JP6520624B2 - Charging device and charging method - Google Patents

Charging device and charging method Download PDF

Info

Publication number
JP6520624B2
JP6520624B2 JP2015196866A JP2015196866A JP6520624B2 JP 6520624 B2 JP6520624 B2 JP 6520624B2 JP 2015196866 A JP2015196866 A JP 2015196866A JP 2015196866 A JP2015196866 A JP 2015196866A JP 6520624 B2 JP6520624 B2 JP 6520624B2
Authority
JP
Japan
Prior art keywords
battery
power supply
charging
remaining capacity
characteristic change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015196866A
Other languages
Japanese (ja)
Other versions
JP2017069160A (en
Inventor
賢和 草野
賢和 草野
吉宣 佐藤
吉宣 佐藤
重樹 小峰
重樹 小峰
裕太 下西
裕太 下西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015196866A priority Critical patent/JP6520624B2/en
Publication of JP2017069160A publication Critical patent/JP2017069160A/en
Application granted granted Critical
Publication of JP6520624B2 publication Critical patent/JP6520624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池の充電装置及び電池の充電方法に関する。   The present invention relates to a battery charging device and a battery charging method.

近年、電動車両の普及に伴い、車両を駆動するための2次電池の需要が拡大している。これらの電動車両では燃費や搭載性の向上のため、2次電池の高容量化や小型化が期待されており、2次電池の性能向上が求められている。2次電池の中でも非水電解質2次電池、特にリチウムイオン電池は、高容量化が可能であることから、種々の電動車両の駆動用電源として利用が進められている。   In recent years, with the spread of electrically powered vehicles, the demand for secondary batteries for driving the vehicles is expanding. In these electric vehicles, in order to improve the fuel efficiency and the mountability, higher capacity and smaller size of the secondary battery are expected, and the performance improvement of the secondary battery is required. Among secondary batteries, non-aqueous electrolyte secondary batteries, particularly lithium ion batteries, can be used for driving various electric vehicles because they can be increased in capacity.

非水電解質2次電池は、一般に、正極活物質に代表される正極材料を有する正極活物質層を正極集電体の表面に形成した正極と、負極活物質を有する負極活物質層を負極集電体の表面に形成した負極とが、非水電解質を介して接続され、ケースに収納される構成を有している。非水電解質2次電池の代表例であるリチウムイオン電池では、正極材料としてリチウムの複合酸化物が用いられている。例えば、特許文献1〜6に、正極材料して用いることができるリチウムの複合酸化物が記載されている。   Generally, a non-aqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material layer having a positive electrode material represented by a positive electrode active material formed on the surface of a positive electrode current collector, and a negative electrode active material layer having a negative electrode active material. The negative electrode formed on the surface of the current collector is connected via the non-aqueous electrolyte, and is housed in the case. In a lithium ion battery, which is a typical example of a non-aqueous electrolyte secondary battery, a lithium composite oxide is used as a positive electrode material. For example, Patent Documents 1 to 6 describe lithium composite oxides that can be used as a positive electrode material.

特許文献1には、LiCoMOと、LiNiMnMOとを混合して正極活物質とすることが記載されている。ここで、Mは所定の元素である。この正極活物質は、放電時の平均電圧の高い活物質と、高い熱的安定性を持つ活物質とを有している。 Patent Document 1 describes that Li x CoMO 2 and LiNiMnMO 2 are mixed to form a positive electrode active material. Here, M is a predetermined element. The positive electrode active material includes an active material having a high average voltage at the time of discharge and an active material having high thermal stability.

特許文献2には、LiNiMnTiOの層状岩塩型構造の結晶層を含む正極活物質が記載されている。この正極活物質は、Tiを含むことで、Tiを含まない場合と比べて高い充放電容量を得ることができる。 Patent Document 2 describes a positive electrode active material including a crystal layer of a layered rock salt type structure of LiNiMnTiO 2 . By containing Ti, the positive electrode active material can obtain a higher charge / discharge capacity as compared to the case where it does not contain Ti.

特許文献3には、LiMnMOと、LiNiMOとを混合して正極活物質とすることが記載されている。ここで、Mは所定の元素である。この正極活物質を用いることで、高温保存後の電池性能に優れたものとすることができる。 Patent Document 3 describes that Li x MnMO 4 and LiNiMO 2 are mixed to form a positive electrode active material. Here, M is a predetermined element. By using this positive electrode active material, the battery performance after high temperature storage can be made excellent.

特許文献4には、層状の多結晶構造のLiMnMOにおけるLiの一部が欠損した正極活物質が記載されている。ここで、Mは所定の元素である。この正極活物質は、結晶中の歪みや化学結合の安定化され、充放電時のサイクル安定性、耐久安定性等を向上させることができる。 Patent Document 4 describes a positive electrode active material in which a part of Li in LiMnMO 2 having a layered polycrystalline structure is deficient. Here, M is a predetermined element. This positive electrode active material stabilizes distortion and chemical bonds in the crystal, and can improve cycle stability, durability stability, and the like during charge and discharge.

特許文献5には、LiCoOにおいてLi及びCoの一部がそれぞれ所定の元素Mに置換された正極活物質が記載されている。この正極活物質は、LiとCoのそれぞれが元素Mに置換されたことで、リチウムの層とコバルトの層の結合力が強化され、層間の歪みや結晶格子の膨張が抑えられ、充放電時のサイクル安定性、耐久安定性等を向上させることができる。 Patent Document 5 describes a positive electrode active material in which part of Li and Co in LiCoO 2 is replaced with a predetermined element M, respectively. In this positive electrode active material, when each of Li and Co is substituted by the element M, the bonding strength between the lithium layer and the cobalt layer is strengthened, distortion of the layer and expansion of the crystal lattice are suppressed, and during charge and discharge Cycle stability, durability stability and the like can be improved.

特許文献6には、LiNiMnCoOと、LiMOとを混合して正極活物質とすることが記載されている。ここで、Mは所定の元素である。この正極活物質は、電池容量と安全性に優れた効果を発揮する活物質と、サイクル特性と貯蔵特性とに効果を発揮する活物質とを有している。しかし、これらの正極活物質では、いずれも充放電時の結晶構造の崩壊が充分に抑制できず、非水電解質2次電池の容量の低下を招くという問題があった。 Patent Document 6 describes that LiNiMnCoO 2 and Li 2 MO 3 are mixed to form a positive electrode active material. Here, M is a predetermined element. The positive electrode active material has an active material that exerts an effect excellent in battery capacity and safety, and an active material exerting an effect on cycle characteristics and storage characteristics. However, in any of these positive electrode active materials, the collapse of the crystal structure at the time of charge and discharge can not be sufficiently suppressed, and there is a problem that the capacity of the non-aqueous electrolyte secondary battery is lowered.

また、非特許文献1には、安全性に関しては、Tiを含有した正極、つまり、LiNiMnTiOとする技術が記載されている。ただし、この非特許文献1に記載のようにTiの添加では、安全性の圧倒的な向上が得られないことが記載されている。 Further, Non-Patent Document 1 describes a technology of using a Ti-containing positive electrode, that is, LiNiMnTiO 2 in terms of safety. However, as described in Non-Patent Document 1, it is described that the addition of Ti does not provide an overwhelming improvement in safety.

非特許文献2には、安全性と結晶の高安定化を両立するための別の試みとしては、酸素との結合力の強いSiを遷移金属と同量含有した正極、つまりLiMnSiOとする技術が記載されている。しかし、この正極においては、遷移金属は4配位の配位構造をとることで、充電時に構造が不安定化し、やはり充分な耐久性を有する正極を構成することはできなかった。 In Non-Patent Document 2, as another attempt for achieving both safety and high stabilization of crystals, a positive electrode containing Si having a strong bonding force with oxygen in the same amount as the transition metal, ie, Li 2 MnSiO 4 Technology is described. However, in this positive electrode, the transition metal has a four-coordinate coordination structure, which destabilizes the structure at the time of charging, and it has not been possible to construct a positive electrode having sufficient durability.

特開2007−188703号公報JP 2007-188703 A 特開2008−127233号公報JP, 2008-127233, A 特開2001−345101号公報JP 2001-345101 A 特開2001−250551号公報JP 2001-250551 A 特許第3782058号公報Patent No. 3782058 gazette 特開2006−202702号公報JP, 2006-202702, A 「Synthesis of LiNi0.5Mn0.5−xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties」、Chemistry of Materials、2005年、第17巻、P2427−2435"Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Properties on Electrochemical Properties," Chemistry of Materials, 2005, Volume 17, P2427-2435 「Li2MSiO4(M=Fe and/or Mn)cathode materials」、Journal of Power Sources、2008年、第184巻、P462−P468"Li2MSiO4 (M = Fe and / or Mn) cathode materials", Journal of Power Sources, 2008, Vol. 184, P462-P468.

上記課題を解決するため、本発明者らは、正極材料の構造に着目し、遷移金属の局所構造として6配位の構造を持ち、かつ、酸素と強く結合する元素を多量に含む正極材料とすることで、上記課題を解決できることを見出した。この新規正極材料は、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−εで表されるリチウム遷移金属酸化物を含んでいる。ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化する。しかし、新規正極材料の電気化学的特性の調査を進める中で、新規正極材料は残存容量が低下すると、充電時の電池の抵抗が著しく上昇する特徴を見出した。 In order to solve the above problems, the present inventors pay attention to the structure of the positive electrode material, have a six-coordinated structure as a local structure of the transition metal, and contain a large amount of an element strongly binding to oxygen and I found that I could solve the above-mentioned problems. This novel positive electrode material has a layered rock salt type crystal structure, a transition metal having a six-coordinated local structure, and is represented by the chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε It contains lithium transition metal oxide. Here, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 is Mn, Ge, By inserting and extracting at least one of Sn and Sb and lithium ions, the range of 0 ≦ x ≦ 2 is reversibly changed. However, while investigating the electrochemical characteristics of the novel positive electrode material, the novel positive electrode material was found to have a feature that the resistance of the battery at the time of charging was significantly increased when the residual capacity decreased.

