JP2001242250A - Radiation monitor - Google Patents

Radiation monitor

Info

Publication number
JP2001242250A
JP2001242250A JP2000055953A JP2000055953A JP2001242250A JP 2001242250 A JP2001242250 A JP 2001242250A JP 2000055953 A JP2000055953 A JP 2000055953A JP 2000055953 A JP2000055953 A JP 2000055953A JP 2001242250 A JP2001242250 A JP 2001242250A
Authority
JP
Japan
Prior art keywords
radiation
accident
measuring device
radioactive
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000055953A
Other languages
Japanese (ja)
Inventor
Masaaki Fujii
正昭 藤井
Katsuhiro Okuzawa
勝広 奥沢
Kenji Sano
建治 佐野
Takio Mano
多喜夫 真野
Toshihiko Nukushina
俊彦 温品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2000055953A priority Critical patent/JP2001242250A/en
Publication of JP2001242250A publication Critical patent/JP2001242250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To discriminate the form of an accident at nuclear installations to provide accurate information for disaster preventive measures. SOLUTION: A radiation measuring device 2 consists of a neutron ray sensor 21, a gamma ray sensor 22, a radioactive dust measuring device 23, a radioactive iodine measuring device 24, and a data transmission device 25 to monitoring posts. An accident form judging device 11 judges the form of an accident by a logical judging device 300 upon receiving a signal from the radiation measuring device 2, and displays the judged result on a display output device 308. The fixed monitoring post 26 is a conventional radiation monitor previously installed around nuclear installations, while the portable monitoring post 27 is a radiation monitor temporarily placed in an appropriate place when necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力施設で事故
が発生した場合に当該施設の周囲の放射線を計測して事
故の状況を把握し、当該施設の存在する自治体等の防災
管理者が適切な判断を下すことを支援することを目的に
した放射線監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disaster prevention manager of a local government or the like in which an accident occurs at a nuclear facility, which measures radiation surrounding the facility to understand the situation of the accident. The present invention relates to a radiation monitoring device intended to assist in making a proper decision.

【0002】[0002]

【従来の技術】原子力施設から放射線あるいは放射性物
質が漏れた場合、これらを検出する設備は施設周辺に配
置されたモニタリングポストである。しかし、従来のモ
ニタリングポストは放射性物質の漏洩を想定した機器構
成のものが主体であり、防災管理者の周辺住民に対する
対応策も家屋の密閉と屋内待避が主体である。それ以上
の対応については、専門家の応援が必要であった。
2. Description of the Related Art When radiation or radioactive material leaks from a nuclear facility, a facility for detecting the leak is a monitoring post disposed around the facility. However, conventional monitoring posts are mainly configured with equipment that assumes leakage of radioactive materials, and measures for disaster prevention managers around residents are mainly to seal houses and evacuate indoors. Any further action required the support of experts.

【0003】[0003]

【発明が解決しようとする課題】原子力施設で事故が発
生した場合、周辺地域への影響を最小限に抑制する処置
を講ずるために事故の形態、規模と周辺地域環境への影
響を迅速に、的確に把握することが必要である。
[Problems to be Solved by the Invention] When an accident occurs in a nuclear facility, the form and scale of the accident and the impact on the surrounding environment must be promptly determined in order to take measures to minimize the impact on the surrounding area. It is necessary to understand precisely.

