JP6520430B2 - Radiation detector - Google Patents

Radiation detector Download PDF

Info

Publication number
JP6520430B2
JP6520430B2 JP2015116648A JP2015116648A JP6520430B2 JP 6520430 B2 JP6520430 B2 JP 6520430B2 JP 2015116648 A JP2015116648 A JP 2015116648A JP 2015116648 A JP2015116648 A JP 2015116648A JP 6520430 B2 JP6520430 B2 JP 6520430B2
Authority
JP
Japan
Prior art keywords
energy
radiation
sound
sound output
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015116648A
Other languages
Japanese (ja)
Other versions
JP2017003388A (en
Inventor
剛 酒巻
剛 酒巻
直道 森本
直道 森本
智也 布宮
智也 布宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015116648A priority Critical patent/JP6520430B2/en
Publication of JP2017003388A publication Critical patent/JP2017003388A/en
Application granted granted Critical
Publication of JP6520430B2 publication Critical patent/JP6520430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、線源から放射された放射線エネルギーを検出する放射線検出装置に関する。   The present invention relates to a radiation detection apparatus for detecting radiation energy emitted from a radiation source.

放射線検出装置として、ブザー音によって周囲に放射線の存在を知らせるものが知られている。このような放射線検出装置では、放射線のエネルギースペクトルを可視化してスペクトルメータ等で表示して、放射線のエネルギー情報を作業者に把握させている。しかしながら、スペクトル解析の専門知識がなければ、放射線のエネルギースペクトルからは放射線のエネルギー情報を把握することが難しい。また、作業者はスペクトルメータの表示画面を目視しながら検出しなければならず、検出作業が煩雑になると共に、特に視力が弱い作業者には負担になっていた。   As a radiation detection device, one that informs the surrounding of the presence of radiation by a buzzer sound is known. In such a radiation detection apparatus, the energy spectrum of radiation is visualized and displayed by a spectrum meter or the like, and the operator is made to grasp the energy information of the radiation. However, without expertise in spectrum analysis, it is difficult to grasp the energy information of radiation from the energy spectrum of radiation. In addition, the operator must detect while viewing the display screen of the spectrum meter, which complicates the detection operation and is particularly burdensome for the operator with weak vision.

また、放射線のエネルギー情報を可視化する代わりに可聴化して作業者に把握させる放射線検出装置も知られている(例えば、特許文献1参照)。特許文献1に記載の放射線検出装置では、放射線のエネルギーの光電ピークとなるエネルギー値が検出され、このエネルギー値に応じた周波数の音がスピーカーから出力される。作業者は、スピーカーから出力される音から放射線のエネルギー情報を把握するため、スペクトル解析のような専門知識が不要となる。さらに、放射線検出装置の表示画面を目視せずに放射線を検出できるため、検出作業を簡略化でき、特に視力が弱い作業者の負担が軽減される。   There is also known a radiation detection apparatus which makes the operator understand the energy information of the radiation instead of visualizing the energy information (see, for example, Patent Document 1). In the radiation detection device described in Patent Document 1, an energy value that is a photoelectric peak of the energy of radiation is detected, and a sound having a frequency according to the energy value is output from the speaker. Workers do not need specialized knowledge such as spectrum analysis because they grasp the energy information of radiation from the sound output from the speaker. Furthermore, since the radiation can be detected without looking at the display screen of the radiation detection apparatus, the detection operation can be simplified, and the burden on the worker with particularly weak visual acuity can be reduced.

特開2012−88280号公報JP 2012-88280 A

ところで、特許文献1に記載の放射線検出装置で検出される放射線のエネルギーは、同じ空間内であっても、光電ピークをとるエネルギー値が小刻みに変動している。エネルギー値の変動に追従してスピーカーから出力される音の周波数が変化するため、音の変化が慌ただしく作業者に聞き取り難くなることが危惧される。また、エネルギー値に応じて音の周波数が変化しても、作業者が音の違いを正確に聞き分けることができない恐れがある。このため、上記の放射線検出装置では、放射線のエネルギー値を可聴化しても、放射線のエネルギー情報を作業者に適切に把握させることが困難となっていた。   By the way, even in the same space, the energy value of the radiation detected by the radiation detection device described in Patent Document 1 fluctuates little by little at the energy value at which the photoelectric peak is taken. Since the frequency of the sound output from the speaker changes in accordance with the change in the energy value, it is feared that the change in the sound will be slow and it will be difficult for the operator to hear. In addition, even if the frequency of the sound changes according to the energy value, there is a possibility that the operator can not correctly distinguish the difference in the sound. For this reason, in the above-described radiation detection apparatus, even if the energy value of the radiation is made audible, it is difficult for the worker to properly grasp the energy information of the radiation.

本発明はかかる点に鑑みてなされたものであり、放射線のエネルギー情報を作業者の聴覚で適切に把握させることができる放射線検出装置を提供することを目的とする。   This invention is made in view of this point, and an object of this invention is to provide the radiation detection apparatus which can make the energy information of a radiation be appropriately grasped | ascertained by a worker's hearing.

本発明の放射線検出装置は、入射した放射線をパルスとして検出する検出部と、放射線のエネルギーに応じて前記パルスを複数のチャネルに弁別する弁別部と、前記チャネルより低分解能の複数のエネルギー領域に、前記弁別されたパルスを更に割り当てる割当部と、前記エネルギー領域ごとに異なる態様で音出力する音出力部と、前記各エネルギー領域へ割り当てられたパルスのうちパルス数が最も多いエネルギー領域以外のパルスを間引く間引部と、を備え、前記音出力部は、前記間引部によって間引かれなかったエネルギー領域のパルスに対し音出力することを特徴とする。
The radiation detection apparatus according to the present invention includes a detection unit that detects incident radiation as a pulse, a discrimination unit that discriminates the pulse into a plurality of channels according to the energy of the radiation, and a plurality of energy regions with lower resolution than the channel. the a discrimination has been further allocated allocation unit pulse, the sound output unit for sound output in a different manner for each energy region, the pulse number of pulses other than the highest-energy region of the pulse assigned to each energy region And the sound output unit outputs sound to the pulse of the energy region not thinned by the thinning unit .

