JP6518864B1 - Vehicle sound source direction detection system - Google Patents

Vehicle sound source direction detection system Download PDF

Info

Publication number
JP6518864B1
JP6518864B1 JP2018200446A JP2018200446A JP6518864B1 JP 6518864 B1 JP6518864 B1 JP 6518864B1 JP 2018200446 A JP2018200446 A JP 2018200446A JP 2018200446 A JP2018200446 A JP 2018200446A JP 6518864 B1 JP6518864 B1 JP 6518864B1
Authority
JP
Japan
Prior art keywords
sound
sound source
signal
source direction
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018200446A
Other languages
Japanese (ja)
Other versions
JP2020067381A (en
Inventor
高山一男
中村正孝
Original Assignee
井上 時子
井上 時子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 井上 時子, 井上 時子 filed Critical 井上 時子
Priority to JP2018200446A priority Critical patent/JP6518864B1/en
Application granted granted Critical
Publication of JP6518864B1 publication Critical patent/JP6518864B1/en
Publication of JP2020067381A publication Critical patent/JP2020067381A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 車の運転支援、自動運転に適用するセンサー用として、クラクション音、緊急車両の警報音などの各メディアの音源方向を検出する場合、音源種類に応じた時間応答性の実現と、遠方の緊急車両警報音が建屋に遮られ見通し外となる環境下での正しい音源方向検出が課題となる。【解決手段】 車両の上面の一区画の内側に複数のマイクを配置し、複数方向の指向性を形成し、それにより音波到来方向ごとの信号に分解する。さらに検出すべきメディアごとの信号を通過させるフイルターにより到来方向別、メディア別信号に分離する。この信号の振幅差を検出することに加え、各方向各メディアからの音波の周波数変化パターンの進み遅れを検出する手段を用いて総合的に音源方向を検出する。これにより、クラクション音のような単発音も、緊急車両音のように遠方からの音で反射したり、建物などにより遮られる音波でも正しく音源方向を検出できるようなる。【選択図】図1PROBLEM TO BE SOLVED: To realize time responsiveness according to the type of sound source when detecting the sound source direction of each medium such as a horn sound and an alarm sound of an emergency vehicle as a sensor applied for driving assistance and automatic driving of a car Sound source direction detection under the environment where the emergency vehicle alarm sound of this is intercepted by the building and it is out of sight becomes an issue. SOLUTION: A plurality of microphones are arranged inside one section of the upper surface of a vehicle to form directivity in a plurality of directions, thereby decomposing it into a signal for each sound wave incoming direction. Further, the signal for each medium to be detected is separated into an arrival-specific signal and a medium-specific signal by a filter that passes the signal. In addition to detecting the amplitude difference of this signal, the sound source direction is comprehensively detected using a means for detecting the advance / delay of the frequency change pattern of the sound wave from each media in each direction. As a result, even in the case of a single sound like a horn sound, the sound source direction can be correctly detected even with a sound reflected from a distant sound like an emergency vehicle sound or a sound wave blocked by a building or the like. [Selected figure] Figure 1

Description

本発明は車両周辺のクラクション音、緊急車両の警報音の音源方向を検出する方法に関する。 The present invention relates to a method of detecting a sound source direction of a horn sound around a vehicle and an alarm sound of an emergency vehicle.

自動運転では、画像認識、レーザーレーダセンシング、ミリ波センシング等をセンサーとして利用しているが、音情報は別の情報も含んでおり、音源種類と音源方向センシングも運転支援を含め必要なセンサーとなる。 本発明の目的は、クラクション音のような近距離で単発的な音の音源方向検出と、緊急車両のサイレン音のような直接方向からの音波が減衰し到来する回折波、反射波が存在する環境での音源方向検出を行うことである。
従来の音波の到来方向検出の適用分野は、横の壁面などの反射物は存在するが、音源位置と音源方向検出部の間には音波を遮蔽する物は存在しない環境への適用であった。したがって音波到来方向検出方式は、反射波の影響による検出誤差を低減することに焦点が置かれていた。また、検出対象は、音声のような多数の周波数成分を有し、ある程度連続的な音であり、クラクション音、緊急車両警報音のような単発の音とか特定周波数の音とかの検出は考慮されていない。
In automatic driving, image recognition, laser radar sensing, millimeter wave sensing, etc. are used as sensors, but sound information also includes other information, and sound source type and sound source direction sensing are also necessary sensors including driving assistance Become. The object of the present invention is to detect the sound source direction of a single short-distance sound such as a horn sound, and a diffracted wave and a reflected wave to which a sound wave from a direct direction such as a siren sound of an emergency vehicle attenuates and comes It is to perform sound source direction detection in the environment.
The application field of the conventional sound wave arrival direction detection is an application to an environment where there is a reflector such as a side wall but there is no object that shields the sound wave between the sound source position and the sound source direction detection unit. . Therefore, the sound wave arrival direction detection method has been focused on reducing the detection error due to the influence of the reflected wave. Also, the detection target has a large number of frequency components such as voice, and is a continuous sound to some extent, and detection of a single sound such as a horn sound or an emergency vehicle alarm sound or a sound of a specific frequency is considered. Not.