【0004】本発明の目的は、事故の形態を放射線漏洩
か放射性物質の漏洩かを判別し、原子力施設を有する自
治体の防災センター等の管理者が災害予防処置のための
的確な判断を、専門家の支援を待たずに迅速に下すこと
を支援するものである。
[0004] It is an object of the present invention to determine whether the type of accident is radiation leakage or radioactive material leakage, and a manager such as a disaster prevention center of a municipal government having a nuclear facility specializes in making an accurate judgment for disaster preventive measures. It is intended to help people make quick decisions without waiting for home support.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の放射線監視装置は計測装置として、従来の
ガンマ線計測装置に中性子線計測装置を加えて空間放射
線量率を監視し、放射性ダスト計測装置、放射性沃素計
測装置により空気中放射性物質濃度を監視する。これら
の放射線計測装置の信号を受けて事故の形態を判定する
事故形態判定装置を備えた放射線監視装置であって、原
子力施設での事故発生に際し、専門家の支援を待たずに
迅速に事故の形態を判別して的確な防災指針を決定する
ことを支援することを特徴とする。
In order to achieve the above-mentioned object, a radiation monitoring apparatus according to the present invention monitors a space radiation dose rate by adding a neutron beam measuring apparatus to a conventional gamma ray measuring apparatus as a measuring apparatus, and monitors the radiation rate. The concentration of radioactive substances in the air is monitored by a dust measuring device and a radioactive iodine measuring device. This is a radiation monitoring device equipped with an accident type determination device that determines the type of accident by receiving signals from these radiation measurement devices.When an accident occurs at a nuclear facility, the accident can be quickly detected without waiting for expert support. It is characterized by supporting the determination of the form and the determination of an appropriate disaster prevention guideline.

【0006】[0006]

【発明の実施の形態】本発明の一実施例を表1及び図1
から図6により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in Table 1 and FIG.
6 will be described with reference to FIG.

【0007】放射線測定設備からの情報により、本発明
の事故形態判定装置11の判定論理を表1に示す。
Table 1 shows the decision logic of the accident form decision apparatus 11 of the present invention based on information from the radiation measurement equipment.

【0008】[0008]

【表1】 [Table 1]

【0009】中性子線あるいはガンマ線の空間線量率測
定結果が自然放射線レベルを超えて有意な値を示せば、
放射線漏れと判断できる。ただし、ガンマ線の場合は大
量の放射性物質の漏洩の場合にも、レベル上昇を示すの
で、放射性ダストや放射性沃素の空気中濃度の確認も必
要である。放射線漏洩の場合は、鉄筋コンクリートの建
物や地下室のように放射線遮蔽能力の高い場所は別とし
て、一般の家屋では屋内待避の価値は少なく、速やかに
事故の発生した施設から離れた地点への避難が必要であ
る。中性子線のレベル上昇が主体の場合は、原子炉の反
応度投入事故及び核燃料加工施設や再処理施設での臨界
事故による多量の放射線発生が想定される。但し、原子
炉の場合には施設の遮蔽が十分な能力を有しているの
で、施設の破損を伴なう様な事故でなければ放射線が直
接漏洩する可能性は少ない。
If the neutron or gamma ray air dose rate measurement results show a significant value above the natural radiation level,
It can be determined that the radiation leaked. However, in the case of gamma rays, even when a large amount of radioactive material leaks, the level increases, so it is necessary to check the concentration of radioactive dust and radioactive iodine in the air. In the case of radiation leaks, apart from places with high radiation shielding capacity, such as reinforced concrete buildings and basements, ordinary houses have little value for indoor evacuation, and evacuation to a point away from the facility where the accident occurred is promptly performed. is necessary. If the neutron beam level rise is the main factor, it is expected that a large amount of radiation will be generated due to the reactivity injection accident at the nuclear reactor and the criticality accident at the nuclear fuel processing facility or reprocessing facility. However, in the case of a nuclear reactor, since the shielding of the facility has a sufficient capacity, there is little possibility of direct radiation leakage unless the accident involves damage to the facility.

【0010】ガンマ線のレベル上昇が主体の場合は、加
速器施設での想定外ビーム軌道のため遮蔽の少ない箇所
からの放射線漏れや放射性同位元素による照射施設で想
定外の位置に線源が移動し遮蔽の少ないところからガン
マ線が漏れたような場合が想定される。加速器施設の場
合は、加速器の種類により中性子線も発生する場合もあ
るが、通常は十分な遮蔽が設けられている。
When the gamma ray level rises mainly, the radiation source moves to an unexpected position in the irradiation facility using radioisotope or radiation leakage from a place with little shielding due to an unexpected beam orbit in the accelerator facility. It is assumed that a gamma ray leaks from a place where there is little. In the case of accelerator facilities, neutron radiation may also be generated depending on the type of accelerator, but usually sufficient shielding is provided.

