)製核磁気共鳴装置(MNR)JNM・ECA・600・を用いて、浸漬処理エチルベンゼンについて、天然水素の同位体である原子量が3の水素(H)の核磁気共鳴スペクトル(H・NMR)を計測した。Also, in oils and fats, ethylbenzene was used as a model of aromatic compounds in light oil components used as fuel for diesel vehicles, and changes due to contact with anti-calcite processed products (unfired bodies) were investigated. As an investigation method, 10 grains of anti-calcite processed product (unfired body) (particle size: 7 mm) were added to a 100 mL Erlenmeyer flask containing 35 mL of ethylbenzene, and then immersed for one day. Next, hydrogen having an atomic weight of 3 which is an isotope of natural hydrogen is used for immersion-treated ethylbenzene using a 600 MHz nuclear magnetic resonance apparatus, a nuclear magnetic resonance apparatus (MNR) JNM / ECA / 600 manufactured by JEOL Ltd. It was measured nuclear magnetic resonance spectrum of (3 H) (3 H · NMR).

図7に示されるように無処理のエチルベンゼンにおけるH・NMRスペクトルのピーク出現範囲は、1.04〜1.14ppmであり、明瞭な3つのピークが認められる。これに対して、図8に示されるように抗火石加工品(素焼体)に浸漬処理したエチルベンゼンのH・NMRスペクトルのピーク出現範囲は、1.08〜1.2ppmであり、無処理のエチルベンゼンに比べて、0.4〜0.6ppmも高磁場側にシフトしている。さらに、出現ピークの数も7つに増加していた。As shown in FIG. 7, the peak appearance range of 3 H · NMR spectrum in untreated ethylbenzene is 1.04 to 1.14 ppm, and three distinct peaks are recognized. On the other hand, as shown in FIG. 8, the peak appearance range of 3 H · NMR spectrum of ethylbenzene immersed in an anti-fluorite processed product (unfired body) is 1.08 to 1.2 ppm, which is not treated. Compared to ethylbenzene, 0.4 to 0.6 ppm is also shifted to the high magnetic field side. Furthermore, the number of appearance peaks also increased to seven.

エチルベンゼンに代表される中性の脂溶性物質の場合、水素原子間の水素結合により、分子相互が結合し、大きな疑似分子のクラスターを形成することが知られている。この研究において、抗火石加工品(素焼体)処理によってエチルベンゼンのH・MNRスペクトルの出現範囲が高磁場側へシフトすること、および出現ピーク数が増加する結果は、エチルベンゼンのクラスターの微細化を示唆するものである。抗火石加工品に接触させた油をNMRで測定したところ、共振周波数の変化が生じ、油の粒子の微細化が起きているとの見解が示されている。In the case of a neutral fat-soluble substance typified by ethylbenzene, it is known that molecules are bonded to each other by a hydrogen bond between hydrogen atoms to form a large pseudo-molecular cluster. In this study, to shift to the Fire-stone workpiece (unglazed body) appearing range of 3 H · MNR spectrum of ethylbenzene by processing high magnetic field side, and the results appearing peak number is increased, the miniaturization of ethylbenzene clusters It is a suggestion. When the oil brought into contact with the processed anti-fluorite product is measured by NMR, it is indicated that a change in the resonance frequency occurs and the refinement of the oil particles occurs.

このように抗火石加工品に水および油を接触させることにより水クラスターや油の粒子が小さくなることが判明していることから、切削油を抗火石加工品に接触させ切削油の粒子を小さくすることにより、加工点に切削油が十分浸透して切削油が本来有する潤滑性や冷却性がさらに優れたものとなり、添加剤の不要、工具の寿命の延長、切削油の使用サイクルの延長が可能となることから、さらに鋭意研究を継続して発明の完成に至った。  Thus, it has been found that water clusters and oil particles are reduced by bringing water and oil into contact with the anti-lithic stone processed product. As a result, the cutting oil penetrates sufficiently into the machining point, and the lubrication and cooling properties inherent to the cutting oil are further improved, eliminating the need for additives, extending the tool life, and extending the cutting oil usage cycle. Since it became possible, we continued further diligent research and completed the invention.

特開2008−189796号公報  JP 2008-189796 A 特開2008−63355号公報  JP 2008-63355 A 特開2007−40924号公報  JP 2007-40924 A 特許第3728314号公報  Japanese Patent No. 3728314

本発明が解決しようとする課題は、切削油を改質し切削油が本来有する潤滑性や冷却性能をさらに優れたものとし、添加剤の減少、工具の寿命の延長、切削油の使用サイクルの延長や使用量の低減、スラッジ発生量の低減、スラッジの軟質化により廃棄の際の環境負荷の低減、作業環境の改善、切削加工効率の上昇することで生産量に対する加工時の電力の低減が図ることが可能となる切削油改質方法および切削油改質装置を提供することである。  The problem to be solved by the present invention is that the cutting oil is modified to further improve the lubricity and cooling performance inherent to the cutting oil, reducing the additive, extending the tool life, and reducing the usage cycle of the cutting oil. Reducing power consumption during processing with respect to production volume by extending and reducing the amount used, reducing sludge generation, softening sludge, reducing environmental impact during disposal, improving the working environment, and increasing cutting efficiency The present invention provides a cutting oil reforming method and a cutting oil reforming apparatus that can be achieved.

上記課題を解決するために請求項1記載の発明は、マシニングセンタ等の切削装置で使用する切削油を改質する方法において、前記切削装置の貯油槽に貯留された切削油を加圧状態で抗火石加工品に接触させた後に乱流撹拌させる第一工程と、さらに加圧状態で抗火石加工品に接触させた後に衝突撹拌させる第二工程を具備するものである。In order to solve the above-mentioned problem, the invention according to claim 1 is a method for modifying cutting oil used in a cutting apparatus such as a machining center, and is effective in resisting cutting oil stored in an oil storage tank of the cutting apparatus in a pressurized state. It comprises a first step in which turbulent stirring is performed after contact with the processed pyroxenic product, and a second step in which collision stirring is performed after contacting with the anti-fluorite processed product in a pressurized state.

また、請求項2記載の発明は、請求項1記載の発明に加え、前記加圧状態の圧力は、好ましくは3kg/cmから30kg/cmの範囲としたものである。In addition to the invention described in claim 1, the invention described in claim 2 is such that the pressure in the pressurized state is preferably in the range of 3 kg / cm 2 to 30 kg / cm 2 .

また、請求項3記載の発明は、請求項1または請求項2記載の発明に加え、前記抗火石加工品は、抗火石の粉末を焼結して形成された抗火石素焼体、または前記抗火石素焼体に前記抗火石粉末を配合した釉薬を塗布し、焼結した抗火石焼成体のいずれかであるとしたものである。  In addition to the invention of claim 1 or 2, the invention described in claim 3 is characterized in that the anti-fluorite processed product is an anti-fluorite body made by sintering anti-fluorite powder, It is said that it is one of the sintered anti-refractory fired bodies obtained by applying a glaze containing the above-mentioned anti-refractory powder to a pyroxene body.