このような特性を有する理由としては、鋭意検討の結果、残存容量が特性変化閾値未満の領域においては、新規のリチウム拡散経路を確保するためにSnやGeといった酸素との強固な共有結合に基づく強固な層状岩塩型結晶内における物質移動が必要であるのに対し、残存容量が特性変化閾値以上の領域においては、すでに拡散経路が形成されており、さらなる物質移動が必要ないためである考えられる。なお、本発明において、以下では残存容量は電池としての残存容量を意味する。そして、この残存容量が低い場合に、抵抗が高いという特性を有する。そして、上記の通り、この高抵抗はリチウム拡散経路を形成する過程における正極材料の構造変化に由来するものと考察している。初回充放電時、正極活物質に生じる不可逆容量も併せて見出している。上記した残存容量は、上記した正極活物質化学式におけるリチウム脱離量とは必ずしも一致しない。一定の不可逆容量を生じる初回充放電後においても、リチウム量が多く含まれた状態では、上記の通り、電池の出力時には新規のリチウム拡散経路を形成、確保するために高抵抗となること、つまり、高抵抗、低抵抗の閾値を有することを見出している。   The reason for having such characteristics is that as a result of intensive studies, in the region where the residual capacity is less than the characteristic change threshold value, based on the strong covalent bond with oxygen such as Sn and Ge in order to secure a new lithium diffusion path. It is considered that the mass transfer in the strong layered rock salt type crystal is necessary, but the diffusion path is already formed in the region where the residual capacity is equal to or more than the characteristic change threshold, and the additional mass transfer is not necessary. . In the present invention, the remaining capacity means the remaining capacity as a battery below. And when this remaining capacity is low, it has the characteristic that resistance is high. And, as described above, it is considered that this high resistance is derived from the structural change of the positive electrode material in the process of forming the lithium diffusion path. The irreversible capacity generated in the positive electrode active material at the time of initial charge and discharge is also found. The above-mentioned remaining capacity does not necessarily coincide with the lithium desorption amount in the above-mentioned chemical formula of the positive electrode active material. Even after the initial charge and discharge that produces a certain irreversible capacity, as described above, when the battery contains a large amount of lithium, high resistance is achieved to form and secure a new lithium diffusion path at the time of battery output, that is, It has been found that it has high resistance, low resistance threshold.

ところで、ハイブリッド車や電気自動車には、車両を駆動するための駆動力を発生するモータが搭載されている。また、モータに電力を供給するリチウムイオン電池が搭載されている。モータに車両を駆動するための駆動力を発生させる場合、リチウムイオン電池からモータに電力を供給する。一方、モータが回生状態になると、モータが発生する電力をリチウムイオン電池に供給し、リチウムイオン電池を充電する。これにより、回生状態になったモータが発生する電力を有効に利用することができる。その結果、ハイブリッド車や電気自動車の効率を向上させることができる。   By the way, a hybrid vehicle or an electric vehicle is equipped with a motor that generates a driving force for driving the vehicle. In addition, a lithium ion battery that supplies power to the motor is mounted. When the motor generates a driving force for driving a vehicle, the lithium ion battery supplies power to the motor. On the other hand, when the motor is in a regenerative state, the electric power generated by the motor is supplied to the lithium ion battery to charge the lithium ion battery. Thereby, the electric power generated by the motor in the regenerative state can be effectively used. As a result, the efficiency of the hybrid vehicle or the electric vehicle can be improved.

このようなハイブリッド車や電気自動車に前述した新規正極材料で構成された電池を適用した場合、残存容量が低下すると、回生状態になったモータから新規正極材料で構成された電池に電力を供給する際に抵抗上昇によって発熱量や消費電力が増加し、寿命が短くなることや、回生電力を充分に利用できないことが懸念される。また、電気自動車やプラグインハイブリッド車のような、外部の商用電源から充電される場合においても、残存容量が低下すると抵抗上昇によって充電時の発熱量や消費電力の増加が懸念される。   When a battery composed of the above-mentioned novel positive electrode material is applied to such a hybrid vehicle or an electric vehicle, when the remaining capacity decreases, electric power is supplied to the battery composed of the new positive electrode material from the motor in a regenerative state. At the time, there is a concern that the heat generation amount and the power consumption increase due to the rise in resistance, the life becomes short, and the regenerative power can not be sufficiently used. In addition, even when charging from an external commercial power source such as an electric car or a plug-in hybrid car, if the remaining capacity decreases, there is a concern that the amount of heat generated during charging and the power consumption will increase due to the increase in resistance.

本発明は、このような事情に鑑みてなされたものであり、充電時における電池の温度上昇や消費電力の増加を抑えつつ、新規正極材料で構成された電池に電力を供給することができる充電装置及び充電方法を提供することを目的とする。    The present invention has been made in view of such circumstances, and it is possible to supply electric power to a battery composed of a novel positive electrode material while suppressing the temperature rise of the battery and the increase of power consumption at the time of charging. It aims at providing an apparatus and a charge method.

上記目的を達成するためになされた第1の発明は、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含み、残存容量が特性変化閾値未満の場合における抵抗が特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が特性変化閾値以上の場合における抵抗の2倍以上になる特性を有する電池と、通常充電電流を流すことによって電池に電力を供給し電池を充電する主電源と、通常充電電流より小さい予備充電電流を流すことによって電池に電力を供給し電池を充電する、鉛蓄電池又は交流を出力する商用電源(230)を備えた補助電源と、電池の残存容量が特性変化閾値未満の場合、補助電源を制御して補助電源から電池に電力を供給し、電池の残存容量が少なくとも特性変化閾値になるまで電池を充電する制御部と、を有する。 The first invention made to achieve the above object has a layered rock salt type crystal structure, and the transition metal has a six-coordinated local structure, and the chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (where, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 (A) reversibly changes the range of 0 ≦ x ≦ 2 by occluding and releasing lithium ion and at least one of Mn, Ge, Sn and Sb; If the resistance is higher than the characteristic change threshold when the remaining capacity is less than the characteristic change threshold and the resistance is 0% when the remaining capacity is 0%, the resistance is twice as high as the characteristic change threshold. Battery with the above characteristics and normal charging A main power supply that supplies power to the battery to charge the battery by flowing current, and a lead storage battery or commercial that outputs ac storage battery or AC that supplies power to the battery to charge the battery by flowing a pre-charging current smaller than the normal charging current If the remaining power of the auxiliary power supply provided with the power supply (230) and the battery is less than the characteristic change threshold, the auxiliary power is controlled to supply power to the battery from the auxiliary power supply, and the remaining capacity of the battery becomes at least the characteristic change threshold And a control unit for charging the battery.

この構成によれば、電池の残存容量が特性変化閾値未満の場合、補助電源から電池に電力を供給し、電池の残存容量が少なくとも特性変化閾値になるまで電池を充電する。そのため、電池の残存容量が特性変化閾値未満の状態、つまり、抵抗が大きい状態で、主電源から電池に電力を供給するような事態をなくすことができる。従って、電流を小さくすることなく主電源から電池に電力を供給することができる。しかも、電池の残存容量が特性変化閾値未満の場合、通常充電電流より小さい予備充電電流を流すことによって電池を充電する。そのため、残存容量が特性変化閾値未満になり、抵抗が大きくなっても、電池の温度上昇や消費電力の増加を抑えることができる。   According to this configuration, when the remaining capacity of the battery is less than the characteristic change threshold, power is supplied to the battery from the auxiliary power supply, and the battery is charged until the remaining capacity of the battery reaches at least the characteristic change threshold. Therefore, it is possible to eliminate the situation where power is supplied from the main power source to the battery in a state where the remaining capacity of the battery is less than the characteristic change threshold value, that is, in a state where the resistance is large. Therefore, power can be supplied to the battery from the main power supply without reducing the current. Moreover, when the remaining capacity of the battery is less than the characteristic change threshold, the battery is charged by supplying a pre-charging current smaller than the normal charging current. Therefore, even if the remaining capacity becomes less than the characteristic change threshold and the resistance increases, the temperature rise of the battery and the increase in power consumption can be suppressed.

上記目的を達成するためになされた第2の発明は、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含み、残存容量が特性変化閾値未満の場合における抵抗が特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が特性変化閾値以上の場合における抵抗の2倍以上になる特性を有し、主電源から通常充電電流を流すことによって電力が供給され充電される電池の充電方法であって、電池の残存容量が特性変化閾値未満の場合、鉛蓄電池又は交流を出力する商用電源(230)を備えた、主電源とは別の電源から通常充電電流より小さい予備充電電流を流すことによって電池に電力を供給し、電池の残存容量が少なくとも特性変化閾値になるまで電池を充電する。 The second invention made to achieve the above object has a layered rock salt type crystal structure, and the transition metal has a six-coordinated local structure, and the chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (where, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 (A) reversibly changes the range of 0 ≦ x ≦ 2 by occluding and releasing lithium ion and at least one of Mn, Ge, Sn and Sb; If the resistance is higher than the characteristic change threshold when the remaining capacity is less than the characteristic change threshold and the resistance is 0% when the remaining capacity is 0%, the resistance is twice as high as the characteristic change threshold. Has the above characteristics, and usually A method of charging a battery to which power is supplied and charged by flowing an electric current, the system comprising a lead storage battery or a commercial power supply (230) for outputting alternating current when the remaining capacity of the battery is less than the characteristic change threshold. Power is supplied to the battery by supplying a precharging current smaller than the normal charging current from a power supply different from the power supply, and the battery is charged until the remaining capacity of the battery reaches at least a characteristic change threshold.

この方法によれば、電池の残存容量が特性変化閾値未満の場合、主電源とは別の電源から電池に電力を供給し、電池の残存容量が少なくとも特性変化閾値になるまで電池を充電する。そのため、電池の残存容量が特性変化閾値未満の状態、つまり、抵抗が大きい状態で、主電源から電池に電力を供給するような事態をなくすことができる。従って、電流を小さくすることなく主電源から電池に電力を供給することができる。しかも、電池の残存容量が特性変化閾値未満の場合、通常充電電流より小さい予備充電電流を流すことによって電池を充電する。そのため、残存容量が特性変化閾値未満になって抵抗が大きくなっても、電池の温度上昇や消費電力の増加を抑えることができる。   According to this method, when the remaining capacity of the battery is less than the characteristic change threshold, power is supplied to the battery from a power source different from the main power supply, and the battery is charged until the remaining capacity of the battery reaches at least the characteristic change threshold. Therefore, it is possible to eliminate the situation where power is supplied from the main power source to the battery in a state where the remaining capacity of the battery is less than the characteristic change threshold value, that is, in a state where the resistance is large. Therefore, power can be supplied to the battery from the main power supply without reducing the current. Moreover, when the remaining capacity of the battery is less than the characteristic change threshold, the battery is charged by supplying a pre-charging current smaller than the normal charging current. Therefore, even if the remaining capacity becomes less than the characteristic change threshold and the resistance increases, the temperature rise of the battery and the increase in power consumption can be suppressed.