【0011】再処理施設からの核分裂生成物の放出は、
気体排気物処理設備の故障の場合に起こる可能性があ
る。この場合放射性ダスト濃度が上昇する。放射性沃素
も検出される可能性が高い。放射性沃素は甲状線への選
択的な取り込みが起こるため、地域住民への被害防止策
の一つとして沃素錠剤の投与が必要になる場合もある。
放出された放射性物質の空気中濃度によっては、ガンマ
線のレベルも上昇する。原子炉においても反応度投入や
冷却材喪失等により、炉心の燃料被覆が破損するような
事態では燃料中に蓄積された核分裂生成物の放出が起こ
る。原子炉にも気体排気物処理設備が設けられており、
さらに、圧力容器、格納容器等のバリアが設けられてい
るので、燃料から放出された核分裂生成物がそのまま大
気に放出されるわけではない。
The release of fission products from the reprocessing facility is:
This can occur in the event of a gas exhaust treatment facility failure. In this case, the radioactive dust concentration increases. Radioactive iodine is also likely to be detected. Because radioactive iodine is selectively incorporated into the thyroid line, it may be necessary to administer iodine tablets as one of the measures to prevent damage to local residents.
Depending on the concentration of the released radioactive material in the air, the level of gamma rays also increases. Even in a nuclear reactor, in a situation where the fuel cladding of the reactor core is damaged due to reactivity input or loss of coolant, fission products accumulated in the fuel are released. Nuclear reactors are also equipped with gas exhaust treatment facilities,
Further, since barriers such as a pressure vessel and a containment vessel are provided, fission products released from the fuel are not directly released to the atmosphere.

【0012】核燃料加工施設からの核燃料物質の放出の
場合は、放射性ダストの空気中濃度が有意なレベル上昇
を示す。ウランなどの核燃料物質からのガンマ線は核分
裂生成物からのガンマ線よりも少ないが、ベータ線検出
器も備えた放射性ダスト測定器であれば、高感度で検出
することは可能である。
In the case of the release of nuclear fuel material from a nuclear fuel processing facility, the concentration of radioactive dust in the air exhibits a significant level increase. Although gamma rays from nuclear fuel materials such as uranium are smaller than gamma rays from fission products, any radioactive dust detector equipped with a beta ray detector can detect it with high sensitivity.

【0013】放射性同位元素使用施設からの放射性同位
元素の放出は、放出される同位元素によるが一般的には
ガンマ線やベータ線を放出する同位元素が多い。従っ
て、放射性ダストのレベル上昇で検出される場合が多
い。放出された放射性同位元素の量が多い場合には、ガ
ンマ線も有意なレベル上昇を示す。放射性同位元素使用
施設にも気体廃棄物処理設備が設けられている。
The release of radioisotopes from facilities using radioisotopes depends on the isotopes to be released, but generally, there are many isotopes that emit gamma rays and beta rays. Therefore, it is often detected by an increase in the level of radioactive dust. If the amount of radioisotopes released is high, gamma rays also show significant levels. The facilities that use radioisotopes also have gas waste treatment facilities.

【0014】放射線漏洩を伴なう事故が大規模になり施
設の一部に機械的な破損が起こるような場合には放射線
漏洩と放射性物質の漏洩の両方の兆候が検知される。
When an accident involving radiation leakage becomes large-scale and mechanical damage occurs in a part of the facility, signs of both radiation leakage and radioactive material leakage are detected.