また、請求項4記載の発明は、マシニングセンタ等の切削装置の貯油槽に貯留された切削油を吸引する吸引部と、前記吸引部に連結し、抗火石加工品を格納するとともに切削油を接触させる空間を有し、前記切削油を前記抗火石加工品に接触させることにより、前記切削油を改質する第一切削油改質部と、前記第一切削油改質部と連結し、前記抗火石加工品との接触で改質された前記切削油を乱流撹拌する第一撹拌部と、前記第一撹拌部と連結し、抗火石加工品を格納するとともに前記乱流撹拌された切削油を前記抗火石加工品に接触させる空間を有し、前記乱流撹拌された切削油を前記抗火石加工品に接触させることにより、前記乱流撹拌された切削油を改質する第二切削油改質部と、前記第二切削油改質部と連結し、前記抗火石加工品との接触で改質された前記切削油を噴流撹拌する第二撹拌部と、前記第二撹拌部と連結し、第二撹拌部で噴流撹拌された前記切削油をマシニングセンタ等の切削装置の貯油槽に前記切削油を返送する返送部とを具備するものである。  According to a fourth aspect of the present invention, there is provided a suction portion that sucks cutting oil stored in an oil storage tank of a cutting device such as a machining center, and is connected to the suction portion so as to store an anti-fluorite processed product and contact the cutting oil. A first cutting oil reforming section for modifying the cutting oil by contacting the cutting oil with the anti-fluorite processed product, and connecting the first cutting oil reforming section, A first agitating unit for turbulently stirring the cutting oil modified by contact with the anti-fluorite processed product, and connected to the first agitating unit to store the anti-fluorite processed product and the turbulent-stirred cutting A second cutting for modifying the turbulently agitated cutting oil by contacting the turbulently agitated cutting oil with the refractory agitated cutting oil; An oil reforming unit, and the second cutting oil reforming unit, A second stirring unit that jets and agitates the cutting oil modified by contact, and the cutting oil that is jet-stirred by the second stirring unit and connected to the second stirring unit is supplied to an oil storage tank of a cutting device such as a machining center. And a return portion for returning the cutting oil.

したがって、本発明の切削油の改質方法および前記方法を実現する切削油改質装置によれば、マシニングセンタ等の切削装置の貯油槽に貯留された切削油を吸引し、加圧状態で抗火石加工品に接触・撹拌さらに抗火石加工品に接触・撹拌を行うことで粒子の小さくなった切削油をマシニングセンタ等の切削装置の貯油槽に返送することができる。  Therefore, according to the cutting oil reforming method of the present invention and the cutting oil reforming apparatus that realizes the above method, the cutting oil stored in the oil storage tank of the cutting apparatus such as a machining center is sucked and the anti-fluorite in a pressurized state. By contacting / stirring the processed product and further contacting / stirring the anti-fluorite processed product, the cutting oil with reduced particles can be returned to the oil storage tank of a cutting device such as a machining center.

本発明の切削油改質方法および切削油改質装置によれば、切削油の粒子を小さくすることができるので、工具先端の加工点に粒子の小さくなった切削油が十分浸透し、切削油が本来有する工具と加工物との摩擦により発生する熱を除去(冷却)し、工具の寿命の延命化、また、摩擦熱による加工物のそりが排除されて再加工する手間がなくなり加工時間の短縮が図られる。  According to the cutting oil reforming method and the cutting oil reforming apparatus of the present invention, since the particles of the cutting oil can be reduced, the cutting oil with the reduced particles sufficiently permeates the machining point at the tip of the tool. Removes (cools) the heat generated by the friction between the original tool and the workpiece, prolongs the life of the tool, eliminates warpage of the workpiece due to frictional heat, and eliminates the trouble of reworking. Shortening is achieved.

また、切削油の粒子を小さくできることから、加工点への切削油の浸透が不十分なため加工性能を向上させるために添加される添加剤が減少され、例えば硫黄系の添加剤に由来する硫黄ガスの発生が減少されるなど添加剤が原因と考えられる作業環境の悪化を低減させることができる。  Further, since the particles of the cutting oil can be reduced, the additive added to improve the processing performance due to insufficient penetration of the cutting oil into the processing point, for example, sulfur derived from sulfur-based additives It is possible to reduce the deterioration of the working environment which is considered to be caused by additives such as the reduction of gas generation.

また、切削油へ添加剤の添加が減少することから、使用済みの廃切削油の最終処理にかかるコストも低くなる。さらに、工具寿命の延命化、加工時間の短縮化、スッラジの発生量の低減並びにスラッジの軟質化から廃切削油の最終処理コストの低減など環境負荷の低減も期待される。  Moreover, since the addition of the additive to the cutting oil is reduced, the cost for the final treatment of the used waste cutting oil is also reduced. In addition, it is expected to reduce the environmental load by extending the tool life, shortening the machining time, reducing the amount of sludge, and reducing the final processing cost of waste cutting oil from softening sludge.

抗火石加工品に接触後の水のアクアアナライザーの波形図である。  It is a wave form diagram of the water aqua analyzer after contacting an anti-fluorite processed product. 抗火石加工品に接触前の水のアクアアナライザーの波形図である。  It is a wave form diagram of the water aqua analyzer before contact with an anti-fluorite processed product. 抗火石加工品に接触後の水の微乾燥顕微鏡の写真である。  It is the photograph of the fine drying microscope of the water after contacting an anti-fluorite processed product. 抗火石加工品に接触前の水の微乾燥顕微鏡の写真である。  It is the photograph of the fine-drying microscope of the water before contacting an anti-fluorite processed product. 抗火石加工品を浸漬していない水道水の核磁気共鳴スペクトルである。  It is a nuclear magnetic resonance spectrum of the tap water which has not immersed the anti-calcite processed product. 抗火石加工品を浸漬した水道水の核磁気共鳴スペクトルである。  It is a nuclear magnetic resonance spectrum of tap water in which an anti-fluorite processed product is immersed. 無処理のエチルベンゼンの核磁気共鳴スペクトルである。  It is a nuclear magnetic resonance spectrum of untreated ethylbenzene. 抗火石加工品に浸漬したエチルベンゼンの核磁気共鳴スペクトルである。  It is a nuclear magnetic resonance spectrum of ethylbenzene immersed in an anti-fluorite processed product. 本発明の切削油改質装置の構成を示す模式図である。  It is a schematic diagram which shows the structure of the cutting oil reforming apparatus of this invention. 本発明の切削油改質装置で改質された切削油の顕微鏡写真である。  It is a microscope picture of the cutting oil modified with the cutting oil reforming device of the present invention. 改質されていない通常の切削油の顕微鏡写真である。  It is a microscope picture of the normal cutting oil which is not modified. 本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(チップ)の先端部の写真である。  It is the photograph of the front-end | tip part of the tool (chip | tip) which performed the processing test using the cutting oil modified | reformed with the cutting oil reforming apparatus of this invention. 通常(改質していない)の切削油を用いて加工試験を行った工具(チップ)の先端部の写真である。  It is the photograph of the front-end | tip part of the tool (chip | tip) which performed the processing test using normal (non-modified) cutting oil. 本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(ドリル)の先端部の写真である。  It is the photograph of the front-end | tip part of the tool (drill) which performed the processing test using the cutting oil modified | reformed with the cutting oil reforming apparatus of this invention. 通常(改質していない)の切削油を用いて加工試験を行った工具(ドリル)の先端部の写真である。  It is the photograph of the front-end | tip part of the tool (drill) which performed the processing test using normal (non-modified) cutting oil. 本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(タップ)の先端部の写真である。  It is the photograph of the front-end | tip part of the tool (tap) which performed the processing test using the cutting oil improved with the cutting oil reforming apparatus of this invention. 通常(改質していない)の切削油を用いて加工試験を行った工具(タップ)の先端部の写真である。  It is the photograph of the front-end | tip part of the tool (tap) which performed the processing test using normal (non-modified) cutting oil. 本発明の切削油改質装置で改質された切削油を用いて加工試験を行った加工物の加工表面の3D写真である。  It is a 3D photograph of the processing surface of the workpiece which performed the processing test using the cutting oil modified with the cutting oil reforming device of the present invention. 通常(改質していない)の切削油を用いて加工試験を行った加工物の加工表面の3D写真である。  It is 3D photograph of the processing surface of the workpiece which performed the processing test using the normal (non-modified) cutting oil. 水の成分分析結果を示す表である。  It is a table | surface which shows the component analysis result of water. 水の界面張力測定結果を示すグラフである。  It is a graph which shows the interfacial tension measurement result of water. 通常(改質していない)の切削油を用いて加工試験を行った加速度振幅のグラフである。  It is the graph of the acceleration amplitude which performed the machining test using normal (non-modified) cutting oil. 本発明の切削油改質装置で改質された切削油を用いて加工試験を行った加速度振幅のグラフである。  It is the graph of the acceleration amplitude which performed the machining test using the cutting oil modified | reformed with the cutting oil reforming apparatus of this invention. 通常(改質していない)の切削油を用いて加工試験を行った工具の切れ刃先端部の写真である。  It is the photograph of the cutting-blade front-end | tip part of the tool which performed the processing test using normal (non-modified) cutting oil. 本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具の切れ刃先端部の写真である。  It is the photograph of the cutting-blade front-end | tip part of the tool which performed the processing test using the cutting oil modified | reformed with the cutting oil reforming apparatus of this invention. 通常(改質していない)の切削油のオイルミスト加工でのキリコ表面の写真である。  It is the photograph of the surface of the chirico in the oil mist processing of the usual (unmodified) cutting oil. 本発明の切削油改質装置で改質された切削油を用いた加工でのキリコ表面の写真である。  It is a photograph of the surface of silicon in the process using the cutting oil modified by the cutting oil reforming apparatus of the present invention.