この構成によれば、放射線のエネルギーに応じてパルスが複数のチャネルに弁別されるため、検出対象の放射線のパルスがバックグラウンド放射線のパルスに埋もれることがない。また、放射線のエネルギーが複数のエネルギー領域に大まかに分かれているため、同じエネルギー領域内であればエネルギーの異なるパルスであっても同一の態様で音出力される。したがって、放射線のエネルギーが小刻みに変動しても、音出力の態様が慌ただしく変化することがない。さらに、音出力の態様の数が、チャネル数よりも少ないエネルギー領域の数に制限されるため、作業者に音の違いを聞き分けさせることができる。よって、放射線のエネルギーに応じた音を作業者に適切に聞き取らせて、放射線検出装置の表示画面を目視させることなく作業者に放射線のエネルギー情報を把握させることができる。   According to this configuration, since the pulse is discriminated into a plurality of channels according to the energy of the radiation, the pulse of the radiation to be detected is not buried in the pulse of the background radiation. Further, since the energy of the radiation is roughly divided into a plurality of energy regions, even within the same energy region, sound is output in the same manner even if the pulses have different energies. Therefore, even if the energy of the radiation changes little by little, the aspect of the sound output does not change rapidly. Furthermore, since the number of sound output modes is limited to the number of energy regions smaller than the number of channels, it is possible to make workers distinguish the difference in sound. Therefore, it is possible to make the worker appropriately hear the sound according to the energy of the radiation, and to make the worker grasp the energy information of the radiation without making the display screen of the radiation detection apparatus look.

また本発明の上記放射線検出装置において、前記割当部は、少なくとも、予め決められた検出対象の核種の光電ピークの前後5%の範囲が同一のエネルギー領域に属するように該エネルギー領域を設定している。この構成によれば、検出対象の各種の光電ピークが前後5%の範囲で変動しても同じ態様で音出力されるため、音出力によって作業者に検出対象の核種を把握させることができる。   Further, in the above radiation detection apparatus of the present invention, the allocation unit sets the energy region such that at least a range of 5% before and after a photopeak of a predetermined detection target nuclide belongs to the same energy region. There is. According to this configuration, even if the various photoelectric peaks to be detected fluctuate in the range of 5% back and forth, the sound is output in the same manner, so that the operator can make the operator understand the nuclide to be detected.

また本発明の上記放射線検出装置において、前記割当部は、予め決められた検出対象の複数の核種の光電ピークがそれぞれ異なるエネルギー領域に属するように該エネルギー領域を設定している。この構成によれば、検出対象の複数の核種が異なる態様で音出力されるため、作業者に検出対象の核種を容易に区別させることができる。   Further, in the above-mentioned radiation detection apparatus of the present invention, the allocation unit sets the energy region such that photoelectric peaks of a plurality of nuclides to be detected in advance belong to different energy regions. According to this configuration, since the plurality of nuclides to be detected are sound-outputted in different modes, the operator can easily distinguish the nuclides to be detected.

また本発明の上記放射線検出装置において、前記エネルギー領域へ割り当てられたパルスを間引く間引部を更に備え、前記音出力部は、前記間引部によって間引かれたパルスに対し音出力しない。この構成によれば、パルスが間引かれることにより、不要な音出力を減らして、放射線のエネルギーに応じた音を作業者に聞き取らせ易くすることができる。   The radiation detection apparatus according to the present invention further includes a thinning unit that thins out the pulses assigned to the energy region, and the sound output unit does not output sound for the pulses thinned by the thinning unit. According to this configuration, the unnecessary sound output can be reduced by thinning the pulse, and the operator can easily hear the sound according to the energy of the radiation.

また本発明の上記放射線検出装置において、前記音出力部は、前記エネルギー領域ごとに異なる音階で音出力する。この構成によれば、音階によって作業者に放射能のエネルギーに関する情報を把握させることができる。   Further, in the above-mentioned radiation detection device of the present invention, the sound output unit outputs sound at a scale different for each of the energy regions. According to this configuration, it is possible to make the operator grasp information on the energy of the radiation by the scale.

また本発明の上記放射線検出装置において、前記音出力部は、前記エネルギー領域ごとに異なる音声で音出力する。この構成によれば、音声によって作業者に放射能のエネルギーに関する情報を把握させることができる。   Further, in the above-mentioned radiation detection device of the present invention, the sound output unit outputs sound with different sounds for each of the energy regions. According to this configuration, it is possible to make the operator grasp information on the energy of the radiation by voice.

本発明によれば、チャネルよりも低分解能の複数のエネルギー領域にパルスが割り当てられるため、放射線のエネルギーに応じた音を作業者に適切に聞き取らせることができる。よって、作業者に放射線検出装置の表示画面を目視させることなく放射線のエネルギー情報を把握させることができる。   According to the present invention, since the pulse is allocated to a plurality of energy regions of lower resolution than the channel, the operator can appropriately hear the sound according to the energy of the radiation. Therefore, the energy information of the radiation can be grasped without making the operator visually check the display screen of the radiation detection apparatus.

本実施の形態に係る放射線検出装置の斜視図である。It is a perspective view of the radiation detection instrument concerning this embodiment. 本実施の形態に係るエネルギー領域と音出力の態様の対応例を示す図である。It is a figure which shows the corresponding example of the aspect of the energy area | region and the sound output which concern on this Embodiment. 本実施の形態に係る放射線検出装置による音出力の一例を示す図である。It is a figure which shows an example of the sound output by the radiation detection apparatus which concerns on this Embodiment.

以下、添付図面を参照して本実施の形態に係る放射線検出装置について説明する。図1は、本実施の形態に係る放射線検出装置の模式図である。なお、放射線検出装置は、図1に示す構成に限定されない。図1に示す放射線検出装置は一例に過ぎず、適宜変更が可能である。   The radiation detection apparatus according to the present embodiment will be described below with reference to the attached drawings. FIG. 1 is a schematic view of a radiation detection apparatus according to the present embodiment. The radiation detection device is not limited to the configuration shown in FIG. The radiation detection apparatus shown in FIG. 1 is merely an example, and can be changed as appropriate.