(特開2001-166025)には複数マイクによる音波到来時間差(位相差)を周波数分解し到来角度を求め、検出結果を合成することにより検出角度精度を向上させることが示されているが、回折波に対する誤動作回避方策は示されていない。(Japanese Patent Application Laid-Open No. 2001-166025) shows that the detection angle accuracy is improved by frequency-resolving the sound wave arrival time difference (phase difference) with a plurality of microphones to obtain the arrival angle and combining the detection results. There is no indication of malfunction avoidance measures for waves. (特開2017-128075 )では音源方向にシステム正面を追従させる場合に反射波による精度低下を防止するため、指向性形成したマイクシステムを使用しているが、回転制御を前提としている点が異なる。また回折波に対する対処が示されていない。(Japanese Patent Application Laid-Open No. 2017-128075) In order to prevent the decrease in accuracy due to the reflected wave when following the front of the system in the sound source direction, a microphone system having directivity formed is used, but the point that rotation control is premised is different. . Also, no measures are taken against the diffracted waves. (特開2017-67666)ではマイクロホンアレイを用いて、指向性の方向を順次変更して、最大振幅方向が音源方向と見なす方式であるが、音波伝播路に障害物による反射、減衰が発生した場合の対処は示されていない。In JP-A-2017-67666, a microphone array is used to sequentially change the direction of directivity, and the maximum amplitude direction is regarded as the sound source direction, but reflection and attenuation due to an obstacle occur in the sound wave propagation path. The case is not shown. (特開2010-105357 )では複数マイクを使用して自車の近接車両の走行音を取得する場合に収録音の質を向上することを目指している。そこで使用されている音源方向推定方法は、複数の周波数成分の時間差を用いているが、音源が遠方で音波伝播中に障害物による反射、減衰が発生した場合の対処方策は示されていない。(Japanese Patent Application Laid-Open No. 2010-105357) aims to improve the quality of the recorded sound when acquiring the traveling sound of the proximity vehicle of the own vehicle using a plurality of microphones. Therefore, although the source direction estimation method used uses the time difference of a plurality of frequency components, no countermeasure is taken for the case where reflection or attenuation occurs due to an obstacle during sound wave propagation at a distant source.

自動運転では、画像認識、レーザーレーダセンシング、ミリ波センシング等により他の車の位置を検出するが、検出すべき対象車の間に大型車両がいる場合とか、建物の影になっている場合は光、電波では検出できない。また他車の発するクラクション音は、危険通知、更に“どけてください”などのメッセージ情報もあり、光、電波のセンシングには無い情報を含んでいる。更に緊急車両が近づいた場合は、一般車は退避義務があり緊急車両が大型車両、建屋陰など見通し外に位置する場合でもその車両の真の方向つまり真の音源方向を検出する必要がある。 In automatic driving, the position of another car is detected by image recognition, laser radar sensing, millimeter wave sensing, etc., but if there is a large car between the target cars to be detected or if it is in the shadow of a building It can not be detected by light or radio waves. In addition, the collision sound emitted by other vehicles also includes warning information and message information such as "Please get rid of it", and includes information that is not included in the sensing of light and radio waves. Furthermore, when an emergency vehicle approaches, a general vehicle is obliged to evacuate, and it is necessary to detect the true direction of the vehicle, that is, the true sound source direction even when the emergency vehicle is positioned out of sight, such as a large vehicle or a building shade.