以下、本発明の切削油改質方法及び切削油改質装置について、図面に基づいて説明する。
図9は、本実施形態の製造装置の構成の一例を模式的に説明する説明図である。
Hereinafter, a cutting oil reforming method and a cutting oil reforming apparatus of the present invention will be described with reference to the drawings.
FIG. 9 is an explanatory diagram schematically illustrating an example of the configuration of the manufacturing apparatus of the present embodiment.

図9に示すように、MCは、マシニングセンター等の切削装置で使用される切削油OLが貯留されている貯油槽である。この貯油槽MCに貯留される切削油OLは、水溶性切削油で、図示しないポンプ等で切削加工時にドリル・チップ等の工具と図示しない加工物の加工点に圧送され、切削加工時に工具と加工物の摩擦により生ずる摩擦熱を冷却するとともに切削くずを洗い流す目的で循環使用されている。  As shown in FIG. 9, MC is an oil storage tank in which cutting oil OL used in a cutting apparatus such as a machining center is stored. The cutting oil OL stored in the oil storage tank MC is a water-soluble cutting oil, and is pumped to a processing point of a tool such as a drill and a tip and a workpiece (not shown) at the time of cutting by a pump or the like (not shown). It is circulated for the purpose of cooling the frictional heat generated by the friction of the workpiece and washing away the cutting waste.

1は切削油OLを改質する切削油改質装置である。Pは貯留槽MCに貯留されている切削油OLを吸引し切削油改質装置1に送るポンプである。2は第一切削油改質部で、内部に抗火石の加工品(焼成体)が収納され、ポンプPで切削油貯留タンクMCから圧送された切削油OLを圧力下で抗火石の加工品(焼成体)と接触させることにより改質する。3は第一撹拌部で、内部にメッシュが多段に配置され、第一切削油改質部で改質された切削油OLが多段に配置されたメッシュの細かい間隙を圧送されることにより生ずる乱流により撹拌される。4は第二切削油改質部で、内部に抗火石の加工品(素焼体)が収納され、第一撹拌部3で乱流撹拌された切削油OLを圧力下で抗火石の加工品(素焼体)に接触させることにより改質する。Gは切削油改質装置1内の切削油の圧力を示す圧力計である。5は第二切削油改質部4で改質された切削油OLを噴流撹拌する第二撹拌部である。第二切削油改質部4からの流路は二本に分割され第二撹拌部5内で対向するように第二撹拌部5に接続され、それぞれの流路の先端にはノズルが接続されている。これら対向して配置されるノズルから第二切削油改質部4で改質された切削油OLが圧力下で噴出され互いに衝突するとともに第二撹拌部5内壁に衝突し撹拌される。切削油改質装置1内を流れる切削油OLの圧力は適正な圧力(3kg/cm〜30kg/cm)となるようノズルのオリフィスで調整する。Reference numeral 1 denotes a cutting oil reformer that modifies the cutting oil OL. P is a pump that sucks the cutting oil OL stored in the storage tank MC and sends it to the cutting oil reforming apparatus 1. Reference numeral 2 denotes a first cutting oil reforming section, in which an anti-fluorite processed product (fired body) is housed, and the anti-fluorite processed product that is pumped by the pump P from the cutting oil storage tank MC under pressure. It is modified by contacting with (fired body). 3 is a 1st stirring part, the mesh is arrange | positioned in multiple stages inside, and the disorder | damage | failure which arises when the cutting oil OL improved in the 1st cutting oil reforming part is pumped by the fine gap | interval of the mesh arrange | positioned in multiple stages. Stir by flow. Reference numeral 4 denotes a second cutting oil reforming section, in which an anti-fluorite processed product (unfired body) is stored, and the cutting oil OL turbulently stirred in the first stirring unit 3 is subjected to anti-fluorite processed product ( It is modified by bringing it into contact with an unglazed body. G is a pressure gauge showing the pressure of the cutting oil in the cutting oil reforming apparatus 1. Reference numeral 5 denotes a second stirring unit for jet-stirring the cutting oil OL modified by the second cutting oil reforming unit 4. The flow path from the second cutting oil reforming section 4 is divided into two and connected to the second stirring section 5 so as to face each other in the second stirring section 5, and a nozzle is connected to the tip of each flow path. ing. The cutting oil OL modified by the second cutting oil reforming unit 4 is jetted under pressure from the nozzles arranged opposite to each other and collides with the inner wall of the second stirring unit 5 and is stirred. The pressure of the cutting oil OL flowing in the cutting oil reforming apparatus 1 is adjusted by an orifice of the nozzle so as to be an appropriate pressure (3 kg / cm 2 to 30 kg / cm 2 ).

このような工程を経て改質された切削油OLがマシニングセンター等の切削装置の貯油槽MCに返送され、この循環を繰り返す事で貯油槽MC内の切削油OLが改質される。  The cutting oil OL modified through such processes is returned to the oil storage tank MC of a cutting device such as a machining center, and the cutting oil OL in the oil storage tank MC is modified by repeating this circulation.

以上の構成からその作用を説明すると、貯油槽MCに貯留された切削油OLは図示しないフィルターで切削くず等を除去されてパイプないしホースを経て切削油改質装置1に内蔵されるポンプPにより吸引される。ポンプPは、圧力は30kg/cm以上の能力を有する高圧ポンプが好ましい。The operation will be described from the above configuration. The cutting oil OL stored in the oil storage tank MC is removed by a filter (not shown) and the like by a pump P built in the cutting oil reforming apparatus 1 through a pipe or a hose. Sucked. The pump P is preferably a high-pressure pump having a pressure of 30 kg / cm 2 or more.