第1実施形態における充電装置の回路図である。It is a circuit diagram of the charging device in a 1st embodiment. 図1における電池を構成するリチウムイオン電池の斜視図である。It is a perspective view of the lithium ion battery which comprises the battery in FIG. 図2におけるIII−III矢視断面図である。It is the III-III arrow sectional drawing in FIG. 図1における電池の残存容量に対する抵抗の特性を示すグラフである。It is a graph which shows the characteristic of resistance with respect to the remaining capacity of the battery in FIG. 図4における特性変化閾値周辺の特性を示すグラフである。It is a graph which shows the characteristic of the characteristic change threshold value periphery in FIG. 図1における充電装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement of the charging device in FIG. 図1における充電装置の動作を説明するための第1の回路図である。FIG. 6 is a first circuit diagram for illustrating the operation of the charging device in FIG. 1; 図1における充電装置の動作を説明するための第2の回路図である。FIG. 6 is a second circuit diagram for illustrating the operation of the charging device in FIG. 1; 図1における充電装置の動作を説明するための第3の回路図である。FIG. 7 is a third circuit diagram for illustrating the operation of the charging device in FIG. 1; 第2実施形態における充電装置の回路図である。It is a circuit diagram of the charging device in a 2nd embodiment. 図10における充電装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement of the charging device in FIG. 図10における充電装置の動作を説明するための第1の回路図である。FIG. 11 is a first circuit diagram for illustrating the operation of the charging device in FIG. 10. 図10における充電装置の動作を説明するための第2の回路図である。FIG. 11 is a second circuit diagram for illustrating the operation of the charging device in FIG. 10.

次に実施形態を挙げ、本発明をより詳しく説明する。本実施形態では、本発明に係る充電装置を、車両に搭載される充電装置に適用した例を示す。   Next, the present invention will be described in more detail by way of embodiments. In this embodiment, the example which applied the charging device which concerns on this invention to the charging device mounted in a vehicle is shown.

(第1実施形態)
まず、図1〜図5を参照して第1実施形態の充電装置の構成について説明する。
First Embodiment
First, the configuration of the charging device of the first embodiment will be described with reference to FIGS. 1 to 5.

図1に示す充電装置1は、車両に搭載された電池10を充電する装置である。充電装置1は、電池10と、電力変換回路11と、モータ12と、補助電源13と、制御回路14とを備えている。ここで、電力変換回路11及びモータ12が、本発明の主電源に相当する。また、制御回路14が、本発明の制御部に相当する。   The charging device 1 shown in FIG. 1 is a device for charging a battery 10 mounted on a vehicle. The charging device 1 includes a battery 10, a power conversion circuit 11, a motor 12, an auxiliary power supply 13, and a control circuit 14. Here, the power conversion circuit 11 and the motor 12 correspond to the main power supply of the present invention. The control circuit 14 corresponds to the control unit of the present invention.

電池10は、電力変換回路11を介してモータ12に電力を供給する充放電可能な2次電池である。電池10は、図2及び図3に示すリチウムイオン電池100を複数接続して構成されている。   The battery 10 is a chargeable / dischargeable secondary battery that supplies power to the motor 12 via the power conversion circuit 11. The battery 10 is configured by connecting a plurality of lithium ion batteries 100 shown in FIGS. 2 and 3.

リチウムイオン電池100は、正極100aと、負極100bと、非水電解質100cと、セパレータ100dと、ケース100eとを備えている。   The lithium ion battery 100 includes a positive electrode 100a, a negative electrode 100b, a non-aqueous electrolyte 100c, a separator 100d, and a case 100e.

正極100aは、正極集電体100fと、正極活物質層100gとを備えている。   The positive electrode 100a includes a positive electrode current collector 100f and a positive electrode active material layer 100g.

正極集電体100fは、アルミニウム等の金属からなる薄い板状の部材である。   The positive electrode current collector 100 f is a thin plate-like member made of a metal such as aluminum.

正極活物質層100gは、リチウムイオンを吸蔵、放出可能な酸化物からなり、正極集電体100fの表面に形成されている。正極活物質層100gを形成する酸化物は、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含んでいる。正極活物質層100gは、前述した酸化物を、導電材及び結着材等とともに溶媒中で混合し、正極集電体100fの表面に塗布、乾燥して形成されている。導電材は、例えば、炭素材料や導電性高分子材料である。炭素材料は、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等である。また、導電性高分子材料は、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンである。結着材は、例えば、高分子材料である。高分子材料は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンゴム、スチレンブタジエンゴム、ニトリルゴム、フッ素ゴム、アクリル系バインダである。溶媒は、例えば、水、Nメチル−2−ピロリドンである。 The positive electrode active material layer 100 g is made of an oxide capable of absorbing and desorbing lithium ions, and is formed on the surface of the positive electrode current collector 100 f. The oxide forming the positive electrode active material layer 100 g has a layered rock salt type crystal structure, a transition metal having a six-coordinated local structure, and a chemical formula Li 2-x Ni α M 1 β M 2 γ O 4 −ε (where, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 is Mn And at least one of Ge, Sn, and Sb, which reversibly changes the range of 0 ≦ x ≦ 2 by occluding and releasing lithium ions, as a positive electrode active material. It is. The positive electrode active material layer 100 g is formed by mixing the above-mentioned oxide together with a conductive material, a binder and the like in a solvent, and applying and drying it on the surface of the positive electrode current collector 100 f. The conductive material is, for example, a carbon material or a conductive polymer material. The carbon material is ketjen black, acetylene black, carbon black, graphite, carbon nanotube, amorphous carbon or the like. Also, the conductive polymer material is polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene. The binder is, for example, a polymer material. The polymer material is polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene rubber, styrene butadiene rubber, nitrile rubber, fluoro rubber, acrylic binder. The solvent is, for example, water, N-methyl-2-pyrrolidone.

負極100bは、負極集電体100hと、負極活物質層100iとを備えている。   The negative electrode 100 b includes a negative electrode current collector 100 h and a negative electrode active material layer 100 i.

負極集電体100hは、Cu等の金属からなる薄い板状の部材である。   The negative electrode current collector 100 h is a thin plate-like member made of a metal such as Cu.

負極活物質層100iは、リチウムイオンを吸蔵、放出可能な化合物からなり、負極集電体100hの表面に形成されている。負極活物質層100iを形成する化合物は、例えば、リチウム箔等の金属材料、Si、Sn、Cu等を含有する合金系材料、グラファイト、コークス等の炭素系材料、チタン酸化物である。負極活物質層100iは、負極活物質層100iを形成する前述した化合物を、正極100aと同様の導電材及び結着材等とともに、正極100aと同様の溶媒中で混合し、負極集電体100hの表面に塗布、乾燥して形成されている。   The negative electrode active material layer 100i is made of a compound capable of absorbing and releasing lithium ions, and is formed on the surface of the negative electrode current collector 100h. The compound which forms the negative electrode active material layer 100i is, for example, a metal material such as lithium foil, an alloy material containing Si, Sn, Cu or the like, a carbon material such as graphite or coke, or a titanium oxide. The negative electrode active material layer 100i is prepared by mixing the above-described compound forming the negative electrode active material layer 100i with the same conductive material and binder as the positive electrode 100a in the same solvent as the positive electrode 100a, and then using the negative electrode current collector 100h. It is formed by applying and drying on the surface of.

非水電解質100cは、正極100aと負極100bの間におけるイオン等の荷電担体の移動を可能にするものである。   The non-aqueous electrolyte 100 c enables movement of charge carriers such as ions between the positive electrode 100 a and the negative electrode 100 b.

セパレータ100dは、正極100aと負極100bの間における荷電担体の移動を可能にしながら、正極100aと負極100bを絶縁する薄い板状の部材である。セパレータ100dは、例えば、多孔質合成樹脂膜、特にポリオレフィン系高分子やセルロース、ガラス繊維からなる多孔質膜、不織布である。セパレータ100dは、その構成要素としてセラミックスを含んでいてもよい。   The separator 100d is a thin plate-like member that insulates the positive electrode 100a from the negative electrode 100b while allowing movement of charge carriers between the positive electrode 100a and the negative electrode 100b. The separator 100d is, for example, a porous synthetic resin film, in particular, a porous film made of a polyolefin polymer, cellulose, glass fiber, or a non-woven fabric. The separator 100d may contain ceramics as its component.

ケース100eは、正極100a、負極100b、セパレータ100d及び非水電解質100cを収容する部材である。ケース100eは、例えば、ラミネートフィルムによって形成されている。ケース100eは、正極端子100jと、負極端子100kとを備えている。正極端子100j及び負極端子100kは、一端部をケース100eの内部空間に突出させるとともに、他端部をケース100eの外部に突出させた状態でケース100eに固定されている。   The case 100e is a member that accommodates the positive electrode 100a, the negative electrode 100b, the separator 100d, and the non-aqueous electrolyte 100c. The case 100 e is formed of, for example, a laminate film. The case 100e includes a positive electrode terminal 100j and a negative electrode terminal 100k. The positive electrode terminal 100 j and the negative electrode terminal 100 k are fixed to the case 100 e in a state in which one end portion protrudes into the internal space of the case 100 e and the other end portion protrudes outside the case 100 e.