図1に示すように、放射線検出装置1は、放射線のエネルギーを検出して、放射線のエネルギー情報を可聴化して作業者に把握させるように構成されている。放射線検出装置1には、放射線のエネルギーを検出する検出部11が設けられている。検出部11では、放射線の入射に応じてNaIやCaI等のシンチレータ21が発光し、光電子倍増管(Photo Multiplier)22でシンチレータの発光が光子数に応じた波高のパルスに変換される。なお、検出部11は、シンチレータ21の代わりに、半導体検出器等を用いて放射線のエネルギーを検出する構成でもよい。   As shown in FIG. 1, the radiation detection apparatus 1 is configured to detect the energy of radiation, make the energy information of the radiation audible and make the operator grasp. The radiation detection device 1 is provided with a detection unit 11 that detects the energy of the radiation. In the detection unit 11, the scintillator 21 such as NaI or CaI emits light in response to the incidence of radiation, and the photomultiplier tube (Photo Multiplier) 22 converts the emission of the scintillator into a pulse having a wave height corresponding to the number of photons. The detection unit 11 may be configured to detect the energy of radiation using a semiconductor detector or the like instead of the scintillator 21.

検出部11から出力されたパルスは、増幅部12で増幅された後、A/D変換部13でアナログデータからデジタルデータに変換される。A/D変換後のパルスは、弁別部14で波高分析されて複数のチャネルに弁別され、チャネル毎にエネルギーの検出頻度が求められる。波高分析後のデータは演算部15に入力されて、各チャネルのエネルギーの検出頻度から放射線のエネルギー強度が求められて表示部16で表示される。また、波高分析後のパルスは、割当部17、間引部18、音出力部19を経て、放射線のエネルギーに対応した音で可聴化されて作業者に対して音出力される。   The pulse output from the detection unit 11 is amplified by the amplification unit 12 and then converted from analog data to digital data by the A / D conversion unit 13. The pulse after A / D conversion is subjected to wave height analysis by the discriminator 14 and discriminated into a plurality of channels, and the energy detection frequency is determined for each channel. The data after the pulse height analysis is input to the calculation unit 15, and the energy intensity of the radiation is obtained from the detection frequency of the energy of each channel and displayed on the display unit 16. Also, the pulse after pulse height analysis passes through the assigning unit 17, the thinning unit 18, and the sound output unit 19, is audible with the sound corresponding to the energy of the radiation, and is output to the worker as a sound.

ところで、波高分析時のチャネル数を多くすると(例えば、1000ch以上)、放射線のエネルギーを高精度に検出可能であるが、演算処理の負担が大きくなる。一方で、波高分析時のチャネル数を少なくすると(例えば、100ch以下)、演算処理の負担が軽減されるが、十分な検出精度を得ることができない。本実施の形態では、光電ピークを検出可能な最低限の検出精度を維持しつつ、演算処理の負担を軽減可能なチャネル数(例えば、128ch)に設定されている。このチャネル数で弁別した波高分析後のパルスに基づいて、放射線のエネルギー強度が求められると共に放射線のエネルギー情報が音出力される。   By the way, if the number of channels at the time of wave height analysis is increased (for example, 1000 ch or more), the energy of radiation can be detected with high accuracy, but the load of arithmetic processing becomes large. On the other hand, if the number of channels at the time of wave height analysis is reduced (for example, 100 channels or less), the burden of arithmetic processing is reduced, but sufficient detection accuracy can not be obtained. In the present embodiment, the number of channels (for example, 128 ch) capable of reducing the load of the arithmetic processing is set while maintaining the minimum detection accuracy capable of detecting the photoelectric peak. Based on the pulse after pulse height analysis differentiated by the number of channels, the energy intensity of the radiation is determined and the energy information of the radiation is output as sound.

しかしながら、弁別後のパルスを個々のチャネルに対応した態様で音出力しても、作業者が音の違いを聞き分けることが難しい。そこで、弁別部14で弁別されたパルスを、割当部17にてチャネルよりも低分解能のエネルギー領域(例えば、16領域から24領域)に更に割り当て、間引部18にて適宜パルスを間引いた後、音出力部19にてエネルギー領域に応じた態様で音出力するようにしている。このように、音出力の態様の数を、作業者が音の違いを聞き分けることが可能な数に制限して、放射線のエネルギー情報を作業者に直感的に把握させている。   However, even if the post-discrimination pulse is output as sound in a manner corresponding to each channel, it is difficult for the operator to distinguish the difference in sound. Therefore, after the pulse discriminated in the discriminator 14 is further allocated to an energy region (for example, 16 regions to 24 regions) having a resolution lower than that of the channel in the allocator 17 and the thinning unit 18 appropriately thins the pulses. The sound output unit 19 outputs sound in a mode according to the energy range. In this manner, the number of sound output modes is limited to a number that allows the operator to distinguish the difference in sound, and the operator is made to intuitively understand the energy information of the radiation.

以下、図2を参照して、割当部による割当処理及び音出力部による出力処理について詳細に説明する。図2は、本実施の形態に係るエネルギー領域と音出力の態様の対応例を示す図である。なお、図2は、主要な核種が異なるエネルギー領域に属するように、γ線のエネルギー順列を切り分けた応用形を示している。また、図2は説明の便宜上、主要な核種のみ記載している。   The allocation processing by the allocation unit and the output processing by the sound output unit will be described in detail below with reference to FIG. FIG. 2 is a diagram showing an example of correspondence between the energy area and the sound output aspect according to the present embodiment. FIG. 2 shows an applied form in which the energy sequence of γ-rays is divided so that the main nuclides belong to different energy regions. Also, FIG. 2 shows only main nuclides for convenience of explanation.

図2に示すように、放射線検出装置1(図1参照)には、波高分析に使用されるチャネルよりも低分解能の複数のエネルギー領域A−Hが設定されている。エネルギー領域A−Hは、0−50[keV]、50−100[keV]、100−200[keV]、200−550[keV]、550−750[keV]、750−1000[keV]、1000−1600[keV]のエネルギー値の範囲にそれぞれ設定されている。これらのエネルギー領域A−Hには、少なくとも、予め決められた検出対象の核種の光電ピークの前後5%、より好ましくは前後10%の範囲が同一のエネルギー領域に属するようにエネルギー領域が設定されている。   As shown in FIG. 2, in the radiation detection device 1 (see FIG. 1), a plurality of energy regions A-H having lower resolution than the channel used for wave height analysis are set. The energy range AH is 0-50 [keV], 50-100 [keV], 100-200 [keV], 200-550 [keV], 550-750 [keV], 750-1000 [keV], 1000. It is set to the range of the energy value of -1600 [keV], respectively. In these energy regions A-H, energy regions are set such that at least 5% before and after, and more preferably 10% before and after the photopeak of the predetermined detection target nuclide belongs to the same energy region. ing.