クラクション音の検出の場合は数m程度の距離でかつ単発的な音であり、瞬時に正確な音源方向検出することが必用となる。緊急車両警報音検出の場合は数10m離れた音も検出する必要となるが、その場合は建物とか大型車両の影となる場合がある。音源からの音波は回折音としても音源方向から到来するが振幅は減衰する、一方で音源から建屋等で反射を繰り返した音波も減衰するが、回折波より振幅が大きい場合があるため単に振幅最大方向の音波到来方向が音源位置すなわち緊急車両の位置とは限らない。   In the case of the detection of the horn sound, it is a single sound with a distance of several meters, and it is necessary to detect the sound source direction accurately in an instant. In the case of emergency vehicle alarm sound detection, it is also necessary to detect a sound several tens of meters away, but in this case it may be a shadow of a building or a large vehicle. The sound wave from the sound source also comes as a diffracted sound from the direction of the sound source, but the amplitude attenuates. On the other hand, the sound wave repeatedly reflected from the sound source by a building etc. also attenuates. The sound wave arrival direction in the direction is not limited to the sound source position, that is, the position of the emergency vehicle.

そのような状況に対し正しく音源方向を検出することが課題である。更に車のどの位置にどのようにマイクを搭載するかも課題である。音波の到来方向検出には、複数マイクによる指向性形成を利用するが、指向性形成に必用な音波到来方向角度に応じた時間差が得られる構造実現が課題となる。   The problem is to detect the sound source direction correctly for such a situation. Furthermore, it is also an issue how and at what position of the car the microphone is mounted. For detecting the direction of arrival of sound waves, directivity formation with a plurality of microphones is used, but the realization of a structure in which a time difference corresponding to the angle of arrival of the sound waves necessary for forming directivity is obtained is an issue.

本発明の方式は、車両の外部空間に面した一区画に複数のマイクを配置し、このマイク出力信号の演算合成により複数方向の指向性を形成し、それにより得られる音波到来方向ごとの信号に分解する。その出力からクラクション音、緊急車両警報音等の検出すべきメディアごとの信号を通過させるフイルターにより到来方向別、メディア別信号に分離する。この分離後の分別された信号から音源方向を検出する。   In the method of the present invention, a plurality of microphones are arranged in one section facing the external space of the vehicle, and directivity of a plurality of directions is formed by arithmetic synthesis of the microphone output signals, thereby obtaining signals for each sound wave arrival direction obtained Disassemble. From the output, a signal for each medium to be detected, such as a horn sound and an emergency vehicle alarm sound, is separated into an arrival-specific signal and a media-specific signal by a filter that passes the signal. The source direction is detected from the separated signal after this separation.

クラクション音は近距離音でありほぼ直接音が優勢であること及び瞬時判断が必用なことから、各方向からの振幅のうち最も振幅値の大きい方向を音源方向とみなす。更には各方向の振幅をX方向成分、Y方向成分に分解し逆正接関数であるArctan演算で音源方向を求める方法も方法として分解能を高める。   The horn sound is a near-field sound, and since direct sound is dominant and it is necessary to make an instantaneous judgment, the direction with the largest amplitude value among the amplitudes from each direction is regarded as the sound source direction. Furthermore, a method of dividing the amplitude in each direction into an X-direction component and a Y-direction component and obtaining the sound source direction by Arctan calculation which is an inverse tangent function is also a method of enhancing resolution.

緊急車両は遠方に位置する状態から緊急車両の音源方向を検出する必要がある。その場合、音源と受音位置の間に大型車両及び建屋等音波を遮蔽したり反射したりする物体が存在することにより回折波、反射波が発生する。回折波は振幅の減衰が大きいがほぼ音源方向から到来する、一方反射波は真の音源方向とは別方向から到来するが振幅減衰は回折波より小さい場合がある。したがって、振幅情報だけで到来方向を決定すると誤検出が発生する可能性がある。   It is necessary for the emergency vehicle to detect the sound source direction of the emergency vehicle from the state of being located at a distance. In that case, a diffraction wave and a reflected wave are generated due to the presence of an object such as a large vehicle and a building that shields or reflects the sound wave between the sound source and the sound receiving position. Diffracted waves have large amplitude attenuation and come from the direction of the source substantially, while reflected waves come from a direction different from the direction of the true source, but the amplitude attenuation may be smaller than the diffracted wave. Therefore, if the direction of arrival is determined only by the amplitude information, false detection may occur.