正極100aと負極100bは、交互に積層されている。セパレータ100dは、正極100aと負極100bの間に設けられている。正極100a、負極100b及びセパレータ100dは、ケース100eの内部空間に収容されている。正極100aの端部は正極端子100jに、負極100bの端部は負極端子100kにそれぞれ接続されている。非水電解質100cは、正極100a、負極100b及びセパレータ100dとともに、ケース100eの内部空間に収容されている。   The positive electrode 100a and the negative electrode 100b are alternately stacked. The separator 100d is provided between the positive electrode 100a and the negative electrode 100b. The positive electrode 100a, the negative electrode 100b, and the separator 100d are accommodated in the internal space of the case 100e. The end of the positive electrode 100a is connected to the positive electrode terminal 100j, and the end of the negative electrode 100b is connected to the negative electrode terminal 100k. The non-aqueous electrolyte 100c is accommodated in the internal space of the case 100e together with the positive electrode 100a, the negative electrode 100b, and the separator 100d.

電池10は、正極活物質層100gを形成する酸化物が、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含んでいる。その結果、このような物質を含んでいない場合に比べ、安全性が高く、さらに体積当たりの容量を大きくすることができる。また、残存容量が特性変化閾値未満の場合における抵抗が特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が特性変化閾値以上の場合における抵抗の2倍以上になる特性を有するようになる。ここで、特性変化閾値は、電池10の残存容量に対する抵抗の特性を示すグラフにおいて、抵抗の値が変化する境界を示す残存容量である。例えば、図4及び図5に示すように、特性変化閾値2%を境界として、残存容量が2%未満の場合における電池10の抵抗が2%以上の場合における抵抗より大きくなる。さらに、残存容量が0%の場合における電池10の抵抗が2%以上の場合における抵抗の5倍以上になる。 In the battery 10, the oxide forming the positive electrode active material layer 100 g has a layered rock salt type crystal structure, the transition metal has a six-coordinated local structure, and the chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (where, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 reversibly changes the range of 0 ≦ x ≦ 2 by occluding and releasing lithium ion and at least one of Mn, Ge, Sn, and Sb; It contains as an active material. As a result, compared with the case where such a substance is not contained, the safety is high and the capacity per volume can be further increased. In addition, when the residual capacity is less than the characteristic change threshold, the resistance is larger than the resistance when the characteristic change threshold or higher, and when the residual capacity is 0%, the resistance is twice or more the resistance in the characteristic change threshold or higher. Have the following characteristics. Here, the characteristic change threshold value is a remaining capacity indicating a boundary at which the value of the resistance changes, in the graph showing the characteristic of the resistance with respect to the remaining capacity of the battery 10. For example, as shown in FIGS. 4 and 5, the resistance of the battery 10 in the case where the remaining capacity is less than 2% is higher than the resistance in the case where the remaining capacity is 2% or more. Furthermore, the resistance of the battery 10 at the remaining capacity of 0% is 5 times or more than the resistance at 2% or more.

電池10がこのような特性を有する理由としては、鋭意検討の結果、残存容量が特性変化閾値未満の領域においては、新規のリチウム拡散経路を確保するためにSnやGeと酸素の共有結合に基づく強固な層状岩塩型結晶内を変形させる際にSnやGe等の重元素を含めた物質移動が必要であるのに対し、残存容量が特性変化閾値以上の領域においては、すでに拡散経路が形成されており、さらなる物質移動が必要ないためである考えられる。   The reason why the battery 10 has such characteristics is that, in the region where the residual capacity is less than the characteristic change threshold as a result of intensive studies, it is based on covalent bonding of Sn or Ge and oxygen to secure a new lithium diffusion path. While mass transfer including heavy elements such as Sn and Ge is necessary when deforming inside a strong layered rock salt type crystal, a diffusion path is already formed in the region where the residual capacity is equal to or higher than the characteristic change threshold. And it is believed that no further mass transfer is necessary.

図1示す電力変換回路11は、制御回路14によって制御され、電池10から供給される直流を3相交流に変換してモータ12に供給することで、モータ12に車両を駆動するための駆動力を発生させる回路である。また、回生状態になったモータ12が発生する3相交流を直流に変換して電池10及び補助電源13に供給することで、電池10及び補助電源13を充電する回路でもある。電力変換回路11は、電池10、モータ12及び補助電源13にそれぞれ接続されている。また、制御回路14に接続されている。   The power conversion circuit 11 shown in FIG. 1 is controlled by the control circuit 14 and converts a direct current supplied from the battery 10 into a three-phase alternating current and supplies it to the motor 12 to drive the motor 12 to drive the vehicle. Is a circuit that generates It is also a circuit that charges the battery 10 and the auxiliary power supply 13 by converting the three-phase alternating current generated by the motor 12 in the regenerative state into direct current and supplying the direct current to the battery 10 and the auxiliary power supply 13. The power conversion circuit 11 is connected to the battery 10, the motor 12 and the auxiliary power supply 13 respectively. It is also connected to the control circuit 14.

モータ12は、3相交流が供給されることで車両を駆動するための駆動力を発生する機器である。また、回生状態になると3相交流を発生する機器でもある。モータ12は、電力変換回路11に接続されている。   The motor 12 is a device that generates a driving force for driving a vehicle by being supplied with a three-phase alternating current. It is also a device that generates three-phase alternating current when in the regenerative state. The motor 12 is connected to the power conversion circuit 11.

補助電源13は、制御回路14によって制御され、電池10に電力を供給して電池10を充電する充放電可能な電源である。補助電源13は、鉛蓄電池、リチウムイオン電池、ニッケル水素電池及びキャパシタの少なくともいずれかを有している。補助電源13は、電池10に電力供給できるように、電池10より抵抗が小さく設定されている。   The auxiliary power supply 13 is a chargeable and dischargeable power supply which is controlled by the control circuit 14 and supplies power to the battery 10 to charge the battery 10. The auxiliary power supply 13 includes at least one of a lead storage battery, a lithium ion battery, a nickel hydrogen battery, and a capacitor. The auxiliary power supply 13 is set to have a smaller resistance than the battery 10 so as to supply power to the battery 10.

制御回路14は、電池10及び補助電源13から得られる情報に基づいてこれらの残存容量を推定するとともに、推定したこれらの残存容量に基づいて電力変換回路11及び補助電源13を制御する回路である。モータ12に車両を駆動するための駆動力を発生させる場合、制御回路14は、電力変換回路11を制御し、電池10から供給される直流を3相交流に変換してモータ12に供給する。   The control circuit 14 is a circuit that estimates these remaining capacities based on information obtained from the battery 10 and the auxiliary power supply 13, and controls the power conversion circuit 11 and the auxiliary power supply 13 based on the estimated remaining capacities. . When the driving force for driving the vehicle is generated in the motor 12, the control circuit 14 controls the power conversion circuit 11 to convert direct current supplied from the battery 10 into three-phase alternating current and supply the same to the motor 12.

電池10を充電する場合において、電池10の残存容量が特性変化閾値以上の場合、制御回路14は、電力変換回路11を制御し、回生状態になったモータ12が発生する3相交流を直流に変換して電池10に電力を供給し、電池10を充電する。その際、通常充電電流を流すことによって電池10に電力を供給する。通常充電電流は、回生状態において電池10に供給することができる電流値に応じて決まり、電池10の残存容量が特性変化閾値以上における電池10の抵抗に基づいて設定されている。これに対して、電池10の残存容量が特性変化閾値未満の場合、制御回路14は、補助電源13を制御して補助電源13から電池10に電力を供給し、電池10の残存容量が少なくとも特性変化閾値になるまで電池10を充電する。その際、通常充電電流より小さい予備充電電流を流すことによって電池10に電力を供給する。予備充電電流は、電池10残存容量が特性変化閾値未満の場合における電池10の抵抗に基づいて設定されている。また、補助電源13の残存容量が補助電源充電閾値未満の場合、制御回路14は、電力変換回路11を制御し、回生状態になったモータ12が発生する3相交流を直流に変換して補助電源13に電力を供給し、補助電源13を充電する。ここで、補助電源充電閾値は、補助電源13から電池10に電力を供給して電池10を充電する場合に、最低限必要とされる補助電源13の残存容量を示すものである。   When charging the battery 10, if the remaining capacity of the battery 10 is equal to or greater than the characteristic change threshold, the control circuit 14 controls the power conversion circuit 11 to convert the three-phase alternating current generated by the motor 12 in the regenerative state into direct current. It converts and supplies power to the battery 10 to charge the battery 10. At this time, power is normally supplied to the battery 10 by supplying a charging current. The normal charging current is determined according to the current value that can be supplied to the battery 10 in the regenerative state, and the remaining capacity of the battery 10 is set based on the resistance of the battery 10 at or above the characteristic change threshold. On the other hand, when the remaining capacity of the battery 10 is less than the characteristic change threshold, the control circuit 14 controls the auxiliary power supply 13 to supply power from the auxiliary power supply 13 to the battery 10, and the remaining capacity of the battery 10 is at least characteristic. The battery 10 is charged until the change threshold is reached. At this time, power is supplied to the battery 10 by flowing a pre-charging current smaller than the normal charging current. The pre-charging current is set based on the resistance of the battery 10 when the battery 10 residual capacity is less than the characteristic change threshold value. When the remaining capacity of the auxiliary power supply 13 is less than the auxiliary power supply charging threshold, the control circuit 14 controls the power conversion circuit 11 to convert the three-phase alternating current generated by the motor 12 in the regenerative state into direct current to Power is supplied to the power supply 13 to charge the auxiliary power supply 13. Here, the auxiliary power supply charge threshold value indicates the remaining capacity of the auxiliary power supply 13 which is required at the minimum when the battery 10 is charged by supplying power from the auxiliary power supply 13 to the battery 10.

次に、図1、図6〜図9を参照して第1実施形態の充電装置の動作について説明する。   Next, the operation of the charging device of the first embodiment will be described with reference to FIGS. 1 and 6 to 9.

図6に示すように、ステップS100において、図1に示す制御回路14は、電池10から得られる情報に基づいて電池10の残存容量を推定する。そして、ステップS101において、推定した電池10の残存容量が特性変化閾値以上であるか否かを判定する。   As shown in FIG. 6, in step S100, the control circuit 14 shown in FIG. 1 estimates the remaining capacity of the battery 10 based on the information obtained from the battery 10. Then, in step S101, it is determined whether the estimated remaining capacity of the battery 10 is equal to or greater than the characteristic change threshold value.