ポンプPで加圧された切削油OLは、抗火石の加工品(焼成体)が複数個収納された第一切削油改質部2に圧送され、抗火石の加工品(焼成体)と接触することで切削油OLに含まれる水分の表面張力が低下するよう改質される。この水分の表面張力の低下は、抗火石の加工品(焼成体)と接触することで水分子の水素結合が脆弱されることにより水分子間距離が広がったことにより生ずるものと考えられる。この現象は切削油OLの油分にも生ずるものと考えられる。  The cutting oil OL pressurized by the pump P is pumped to the first cutting oil reforming unit 2 in which a plurality of anti-fluorite processed products (fired bodies) are stored, and comes into contact with the anti-fluorite processed products (fired bodies). As a result, the surface tension of the moisture contained in the cutting oil OL is modified to be lowered. This decrease in the surface tension of water is considered to be caused by the increase in the distance between water molecules due to weakening of hydrogen bonds of water molecules by contact with a processed product (fired body) of anti-fluorite. This phenomenon is considered to occur also in the oil content of the cutting oil OL.

第一撹拌部3に送られた切削油OLは、第一撹拌部3内に多段に配置されたメッシュ間を高圧で通過することにより乱流撹拌され、分子間距離が広がった切削油OLの油分と切削油OLの水分が互いに取り込まれるように混和される。第二切削油改質部4に収納される抗火石の加工品(素焼体)には前述の研究結果から水のクラスターの微細化、油のクラスターの微細化が起きているとの見解が示されていることから、高圧で抗火石の加工品(素焼体)と接触する切削油OLは、分子間距離が広がった切削油OLの油分のクラスターと切削油OLの水分のクラスターのそれぞれが微細化されるように改質される。  The cutting oil OL sent to the first stirring unit 3 is turbulently stirred by passing between meshes arranged in multiple stages in the first stirring unit 3 at a high pressure, and the cutting oil OL whose intermolecular distance is widened. It mixes so that the water | moisture content of oil and cutting oil OL may be taken in mutually. Based on the above-mentioned research results, the opinion that the refinement of water clusters and refinement of oil clusters is occurring in the anti-fluorite processed products (unfired bodies) stored in the second cutting oil reforming section 4 is shown. Therefore, the cutting oil OL that comes into contact with the anti-fluorite processed product (unfired body) at high pressure is fine in each of the oil clusters of the cutting oil OL and the water clusters of the cutting oil OL with a wide intermolecular distance. To be modified.

第二切削油改質部4で改質された切削油OLは二本の流路に分割されて第二撹拌部5に送られる。第二撹拌部5で対向して接続される流路の先端はノズル状に加工されているので、流路先端までは圧力がさらに上昇し流路先端を通過した瞬間急激に圧力が低下する。つまり例えば霧吹きと同様な状況でさらに切削油OLは微細化し、さらに流路先端は対向して配置されていることから、切削油OLは衝突撹拌することで非常に微細粒子のエマルジョン状態に改質され、マシニングセンター等の切削装置の貯油槽MCに返送される。  The cutting oil OL modified by the second cutting oil reforming unit 4 is divided into two flow paths and sent to the second stirring unit 5. Since the tip of the channel connected oppositely in the second stirring unit 5 is processed into a nozzle shape, the pressure further increases to the tip of the channel, and the pressure rapidly decreases as soon as it passes through the channel tip. In other words, for example, the cutting oil OL is further refined in the same situation as the spraying, and the flow path tip is arranged oppositely. Therefore, the cutting oil OL is reformed into an emulsion state of very fine particles by collision stirring. Then, it is returned to the oil storage tank MC of a cutting device such as a machining center.

図10は、本発明の切削油改質装置で改質された切削油の顕微鏡写真であり、図11は、改質されていない通常の切削油の顕微鏡写真である。
図10及び図11から判断できるように、改質されていない通常の切削油では油中に水滴が点在しているのが確認できるのに対して、本発明の切削油改質装置で改質された切削油では、水滴が水滴とは呼べないほどの微小滴となっており、油分も改質されていることから油分と水分が渾然一体となった微細粒子のエマルジョンとなっていることが確認できる。
このように非常に微細なエマルジョン状態に改質された切削油OLは、切削装置の加工点に供給されたときに工具先端と加工物が接触する加工点に十分浸透し、摩擦の減少、発生する熱を効果的に除去(冷却)することが可能となる。
FIG. 10 is a photomicrograph of cutting oil modified by the cutting oil reforming apparatus of the present invention, and FIG. 11 is a photomicrograph of normal cutting oil that has not been modified.
As can be seen from FIG. 10 and FIG. 11, it can be confirmed that water droplets are scattered in the normal cutting oil that has not been modified. In the cutting oil that has been refined, the water droplets are minute droplets that cannot be called water droplets, and the oil content has also been modified, so that the oil and water content is a solid emulsion. Can be confirmed.
Thus, the cutting oil OL modified to a very fine emulsion state sufficiently penetrates the working point where the tool tip comes into contact with the work piece when supplied to the working point of the cutting device, thereby reducing and generating friction. It is possible to effectively remove (cool) the heat to be generated.

ここで、本実施形態において使用する抗火石の加工品について詳述すると、抗火石の原石は、伊豆半島や伊豆諸島で産出する流紋岩の一種である。抗火石は、シリカ(ケイ酸)及びアルミニウムを主成分として含有するものであり、その他、カルシウム及びマグネシウムの酸化物を含む各種酸化物・化合物を含有して構成され、シリカ(ケイ酸)が縦横に交走してガラス繊維化した多孔質性の海綿状火成岩となっているものである。  Here, when the processed product of the anti-fluorite used in the present embodiment is described in detail, the raw stone of the anti-fluorite is a kind of rhyolite produced in the Izu Peninsula and the Izu Islands. Anti-fluorite contains silica (silicic acid) and aluminum as main components, and is composed of various oxides and compounds including oxides of calcium and magnesium, and silica (silicic acid) is vertically and horizontally. It is a porous spongy igneous rock that crosses into a glass fiber.

抗火石の加工品である素焼体は、50マイクロメートル以上550マイクロメートル以下の比較的粗い粒径に調整された抗火石粉末を70重量%以上使用し、粘土をバインダーとして略球形状等の所望の形態に整えた後、1000℃から1500℃程度の温度で焼結して形成されたものを使用する。また、抗火石の加工品である焼成体は、前述した素焼体の表面に、上記と同様の粒径範囲の抗火石粉末を例えば、97重量%使用し、さらに3重量%の合成糊及び適量の水を加えることによって形成した抗火石入りの釉薬を塗布し、1000℃から1500℃の焼成温度で焼成したものを使用する。  An unglazed body, which is a processed product of anti-fluorite, uses 70 wt% or more of anti-fluorite powder adjusted to a relatively coarse particle size of 50 μm or more and 550 μm or less, and has a desired spherical shape or the like with clay as a binder. After being adjusted to the form, the one formed by sintering at a temperature of about 1000 ° C. to 1500 ° C. is used. Moreover, the fired body, which is a processed product of anti-fluorite, uses, for example, 97% by weight of an anti-fluorite powder having the same particle size range as described above on the surface of the above-mentioned unglazed body, and further 3% by weight of synthetic paste and an appropriate amount. The glaze containing the anti-fluorite formed by adding the water is applied and fired at a firing temperature of 1000 ° C. to 1500 ° C ..