例えば、検出対象の核種の光電ピークの前後10%の範囲が同一のエネルギー領域に属するように設定する場合、アメリシウム241(241Am)のエネルギー範囲を59.5×0.9=53.6[keV]から59.5×1.1=65.5[keV]とし、コバルト57(57Co)のエネルギー範囲を122.0×0.9=109.8[keV]から122.0×1.1=134.2[keV]とし、セシウム137(137Cs)のエネルギー範囲を661.7×0.9=595.5[keV]から661.7×1.1=727.9[keV]とし、コバルト60(60Co)のエネルギー範囲を1173.2×0.9=1055.9[keV]から1332.5×1.1=1465.8[keV]とし、エネルギー領域A−Hが設定される。ここでは、アメリシウム241(241Am)のエネルギー範囲がエネルギー領域B、コバルト57(57Co)のエネルギー範囲がエネルギー領域C、セシウム137(137Cs)のエネルギー範囲がエネルギー領域E、コバルト60(60Co)のエネルギー範囲がエネルギー領域Gに設定される。なお、エネルギー領域は、予め設定される検出対象の核種や数等に応じて適宜変更が可能である。 For example, when the range of 10% before and after the photoelectric peak of the nuclide to be detected is set to belong to the same energy region, the energy range of americium 241 ( 241 Am) is 59.5 × 0.9 = 53.6 [ The energy range of cobalt 57 ( 57 Co) is from 122.0 × 0.9 = 109.8 keV to 122.0 × 1. The energy range of cesium 137 ( 137 Cs) is set to 661.7 × 0.9 = 595.5 keV to 661.7 × 1.1 = 727.9 keV with 1 = 134.2 keV. , cobalt 60 (60 Co) of the energy range and 1173.2 × 0.9 = 1055.9 from [keV] 1332.5 × 1.1 = 1465.8 [keV], the energy region a-H is set It is. Here, the energy range of americium 241 ( 241 Am) is energy range B, the energy range of cobalt 57 ( 57 Co) is energy range C, the energy range of cesium 137 ( 137 Cs) is energy range E, cobalt 60 ( 60 Co) The energy range of) is set to the energy range G. Note that the energy region can be appropriately changed according to the nuclide, the number, and the like of the detection target set in advance.

また、各エネルギー領域A−Hには連続する一群のチャネルが対応しており、各エネルギー領域A−Hに対して割当部17(図1参照)によって波高分析後の各チャネルのパルスが割り当てられる。すなわち、放射線のエネルギーに対応したパルスが複数のチャネルに弁別された後、各チャネルのパルスがそれぞれエネルギー領域A−Hに割り当てられる。また、各エネルギー領域A−Hには、それぞれ異なる音出力の態様1−8が関連付けられている。音出力の態様としては、一例として「ド・レ・ミ・ファ・ソ・ラ・シ・ド」等の音階が設定されている。   Further, each energy region A-H corresponds to a continuous group of channels, and the allocator 17 (see FIG. 1) allocates pulses of each channel after pulse height analysis to each energy region A-H. . That is, after the pulse corresponding to the energy of radiation is discriminated into a plurality of channels, the pulse of each channel is assigned to the energy region A-H respectively. In addition, different energy output aspects 1-8 are associated with each energy region A-H. As an aspect of the sound output, as an example, a scale such as "de re mi fa so la si de" is set.

割当部17によって弁別後のパルスが各エネルギー領域A−Hに割り当てられると、各エネルギー領域A−Hに応じた音出力の態様1−8が選択される。例えば、エネルギー領域Aに放射線のエネルギーが割り当てられると、音出力部19(図1参照)によってエネルギー領域Aに関連付けられた態様1の「ド」が音出力される。この場合、音出力の態様の数も作業者が聞き分け可能な数に制限されているため、作業者に放射線のエネルギーに応じた音を適切に聞き取らせることができる。   When the pulse after discrimination is allocated to each energy region A-H by the allocation unit 17, an aspect 1-8 of sound output according to each energy region A-H is selected. For example, when the energy of radiation is assigned to the energy area A, the sound output unit 19 (see FIG. 1) outputs a sound of “D” of aspect 1 associated with the energy area A. In this case, since the number of sound output modes is also limited to the number that the operator can distinguish, the operator can appropriately hear the sound according to the energy of the radiation.

このとき、他のエネルギー領域でも僅かではあるが放射線のエネルギーが割り当てられるが、放射線のパルス数が少ないものについてまで音出力すると、多数の音が混在して作業者が音を聞き分けることができない。このため、間引部18によってエネルギー領域へ割り当てられたパルスを間引くようにして、間引かれたパルスに対して音出力しないようにしてもよい。具体的には、所定時間(例えば、1秒間)のうち、パルス数が最も多いエネルギー領域の出力音を採用し、他のエネルギー領域のパルスを間引いて出力音を出力しないようにする。このように、パルス数の少ない、すなわちエネルギー強度が小さいエネルギー領域に応じた音出力を制限することで、雑音となる音を間引いて作業者に音を聞き取り易くすることができる。   At this time, although the energy of radiation is allocated to a small extent even in other energy regions, when sound output is performed for the one having a small number of pulses of radiation, many sounds are mixed and the worker can not distinguish the sounds. For this reason, the pulse assigned to the energy region by the thinning unit 18 may be thinned so as not to output sound to the thinned pulse. Specifically, the output sound in the energy region having the largest number of pulses is adopted during a predetermined time (for example, one second), and the pulses in other energy regions are thinned so as not to output the output sound. As described above, by limiting the sound output according to the energy region having a small number of pulses, that is, the energy intensity is small, it is possible to thin the noise sound and make it easy for the worker to hear the sound.