推定した電池10の残存容量が特性変化閾値未満であると判定した場合、特性変化閾値以上の場合に比べ、電池10の抵抗が大きくなっている。そのため、電池10の残存容量を特性変化閾値以上にして、抵抗を小さくする必要がある。そこで、ステップS102において、制御回路14は、電池10を予備充電する。具体的には、補助電源13を制御し、図7に示すように、補助電源13から電池10に、通常充電電流より小さい予備充電電流を流すことによって電池10に電力を供給し、電池10を充電する。これにより、充電時における電池10の温度上昇や消費電力の増加を抑えることができる。そして、図6に示すように、推定した電池10の残存容量が特性変化閾値以上になるまで電池10の予備充電が繰り返される。つまり、電池10の残存容量が少なくとも特性変化閾値になるまで電池10の予備充電が繰り返される。これにより、電池10の抵抗を小さくすることができる。   When it is determined that the estimated remaining capacity of the battery 10 is less than the characteristic change threshold value, the resistance of the battery 10 is larger than in the case where it is equal to or higher than the characteristic change threshold value. Therefore, it is necessary to reduce the resistance by making the remaining capacity of the battery 10 equal to or higher than the characteristic change threshold. Therefore, in step S102, the control circuit 14 pre-charges the battery 10. Specifically, the auxiliary power supply 13 is controlled, and power is supplied to the battery 10 by supplying a pre-charging current smaller than the normal charging current from the auxiliary power supply 13 to the battery 10 as shown in FIG. To charge. Thereby, the temperature rise of the battery 10 at the time of charge and the increase in power consumption can be suppressed. Then, as shown in FIG. 6, the preliminary charging of the battery 10 is repeated until the estimated remaining capacity of the battery 10 becomes equal to or greater than the characteristic change threshold value. That is, the precharging of the battery 10 is repeated until the remaining capacity of the battery 10 reaches at least the characteristic change threshold value. Thereby, the resistance of the battery 10 can be reduced.

一方、推定した電池10の残存容量が特性変化閾値以上であると判定した場合、電池10の抵抗は小さい。そのため、前述したような電池10を予備充電する必要はない。   On the other hand, when it is determined that the estimated remaining capacity of the battery 10 is equal to or greater than the characteristic change threshold, the resistance of the battery 10 is small. Therefore, it is not necessary to pre-charge the battery 10 as described above.

その後、ステップS103において、制御回路14は、補助電源13から得られる情報に基づいて補助電源13の残存容量を推定する。そして、ステップS104において、推定した補助電源13の残存容量が補助電源充電閾値以上であるか否かを判定する。   Thereafter, in step S103, the control circuit 14 estimates the remaining capacity of the auxiliary power supply 13 based on the information obtained from the auxiliary power supply 13. Then, in step S104, it is determined whether the estimated remaining capacity of the auxiliary power supply 13 is equal to or greater than the auxiliary power supply charging threshold.

推定した補助電源13の残存容量が補助電源充電閾値以上であると判定した場合、電池10を予備充電するための充分な電力が補助電源13に確保されており、補助電源13を充電する必要がない。そのため、ステップS105において、制御回路14は、電池10を通常充電する。具体的には、任意のタイミングで発生する回生状態のときに、電力変換回路11を制御し、回生状態になったモータ12が発生する3相交流を直流に変換して電池10に電力を供給し電池10を充電する。より具体的には、電力変換回路11を制御し、図8に示すように、電力変換回路11から電池10に通常充電電流を流すことによって電池10に電力を供給し、電池10を充電する。   If it is determined that the estimated remaining capacity of the auxiliary power supply 13 is equal to or greater than the auxiliary power supply charging threshold, sufficient power for precharging the battery 10 is secured in the auxiliary power supply 13, and it is necessary to charge the auxiliary power supply 13 Absent. Therefore, in step S105, the control circuit 14 normally charges the battery 10. Specifically, when the regeneration state occurs at an arbitrary timing, the power conversion circuit 11 is controlled to convert the three-phase alternating current generated by the motor 12 in the regeneration state into a direct current to supply power to the battery 10 And charge the battery 10. More specifically, the power conversion circuit 11 is controlled, and power is supplied to the battery 10 by flowing a normal charging current from the power conversion circuit 11 to the battery 10 as shown in FIG. 8 to charge the battery 10.

一方、図6に示すように、推定した補助電源13の残存容量が補助電源充電閾値未満であると判定した場合、電池10を予備充電するための充分な電力が補助電源13に確保されておらず、補助電源13を充電する必要がある。そのため、ステップS106において、制御回路14は、電池10を通常充電するとともに、補助電源13も充電する。具体的には、任意のタイミングで発生する回生状態のときに電力変換回路11を制御し、図9に示すように、電池10を通常充電する。また、電力変換回路11を制御し、回生状態になったモータ12が発生する3相交流を直流に変換して補助電源13に電力を供給し、補助電源13も充電する。これにより、回生状態になったモータ12が発生する電力を有効に利用して、電池10の予備充電のための電力を確保することができる。   On the other hand, as shown in FIG. 6, when it is determined that the estimated remaining capacity of the auxiliary power supply 13 is less than the auxiliary power supply charging threshold, sufficient power for precharging the battery 10 is secured in the auxiliary power supply 13. The auxiliary power supply 13 needs to be charged. Therefore, in step S106, the control circuit 14 normally charges the battery 10 and also charges the auxiliary power supply 13. Specifically, the power conversion circuit 11 is controlled in a regeneration state which occurs at an arbitrary timing, and as shown in FIG. 9, the battery 10 is normally charged. Further, it controls the power conversion circuit 11, converts the three-phase alternating current generated by the motor 12 in the regenerative state into direct current, supplies power to the auxiliary power supply 13, and also charges the auxiliary power supply 13. Thereby, the electric power for the precharging of the battery 10 can be secured by effectively using the electric power generated by the motor 12 in the regenerative state.

次に、第1実施形態の充電装置の効果について説明する。   Next, the effect of the charging device of the first embodiment will be described.

第1実施形態によれば、充電装置1は、電池10と、電力変換回路11と、モータ12と、補助電源13と、制御回路14とを備えている。電池10は、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含んでいる。その結果、残存容量が特性変化閾値未満の場合における抵抗が特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が特性変化閾値以上の場合における抵抗の2倍以上になる特性を有することになる。制御回路14は、電力変換回路11を制御し、回生状態になったモータ12が発生する3相交流を直流に変換して電池10に電力を供給し、電池10を充電する。そして、制御回路14は、電池10の残存容量が特性変化閾値未満の場合、補助電源13を制御して補助電源13から電池10に電力を供給し、電池10の残存容量が少なくとも特性変化閾値になるまで電池10を充電する。つまり、充電方法としては、電池10の残存容量が特性変化閾値未満の場合、回生状態になったモータ12、及び、制御回路14によって制御される電力変換回路11ではなく、それらとは別の、制御回路14によって制御される補助電源13から通常充電電流より小さい予備充電電流を流すことによって電池10に電力を供給する。そして、電池10の残存容量が少なくとも特性変化閾値になるまで電池10を充電する。そのため、電池10の残存容量が特性変化閾値未満の状態、つまり、抵抗が大きい状態で、回生状態になったモータ12から電力変換回路11を介して電池10に電力を供給するような事態をなくすことができる。従って、電流を小さくすることなく回生状態になったモータ12から電力変換回路11を介して電池10に電力を供給することができる。しかも、電池10の残存容量が特性変化閾値未満の場合、通常充電電流より小さい予備充電電流を流すことによって電池10を充電する。そのため、残存容量が特性変化閾値未満になり、抵抗が大きくなっても、電池10の温度上昇や消費電力の増加を抑えることができる。従って、電池10の寿命が短くなってしまうような事態を抑えることができる。 According to the first embodiment, the charging device 1 includes the battery 10, the power conversion circuit 11, the motor 12, the auxiliary power supply 13, and the control circuit 14. The battery 10 has a layered rock salt type crystal structure, and has a transition metal six-coordinated local structure, and has a chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (here, 0. 0. 50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 is at least Mn, Ge, Sn, Sb A lithium transition metal oxide represented by 1), which reversibly changes the range of 0 ≦ x ≦ 2 by occluding and releasing lithium ions, is included as a positive electrode active material. As a result, the resistance when the remaining capacity is less than the characteristic change threshold is larger than the resistance when the characteristic change threshold or more, and the resistance when the remaining capacity is 0% is twice or more the resistance when the characteristic change threshold or more Will have the following characteristics. The control circuit 14 controls the power conversion circuit 11, converts the three-phase alternating current generated by the motor 12 in the regenerative state into direct current, supplies power to the battery 10, and charges the battery 10. Then, when the remaining capacity of battery 10 is less than the characteristic change threshold, control circuit 14 controls auxiliary power supply 13 to supply power from auxiliary power supply 13 to battery 10, and the remaining capacity of battery 10 is at least the characteristic change threshold. The battery 10 is charged until That is, as the charging method, when the remaining capacity of the battery 10 is less than the characteristic change threshold value, the motor 12 in the regenerative state and the power conversion circuit 11 controlled by the control circuit 14 are not used. Power is supplied to the battery 10 by supplying a precharging current smaller than the normal charging current from the auxiliary power supply 13 controlled by the control circuit 14. Then, the battery 10 is charged until the remaining capacity of the battery 10 reaches at least the characteristic change threshold value. Therefore, in the state where the remaining capacity of the battery 10 is less than the characteristic change threshold value, that is, in the state where the resistance is large, a situation where power is supplied to the battery 10 from the motor 12 in the regenerative state via the power conversion circuit 11 is eliminated. be able to. Therefore, power can be supplied to the battery 10 from the motor 12 in the regenerative state without reducing the current via the power conversion circuit 11. Moreover, when the remaining capacity of the battery 10 is less than the characteristic change threshold, the battery 10 is charged by supplying a pre-charging current smaller than the normal charging current. Therefore, even if the remaining capacity falls below the characteristic change threshold and the resistance increases, the temperature rise of the battery 10 and the increase in power consumption can be suppressed. Therefore, the situation where the life of the battery 10 becomes short can be suppressed.