【0015】放射性物質漏洩事故の場合、放出された放
射性物質が風下に拡散するため、放射性物質の空気中濃
度に風向による異方性が観測されるのが特徴である。他
方、放射線漏洩事故では、風の影響はない。事故の起こ
った施設と放射線観測地点との間の地形や構造物など放
射線遮蔽能力のあるものの有無により、観測される放射
線レベルに相違が生じる。
In the case of a radioactive substance leakage accident, the emitted radioactive substance is diffused downwind, so that anisotropy of the radioactive substance concentration in the air due to the wind direction is characteristic. On the other hand, in a radiation leak accident, there is no effect of wind. Observed radiation levels differ depending on whether there is any radiation shielding capability, such as terrain and structures, between the facility where the accident occurred and the radiation observation point.

【0016】以上の様に表1の論理で、放射線漏洩か放
射性物質の漏洩か事故の形態を判別することにより、必
要な処置として速やかな避難か屋内待避か等の判断が専
門家の支援を待たずに迅速にできる。
As described above, by determining the type of the accident, whether radiation leakage or radioactive material leakage, based on the logic of Table 1, it is possible to determine whether necessary evacuation or immediate evacuation should be assisted by an expert. You can do it quickly without waiting.

【0017】図1に本発明の事故形態判定装置11を備
えた放射線監視装置1の機能構成を示す。放射線測定装
置2は、中性子線センサ21、ガンマ線センサ22、放
射性ダスト計測装置24、モニタリングポストとのデー
タ伝送装置25から構成する。事故形態判定装置11は
放射線測定装置2の信号を受けて論理判定回路300で
事故の形態を判定し、表示出力装置308に判定結果を
表示する。固定式モニタリングポスト26は原子力施設
の周辺に予め設置された従来の放射線監視装置である。
携帯式モニタリングポスト27は、必要に応じて適切な
場所に仮置きする放射線監視装置である。気象観測装置
3は、原子力施設から放出された放射性物質の拡散状況
を推定するための情報を得るための設備で、風向セン
サ、風速センサ等からなる。位置計測設備4は、放射線
監視装置1の現在位置を把握するための設備でカーナビ
ゲーション装置を利用する。映像監視装置5は、事故発
生時に当該原子力施設の破損状況、負傷者の有無、冷却
水、蒸気などの漏洩状況など周辺状況を視覚的に捕らえ
るための設備である。ビデオカメラ及び夜間監視用の投
光器からなる。通信端末6は、放射線監視装置1と当該
事故対応を統括する防災センタ10との通信連絡手段
で、電話、ファクシミリ及びパソコン等とで構成する。
FIG. 1 shows a functional configuration of a radiation monitoring apparatus 1 provided with an accident type judging apparatus 11 according to the present invention. The radiation measuring device 2 includes a neutron sensor 21, a gamma ray sensor 22, a radioactive dust measuring device 24, and a data transmission device 25 for monitoring posts. The accident type determination device 11 receives the signal from the radiation measurement device 2, determines the type of the accident by the logic determination circuit 300, and displays the determination result on the display output device 308. The fixed monitoring post 26 is a conventional radiation monitoring device installed in advance around a nuclear facility.
The portable monitoring post 27 is a radiation monitoring device that is temporarily placed in an appropriate place as needed. The meteorological observation device 3 is a facility for obtaining information for estimating the state of diffusion of radioactive substances released from a nuclear facility, and includes a wind direction sensor, a wind speed sensor, and the like. The position measuring equipment 4 is an equipment for ascertaining the current position of the radiation monitoring device 1 and uses a car navigation device. The video monitoring device 5 is a facility for visually capturing the surrounding situation such as the damage situation of the nuclear facility, the presence or absence of an injured person, the leakage situation of cooling water, steam, and the like when the accident occurs. It consists of a video camera and a floodlight for night monitoring. The communication terminal 6 is a communication means for communicating with the radiation monitoring apparatus 1 and the disaster prevention center 10 which controls the response to the accident, and is constituted by a telephone, a facsimile, a personal computer, and the like.