なお、エネルギー領域に応じた音出力は、エネルギー領域に割り当てられたパルス数に応じた出力間隔で音出力部19から音出力されてもよい。例えば、エネルギー領域に割り当てられたパルス数が増加するのに伴って音出力の出力間隔が短く設定される。出力音の出力間隔によって、放射線のエネルギー情報に加えて、作業者にエネルギー強度を同時に把握させることができる。   The sound output corresponding to the energy region may be sound output from the sound output unit 19 at an output interval corresponding to the number of pulses allocated to the energy region. For example, as the number of pulses assigned to the energy region increases, the output interval of the sound output is set shorter. The output interval of the output sound allows the operator to simultaneously grasp the energy intensity in addition to the energy information of the radiation.

また、複数のエネルギー領域に所定数以上のパルス数が割り当てられる場合には、複数のエネルギー領域に応じた態様で音出力部19から音出力されてもよい。この場合、複数のエネルギー領域に応じた態様が切り替えられて音出力されてもよい。複数のエネルギー領域間で態様が切換えられて音出力されるため、複数の音が混ざって出力されることなく、作業者に放射線のエネルギーに対応した音を聞き取らせ易い。例えば、エネルギー領域Bとエネルギー領域Eに所定数以上のパルスが割り当てられた場合には、「レ」と「ソ」が交互に音出力される。この場合、パルス数に応じて音出力の態様(音階)の切換タイミングが設定されてもよい。パルス数の少ない放射線に対応した音出力の態様よりも、パルス数の多い放射線に対応した態様で長く音出力される。   When a predetermined number or more of pulse numbers are allocated to a plurality of energy regions, the sound output unit 19 may output sound in a manner according to the plurality of energy regions. In this case, the modes corresponding to the plurality of energy regions may be switched and sound may be output. Since the mode is switched between the plurality of energy regions and sound is output, it is easy for the operator to hear the sound corresponding to the energy of the radiation without the plurality of sounds being mixed and output. For example, when a predetermined number or more of pulses are assigned to the energy region B and the energy region E, sound output of "re" and "so" is alternately performed. In this case, the switching timing of the sound output mode (scale) may be set according to the number of pulses. The sound output is performed longer in a mode corresponding to radiation having a larger number of pulses than in the aspect of sound output corresponding to radiation having a small number of pulses.

また、複数のエネルギー領域に所定数以上のパルス数が割り当てられる場合には、複数のエネルギー領域のそれぞれに応じた音階で音出力部19から同時に音出力されてもよい。異なる音階の音が和音となって出力されるため、複数の音が同時に出力されても、放射線のエネルギーに対応した音を作業者に聞き取らせることができる。例えば、エネルギー領域Eとエネルギー領域Gとに所定数以上のパルスが割り当てられた場合には、「ソ」と「シ」の和音が音出力される。   When a predetermined number or more of pulse numbers are allocated to a plurality of energy regions, sound output unit 19 may simultaneously output sound at a scale corresponding to each of the plurality of energy regions. Since sounds of different scales are output as chords, it is possible to make the operator hear sounds corresponding to the energy of radiation even if a plurality of sounds are output simultaneously. For example, when a predetermined number or more of pulses are allocated to the energy region E and the energy region G, a chord of "Soh" and "Shi" is output as sound.

このように、音出力部19における音出力の態様の数が、作業者が音の違いを聞き分け可能な数であるため、作業者に放射線のエネルギーに応じた音を適切に聞き取らせることができる。放射線検出装置1の表示画面を目視させることなく作業者に放射線のエネルギー情報を把握させることが可能である。よって、運転の作業者には運転に集中させた状態でエネルギー情報を把握させ、視力の弱い作業者には視覚に頼らずにエネルギー情報を把握させることができる。   As described above, since the number of sound output modes in the sound output unit 19 is such that the operator can distinguish the difference in sound, the operator can appropriately hear the sound according to the energy of the radiation. . It is possible to make a worker grasp the energy information of the radiation without making the display screen of the radiation detection device 1 look. Therefore, it is possible to make the operator of driving understand the energy information while concentrating on the driving, and making the worker with weak vision grasp the energy information without relying on the vision.

なお、作業者は、全ての音出力の態様と放射線のエネルギーとの関係を把握していなくてもよい。例えば、作業者はセシウム137のエネルギーに関連付けられた音出力の態様だけ把握しておけば、セシウム137と異なる態様で音出力された場合には、セシウム137とは異なる放射線のエネルギーが検出されたことを認識できる。音出力部19から「ソ」よりも高い音階で音出力された場合には、セシウム137よりもエネルギー順位(エネルギー値)が高い核種の放射線であることを把握でき、音出力部19から「ソ」よりも低い音階で音出力された場合には、セシウム137よりもエネルギー順位が低い核種の放射線であることを把握できる。   The worker does not have to grasp the relationship between all the sound output modes and the energy of the radiation. For example, if the worker only understands the aspect of sound output associated with the energy of cesium 137, the energy of radiation different from that of cesium 137 is detected when the sound is output in a manner different from that of cesium 137 I can recognize that. When sound output is performed from the sound output unit 19 at a scale higher than “Soo”, it can be understood that the radiation is an nuclide whose energy rank (energy value) is higher than that of the cesium 137. If the sound is output at a scale lower than "," it can be understood that it is a radiation of an nuclide whose energy rank is lower than that of cesium 137.

また、本実施の形態では、音出力部19が放射線のエネルギーのエネルギー領域ごとに異なる音階で音出力する構成について説明したが、音出力部19の音出力の態様は特に限定されない。音出力部19は、放射線のエネルギーのエネルギー領域ごとに異なる音声で音出力してもよい。例えば、エネルギー領域Eにパルスが割り当てられている場合には、音出力部19によってエネルギー領域Eに関連付けられた態様5の「セシウム」が音出力される。これにより、作業者に放射線のエネルギー情報を直接的に把握させることが可能である。   In the present embodiment, the sound output unit 19 outputs sound at different scales depending on the energy region of the radiation energy. However, the aspect of the sound output of the sound output unit 19 is not particularly limited. The sound output unit 19 may output sound with different sounds for each energy region of radiation energy. For example, when a pulse is assigned to the energy region E, the sound output unit 19 outputs “cesium” of aspect 5 associated with the energy region E as sound. Thereby, it is possible to make a worker grasp the energy information of radiation directly.