補助電源13は、電池10の残存容量が特性変化閾値未満の場合、予備充電することによって電池10を充電する。第1実施形態によれば、電池10の特性変化閾値は2%であり、非常に小さい。そのため、電池10の残存容量が2%未満になるまで予備充電する必要がない。従って、予備充電から予備充電までの間隔を長くすることができる。つまり、予備充電の回数を抑えることができる。その結果、頻繁に予備充電するような事態を抑えることができる。   The auxiliary power supply 13 charges the battery 10 by precharging when the remaining capacity of the battery 10 is less than the characteristic change threshold value. According to the first embodiment, the characteristic change threshold of the battery 10 is 2%, which is very small. Therefore, it is not necessary to pre-charge the battery 10 until the remaining capacity is less than 2%. Therefore, the interval from the precharging to the precharging can be extended. That is, the number of times of preliminary charging can be suppressed. As a result, frequent precharging can be suppressed.

第1実施形態によれば、補助電源13は、充放電可能である。そして、残存容量が補助電源充電閾値未満の場合、電力が供給され充電される。そのため、予備充電するための充分な電力を確実に確保することができる。従って、必要に応じて電池10を確実に予備充電することができる。   According to the first embodiment, the auxiliary power supply 13 can be charged and discharged. When the remaining capacity is less than the auxiliary power supply charging threshold, power is supplied and charged. Therefore, sufficient power for precharging can be reliably ensured. Therefore, the battery 10 can be reliably precharged as needed.

第1実施形態によれば、補助電源13の残存容量が補助電源充電閾値未満の場合、制御回路14は、電力変換回路11を制御し、回生状態になったモータ12が発生する3相交流を直流に変換して補助電源13に電力を供給し、補助電源13を充電する。そのため、補助電源13を確実に充電することができる。しかも、回生状態になったモータ12が発生する電力を利用して補助電源13を充電する。そのため、充電装置1の効率を向上させることができる。   According to the first embodiment, when the remaining capacity of the auxiliary power supply 13 is less than the auxiliary power supply charging threshold, the control circuit 14 controls the power conversion circuit 11 to generate the three-phase alternating current generated by the motor 12 in the regenerative state. It converts into direct current and supplies power to the auxiliary power supply 13 to charge the auxiliary power supply 13. Therefore, the auxiliary power supply 13 can be charged reliably. Moreover, the auxiliary power supply 13 is charged using the power generated by the motor 12 in the regenerative state. Therefore, the efficiency of the charging device 1 can be improved.

第1実施形態によれば、補助電源13は、鉛蓄電池、リチウムイオン電池、ニッケル水素電池及びキャパシタの少なくともいずれかを有している。そのため、予備充電するための電力を確実に確保しておくことができる。   According to the first embodiment, the auxiliary power supply 13 includes at least one of a lead storage battery, a lithium ion battery, a nickel hydrogen battery, and a capacitor. Therefore, the power for precharging can be ensured.

第1実施形態によれば、補助電源13は、電池10より抵抗が小さくなるように設定されている。そのため、予備充電する際、及び、補助電源13を充電する際の補助電源13の損失を抑えることができる。   According to the first embodiment, the auxiliary power supply 13 is set to have a smaller resistance than the battery 10. Therefore, it is possible to suppress the loss of the auxiliary power supply 13 at the time of precharging and at the time of charging the auxiliary power supply 13.

なお、第1実施形態では、電池10の特性変化閾値が2%である例を挙げているが、これに限られるものではない。電池10の特性変化閾値は、10%以下の所定値であってもよいし、15%以下の所定値であってもよい。20%以下の所定値であれば、実用の範囲内において、頻繁に予備充電するような事態を抑えることができる。   In the first embodiment, an example in which the characteristic change threshold of the battery 10 is 2% is given, but the present invention is not limited to this. The characteristic change threshold value of the battery 10 may be a predetermined value of 10% or less, or may be a predetermined value of 15% or less. If it is a predetermined value of 20% or less, frequent precharging can be suppressed within the practical range.

(第2実施形態)
次に、第2実施形態の充電装置について説明する。第2実施形態の充電装置は、第1実施形態の充電装置が充放電可能な補助電源からリチウムイオン電池に電力を供給するのに対して、商用電源と電力変換回路とを備えた補助電源からリチウムイオン電池に電力を供給するようにしたものである。そのため、第1実施形態の充電装置と異なり、補助電源に、充電することはできない。
Second Embodiment
Next, the charging device of the second embodiment will be described. While the charging apparatus of the second embodiment supplies power to the lithium ion battery from the chargeable and dischargeable auxiliary power supply of the first embodiment, the charging apparatus of the second embodiment uses an auxiliary power supply including a commercial power supply and a power conversion circuit. It is intended to supply power to a lithium ion battery. Therefore, unlike the charging device of the first embodiment, the auxiliary power supply can not be charged.

まず、図10を参照して第2実施形態の充電装置の構成について説明する。   First, the configuration of the charging apparatus of the second embodiment will be described with reference to FIG.

図10に示すように、充電装置2は、電池20と、電力変換回路21と、モータ22と、補助電源23と、制御回路24とを備えている。   As shown in FIG. 10, the charging device 2 includes a battery 20, a power conversion circuit 21, a motor 22, an auxiliary power supply 23, and a control circuit 24.

電池20、電力変換回路21及びモータ22は、第1実施形態の電池10、電力変換回路11及びモータ12と同一のものであり、同様に構成されている。   The battery 20, the power conversion circuit 21, and the motor 22 are the same as the battery 10, the power conversion circuit 11, and the motor 12 of the first embodiment, and are configured in the same manner.

補助電源23は、制御回路24によって制御され、電池20に電力を供給して電池20を充電する電源である。第1実施形態の補助電源13と異なり、充電することはできない。電池20に電力を供給する機能のみを有するものである。補助電源23は、電池20に電力供給できるように、電池20より抵抗が小さく設定されている。補助電源23は、商用電源230と、電力変換回路231とを備えている。   The auxiliary power supply 23 is controlled by the control circuit 24 and supplies power to the battery 20 to charge the battery 20. Unlike the auxiliary power supply 13 of the first embodiment, it can not be charged. It has only the function of supplying power to the battery 20. The auxiliary power supply 23 is set to have a smaller resistance than the battery 20 so that power can be supplied to the battery 20. The auxiliary power supply 23 includes a commercial power supply 230 and a power conversion circuit 231.

商用電源230は、家屋等に設けられている交流を出力する電源である。電力変換回路231は、制御回路24によって制御され、商用電源230から供給される交流を直流に変換して電池20に供給し、電池20を充電する回路である。電力変換回路231は、商用電源230及び電池20にそれぞれ接続されている。また、制御回路24に接続されている。   The commercial power source 230 is a power source that outputs alternating current provided in a house or the like. The power conversion circuit 231 is a circuit which is controlled by the control circuit 24 and converts alternating current supplied from the commercial power source 230 into direct current and supplies the direct current to the battery 20 to charge the battery 20. The power conversion circuit 231 is connected to the commercial power source 230 and the battery 20 respectively. It is also connected to the control circuit 24.

制御回路24は、電池20から得られる情報に基づいて電池20の残存容量を推定するとともに、推定した電池20の残存容量に基づいて電力変換回路21及び補助電源23を制御する回路である。モータ22に車両を駆動するための駆動力を発生させる場合、制御回路24は、電力変換回路21を制御し、電池20から供給される直流を3相交流に変換してモータ22に供給する。   The control circuit 24 is a circuit that estimates the remaining capacity of the battery 20 based on the information obtained from the battery 20 and controls the power conversion circuit 21 and the auxiliary power supply 23 based on the estimated remaining capacity of the battery 20. When the driving force for driving the vehicle is generated in the motor 22, the control circuit 24 controls the power conversion circuit 21 to convert direct current supplied from the battery 20 into three-phase alternating current and supply it to the motor 22.

電池20を充電する場合において、電池20の残存容量が特性変化閾値以上の場合、制御回路24は、電力変換回路21を制御し、回生状態になったモータ22が発生する3相交流を直流に変換して電池20に電力を供給し、電池20を充電する。その際、通常充電電流を流すことによって電池20に電力を供給する。通常充電電流は、回生状態において電池20に供給することができる電流値に応じて決まり、電池20の残存容量が特性変化閾値以上における電池20の抵抗に基づいて設定されている。これに対して、電池20の残存容量が特性変化閾値未満の場合、制御回路24は、電力変換回路231を制御し、商用電源230から供給される交流を直流に変換して電池20に電力を供給し、電池20の残存容量が少なくとも特性変化閾値になるまで電池20を充電する。その際、通常充電電流より小さい予備充電電流を流すことによって電池20に電力を供給する。予備充電電流は、電池20残存容量が特性変化閾値未満の場合における電池20の抵抗に基づいて設定されている。予備充電が実施された後、補助電源23から通常充電電流で充電を継続してもよい。予備充電が実施された後、補助電源23から通常充電電流で充電を継続してもよい。   When charging the battery 20, when the remaining capacity of the battery 20 is equal to or greater than the characteristic change threshold, the control circuit 24 controls the power conversion circuit 21 to convert the three-phase alternating current generated by the motor 22 in the regenerative state into direct current. It converts and supplies power to the battery 20 to charge the battery 20. At this time, power is normally supplied to the battery 20 by supplying a charging current. The normal charging current is determined according to the current value that can be supplied to the battery 20 in the regenerative state, and the remaining capacity of the battery 20 is set based on the resistance of the battery 20 at or above the characteristic change threshold. On the other hand, when the remaining capacity of the battery 20 is less than the characteristic change threshold, the control circuit 24 controls the power conversion circuit 231 to convert alternating current supplied from the commercial power source 230 into direct current to supply power to the battery 20. The battery 20 is supplied and charged until the remaining capacity of the battery 20 reaches at least a characteristic change threshold. At this time, power is supplied to the battery 20 by flowing a pre-charging current smaller than the normal charging current. The preliminary charging current is set based on the resistance of the battery 20 when the battery 20 residual capacity is less than the characteristic change threshold. After preliminary charging has been performed, charging may be continued from the auxiliary power supply 23 with normal charging current. After preliminary charging has been performed, charging may be continued from the auxiliary power supply 23 with normal charging current.

次に、図10〜図13を参照して第2実施形態の充電装置の動作について説明する。   Next, the operation of the charging device of the second embodiment will be described with reference to FIGS. 10 to 13.