【0018】通信設備7は放射線監視装置1と国や自治
体が設置する防災センタ10との間の通信手段で、衛星
通信を利用する。拡声器8と表示盤9は、放射線監視装
置1が測定した放射線レベルをリアルタイムで付近の住
民に知らせ、的確な避難行動を支援するための設備であ
る。これらの情報は、本来、防災センタ10から発信す
るものであるが、付近住民に対して迅速に情報提供する
ことと、放射線監視の活動に理解を得ることを目的に広
報機能を備える。
The communication equipment 7 is a communication means between the radiation monitoring apparatus 1 and the disaster prevention center 10 installed by the national or local government and uses satellite communication. The loudspeaker 8 and the display panel 9 are facilities for notifying nearby residents of the radiation level measured by the radiation monitoring device 1 in real time and supporting an accurate evacuation behavior. Such information is originally transmitted from the disaster prevention center 10, but has a public information function for the purpose of promptly providing information to nearby residents and gaining an understanding of radiation monitoring activities.

【0019】図2に事故形態判定装置11の詳細な構成
例を示す。中性子線センサ21、ガンマ線センサ22、
放射性ダスト計測装置23、放射性沃素計測装置24の
出力をそれぞれ比較器301から304に入力する。比
較器は自然放射線レベルを参考に設定する基準値と比較
して、基準値を超過している場合に出力を論理判定器3
05、306に入力する。論理判定器305は比較器3
01と302のどちらか一方、あるいは両方から信号を
受けた場合に出力信号を出すOR論理で動作する。同様
に論理判定器306は比較器303と304の出力に対
してOR論理で判定した結果を出力する。論理判定器3
07は論理判定器305と306の出力信号を受けてA
ND論理で動作する。即ち、論理判定器307は論理判
定器305と306が同時に出力信号を出した場合に出
力信号を出す。表示出力装置308は、論理判定器30
5,306,307の出力信号に対応して3種類の判定
結果を表示する。論理判定器305の出力信号を受けた
場合は表示「放射線漏洩」を表示する。以下同様に、
論理判定器306の出力信号に対しては表示「放射性
物質漏洩」、論理判定器307の出力信号に対しては表
示「事故規模大」を表示する。
FIG. 2 shows a detailed configuration example of the accident form judging device 11. Neutron beam sensor 21, gamma ray sensor 22,
Outputs of the radioactive dust measuring device 23 and the radioactive iodine measuring device 24 are input to comparators 301 to 304, respectively. The comparator compares the natural radiation level with a reference value which is set with reference to the reference value.
05 and 306 are input. The logical decision unit 305 is the comparator 3
It operates by OR logic that outputs an output signal when a signal is received from one or both of 01 and 302. Similarly, the logic determiner 306 outputs a result determined by OR logic with respect to the outputs of the comparators 303 and 304. Logical decision unit 3
07 receives the output signals of the logic decision units 305 and 306 and
Operates with ND logic. That is, the logic decision unit 307 outputs an output signal when the logic decision units 305 and 306 output an output signal at the same time. The display output device 308 is provided for the logical decision unit 30.
Three types of determination results are displayed corresponding to the output signals of 5, 306 and 307. When the output signal of the logic decision unit 305 is received, the display “radiation leakage” is displayed. Similarly,
The display "radioactive substance leak" is displayed for the output signal of the logical judgment unit 306, and the display "large accident scale" is displayed for the output signal of the logical judgment unit 307.