マシニングセンタ(切削装置)の切削油貯油槽に本発明の切削油改質装置を取り付けて切削油を改質し、切削工具(チップ)の磨耗程度を調査した試験結果を説明する。
・試験場所:株式会社コマツ粟津工場(石川県小松市)
・工作機械(メーカー:株式会社ジェイテクト、型式:PM80、型番:NS2127)
・切削油:水配合比率:95%
・加工物:金型鋼
・切削油改質圧力:4kg/cm
・試験時間:連続100分
・試験方法:同型の工作機械2台に同じ比率の水で希釈した切削油を使用し、このうち1台に本発明の切削油改質装置を取り付けて切削油を改質した。また、工作機械2台には同じ工具(チップ、ドリル、タップ)同じ加工物をセットし、同じ加工プログラムで連続100分加工を行った。加工後にチップを工作機械から取り外し、工具先端部をデジタル顕微鏡で観察し磨耗具合を比較観察した。
The test results of examining the degree of wear of the cutting tool (chip) by modifying the cutting oil by attaching the cutting oil reforming device of the present invention to the cutting oil storage tank of the machining center (cutting device) will be described.
・ Test place: Komatsu Awazu Factory (Komatsu City, Ishikawa Prefecture)
・ Machine tools (Manufacturer: JTEKT Corporation, Model: PM80, Model: NS2127)
・ Cutting oil: Water mixing ratio: 95%
-Workpiece: Mold steel-Cutting oil reforming pressure: 4kg / cm 2
・ Testing time: 100 minutes continuously ・ Testing method: Cutting oil diluted with the same ratio of water is used for two machine tools of the same type, and the cutting oil reforming device of the present invention is attached to one of these cutting oils. Modified. In addition, the same tool (chip, drill, tap) and the same workpiece were set on two machine tools, and machining was continuously performed for 100 minutes with the same machining program. After machining, the chip was removed from the machine tool, the tip of the tool was observed with a digital microscope, and the wear condition was comparatively observed.

・試験結果
<工具(チップ)先端部の磨耗状況>
図12は、本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(チップ)の先端部の写真である。また、図13は、比較例である通常(改質していない)の切削油を用いて加工試験を行った工具(チップ)の先端部の写真である。
・ Test results <Wear of tool (tip) tip>
FIG. 12 is a photograph of the tip of a tool (chip) that has been subjected to a machining test using cutting oil modified by the cutting oil reforming apparatus of the present invention. FIG. 13 is a photograph of the tip of a tool (chip) that was subjected to a machining test using a normal (unmodified) cutting oil as a comparative example.

図12から判断できるように、連続100分加工後の工具(チップ)の先端部は、本発明の切削油改質装置で改質された切削油を用いて連続100分の加工試験を行った工具(チップ)の先端部は磨耗がほとんど確認されなかったのに対し、比較例である図13に示される通常の(改質していない)切削油を用いて連続100分の加工試験を行った工具(チップ)の先端部は、加工点と思われる部分が溶融あるいは剥離が確認されて磨耗が非常に進んでいることが確認された。  As can be judged from FIG. 12, the tip of the tool (chip) after 100 minutes of continuous machining was subjected to a machining test for 100 minutes continuously using the cutting oil modified by the cutting oil reforming apparatus of the present invention. Although the tip of the tool (chip) was hardly worn, a machining test was continuously performed for 100 minutes using the normal (non-modified) cutting oil shown in FIG. 13 which is a comparative example. It was confirmed that the tip portion of the tool (chip) was very worn due to melting or peeling of the portion considered to be a processing point.

<工具(ドリル)先端部の磨耗状況>
図14は、本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(ドリル)の先端部の写真である。また、図15は、比較例である通常(改質していない)の切削油を用いて加工試験を行った工具(ドリル)の先端部の写真である。
図14に示される本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(ドリル)の先端部は刃こぼれもなく、また、刃先の鋭さが確認できるのに対して、図15に示される比較例の通常(改質していない)の切削油を用いて加工試験を行った工具(ドリル)の先端部は刃こぼれが多数見られるばかりでなく刃先の鋭さが見られなかった。
<Wear of tool (drill) tip>
FIG. 14 is a photograph of the tip of a tool (drill) that was subjected to a machining test using the cutting oil modified by the cutting oil reforming apparatus of the present invention. FIG. 15 is a photograph of the tip of a tool (drill) that was subjected to a machining test using a normal (unmodified) cutting oil as a comparative example.
The tip of a tool (drill) that has been subjected to a machining test using the cutting oil modified with the cutting oil reforming apparatus of the present invention shown in FIG. 14 has no spillage, and the sharpness of the cutting edge can be confirmed. On the other hand, the tip of the tool (drill) subjected to the machining test using the normal (non-modified) cutting oil of the comparative example shown in FIG. Sharpness was not seen.

<工具(タップ)の磨耗状況>
図16は、本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(タップ)の先端部の写真である。また、図17は、比較例である通常(改質していない)の切削油を用いて加工試験を行った工具(タップ)の先端部の写真である。
図16に示される本発明の切削油改質装置で改質された切削油を用いて加工試験を行った工具(タップ)の先端部は刃こぼれもなく、また、刃先の角が立っているのが確認できるのに対して、図17に示される比較例の通常(改質していない)の切削油を用いて加工試験を行った工具(タップ)の先端部は刃こぼれが見られるばかりでなく刃先の角が丸みを帯びており鋭さが見られなかった。
<Wear of tool (tap)>
FIG. 16 is a photograph of the tip of a tool (tap) subjected to a machining test using the cutting oil modified by the cutting oil reforming apparatus of the present invention. FIG. 17 is a photograph of the tip of a tool (tap) subjected to a machining test using a normal (unmodified) cutting oil as a comparative example.
The tip of the tool (tap) subjected to the machining test using the cutting oil modified by the cutting oil reforming apparatus of the present invention shown in FIG. 16 has no blade spills, and the edge of the cutting edge is standing. On the other hand, the tip of the tool (tap) subjected to the machining test using the normal (unmodified) cutting oil of the comparative example shown in FIG. In addition, the edge of the blade was rounded and no sharpness was seen.

これは切削油が本発明の切削油改質装置で改質されたことにより、微細粒子のエマルジョン状態となっているため加工中の工具の先端部と加工物が接触する加工点に切削油が十分浸透し、加工点での潤滑・摩擦により発生する熱の冷却が十分に行われたことにより連続100分の加工試験にもかかわらず工具の先端部の磨耗がほとんどなかったものと思われる。一方、通常の(改質していない)切削油は粒子が非常に大きいと思われるため、連続100分の加工試験を行った工具の先端と加工物が接触する加工点には切削油の浸透が不十分となり、加工点での潤滑・摩擦により発生する熱の冷却も不十分となるため工具の先端部は溶融あるいは剥離したものと思われる。  This is because the cutting oil is modified by the cutting oil reforming apparatus of the present invention, and is in an emulsion state of fine particles. Therefore, the cutting oil is applied to the processing point where the tip of the tool being processed and the workpiece are in contact with each other. It seems that there was almost no wear at the tip of the tool despite the continuous 100-minute machining test due to sufficient penetration and sufficient cooling of the heat generated by lubrication and friction at the machining point. On the other hand, since normal (non-modified) cutting oil seems to have very large particles, the cutting oil penetrates into the processing point where the tip of the tool and the workpiece contacted for a continuous 100-minute processing test. And the cooling of the heat generated by lubrication and friction at the machining point becomes insufficient, so the tip of the tool seems to have melted or peeled off.