続いて、図3を参照して放射線検出装置による音出力について説明する。図3は、本実施の形態に係る放射線検出装置による音出力の一例を示す図である。なお、図3Aはセシウム137の検出時のエネルギースペクトルの一例を示し、図3Bはコバルト60の検出時のエネルギースペクトルの一例を示す。なお、図3においては縦軸が検出頻度(パルス数)、横軸がエネルギー値を示している。また、エネルギースペクトルは、弁別部にて複数チャネルで波高分析されたものである。また、図3では、図2に示すエネルギー領域に分けた一例を示している。   Subsequently, sound output by the radiation detection apparatus will be described with reference to FIG. FIG. 3 is a diagram showing an example of sound output by the radiation detection apparatus according to the present embodiment. 3A shows an example of an energy spectrum at the time of detection of cesium 137, and FIG. 3B shows an example of an energy spectrum at the time of detection of cobalt 60. In FIG. 3, the vertical axis represents the detection frequency (number of pulses), and the horizontal axis represents the energy value. In addition, the energy spectrum is one subjected to wave height analysis in a plurality of channels at the discrimination unit. Further, FIG. 3 shows an example divided into energy regions shown in FIG.

図3Aに示すエネルギースペクトルは、662[keV]を光電ピークとした波形であり、450[keV]付近にコンプトンエッジ、200[keV]付近に後方散乱ピークを含んでいる。すなわち、放射線のエネルギーが全て吸収された場合のパルスのみならず、コンプトン散乱や後方散乱によって低下したエネルギーのパルスもエネルギースペクトルに現れている。各エネルギー領域A−Hには出力音の態様として音階が関連付けられており、光電ピークをとる662[keV]の前後5%が属するエネルギー領域Eには「ソ」が関連付けられている。検出頻度が少ない他のエネルギー領域に割り当てられたパルスは間引かれる。   The energy spectrum shown in FIG. 3A is a waveform having a photopeak of 662 [keV], and includes a Compton edge around 450 [keV] and a backscattering peak around 200 [keV]. That is, not only the pulse when all the energy of the radiation is absorbed, but also the pulse of the energy lowered by the Compton scattering and the backscattering appear in the energy spectrum. A scale is associated with each energy region A-H as an aspect of the output sound, and a "so" is associated with the energy region E to which 5% before and after 662 [keV] taking the photopeak belongs. Pulses assigned to other energy regions that are less frequently detected are thinned out.

このため、コンプトン散乱や後方散乱ピークを含むエネルギー領域A−Dについては無視され、光電ピークが属するエネルギー領域Eに関連付けられた「ソ」だけが音出力される。「ソ」が音出力されることで、作業者に放射線のエネルギー情報としてセシウム137のエネルギーが検出されたことが把握される。なお、エネルギー領域に音出力の態様として、音階の代わりに音声が関連付けられている場合には、「セシウム」等の音声が音出力されてもよい。   For this reason, the energy region A-D including the Compton scattering and the backscattering peak is ignored, and only the sound "SO" associated with the energy region E to which the photoelectric peak belongs is outputted. By sound output of “Soo”, it is understood that the energy of cesium 137 is detected as the energy information of the radiation to the worker. In the case where a sound is associated with the energy region instead of the scale as a sound output aspect, sound such as “cesium” may be output.

図3Bに示すエネルギースペクトルは、2箇所の1173[keV]、1333[keV]を光電ピークとした波形であり、950[keV]付近にコンプトンエッジ、250[keV]付近に後方散乱ピークを含んでいる。光電ピークをとる1173[keV]、1333[keV]の前後5%が属するエネルギー領域Gには「シ」が関連付けられている。上記したように、検出頻度の少ない他のエネルギー領域に割り当てられたパルスは間引かれる。   The energy spectrum shown in FIG. 3B is a waveform having two photopeaks of 1173 [keV] and 1333 [keV], including a Compton edge near 950 [keV] and a backscattering peak near 250 [keV]. There is. The energy region G to which 5% of around 1173 [keV] and 1333 [keV] taking photo peaks belong is associated with “s”. As described above, the pulses assigned to other energy regions that are less frequently detected are thinned out.

このため、コンプトン散乱や後方散乱ピークを含むエネルギー領域A−Fについては無視され、光電ピークが属するエネルギー領域Gに関連付けられた「シ」だけが音出力される。「シ」が音出されることで、作業者に放射線のエネルギー情報としてコバルト60のエネルギーが検出されたことが把握される。なお、エネルギー領域に音出力の態様として、音階の代わりに音声が関連付けられている場合には、「コバルト」等の音声が音出力されてもよい。   For this reason, the energy region A-F including the Compton scattering and the backscattering peak is ignored, and only the sound "Si" associated with the energy region G to which the photoelectric peak belongs is output as sound. By sounding "s", it is understood that the energy of cobalt 60 is detected as the energy information of the radiation to the worker. In the case where sound is associated with the energy region as a sound output mode instead of the scale, sound such as “cobalt” may be output.

以上のように、本実施の形態に係る放射線検出装置1では、放射線のエネルギーに応じてパルスが複数のチャネルに弁別されるため、検出対象の放射線のパルスがバックグラウンド放射線のパルスに埋もれることがない。また、音出力の態様の数が、チャネル数よりも少ないエネルギー領域の数に制限されるため、作業者に音の違いを聞き分けさせることができる。よって、放射線のエネルギーに応じた音を作業者に適切に聞き取らせて、放射線検出装置1の表示画面を目視させることなく作業者に放射線のエネルギー情報を把握させることができる。   As described above, in the radiation detection apparatus 1 according to the present embodiment, since the pulse is discriminated into a plurality of channels according to the energy of radiation, the pulse of radiation to be detected may be buried in the pulse of background radiation. Absent. In addition, since the number of sound output modes is limited to the number of energy regions smaller than the number of channels, it is possible to make workers distinguish the difference in sound. Therefore, it is possible to make the worker appropriately hear the sound according to the energy of the radiation, and to make the worker understand the energy information of the radiation without making the display screen of the radiation detection device 1 look.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above embodiment, the size, shape, and the like illustrated in the attached drawings are not limited thereto, and can be appropriately changed within the range in which the effects of the present invention are exhibited. In addition, without departing from the scope of the object of the present invention, it is possible to appropriately change and implement.