【0020】図3に警報装置の構成を示す。放射線計測
設備2からの信号を比較器101で予め設定した基準信
号106と比較して、基準値を超えていれば増幅器10
2および104に信号を出す。増幅器102及び104
はこの信号を増幅して、音響警報器103及び光警報器
105を動作させて放射線レベルの警戒区域に入ったこ
とを知らせる。この場合、放射線計測設備2からの信号
は連続監視のしやすい中性子線センサ21及びガンマ線
センサ22の信号を使う。
FIG. 3 shows the configuration of the alarm device. The signal from the radiation measurement equipment 2 is compared with a reference signal 106 set in advance by a comparator 101, and if the signal exceeds a reference value, the amplifier 10
2 and 104. Amplifiers 102 and 104
Amplifies this signal and activates the audible alarm 103 and the optical alarm 105 to indicate that the vehicle has entered the radiation level alert zone. In this case, the signals from the radiation measurement equipment 2 use the signals from the neutron sensor 21 and the gamma ray sensor 22 that are easily monitored continuously.

【0021】警報が発生したら、慎重に中性子線センサ
21、ガンマ線センサ22の信号レベルを確認すると同
時に放射性ダスト計測装置23や放射性沃素計測装置2
4も動作させて、事故の形態の判別及び更なる施設への
接近の適否を判断する。
When an alarm occurs, the signal levels of the neutron sensor 21 and the gamma ray sensor 22 are carefully checked, and at the same time, the radioactive dust measuring device 23 and the radioactive iodine measuring device 2 are checked.
4 is also operated to determine the type of accident and determine whether it is appropriate to approach the facility further.

【0022】図4に放射線監視装置1の収集したデータ
を周辺住民にリアルタイムで公開するための設備構成を
示す。放射線計測設備2の信号をメモリ201に保存す
る。音声合成装置202はメモリ201のデータを音声
信号に変換して増幅器203に入力する。増幅器203
は拡声器204を駆動して、例えば「現在の放射線レベ
ルは、毎時2マイクロシーベルトです」という様な音声
で情報を流す。一方、増幅器205はメモリ201の信
号を増幅し、表示盤206を駆動する。表示盤206は
電光掲示など昼間でも視覚認識可能な方式を利用する。
表示盤の表示の例を図5に示す。
FIG. 4 shows a facility configuration for real-time disclosure of data collected by the radiation monitoring apparatus 1 to nearby residents. The signal of the radiation measurement equipment 2 is stored in the memory 201. The voice synthesizer 202 converts the data in the memory 201 into a voice signal and inputs the voice signal to the amplifier 203. Amplifier 203
Drives the loudspeaker 204 to output information in the form of a voice such as "the current radiation level is 2 microsieverts per hour". On the other hand, the amplifier 205 amplifies the signal of the memory 201 and drives the display panel 206. The display panel 206 uses a method that can be visually recognized even in the daytime, such as an electric sign.
FIG. 5 shows an example of display on the display panel.

【0023】図6には拡声器204と表示盤206を放
射線監視装置1を搭載した自動車400に取付けた状態
を示す。表示盤206は必要に応じて背中合わせに2面
設置し、周囲からの視認性を高める。
FIG. 6 shows a state where the loudspeaker 204 and the display panel 206 are mounted on an automobile 400 on which the radiation monitoring apparatus 1 is mounted. Two display panels 206 are installed back to back as needed to enhance visibility from the surroundings.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば原
子力施設の事故に際し事故の形態を的確に判別し、事故
の規模を推定することにより、次の効果を奏する。
As described above, according to the present invention, the following effects can be obtained by accurately determining the type of accident and estimating the scale of the accident in the event of an accident at a nuclear facility.

【0025】原子力施設の事故に際し、事故事象が放射
線漏洩か放射性物質漏洩かを判別することにより、当該
施設を有する自治体の防災センター等の管理者が、専門
家の支援を待たずに、迅速に適切な災害防止措置を講じ
ることができる。
In the event of an accident at a nuclear facility, by judging whether the accident is a radiation leak or a radioactive substance leak, an administrator of a local government's disaster prevention center or the like having the facility can quickly proceed without waiting for expert support. Appropriate disaster prevention measures can be taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放射線監視装置の一実施例を示す図で
ある。
FIG. 1 is a diagram showing one embodiment of a radiation monitoring apparatus of the present invention.