なお回折波とはホイヘンスの原理により、障害物の陰に回り込んで波が進む現象のことで音波は減衰するが、直線的に伝播する経路も存在する。
そこで到来方向別、メディア別信号に分離後の各方向からの音波の周波数成分変化パターンの時間的進み遅れを検出し、最も変化パターンが進んでいる方向が音源方向と見なす処理とする。これにより、正しい方向である回折波の到来方向を音源方向と見なすことが可能となる。この方式は検出に数秒必用となるが緊急車両は大音量であり遠方からの音も検出可能であり数秒かけて時間差を検出し正しい音源方向を検出することができる。
In addition, although a sound wave attenuates by the phenomenon in which a wave goes around behind the obstacle and a wave advances according to the principle of Hoygens with a diffraction wave, the course which propagates linearly also exists.
Therefore, processing is performed to detect temporal advance and delay of the frequency component change pattern of the sound wave from each direction after separation into arrival direction and by medium signals, and regard the direction in which the change pattern is most advanced as the sound source direction. This makes it possible to regard the arrival direction of the diffracted wave that is the correct direction as the sound source direction. In this method, several seconds are required for detection, but the emergency vehicle has a large volume and can detect sounds from a distance, and it is possible to detect a time difference and detect a correct sound source direction over several seconds.

マイクの搭載場所としては、車両上面の平面部分の一画に配置する必要があるが、設置場所の実施例として、多くの車両に搭載されているリアスポイラの一分を改造し内側への配置する方法がある。その場合は、リアスポイラの硬質プラスチック上部に小型マイク受音部サイズである数mmの穴を開けその上部は空気振動は伝達するが水は通さない軟質素材でカバーする。

なお、車両に数10cm以上の距離を置いて配置するマイクシステムでは、マイク入力の振幅と到来時間の相関性が低下するが、10cm×10cm以下の狭い範囲にマイクを複数個配置し、演算により指向性形成することにより、各指向性出力の振幅と到来時間の相関性が高くなり、各指向性方向の振幅差、到来時間差検出が正確に行われる。
It is necessary to arrange the microphone on the flat surface of the top of the vehicle as the mounting place of the microphone, but as an example of the installation place, one part of the rear spoiler mounted on many vehicles is remodeled and arranged inside There is a way. In this case, a small microphone receiving hole of a size of several mm is made on the hard plastic upper part of the rear spoiler, and the upper part is covered with a soft material which transmits air vibration but does not pass water.

In the microphone system placed at a distance of several tens of centimeters or more in the vehicle, the correlation between the amplitude of the microphone input and the arrival time is reduced, but multiple microphones are arranged in a narrow range of 10 centimeters × 10 centimeters or less By forming the directivity, the correlation between the amplitude of each directivity output and the arrival time becomes high, and the amplitude difference and arrival time difference detection of each directivity direction can be performed accurately.

マイクの指向性形成と検出するメディアごとに分離するフィルタにより、瞬時判定が必用なメディアの場合も、遠方からの音波で回折、反射がある場合も同じハードウエアで判定方法を変えることにより、複数メディアの音源方向を正しく検出できるようになる。 Even with media that require instantaneous determination, multiple filters can be created by changing the determination method using the same hardware, even if there is diffraction or reflection of sound waves from a distance, by means of a filter that separates the directivity of the microphone and the media to be detected. The sound source direction of the media can be detected correctly.

また複数方向の指向性形成に周波数成分変化パターンの時間的進み遅れ検出を組合せることにより、見通し外の回折波、反射波が存在する緊急車両音の音源方向の正しい検出が可能となる。 Further, by combining the directivity formation in a plurality of directions with the temporal advance / delay detection of the frequency component change pattern, it becomes possible to correctly detect the sound source direction of the emergency vehicle sound in which diffracted waves and reflected waves are out of sight.

本発明(車載音源方向検出システム)の全体構成Overall configuration of the present invention (vehicle sound source direction detection system) 検出対象に対応した周波数選択フィルタ特性Frequency selective filter characteristics corresponding to detection target 到来方向の振幅差から音源方向を検出する実施例Example of detecting the sound source direction from the amplitude difference in the arrival direction 緊急車両が見通し外の場合の回折波、反射波伝播例Diffraction wave and reflection wave propagation example when emergency vehicle is out of sight 緊急車両警報音の音源方向検出手順Sound source direction detection procedure of emergency vehicle alarm sound 緊急車両警報音の周波数成分変化パターンの進み遅れ検出方式Lead-lag detection method of frequency component change pattern of emergency vehicle alarm sound 周波数成分変化パターン進み遅れ検出信号処理波形例Frequency component change pattern lead / lag detection signal processing waveform example 周波数成分変化パターン進み遅れ検出出力の特性Characteristics of frequency component change pattern lead / lag detection output マイクをリアスポイラ面に搭載する実施例Example of mounting a microphone on the rear spoiler surface 指向性形成方式の基本構成Basic configuration of directivity formation method 図10構成の指向性特性Figure 10: Directional characteristics of the configuration 4方向指向性の特性例Characteristic example of four directional patterns 8方向指向性の特性例Characteristic example of eight directional patterns