<加工物表面の状態>
加工表面のデジタル顕微鏡の3D写真を示す。
図18は、本発明の切削油改質装置で改質された切削油を用いて加工試験を行った加工物の加工表面の3D写真である。図19は、比較例である通常(改質していない)の切削油を用いて加工試験を行った加工物の加工表面の3D写真である。図18乃至図19より判断できるように、本発明の切削油改質装置で改質された切削油を用いて加工試験を行った加工物の加工表面の表面の荒れ(高低差)は52.2μmであるのに対し、比較例である通常(改質していない)の切削油を用いて加工試験を行った加工物の加工表面の表面の荒れ(高低差)は386.6μmであった。
<State of workpiece surface>
The 3D photograph of the digital microscope of a processing surface is shown.
FIG. 18 is a 3D photograph of a processed surface of a workpiece that has been subjected to a processing test using the cutting oil modified by the cutting oil reforming apparatus of the present invention. FIG. 19 is a 3D photograph of a processed surface of a workpiece that was subjected to a processing test using a normal (non-modified) cutting oil as a comparative example. As can be judged from FIG. 18 to FIG. 19, the surface roughness (height difference) of the processed surface of the workpiece subjected to the processing test using the cutting oil modified by the cutting oil reforming apparatus of the present invention is 52. Whereas it is 2 μm, the surface roughness (height difference) of the processed surface of the work piece subjected to the processing test using the normal (non-modified) cutting oil as a comparative example was 386.6 μm. .

これは切削油が本発明の切削油改質装置で改質されたことにより、連続100分の加工試験にもかかわらず工具(チップ)の先端部の磨耗がほとんどなかったため加工表面の荒れも少なくなったものと思われる。一方、通常の(改質していない)切削油は、連続100分の加工試験を行った工具(チップ)の先端部が溶融あるいは剥離した影響から加工表面の荒れも大きくなったものと思われる。  This is because the cutting oil is modified by the cutting oil reforming apparatus of the present invention, so that there is almost no wear on the tip of the tool (chip) in spite of the continuous 100-minute machining test, and the machining surface is less rough. It seems to have become. On the other hand, normal (non-modified) cutting oil seems to have increased the roughness of the machining surface due to the effect of melting or peeling off the tip of a tool (chip) subjected to a machining test for 100 minutes continuously. .

また、切削油改質装置の継続試験の結果、以前はスコップによる固着スラッジの切り出し清掃作業であったものが、エアバキューム吸引清掃が可能なレベルまでスラッジが軟質化した。スラッジの発生量も切削油改質装置使用前では、稼働時間1000時間当たり124kgであったものが、切削油改質装置使用後では、1000時間当たり34kgと72%減少した。  In addition, as a result of continuous testing of the cutting oil reformer, the sludge softened to a level where air vacuum suction cleaning can be performed, which was previously performed by cutting and cleaning the fixed sludge with a scoop. The amount of sludge generated was 124 kg per 1000 hours before using the cutting oil reformer, but decreased by 72% to 34 kg per 1000 hours after using the cutting oil reformer.

次に、群馬工業高等専門学校機械工学科桜井文仁准教授が行った、一般的に使用されている切削油剤を希釈する際の希釈液に、抗火石をろ過材として水道水を改質した水(以下、改質水と表現する)を用いた場合の切削に対する効果と、切削液中の油剤の均質化を狙った切削液循環装置を使用することの効果を定量的に評価した研究結果について説明する。  Next, water that was modified by tap water using anti-fluorite as a filter medium was added to the diluting solution used when diluting cutting fluids commonly used by Associate Professor Fumihito Sakurai, Department of Mechanical Engineering, Gunma National College of Technology ( The following describes the results of research that quantitatively evaluates the effect on cutting when using modified water) and the effect of using a cutting fluid circulation device aimed at homogenizing the oil in the cutting fluid. To do.

<水の特性について>
水を改質するために使用した造水器は(株)澤本商事製10HHで、造水器内部に抗火石および抗火石加工品が充填してあるもので、特性値を安定化させるために、水は毎分500mLの排出量で、造水器を1回だけ投下させた水を評価対象とした。改質水と比較するものには、造水器に流入する水道水(以下、水道水)、その水道水を市販の純水製造装置(SHIMAZU製SWAC−520)を使用して作り出したイオン交換水(以下、イオン交換水)を取り上げた。本研究においては、分光光度計(島津製UVmini1240)による水の分析(CODMN、塩素、NOx、NH、Ph)のほかに、切削油剤の希釈液として使用した際に影響を及ぼすと思われる特性として界面張力が考えられるため、それぞれの界面張力を、表面張力計(協和界面科学株式会社FACE自動表面張力計CBVP−A3型)を用いて分析した。
<About the characteristics of water>
The water freshener used to reform the water is 10HH manufactured by Sawamoto Shoji Co., Ltd. The water freshener is filled with anti-fluorite and anti-fire stone processed products. The water was discharged at a rate of 500 mL per minute, and water with a water generator dropped once was used as an evaluation target. Compared with the reformed water, tap water (hereinafter referred to as tap water) flowing into the water generator, ion exchange produced by using the tap water using a commercially available pure water production device (SHIMAZU SWAC-520). Water (hereinafter ion-exchanged water) was taken up. In this study, in addition to water analysis (COD MN , chlorine, NOx, NH 4 , Ph) using a spectrophotometer (Shimadzu UVmini 1240), it seems to have an effect when used as a cutting fluid diluent. Since interfacial tension is considered as a characteristic, each interfacial tension was analyzed using a surface tensiometer (Kyowa Interface Science Co., Ltd. FACE automatic surface tensiometer CBVP-A3 type).

水の成分分析の結果と界面張力の結果を図20および図21に示す。
図20で示す改質水の効果は、造水器に流し込まれる元となる水道水が若干アルカリ性を示しているにもかかわらず、造水器を透過して得られた改質水は、ほぼ中性に近づいている点である。また、図21で示す界面張力に関しては、改質水がもっとも界面張力が低いことが分かった。よって、改質水を切削油剤の希釈液として利用することで、界面張力の低い切削液(以下、改質切削液)を簡便に作ることが可能であり、界面張力が低いことにより、工具、工作物間の加工点への浸透性が増し、高い潤滑効果が得られることが期待される。
The result of the component analysis of water and the result of the interfacial tension are shown in FIGS.
The effect of the reformed water shown in FIG. 20 is that the reformed water obtained by permeating through the water generator is almost the same even though the tap water that is poured into the water generator is slightly alkaline. The point is approaching neutrality. Moreover, regarding the interfacial tension shown in FIG. 21, it was found that the reformed water had the lowest interfacial tension. Therefore, it is possible to easily make a cutting fluid having a low interfacial tension (hereinafter referred to as a modified cutting fluid) by using the modified water as a diluting liquid for the cutting fluid. It is expected that the penetrability of the workpieces between the workpieces will increase and a high lubrication effect will be obtained.