図11に示すように、ステップS200において、図10に示す制御回路24は、電池20から得られる情報に基づいて電池20の残存容量を推定する。そして、ステップS201において、推定した電池20の残存容量が特性変化閾値以上であるか否かを判定する。   As shown in FIG. 11, in step S200, the control circuit 24 shown in FIG. 10 estimates the remaining capacity of the battery 20 based on the information obtained from the battery 20. Then, in step S201, it is determined whether the estimated remaining capacity of the battery 20 is equal to or greater than the characteristic change threshold value.

推定した電池20の残存容量が特性変化閾値未満であると判定した場合、特性変化閾値以上の場合に比べ、電池20の抵抗が大きくなっている。そのため、電池20の残存容量を特性変化閾値以上にして、抵抗を小さくする必要がある。そこで、ステップS202において、制御回路24は、電池20を予備充電する。具体的には、電力変換回路231を制御し、商用電源230から供給される交流を直流に変換して電池20に電力を供給し電池20を充電する。より具体的には、電力変換回路231を制御し、図12に示すように、電力変換回路231から電池20に通常充電電流より小さい予備充電電流を流すことによって電池20に電力を供給し、電池20を充電する。これにより、充電時における電池20の温度上昇や消費電力の増加を抑えることができる。そして、図11に示すように、推定した電池20の残存容量が特性変化閾値以上になるまで電池20の予備充電が繰り返される。つまり、電池20の残存容量が少なくとも特性変化閾値になるまで電池20の予備充電が繰り返される。これにより、電池20の抵抗を小さくすることができる。   When it is determined that the estimated remaining capacity of the battery 20 is less than the characteristic change threshold value, the resistance of the battery 20 is larger than in the case where it is equal to or higher than the characteristic change threshold value. Therefore, it is necessary to reduce the resistance by making the remaining capacity of the battery 20 equal to or higher than the characteristic change threshold value. Therefore, in step S202, the control circuit 24 precharges the battery 20. Specifically, the power conversion circuit 231 is controlled to convert alternating current supplied from the commercial power source 230 into direct current, and supply power to the battery 20 to charge the battery 20. More specifically, power conversion circuit 231 is controlled, and power is supplied to battery 20 by supplying a pre-charging current smaller than the normal charging current from power conversion circuit 231 to battery 20 as shown in FIG. Charge 20. As a result, it is possible to suppress the temperature rise of the battery 20 and the increase in power consumption at the time of charging. Then, as shown in FIG. 11, the preliminary charging of the battery 20 is repeated until the estimated remaining capacity of the battery 20 becomes equal to or greater than the characteristic change threshold value. That is, the precharging of the battery 20 is repeated until the remaining capacity of the battery 20 reaches at least the characteristic change threshold value. Thereby, the resistance of the battery 20 can be reduced.

一方、推定した電池20の残存容量が特性変化閾値以上であると判定した場合、電池20の抵抗は小さい。そのため、前述したような電池20を予備充電する必要はない。そこで、ステップS203において、制御回路24は、電池20を通常充電する。具体的には、任意のタイミングで発生する回生状態のときに、電力変換回路21を制御し、回生状態になったモータ22が発生する3相交流を直流に変換して電池20に電力を供給し電池20を充電する。より具体的には、電力変換回路21を制御し、図13に示すように、電力変換回路21から電池20に通常充電電流を流すことによって電池20に電力を供給し電池20を充電する。また、補助電源23から予備充電電流で特性閾値以上に充電した後、補助電源23から通常充電電流で充電を継続してもよい。   On the other hand, when it is determined that the estimated remaining capacity of the battery 20 is equal to or greater than the characteristic change threshold value, the resistance of the battery 20 is small. Therefore, it is not necessary to pre-charge the battery 20 as described above. Therefore, in step S203, the control circuit 24 normally charges the battery 20. Specifically, when the regeneration state occurs at an arbitrary timing, the power conversion circuit 21 is controlled to convert the three-phase alternating current generated by the motor 22 in the regeneration state into a direct current to supply power to the battery 20 The battery 20 is charged. More specifically, the power conversion circuit 21 is controlled, and as shown in FIG. 13, power is supplied to the battery 20 by charging a normal charging current from the power conversion circuit 21 to the battery 20 to charge the battery 20. Further, after charging from the auxiliary power supply 23 to the characteristic threshold or more with the preliminary charging current, charging may be continued from the auxiliary power supply 23 with the normal charging current.

次に、第2実施形態の充電装置の効果について説明する。   Next, the effect of the charging device of the second embodiment will be described.

第2実施形態によれば、充電装置2は、電池20と、電力変換回路21と、モータ22と、補助電源23と、制御回路24とを備えている。電池20は、層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含んでいる。その結果、残存容量が特性変化閾値未満の場合における抵抗が特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が特性変化閾値以上の場合における抵抗の2倍以上になる特性を有することになる。制御回路24は、電力変換回路21を制御し、回生状態になったモータ22が発生する3相交流を直流に変換して電池20に電力を供給し電池20を充電する。そして、制御回路24は、電池20の残存容量が特性変化閾値未満の場合、電力変換回路231を制御して商用電源230から電力変換回路231を介して電池20に電力を供給し、電池20の残存容量が少なくとも特性変化閾値になるまで電池20を充電する。つまり、充電方法としては、電池20の残存容量が特性変化閾値未満の場合、回生状態になったモータ22、及び、制御回路24によって制御される電力変換回路21ではなく、それらとは別の、制御回路24によって制御される電力変換回路231を介して商用電源230から通常充電電流より小さい予備充電電流を流すことによって電池20に電力を供給する。そして、電池20の残存容量が少なくとも特性変化閾値になるまで電池20を充電する。そのため、電池20の残存容量が特性変化閾値未満の状態、つまり、抵抗が大きい状態で、回生状態になったモータ22から電力変換回路21を介して電池20に電力を供給するような事態をなくすことができる。従って、電流を小さくすることなく回生状態になったモータ22から電力変換回路21を介して電池20に電力を供給することができる。しかも、電池20の残存容量が特性変化閾値未満の場合、通常充電電流より小さい予備充電電流を流すことによって電池20を充電する。そのため、残存容量が特性変化閾値未満になり、抵抗が大きくなっても、電池20の温度上昇や消費電力の増加を抑えることができる。従って、電池20の寿命が短くなってしまうような事態を抑えることができる。 According to the second embodiment, the charging device 2 includes the battery 20, the power conversion circuit 21, the motor 22, the auxiliary power supply 23, and the control circuit 24. The battery 20 has a layered rock salt type crystal structure, and has a transition metal six-coordinated local structure, and has a chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (here, 0. 0. 50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 is at least Mn, Ge, Sn, Sb A lithium transition metal oxide represented by 1), which reversibly changes the range of 0 ≦ x ≦ 2 by occluding and releasing lithium ions, is included as a positive electrode active material. As a result, the resistance when the remaining capacity is less than the characteristic change threshold is larger than the resistance when the characteristic change threshold or more, and the resistance when the remaining capacity is 0% is twice or more the resistance when the characteristic change threshold or more Will have the following characteristics. The control circuit 24 controls the power conversion circuit 21, converts the three-phase alternating current generated by the motor 22 in the regenerative state into direct current, supplies power to the battery 20, and charges the battery 20. When the remaining capacity of the battery 20 is less than the characteristic change threshold, the control circuit 24 controls the power conversion circuit 231 to supply power from the commercial power supply 230 to the battery 20 via the power conversion circuit 231. The battery 20 is charged until the remaining capacity reaches at least the characteristic change threshold. That is, as the charging method, when the remaining capacity of the battery 20 is less than the characteristic change threshold, the motor 22 in the regenerative state and the power conversion circuit 21 controlled by the control circuit 24 are not used. Power is supplied to the battery 20 by supplying a pre-charging current smaller than the normal charging current from the commercial power source 230 through the power conversion circuit 231 controlled by the control circuit 24. Then, the battery 20 is charged until the remaining capacity of the battery 20 reaches at least the characteristic change threshold value. Therefore, in the state where the remaining capacity of the battery 20 is less than the characteristic change threshold value, that is, in the state where the resistance is large, a situation where power is supplied to the battery 20 from the motor 22 in the regenerative state via the power conversion circuit 21 is eliminated. be able to. Therefore, power can be supplied to the battery 20 from the motor 22 in the regenerative state without reducing the current via the power conversion circuit 21. Moreover, when the remaining capacity of battery 20 is less than the characteristic change threshold, battery 20 is charged by supplying a pre-charging current smaller than the normal charging current. Therefore, even if the remaining capacity falls below the characteristic change threshold and the resistance increases, the temperature rise of the battery 20 and the increase in power consumption can be suppressed. Therefore, the situation where the life of the battery 20 becomes short can be suppressed.

第2実施形態によれば、第1実施形態と同一構成を有することにより、その同一構成に対応した第1実施形態と同様の効果を得ることができる。   According to the second embodiment, by having the same configuration as that of the first embodiment, the same effect as that of the first embodiment corresponding to the same configuration can be obtained.

なお、第2実施形態では、補助電源23が、商用電源230と、電力変換回路231とを備えている例を挙げているが、これに限られるものではない。補助電源23は、オルタネータを有していてもよい。   In the second embodiment, the auxiliary power supply 23 includes the commercial power supply 230 and the power conversion circuit 231. However, the present invention is not limited to this. The auxiliary power supply 23 may have an alternator.