4方向指向性形成の場合の全体構成の実施例を図1に示す。車両の上部平面に複数のマイクを設置し、加算、減算、積分等により、4方向の指個性を形成しその出力をクラクション音検出、救急車音検出、パトカー音等各メディアを検出するフィルタにより分割し、各メディアごとの検出処理ブロッに入力し音源方向を検出する。 An embodiment of the overall configuration in the case of four directional patterns is shown in FIG. A plurality of microphones are installed on the upper plane of the vehicle, and finger characteristics in four directions are formed by addition, subtraction, integration, etc., and the output is divided by filters that detect each medium such as horn sound detection, ambulance sound detection, police car sound, etc. Input to the detection processing block for each medium to detect the sound source direction.

検出すべき音を分離し抽出する周波数領域のフイルタ特性例を図2 に示す。クラクション音は310Hz〜580Hzの複数の不協和音の組合せ音であり310Hz〜580Hzの帯域通過フィルタを通過した信号を用いる。緊急車両のうち救急車は960Hzが0.65秒770Hzが0.65秒の音の繰り返しであり、 770Hzと960Hzの帯域通過フィルタを通過した信号を用いる。 パトカーのサイレン音は430Hz〜870Hzに4秒周期か8秒周期で変化するスィープ音であるが、クラクション音、救急車音と重ならない600Hz〜700Hzの帯域通過フィルタで検出する。なお、車両のエンジン音、ロードノイズ等も混入するが、クラクション音、緊急車両の警報音は音圧が高いのでフィルタで分離により抑圧可能である。   An example of the filter characteristic of the frequency domain for separating and extracting the sound to be detected is shown in FIG. The horn sound is a combination of multiple dissonances of 310 Hz to 580 Hz, and uses a signal that has passed through a band pass filter of 310 Hz to 580 Hz. Among emergency vehicles, an ambulance is a sound repetition of 960 Hz at 0.65 seconds and 770 Hz at 0.65 seconds, and uses signals that pass through 770 Hz and 960 Hz band pass filters. The police car's siren sound is a sweep sound that changes from 430 Hz to 870 Hz in a 4-second cycle or an 8-second cycle, but detected with a band pass filter of 600 Hz to 700 Hz that does not overlap with the horn sound and the ambulance sound. In addition, although the engine sound of a vehicle, a road noise, etc. are mixed, since the sound pressure is high, the sound of the horn and the alarm sound of an emergency vehicle can be suppressed by separation with a filter.

クラクション音検出は数m程度の近距離音のみを対象とし、単発音であり瞬時検出が必用となる。したがって、マイクの指向性出力信号に検出フィルタ通過後の振幅差を利用し音源方向を検出する。単純には各指向性出力のうち最も振幅値が高い指向性方向が音源方向と見なせばよいが、その場合の角度分解能は形成した指向性の方向数に制限される。そこで指向性ごとの振幅をX方向成分とY方向に分解しXY振幅の逆正接関数演算(Arctan)を行なえば連続的な角度に分解できる。この処理は時間領域の処理を伴わないので0.1Sec程度の時間で検出が可能となる。 The horn sound detection targets only a short distance sound of about several meters, is single sound generation, and requires instantaneous detection. Therefore, the sound source direction is detected using the amplitude difference after passing through the detection filter in the directivity output signal of the microphone. The directivity direction with the highest amplitude value among the directivity outputs may simply be regarded as the sound source direction, but the angular resolution in that case is limited to the number of directivity directions formed. Therefore, if the amplitude for each directivity is decomposed in the X direction component and the Y direction, and arctangent function calculation (Arctan) of XY amplitude is performed, it can be decomposed into continuous angles. Since this processing does not involve processing in the time domain, detection is possible in about 0.1 sec.