<切削加工試験>
改質切削液の界面張力低下による効果を定量的に評価するため、実験計画法に基づくL8直交実験を行った。取り上げた因子は、希釈水(水道水、改質水)、切削油改質装置(使用、未使用)、切削速度(高速、低速)とした。評価のための特性値には、切削中の振動加速度と加工面の表面粗さを取り上げた。
なお、切削条件は、ミーリング加工、工作物:S45C、工具刃数:2刃(住友電工JSM2100材種:ハイス)、切込み量(軸方向切込み量:7mm)、一刃あたり送り量0.05mm/edgeとした。
振動加速度の計測には、蔵前産業製の振動診断機(LAN−ADC/KSK)を用い、表面粗さの計測には、ミツトヨ製SJ−301を用いた。工具への影響を調べるためにデジタルマイクロスコープ(キーエンスVHX−1000)を使用して刃面観察を行った。
<Cutting test>
In order to quantitatively evaluate the effect of the reduced interfacial tension of the modified cutting fluid, an L8 orthogonal experiment based on the experimental design was conducted. The factors taken up were dilution water (tap water, reformed water), cutting oil reformer (used / unused), and cutting speed (high speed, low speed). The characteristic values for evaluation were vibration acceleration during cutting and surface roughness of the machined surface.
The cutting conditions were milling, workpiece: S45C, number of tool blades: 2 blades (Sumitomo Electric JSM2100 grade: high speed), cutting depth (axial cutting depth: 7 mm), feed rate per blade: 0.05 mm / edge.
A vibration diagnostic machine (LAN-ADC / KSK) manufactured by Kuramae Sangyo was used for measurement of vibration acceleration, and SJ-301 manufactured by Mitutoyo was used for measurement of surface roughness. In order to investigate the influence on the tool, the blade surface was observed using a digital microscope (Keyence VHX-1000).

<振動加速度について>
振動加速度の測定結果のグラフを図22および図23に示す。図22は希釈に水道水を用いた従来の切削液を使用した加工であり、図23は切削油改質装置で改質された改質切削液を用いた加工である。図22に比べて図23の加速度振幅が小さいので切削油改質装置で改質された切削油を使用することで加速度振幅を抑えることができる。
加工中の振動および表面粗さに関して分散分析を行った結果、切削油改質装置で改質された改質切削液を用いたことにより加工中の振動が抑制された結果、良好な切削が行われ、加工後の工作物の表面粗さも向上したことが確認された。
<About vibration acceleration>
22 and 23 show graphs of measurement results of vibration acceleration. FIG. 22 shows processing using a conventional cutting fluid using tap water for dilution, and FIG. 23 shows processing using a modified cutting fluid modified by a cutting oil reforming device. Since the acceleration amplitude in FIG. 23 is smaller than that in FIG. 22, the acceleration amplitude can be suppressed by using the cutting oil modified by the cutting oil reforming apparatus.
As a result of analysis of variance regarding vibration and surface roughness during machining, the use of a modified cutting fluid modified by a cutting oil reformer reduced vibration during machining, resulting in good cutting. It was confirmed that the surface roughness of the workpiece after processing was also improved.

<エンドミル先端の観察>
累計の切削送り距離が20mとなった時点でのエンドミル切れ刃先端の逃げ面摩耗を観察した結果を図24および図25に示す。図24の希釈に水道水を用いた従来の切削液を使用した加工では先端の切れ刃部にチッピングが確認でき、それに伴い逃げ面摩耗幅も大きく変動している。さらにダメージは逃げ面側にとどまらず切れ刃稜全域にわたっていることが、切れ刃稜のうねりから確認できる。これに対し、図25の切削油改質装置で改質された改質切削液を用いた加工では、逃げ面摩耗幅が安定しており、一部チッピングは見られるものの切れ刃稜も十分直線性が保たれたままであり、安定した切削が行われていることを示している。
<Observation of end mill tip>
24 and 25 show the results of observing the flank wear at the tip of the end mill cutting edge when the cumulative cutting feed distance becomes 20 m. In the processing using the conventional cutting fluid using tap water for dilution in FIG. 24, chipping can be confirmed at the cutting edge portion at the tip, and the flank wear width also varies greatly accordingly. Furthermore, it can be confirmed from the undulation of the cutting edge that the damage is not limited to the flank side but covers the entire cutting edge. On the other hand, in the processing using the modified cutting fluid modified by the cutting oil reforming device of FIG. 25, the flank wear width is stable, and the chip edge is sufficiently straight though some chipping is seen. This indicates that stable cutting has been performed.

<キリコの観察>
同様の効果が他の切削においても確認できるのかの一例として、旋盤加工におけるすくい面側のキリコとそのエッジ部の写真(倍率100倍)を図26、図27で示す。耐熱合金鋼を周速80m/min、送り0.35mm/rev、切込み量0.5mmで加工した。
図26の希釈に水道水を用いた従来の切削液のオイルミスト加工ではキリコ表面はきれいに見えるが、ムラがあり、均一に切削油剤が浸透していないことをうかがわせる。さらにエッジ部は変色しており、高熱で変形して巻き込みが生じていることが分かる。これに対し、図27の切削油改質装置で改質された改質切削液を用いた加工では、横筋が見えるものの変色の程度も少なく、エッジ部はノコギリ歯のように周期的に形成され、安定した切削が行われていることを示している。
<Observation of Kiriko>
As an example of whether the same effect can be confirmed also in other cuttings, photographs of the rake face side of the rake face and its edge part (100 times magnification) in lathe processing are shown in FIGS. The heat-resistant alloy steel was processed at a peripheral speed of 80 m / min, a feed of 0.35 mm / rev, and a cutting depth of 0.5 mm.
In the conventional oil mist processing of cutting fluid using tap water for dilution shown in FIG. 26, the surface of the metal appears to be clean, but there is unevenness, indicating that the cutting fluid does not penetrate uniformly. Further, it can be seen that the edge portion is discolored and is deformed by high heat to cause entrainment. On the other hand, in the processing using the modified cutting fluid modified by the cutting oil reforming device of FIG. 27, although the horizontal stripes are visible, the degree of discoloration is small, and the edge portion is periodically formed like a saw tooth. This shows that stable cutting is performed.

抗火石を用いた造水器により生成される改質水は、界面張力を低下させることが分かった。また、切削油改質装置で改質された改質切削液を用いることで、加工中の振動を低減することができ、加工後の表面正常も向上し、工具への負担も軽減されることから工具の長寿命化も実現することが確認された。  It was found that the reformed water produced by the water generator using anti-fluorite reduces the interfacial tension. In addition, by using the modified cutting fluid modified by the cutting oil reforming device, vibration during machining can be reduced, surface normality after machining is improved, and the burden on the tool is reduced. Therefore, it was confirmed that the tool life could be extended.

マシニングセンタ等の切削油を使用する切削加工装置に本切削油改質装置を適用することができる。  The present cutting oil reforming apparatus can be applied to a cutting apparatus that uses cutting oil such as a machining center.