例えば、本実施の形態において、放射線検出装置1は、サーベイメータや個人線量計等の可搬型の放射線検出装置に限られず、モニタリングポスト等の据え置き型の放射線検出装置であってもよい。また、放射線検出装置1は、乗り物に搭載されてモニタリングカー等に使用されてもよい。さらに、放射線検出装置1は、携帯電話等の携帯機器に搭載されてもよい。   For example, in the present embodiment, the radiation detection device 1 is not limited to a portable radiation detection device such as a survey meter or an individual dosimeter, but may be a stationary radiation detection device such as a monitoring post. In addition, the radiation detection device 1 may be mounted on a vehicle and used as a monitoring car or the like. Furthermore, the radiation detection apparatus 1 may be mounted on a mobile device such as a mobile phone.

また、本実施の形態において、放射線検出装置1は、γ線エネルギーに限らず、α線、β線、X線、中性子線等の放射線を検出してもよい。よって、放射線検出装置1の検出部11に、NaI(Tl)シンチレータ、CsI(Tl)シンチレータ、LaBr(Ce)シンチレータ、CeBrシンチレータ、BGOシンチレータ、YAP(Ce)シンチレータ、CdTe半導体、CdZnTe半導体、Ge半導体、Si半導体、Heシンチレータ、Liシンチレータ、Liシンチレータ、プラスチックシンチレータ、液体シンチレータが使用されてもよい。なお、HeシンチレータやLiで中性子を検知する際、それぞれで、ほぼ同じエネルギーにピークが得られるので(Heは約764keV、Liは約2.1MeVと2.7MeV)、そのエネルギーに特定の音出力の態様を割り当てることもできる。 Further, in the present embodiment, the radiation detection apparatus 1 may detect radiation such as α-rays, β-rays, X-rays and neutrons as well as γ-ray energy. Therefore, the detection unit 11 of the radiation detection device 1 includes NaI (Tl) scintillator, CsI (Tl) scintillator, LaBr 3 (Ce) scintillator, CeBr 3 scintillator, BGO scintillator, YAP (Ce) scintillator, CdTe semiconductor, CdZnTe semiconductor, Ge semiconductor, Si semiconductor, 3 He scintillator, 6 Li scintillator, 7 Li scintillator, plastic scintillator, liquid scintillator may be used. In addition, when detecting neutrons with 3 He scintillator or 6 Li, a peak is obtained at almost the same energy respectively ( 3 He is about 764 keV, 6 Li is about 2.1 MeV and 2.7 MeV). Specific sound output aspects can also be assigned.

また、本実施の形態において、表示部16には、放射線のエネルギー強度がエネルギー値毎に表示されてもよいし、放射線のエネルギー全体の強度が表示されてもよい。また、表示部16には、放射線のエネルギースペクトルが表示されてもよい。また、放射線検出装置1は、放射線のエネルギーに応じて音出力可能であれば、表示部16を備えない構成であってもよい。   Further, in the present embodiment, the energy intensity of radiation may be displayed on the display unit 16 for each energy value, or the intensity of the entire energy of radiation may be displayed. In addition, the display unit 16 may display the energy spectrum of radiation. Moreover, the radiation detection apparatus 1 may not be provided with the display unit 16 as long as sound can be output according to the energy of the radiation.

また、本実施の形態において、出力音の態様は音階や音声に限定されず、エネルギー領域毎に異なっていればよい。例えば、出力音の態様としてエネルギー領域ごとに異なるブザー音、音色が関連付けられていてもよい。なお、音色とは、音の波形の違いを示している。   Further, in the present embodiment, the aspect of the output sound is not limited to the scale and the sound, and may be different for each energy region. For example, different buzzer sounds and timbres may be associated with each energy region as an aspect of the output sound. Note that the timbre indicates the difference in the sound waveform.

また、本実施の形態において、出力音の態様として一つの音域内の音階が設定されたが、複数の音域の音階が設定されてもよい。これにより、エネルギー領域をさらに細かく設定することが可能である。   Further, in the present embodiment, the scale in one sound area is set as the aspect of the output sound, but scales in a plurality of sound areas may be set. Thereby, it is possible to set the energy region more finely.

また、本実施の形態において、エネルギー領域は、特定の検出対象の核種とそれ以外の核種とが異なるエネルギー領域に属するように設定されてもよい。例えば、特定の検出対象の核種がセシウム137の場合には、セシウム137とセシウム137以外の核種が異なるエネルギー領域に属するようにエネルギー領域が設定され、作業者にセシウム137のエネルギー情報か否かを作業者に把握させるようにする。   Further, in the present embodiment, the energy region may be set such that the nuclide which is a specific detection target and the nuclide other than the nuclide belong to different energy regions. For example, when the specific nuclide to be detected is cesium 137, the energy region is set such that the cesium 137 and the nuclide other than the cesium 137 belong to different energy regions, and the operator is asked whether the energy information of the cesium 137 is Have the workers know.

また、本実施の形態において、放射線検出装置1は、放射線のエネルギーのエネルギー領域に応じて骨伝導で音出力するようにしてもよい。これにより、聴覚が弱い作業者に対しても、放射線検出装置1の表示画面を目視させることなく、放射線のエネルギー情報を作業者に把握させることができる。この場合、放射線検出装置1の音出力部19には骨伝導ヘッドセットが接続され、ヘッドセットに音出力として骨伝導信号が出力される。   Further, in the present embodiment, the radiation detection apparatus 1 may output sound by bone conduction according to the energy region of the energy of radiation. As a result, even for a worker who is weak in hearing, the worker can be made to grasp the energy information of radiation without making the display screen of the radiation detection device 1 look. In this case, a bone conduction headset is connected to the sound output unit 19 of the radiation detection device 1, and a bone conduction signal is output as a sound output to the headset.

以上説明したように、本発明は、放射線のエネルギー情報を作業者の聴覚で適切に把握させることができるという効果を有し、特に、運転中の作業者や視覚の弱い作業者に放射線のエネルギー情報を把握させるのに有用である。   As described above, the present invention has the effect of enabling the energy information of radiation to be properly grasped by the operator's hearing, and in particular, the energy of radiation to the operator in operation and the worker with weak vision. It is useful to make information known.