振幅差で音波到来方向を精密に求める実施例を図3に示す。左右方向すなわちX方向の振幅差からX方向の振幅ベクトルを求め、前後方向すなわちY方向の振幅差からY方向ベクトルを求めArctan(逆正接)演算により到来方向の分解能を上げている。
角度を求める式を数1に示す。

Figure 0006518864
An embodiment in which the arrival direction of the sound wave is accurately determined by the amplitude difference is shown in FIG. The amplitude vector in the X direction is determined from the amplitude difference in the lateral direction, ie, the X direction, and the Y direction vector is determined from the amplitude difference in the longitudinal direction, ie, the Y direction, to increase the resolution in the arrival direction by Arctan (inverse tangent) calculation.
The equation for obtaining the angle is shown in equation 1.
Figure 0006518864

緊急車両接近時は一般車は退避義務があり数10m先の音から検出が必要である。一方、緊急車両音は比較的長い周期(救急車は1.3秒)で音の周波数成分が規則的に変化する。数10m先からの音を検出する場合は建屋や大型車両の影響で回折音、反射音が生じ、振幅情報だけでは正しく音源方向を検出できなくなる。そこで各方向からの信号の振幅値に加え、各方向からの信号周波数成分の時間的進み遅れも検出し進み遅れ時間差が小さい場合は振幅値のみで音源方向を判定し、進み遅れの時間差が大きい場合は、時間的に最も進んでいる指向性方向が真の音源方向と見なす処理を行う。 When approaching an emergency vehicle, general vehicles are obliged to evacuate and it is necessary to detect from sounds several tens of meters ahead. On the other hand, the emergency vehicle sound regularly changes the frequency component of the sound in a relatively long cycle (1.3 seconds for ambulance). In the case of detecting a sound from several tens of meters ahead, a diffracted sound and a reflected sound are produced due to the influence of a building or a large vehicle, and the sound source direction can not be detected correctly only with the amplitude information. Therefore, in addition to the amplitude value of the signal from each direction, the time lead-lag of the signal frequency component from each direction is also detected, and when the lead-lag time difference is small, the sound source direction is determined only by the amplitude value, and the time difference of lead-lag is large In this case, processing is performed in which the directional direction most advanced in time is regarded as the true sound source direction.

緊急車両が見通し外に存在する場合の音波伝播の回折波、反射波の例を 図4 に示す。緊急車両との間に建屋等が存在すると減衰するが回折波が音源方向から伝搬する。それに加え反射波により到来する音波も存在し、その方向の音波の振幅が回折波より大きい場合もある。したがって、単に振幅が大きい到来方向が音源方向とは限らない。回折により伝搬音波の振幅は小さくなるが距離は最短となり、時間領域で最も進んだ信号となる。したがって信号が時間的に最も進んだ指向性方向を検出すれば、緊急車両の方向を正しく検出可能となる。なお、時間的な進み遅れは伝搬路の差が10mとすると時間差は30mSecとなり、たとえば500Hzの1周期は2mSecであり、信号位相差で進み遅れを判定することはできない。したがって、時間的な進み遅れ検出は緊急車両警報音の周波数成分変化パターンの進み遅れを検出する必要がある。 Fig. 4 shows an example of the diffracted wave and reflected wave of sound wave propagation when the emergency vehicle is out of sight. If a building or the like exists between the vehicle and the emergency vehicle, it attenuates, but the diffracted wave propagates from the direction of the sound source. In addition to this, there is also a sound wave coming from the reflected wave, and the amplitude of the sound wave in that direction may be larger than the diffracted wave. Therefore, the direction of arrival merely having a large amplitude is not limited to the direction of the sound source. Diffraction reduces the amplitude of the propagating sound wave, but the distance is the shortest, resulting in the most advanced signal in the time domain. Therefore, if the signal detects the most advanced directional direction in time, the direction of the emergency vehicle can be correctly detected. When the difference between propagation paths is 10 m, the time difference is 30 mSec. For example, one cycle of 500 Hz is 2 mSec, and the advance / delay can not be determined from the signal phase difference. Therefore, it is necessary to detect the advance / delay of time in advance of the frequency component change pattern of the emergency vehicle alarm sound.