1 切削油改質装置
2 第一切削油改質部
3 第一撹拌部
4 第二切削油改質部
5 第二撹拌部
OL 切削油
P ポンプ
MC 切削油貯留タンク
G 圧力計
DESCRIPTION OF SYMBOLS 1 Cutting oil reformer 2 1st cutting oil reforming part 3 1st stirring part 4 2nd cutting oil reforming part 5 2nd stirring part OL Cutting oil P Pump MC Cutting oil storage tank G Pressure gauge

Claims (4)

マシニングセンタ等の切削装置で使用する切削油を改質する方法において、前記切削装置の貯油槽に貯留された切削油を加圧状態で抗火石加工品に接触させた後に乱流撹拌させる第一工程と、さらに加圧状態で抗火石加工品に接触させた後に衝突撹拌させる第二工程を具備することを特徴とする切削油改質方法。  In the method of modifying the cutting oil used in a cutting device such as a machining center, the first step of stirring the turbulent flow after the cutting oil stored in the oil storage tank of the cutting device is brought into contact with the anti-fluorite processed product in a pressurized state And a second step in which the mixture is further brought into contact with an anti-fluorite processed product in a pressurized state and then stirred by collision. 前記加圧状態の圧力は、好ましくは3kg/cmから30kg/cmの範囲であることを特徴とする請求項1記載の切削油改質方法。The cutting oil reforming method according to claim 1, wherein the pressure in the pressurized state is preferably in a range of 3 kg / cm 2 to 30 kg / cm 2 . 前記抗火石加工品は、抗火石の粉末を焼結して形成された抗火石素焼体、または前記抗火石素焼体に前記抗火石粉末を配合した釉薬を塗布し焼結した抗火石焼成体のいずれかであることを特徴とする請求項1または請求項2記載の切削油改質方法。  The anti-fluorite processed product is an anti-fluorite burned body formed by sintering anti-fluorite powder, or an anti-fluorite burned body obtained by applying and sintering a glaze containing the anti-fluorite powder to the anti-fluorite burned body. The cutting oil reforming method according to claim 1 or 2, wherein the method is any one of the above. マシニングセンタ等の切削装置の貯油槽に貯留された切削油を吸引する吸引部と、前記吸引部に連結し、抗火石加工品を格納するとともに切削油を接触させる空間を有し、前記切削油を前記抗火石加工品に接触させることにより、前記切削油を改質する第一切削油改質部と、前記第一切削油改質部と連結し、前記抗火石加工品との接触で改質された前記切削油を乱流撹拌する第一撹拌部と、前記第一撹拌部と連結し、抗火石加工品を格納するとともに前記乱流撹拌された切削油を前記抗火石加工品に接触させる空間を有し、前記乱流撹拌された切削油を前記抗火石加工品に接触させることにより、前記乱流撹拌された切削油を改質する第二切削油改質部と、前記第二切削油改質部と連結し、前記抗火石加工品との接触で改質された前記切削油を噴流撹拌する第二撹拌部と、前記第二撹拌部と連結し、第二撹拌部で噴流撹拌された前記切削油をマシニングセンタ等の切削装置の貯油槽に前記切削油を返送する返送部とを具備することを特徴とする切削油改質装置。  A suction part that sucks cutting oil stored in an oil storage tank of a cutting machine such as a machining center, and a space that is connected to the suction part to store an anti-fluorite processed product and contact the cutting oil. The first cutting oil reforming unit for modifying the cutting oil by contacting the anti-lithic stone processed product, and the first cutting oil reforming unit connected to the modified anti-lithic stone processed product. A first agitating unit for turbulently agitating the cutting oil, and a first agitating unit for storing an anti-fluorite processed product and bringing the turbulent-stirred cutting oil into contact with the anti-fluorite processed product A second cutting oil reforming section for modifying the turbulently agitated cutting oil by contacting the turbulently agitated cutting oil with the anti-fluorite processed product, and having a space; The cutting oil that is connected to the oil reforming unit and modified by contact with the anti-fluorite processing product A second stirring unit for jet stirring, and a return unit connected to the second stirring unit and returning the cutting oil jet-stirred by the second stirring unit to an oil storage tank of a cutting device such as a machining center. A cutting oil reformer characterized by comprising.
JP2011020181A 2010-01-26 2011-01-17 Method and apparatus for reforming cutting oil Pending JP2011174064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020181A JP2011174064A (en) 2010-01-26 2011-01-17 Method and apparatus for reforming cutting oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010029458 2010-01-26
JP2010029458 2010-01-26
JP2011020181A JP2011174064A (en) 2010-01-26 2011-01-17 Method and apparatus for reforming cutting oil

Publications (1)

Publication Number Publication Date
JP2011174064A true JP2011174064A (en) 2011-09-08

Family

ID=44687210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020181A Pending JP2011174064A (en) 2010-01-26 2011-01-17 Method and apparatus for reforming cutting oil

Country Status (1)

Country Link
JP (1) JP2011174064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198333A (en) * 2013-03-12 2014-10-23 哲雄 野村 Liquid atomization method and atomization and mixing device
JP2017074645A (en) * 2015-10-15 2017-04-20 群馬精工株式会社 Machine work fluid performance recovery system
JP2017115070A (en) * 2015-12-25 2017-06-29 国立大学法人東京海洋大学 Water-soluble cutting liquid
CN107405753A (en) * 2015-03-12 2017-11-28 Ntn株式会社 Grinding coolant feedway, equipment for grinding and method for grinding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198333A (en) * 2013-03-12 2014-10-23 哲雄 野村 Liquid atomization method and atomization and mixing device
CN107405753A (en) * 2015-03-12 2017-11-28 Ntn株式会社 Grinding coolant feedway, equipment for grinding and method for grinding
EP3269507A4 (en) * 2015-03-12 2018-11-21 NTN Corporation Grinding coolant supplier, grinding system and grinding method
US10300579B2 (en) 2015-03-12 2019-05-28 Ntn Corporation Grinding coolant supplier, grinding system and grinding method
JP2017074645A (en) * 2015-10-15 2017-04-20 群馬精工株式会社 Machine work fluid performance recovery system
JP2017115070A (en) * 2015-12-25 2017-06-29 国立大学法人東京海洋大学 Water-soluble cutting liquid

Similar Documents

Publication Publication Date Title
Kuram et al. Effects of the cutting fluid types and cutting parameters on surface roughness and thrust force
Sharma et al. Mechanism of nanoparticles functioning and effects in machining processes: a review
Zhang et al. Sinking EDM in water-in-oil emulsion
Ji et al. Influence of dielectric and machining parameters on the process performance for electric discharge milling of SiC ceramic
JP2011174064A (en) Method and apparatus for reforming cutting oil
CN103013638A (en) Water-soluble cooling liquid for fixed abrasive material line cutting, and preparation method thereof
Viswanth et al. A review of research scope on sustainable and eco-friendly electrical discharge machining (E-EDM)
CN109097778B (en) Surface treatment liquid and surface treatment device for 3D printing of stainless steel part
CN105861133A (en) Metal working fluid and cycle use method thereof
Ji et al. Experimental research on machining characteristics of SiC ceramic with end electric discharge milling
Wang et al. State-of-the-art on minimum quantity lubrication in green machining
Virdi et al. A review on minimum quantity lubrication technique application and challenges in grinding process using environment-friendly nanofluids
CN103849876A (en) Chemical polishing method
Zhang et al. Feasibility of lignin as additive in metalworking fluids for micro-milling
DE102008008894A1 (en) Method for producing a component for a thermal machine
Zhang et al. Surface modification of Ti-6Al-4 V by gas–liquid mixed EDM
Conger et al. An experimental study on cutting forces and surface roughness in MQL milling of aluminum 6061
CN100497510C (en) H62 brass polishing liquid and its preparing process
JP4484651B2 (en) Water-soluble cutting fluid composition and cutting method using the same
JP6522377B2 (en) Grinding coolant supply device, grinding equipment, grinding method
Khan et al. The effect of EDM with external magnetic field on surface roughness of stainless steel
JP2010132714A (en) Cooling liquid for machining and machining method for metal material
Jamil et al. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20
CN108342246B (en) Fully synthetic glass cutting fluid and preparation method thereof
Taghizadeh et al. The effect of Al2O3-MWCNT hybrid nanofluid on surface quality in grinding of Inconel 600