1 放射線検出装置
11 検出部
12 増幅部
13 A/D変換部
14 弁別部
15 演算部
16 表示部
17 割当部
18 間引部
19 音出力部
DESCRIPTION OF SYMBOLS 1 Radiation detection apparatus 11 Detection part 12 Amplification part 13 A / D conversion part 14 Discrimination part 15 Arithmetic part 16 Display part 17 Allocation part 18 Thinning out part 19 Sound output part

Claims (5)

入射した放射線をパルスとして検出する検出部と、
放射線のエネルギーに応じて前記パルスを複数のチャネルに弁別する弁別部と、
前記チャネルより低分解能の複数のエネルギー領域に、前記弁別されたパルスを更に割り当てる割当部と、
前記エネルギー領域ごとに異なる態様で音出力する音出力部と、
前記各エネルギー領域へ割り当てられたパルスのうちパルス数が最も多いエネルギー領域以外のパルスを間引く間引部と、を備え、
前記音出力部は、前記間引部によって間引かれなかったエネルギー領域のパルスに対し音出力することを特徴とする放射線検出装置。
A detection unit that detects incident radiation as a pulse;
A discriminator that discriminates the pulse into a plurality of channels according to the energy of the radiation;
An assignment unit further assigning the discriminated pulses to a plurality of energy regions of lower resolution than the channel;
A sound output unit for sound output in a different manner for each of said energy region,
And a thinning unit for thinning out the pulses other than the energy region having the largest number of pulses among the pulses assigned to the respective energy regions,
The said sound output part outputs sound with respect to the pulse of the energy area | region which was not thinned by the said thinning-out part, The radiation detection apparatus characterized by the above-mentioned .
前記割当部は、少なくとも、予め決められた検出対象の核種の光電ピークの前後5%の範囲が同一のエネルギー領域に属するように該エネルギー領域を設定していることを特徴とする請求項1に記載の放射線検出装置。   2. The apparatus according to claim 1, wherein the allocation unit sets the energy region such that at least a range of 5% before and after a photopeak of a predetermined detection target nuclide belongs to the same energy region. The radiation detection device as described. 前記割当部は、予め決められた検出対象の複数の核種の光電ピークがそれぞれ異なるエネルギー領域に属するように該エネルギー領域を設定していることを特徴とする請求項1または2に記載の放射線検出装置。   The radiation detection according to claim 1 or 2, wherein the allocation unit sets the energy region such that photopeaks of a plurality of nuclides to be detected in advance belong to different energy regions. apparatus. 前記音出力部は、前記エネルギー領域ごとに異なる音階で音出力することを特徴とする請求項1からのいずれか1項に記載の放射線検出装置。 The radiation detection apparatus according to any one of claims 1 to 3 , wherein the sound output unit outputs sound at different scales for each of the energy regions. 前記音出力部は、前記エネルギー領域ごとに異なる音声で音出力することを特徴とする請求項1からのいずれか1項に記載の放射線検出装置。 The radiation detection apparatus according to any one of claims 1 to 3 , wherein the sound output unit outputs sound with different sounds for each of the energy regions.
JP2015116648A 2015-06-09 2015-06-09 Radiation detector Active JP6520430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116648A JP6520430B2 (en) 2015-06-09 2015-06-09 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116648A JP6520430B2 (en) 2015-06-09 2015-06-09 Radiation detector

Publications (2)

Publication Number Publication Date
JP2017003388A JP2017003388A (en) 2017-01-05
JP6520430B2 true JP6520430B2 (en) 2019-05-29

Family

ID=57752620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116648A Active JP6520430B2 (en) 2015-06-09 2015-06-09 Radiation detector

Country Status (1)

Country Link
JP (1) JP6520430B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847277A (en) * 1981-09-14 1983-03-18 Toshiba Corp Monitoring device for radiation
JPH02232583A (en) * 1989-03-07 1990-09-14 Fuji Electric Co Ltd Survey meter
JPH09304538A (en) * 1996-05-10 1997-11-28 Aloka Co Ltd Radiation detector
JP2001242250A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Radiation monitor
JP5693139B2 (en) * 2010-10-22 2015-04-01 セイコー・イージーアンドジー株式会社 Radiation detector
JP6138775B2 (en) * 2011-07-08 2017-05-31 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Method, apparatus, program code, and computer readable recording medium on which a program is recorded for processing a gamma ray spectrum
JP2014025747A (en) * 2012-07-25 2014-02-06 Shikoku Research Institute Inc System, device, and method for monitoring radiation

Also Published As

Publication number Publication date
JP2017003388A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US9226716B2 (en) Nuclear medicine imaging apparatus and radiation therapy apparatus
WO2007043137A1 (en) Nuclear medical diagnosis device
JP6818799B2 (en) Dual energy detection method and equipment
JP2015520365A (en) Image processing system and image processing method
JP4715924B2 (en) Nuclear medicine diagnostic equipment
US7141795B2 (en) Radioactivity measuring apparatus using optical fiber
CN109073764A (en) The photoelectric sensor arranged in scintillator surface
JP2006234727A (en) Radiation distribution photographing device, and radiation distribution photographing method
US10139498B2 (en) Radiation measurement apparatus and method
JP6520430B2 (en) Radiation detector
JP3192317U (en) Radiation detection data transmission system
JP2003057346A (en) Radiation monitoring device
US7247855B2 (en) Portable nuclear detector
US11041965B2 (en) Radiation-detecting device
US11194061B2 (en) Optical detector and optical detection device
JP2014106060A (en) Radiation meter
JP5693139B2 (en) Radiation detector
KR20210077966A (en) Method and apparatus for identifying radionuclides
JP7304108B1 (en) radiation detector
JP6327916B2 (en) Line type discrimination radiation detector, survey meter, radiation monitor and personal exposure dosimeter using the same
JP5478699B1 (en) Radiation measuring instrument
US20220104781A1 (en) Nuclear medicine diagnostic apparatus
CN107184223B (en) Radiation detector and TOF-PET device provided with same
JP2009085683A (en) Nuclear medicine equipment
RU165787U1 (en) PORTABLE DEVICE FOR DETECTING SOURCES OF LOW-ENERGY PHOTON RADIATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250