【図2】放射線監視装置に具備する事故形態判定装置の
一例を示す図である。
FIG. 2 is a diagram illustrating an example of an accident type determination device provided in the radiation monitoring device.

【図3】放射線レベル警報装置の一例を示す図である。FIG. 3 is a diagram illustrating an example of a radiation level warning device.

【図4】放射線レベル広報装置の一例を示す図である。FIG. 4 is a diagram illustrating an example of a radiation level information device.

【図5】放射線レベル表示盤の表示の一例を示す図であ
る。
FIG. 5 is a diagram showing an example of display on a radiation level display panel.

【図6】広報用の拡声器と表示盤を自動車に搭載した一
例を示す図である。
FIG. 6 is a diagram showing an example in which a loudspeaker for public information and a display panel are mounted on an automobile.

【符号の説明】[Explanation of symbols]

1…放射線監視装置、2…放射線計測設備、21…中性
子線センサ、22…ガンマ線センサ、23…放射性ダス
ト計測装置、24…放射性沃素計測装置、25…データ
伝送装置、26…固定式モニタリングポスト、27…携
帯式モニタリングポスト、3…気象観測設備、4…位置
計測装置、5…映像監視設備、6…通信端末、7…通信
設備、8…拡声器、9…表示盤、10…防災センタ、1
1…事故形態判定装置、201…メモリ、202…音声
合成装置、203…増幅器、204…拡声器、205…
増幅器、206…表示盤、300…論理判定回路、30
1〜304…比較器、305,306…OR動作の論理
判定器、307…AND動作の論理判定器、308…表
示出力装置、400…自動車。
DESCRIPTION OF SYMBOLS 1 ... Radiation monitoring device, 2 ... Radiation measurement equipment, 21 ... Neutron ray sensor, 22 ... Gamma ray sensor, 23 ... Radioactive dust measurement device, 24 ... Radioactive iodine measurement device, 25 ... Data transmission device, 26 ... Fixed monitoring post, 27 ... portable monitoring post, 3 ... meteorological observation equipment, 4 ... position measuring device, 5 ... video monitoring equipment, 6 ... communication terminal, 7 ... communication equipment, 8 ... loudspeaker, 9 ... display panel, 10 ... disaster prevention center, 1
DESCRIPTION OF SYMBOLS 1 ... Accident form determination apparatus, 201 ... Memory, 202 ... Speech synthesis apparatus, 203 ... Amplifier, 204 ... Loudspeaker, 205 ...
Amplifier, 206: display panel, 300: logic judgment circuit, 30
1 to 304: a comparator; 305, 306: a logical determiner of an OR operation; 307: a logical determiner of an AND operation; 308: a display output device;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 正昭 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 奥沢 勝広 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 佐野 建治 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 真野 多喜夫 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 温品 俊彦 茨城県日立市幸町三丁目2番2号 株式会 社日立エンジニアリングサービス内 Fターム(参考) 2G088 EE10 EE11 EE12 FF04 FF09 KK24 KK29 MM02 MM05 MM09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaaki Fujii 3-2-1 Sachimachi, Hitachi-shi, Ibaraki Hitachi Engineering Co., Ltd. (72) Katsuhiro Okusawa 3-2-2 Sachimachi, Hitachi-shi, Ibaraki No. 1 Hitachi Engineering Co., Ltd. (72) Inventor Kenji Sano 3-2-1 Kochicho, Hitachi City, Ibaraki Prefecture Inside Hitachi Engineering Co., Ltd. (72) Inventor Takio Mano 3-chome, Kochicho, Hitachi City, Ibaraki Prefecture No. 1-1 In the Nuclear Power Division of Hitachi, Ltd. (72) Inventor Toshihiko Onjin 3-2-2, Sachimachi, Hitachi-shi, Ibaraki F-term in Hitachi Engineering Services Co., Ltd. 2G088 EE10 EE11 EE12 FF04 FF09 KK24 KK29 MM02 MM05 MM09