1・・・充電装置、10・・・電池、100・・・リチウムイオン電池、100a・・・正極、100g・・・正極活物質層、11・・・電力変換回路、12・・・モータ、13・・・電源、14・・・制御回路   DESCRIPTION OF SYMBOLS 1 ... charge apparatus, 10 ... battery, 100 ... lithium ion battery, 100a ... positive electrode, 100 g ... positive electrode active material layer, 11 ... power conversion circuit, 12 ... motor, 13 · · · power supply, 14 · · · control circuit

Claims (8)

層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含み、残存容量が特性変化閾値未満の場合における抵抗が前記特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が前記特性変化閾値以上の場合における抵抗の2倍以上になる特性を有する電池(10、20)と、
通常充電電流を流すことによって前記電池に電力を供給し前記電池を充電する主電源(11、12、21、22)と、
前記通常充電電流より小さい予備充電電流を流すことによって前記電池に電力を供給し前記電池を充電する、鉛蓄電池又は交流を出力する商用電源(230)を備えた補助電源(13、23)と、
前記電池の残存容量が前記特性変化閾値未満の場合、前記補助電源を制御して前記補助電源から前記電池に電力を供給し、前記電池の残存容量が少なくとも前記特性変化閾値になるまで前記電池を充電する制御部(14、24)と、
を有する充電装置。
It has a layered rock salt type crystal structure, a transition metal has a six-coordinated local structure, and the chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (where, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 is at least one of Mn, Ge, Sn and Sb, lithium ion Containing a lithium transition metal oxide represented by 0) xx 可逆 2 reversibly by occluding and releasing) as a positive electrode active material, and the remaining capacity is less than the characteristic change threshold value. A battery (10, 20) having a characteristic in which the resistance in the case where the remaining capacity is 0% is larger than the resistance in the case where the characteristic change threshold is equal to or more than twice the resistance in the case where the characteristic change threshold is equal to or more ,
A main power supply (11, 12, 21, 22) for supplying power to the battery by charging a normal charging current to charge the battery;
An auxiliary power supply (13, 23) comprising a lead storage battery or a commercial power supply (230) for outputting alternating current, which supplies power to the battery to charge the battery by supplying a precharging current smaller than the normal charging current;
When the remaining capacity of the battery is less than the characteristic change threshold, the auxiliary power supply is controlled to supply power from the auxiliary power to the battery, and the battery is operated until the remaining capacity of the battery reaches at least the characteristic change threshold. A control unit (14, 24) to charge;
With a charging device.
前記電池は、前記特性変化閾値が20%以下の所定値である請求項1に記載の充電装置。   The charging device according to claim 1, wherein the characteristic change threshold of the battery is a predetermined value of 20% or less. 前記鉛蓄電池を備えた前記補助電源(13)は、充放電可能であり、残存容量が補助電源充電閾値未満の場合、電力が供給され充電される請求項1又は2に記載の充電装置。 The charging device according to claim 1 or 2, wherein the auxiliary power supply ( 13 ) provided with the lead storage battery is chargeable and dischargeable, and power is supplied and charged when the remaining capacity is less than an auxiliary power supply charging threshold. 前記主電源(11、12)は、前記補助電源の残存容量が前記補助電源充電閾値未満の場合、前記補助電源に電力を供給し前記補助電源を充電する請求項3に記載の充電装置。   The charging device according to claim 3, wherein the main power supply (11, 12) supplies power to the auxiliary power supply to charge the auxiliary power supply when the remaining capacity of the auxiliary power supply is less than the auxiliary power supply charging threshold. 前記商用電源を備えた前記補助電源(23)は、前記商用電源から供給される交流を直流に変換して前記電池に電力を供給し、前記電池を充電する電力変換回路(231)を備えている請求項1又は2に記載の充電装置。 Wherein said auxiliary power supply with a commercial power supply (23), said converts the alternating current supplied to the DC from the commercial power source supplies power to the battery, and includes a power conversion circuit for charging (231) the battery The charging device according to claim 1 or 2. 前記補助電源は、前記電池より抵抗が小さい請求項1〜5のいずれか1項に記載の充電装置。 The charging device according to any one of claims 1 to 5 , wherein the auxiliary power supply has a smaller resistance than the battery. 層状岩塩型結晶構造を有しており、遷移金属が6配位の局所構造を備え、化学式Li2−xNiα β γ 4−ε(ここで、0.50<α≦1.33、0≦β<0.67、0≦γ≦1.33、Mは、Co、Al、Gaの少なくとも一種、Mは、Mn、Ge、Sn、Sbの少なくとも一種、リチウムイオンを吸蔵、放出することにより、0≦x≦2の範囲を可逆的に変化するもの)で表されるリチウム遷移金属酸化物を正極活物質として含み、残存容量が特性変化閾値未満の場合における抵抗が前記特性変化閾値以上の場合における抵抗より大きく、かつ、残存容量が0%の場合における抵抗が前記特性変化閾値以上の場合における抵抗の2倍以上になる特性を有し、主電源から通常充電電流を流すことによって電力が供給され充電される電池の充電方法であって、
前記電池の残存容量が前記特性変化閾値未満の場合、鉛蓄電池又は交流を出力する商用電源(230)を備えた、前記主電源とは別の補助電源から前記通常充電電流より小さい予備充電電流を流すことによって前記電池に電力を供給し、前記電池の残存容量が少なくとも前記特性変化閾値になるまで前記電池を充電する充電方法。
It has a layered rock salt type crystal structure, a transition metal has a six-coordinated local structure, and the chemical formula Li 2-x Ni α M 1 β M 2 γ O 4-ε (where, 0.50 <α ≦ 1.33, 0 ≦ β <0.67, 0 ≦ γ ≦ 1.33, M 1 is at least one of Co, Al and Ga, M 2 is at least one of Mn, Ge, Sn and Sb, lithium ion Containing a lithium transition metal oxide represented by 0) xx 可逆 2 reversibly by occluding and releasing) as a positive electrode active material, and the remaining capacity is less than the characteristic change threshold value. Is larger than the resistance at the characteristic change threshold and the resistance at the remaining capacity is 0% is twice or more than the resistance at the characteristic change Power is supplied by passing current A method of charging a battery to be charged,
When the remaining capacity of the battery is less than the characteristic change threshold value, a preliminary charging current smaller than the normal charging current is supplied from an auxiliary power supply provided with a lead storage battery or a commercial power supply (230) outputting AC. A charging method of supplying power to the battery by flowing, and charging the battery until the remaining capacity of the battery reaches at least the characteristic change threshold.
前記補助電源(23)は、前記商用電源から供給される交流を直流に変換して前記電池に電力を供給し前記電池を充電する請求項に記載の充電方法。 The auxiliary power supply (23), the charging method according to claim 7 which converts the alternating current supplied to the DC supplies power to the battery to charge the battery from the commercial power source.
JP2015196866A 2015-10-02 2015-10-02 Charging device and charging method Active JP6520624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015196866A JP6520624B2 (en) 2015-10-02 2015-10-02 Charging device and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015196866A JP6520624B2 (en) 2015-10-02 2015-10-02 Charging device and charging method

Publications (2)

Publication Number Publication Date
JP2017069160A JP2017069160A (en) 2017-04-06
JP6520624B2 true JP6520624B2 (en) 2019-05-29

Family

ID=58492828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015196866A Active JP6520624B2 (en) 2015-10-02 2015-10-02 Charging device and charging method

Country Status (1)

Country Link
JP (1) JP6520624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10276868B2 (en) 2015-12-11 2019-04-30 Denso Corporation Non-aqueous electrolyte rechargeable battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182210A (en) * 1995-12-28 1997-07-11 Nissan Motor Co Ltd Electric vehicle driving motor and method for controlling the electric vehicle driving motor
JPH10229649A (en) * 1997-02-14 1998-08-25 Wako Technical Kk Battery auxiliary charger and auxiliary power supply unit
JP3558515B2 (en) * 1998-01-19 2004-08-25 松下電器産業株式会社 Charging method for non-aqueous secondary batteries
JP3838478B2 (en) * 2000-05-11 2006-10-25 スズキ株式会社 Vehicle power generation control device
US7378819B2 (en) * 2005-01-13 2008-05-27 Dell Products Lp Systems and methods for regulating pulsed pre-charge current in a battery system
JP4827613B2 (en) * 2006-05-24 2011-11-30 株式会社ソニー・コンピュータエンタテインメント TERMINAL DEVICE, BATTERY CHARGE CONTROL METHOD, AND GAME SYSTEM
US20080067972A1 (en) * 2006-09-15 2008-03-20 Norio Takami Power supply system and motor car
JP5085235B2 (en) * 2006-09-15 2012-11-28 株式会社東芝 Power supply system and electric vehicle
US8626369B2 (en) * 2010-08-10 2014-01-07 Tesla Motors, Inc. Charge rate modulation of metal-air cells as a function of ambient oxygen concentration
WO2012066675A1 (en) * 2010-11-19 2012-05-24 トヨタ自動車株式会社 Vehicle charging device
JP5810320B2 (en) * 2011-09-30 2015-11-11 パナソニックIpマネジメント株式会社 Lithium-ion battery charging method and battery-equipped device
JP6113523B2 (en) * 2013-02-20 2017-04-12 株式会社東芝 Secondary battery device control method and secondary battery device
JP6406049B2 (en) * 2014-03-26 2018-10-17 株式会社デンソー Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2017069160A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP2020123571A (en) Hybrid electric electrochemical cell
JP4492683B2 (en) Battery system
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
US10096870B2 (en) Non-aqueous electrolyte secondary battery
JP2010539635A (en) Vehicle hybrid energy system
WO2014157414A1 (en) Non-aqueous electrolytic secondary battery
JP2014086228A (en) Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
JP5326679B2 (en) Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle
JP4714229B2 (en) Lithium secondary battery
JP2014517480A (en) Composite positive electrode active material with improved output characteristics, and secondary battery, battery module and battery pack including the same
JP2014120404A (en) Secondary battery
KR100890158B1 (en) High Power Secondary Battery System Comprising Asymmetric Charged Cells
CN106170883B (en) Platypelloid type secondary cell
JP6618183B2 (en) Secondary battery, charging device and discharging device
JP6520624B2 (en) Charging device and charging method
JP2013239374A (en) Lithium ion secondary battery and method for manufacturing the same
JP2013037863A (en) Battery pack
JP2019067669A (en) Battery pack
JP2008251497A (en) Lithium ion secondary battery before initial charging, lithium ion secondary battery, vehicle, and battery-mounting apparatus
WO2016080222A1 (en) On-vehicle battery, and on-vehicle power supply device
JP2017107808A (en) Lithium ion secondary battery
JP2007166698A (en) Charging type power unit
JP2013143353A (en) Lithium ion secondary battery
JP2019145449A (en) Capacity recovery method of nonaqueous electrolyte secondary battery
JP2018529199A (en) Active material for positive electrode of battery cell, positive electrode, and battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250