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線計測装置として空間線量率計測装
置と空気中放射性物質濃度計測装置を具備した放射線監
視装置において、これらの放射線計測装置からの信号に
より事故の形態を放射線漏洩か放射性物質漏洩かを判別
する事故形態判定装置を備えることを特徴とする放射線
監視装置。
1. A radiation monitoring apparatus comprising a space dose rate measuring device and an airborne radioactive material concentration measuring device as a radiation measuring device, wherein the form of the accident is determined to be radiation leakage or radioactive material leakage by a signal from these radiation measuring devices. A radiation monitoring device, comprising: an accident type determination device that determines whether the radiation is monitored.
JP2000055953A 2000-02-28 2000-02-28 Radiation monitor Pending JP2001242250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055953A JP2001242250A (en) 2000-02-28 2000-02-28 Radiation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055953A JP2001242250A (en) 2000-02-28 2000-02-28 Radiation monitor

Publications (1)

Publication Number Publication Date
JP2001242250A true JP2001242250A (en) 2001-09-07

Family

ID=18576991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055953A Pending JP2001242250A (en) 2000-02-28 2000-02-28 Radiation monitor

Country Status (1)

Country Link
JP (1) JP2001242250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264085A (en) * 2003-02-28 2004-09-24 Aloka Co Ltd Radiation monitoring device
JP2017003388A (en) * 2015-06-09 2017-01-05 富士電機株式会社 Radiation detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264085A (en) * 2003-02-28 2004-09-24 Aloka Co Ltd Radiation monitoring device
JP2017003388A (en) * 2015-06-09 2017-01-05 富士電機株式会社 Radiation detection device

Similar Documents

Publication Publication Date Title
KR101025550B1 (en) System maniging disaster and method thereof
CN109613589B (en) Method for evaluating public toxicity influence of nuclear facility accident consequences
KR101869216B1 (en) Fire and earthquake disaster prevention devices of nuclear power plants
JP2001242250A (en) Radiation monitor
Sorensen Evaluation of the emergency warning system at the Fort St. Vrain nuclear power plant
CN212694071U (en) Fluid radioactive contamination measuring device
JP3218149U (en) Traffic light with radioactivity measuring instrument
McLendon Accidental Radiation Excursion at the Oak Ridge Y-12 Plant—II: Health Physics Aspects of the Accident
JPH1151799A (en) Detector for leaky place
Brynda et al. Nonreactor nuclear facilities: standards and criteria guide
Akimoto Seismic Damage at the Fukushima Daiichi Nuclear Power Station With Emphasis on Unit 1
Barbry et al. The EDAC System and New Developments under Consideration at the Commissariat à I’Energie Atomique for Criticality Accident Detection
JP3769259B2 (en) Disaster prevention support system
Andersen et al. Technological considerations in emergency instrumentation preparedness. Phase II-B. Emergency radiological and meteorological instrumentation for mixed oxide fuel fabrication facilities
Cox Radiation detection of buried shielded sources in vehicles loaded with scrap steel
Saji Preliminary Forensic Engineering Study on the Fukushima Accident
Barton et al. Multi-purpose neutron radiography system
Cappel Hazards Summary Report for the Walter Reed Army Medical Center Nuclear Research Reactor
Kandarian et al. Status Report on the Omega West Reactor
CN115236717A (en) Critical accident detection method
Carle Nuclear Meltdown in Fukushima: Nuclear Meltdown in Fukushima: Human Accident or Natural Disaster? Human Accident or Natural Disaster?
WEST INTER-OFFICE MEMORANDUM
Worth et al. Portable gamma-ray detection system for location of radioactive sources.[Alarm; VHF transmission]
Nuclear Regulatory Commission Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company
Brynda et al. Design guide for category V reactors transient reactors