検出対象メディアが緊急車両警報音の場合の処理例を図5に示す。まずは複数方向のレベルを検出し検出対象メディア以外の雑音の影響を受けないレベルである規定値以上のレベルが1方向の場合はその方向が音源方向と見なす。
規定値以上のレベルが複数方向の場合は振幅最大方向を基準として周波数成分の変化パターンの各方向の時間的進み、遅れを検出し規定値以上の時間差があるかどうかを検出し、時間差が規定値以下の場合は最大振幅方向が音源方向とみなす。複数方向の時間差が一定以上(差が大)の場合は最も時間的に進んでいる指向性方向を音源方向と判定する。
なお時間差が一定以上とは、見通し内か見通し外かに依存するため数m以内の時間差である10mSec程度以上か以下かで判定する。
An example of processing when the medium to be detected is an emergency vehicle alarm sound is shown in FIG. First, levels in a plurality of directions are detected, and if one or more levels are levels which are not affected by noise other than the medium to be detected, the direction is regarded as the sound source direction.
When the level above the specified value is in multiple directions, temporal advance in each direction of the change pattern of the frequency component with reference to the amplitude maximum direction, detecting the delay and detecting whether there is a time difference more than the specified value If it is less than the value, the maximum amplitude direction is regarded as the sound source direction. If the time difference between the plurality of directions is equal to or greater than a certain value (the difference is large), the directivity direction most advanced in time is determined as the sound source direction.
The time difference is determined to be more than or equal to about 10 mSec, which is a time difference within several meters, because it depends on whether the time difference is within the range or not.

緊急車両警報音の周波数成分変化パターンの進み遅れを検出する方式の実施例を図6に示す。メディア別、指向性別に分別した信号出力をSGN関数(符号関数)により2値化する。2値化処理のキャプチャー効果により、最も振幅が大きい周波数成分が抽出され雑音の影響を排除もできる。この2値化信号の立ち上がり立ち下り時間間隔から周波数に比例した値を生成し、その変化パターンを帯域通過フィルタに通す。この帯域通過フィルタは、検出すべきメディアに合わせた周波数の変化時間が一定範囲内のものを抽出するためのものである。 An embodiment of a method for detecting the advance / delay of the frequency component change pattern of the emergency vehicle alarm sound is shown in FIG. The signal output classified by media and oriented gender is binarized by the SGN function (sign function). By the capture effect of the binarization processing, the frequency component with the largest amplitude can be extracted and the influence of noise can be eliminated. A value proportional to the frequency is generated from the rising and falling time intervals of this binarized signal, and the variation pattern is passed through a band pass filter. This band pass filter is for extracting ones in which the change time of the frequency according to the medium to be detected is within a certain range.

帯域通過フィルタを通過した2方向からの到来信号VfAとVfBを減算後積分した信号とVintとVfAとVfBを加算した信号Vaddを乗算すると数2 〜数6に示すようになり、平均化後の信号LaedはTd すなわち A方向信号とB方向信号の到来時間差に比例した信号となる。   The signals obtained by subtracting the arrival signals VfA and VfB from the two directions that have passed through the band pass filter are integrated and the signal Vadd obtained by adding Vint, VfA and VfB, as shown in Eqs. 2 to 6, and after averaging The signal Laed is Td, that is, a signal proportional to the arrival time difference between the A direction signal and the B direction signal.

VA:A方向信号振幅 VB:B方向信号振幅
Td : A方向信号とB方向信号の到来時間差
Tper:周波数の変化周期
τ:積分時定数

Figure 0006518864
Figure 0006518864
Figure 0006518864
Figure 0006518864
Figure 0006518864
VA: A direction signal amplitude VB: B direction signal amplitude
Td: Arrival time difference between A direction signal and B direction signal
Tper: Frequency change period τ: Integral time constant
Figure 0006518864
Figure 0006518864
Figure 0006518864
Figure 0006518864
Figure 0006518864

その進み遅れ検出処理波形例を図7に示すが検出値LaedはA信号とB信号の進み遅れに対応したプラス、マイナス出力が得られる。また“信号時間差/信号周波数変化周期”に対する進み遅れ検出特性を図8に示す。 “信号時間差/信号周波数変化周期”が±0.2以下であれば正しく判定できるが救急車警報音の周波数変化周期Tdは1.3秒であり、その0.2倍は0.26秒であり、距離差85m相当の時間差があっても検出可能である。 An example of the lead / lag detection processing waveform is shown in FIG. 7. As the detection value Laed, positive and negative outputs corresponding to the lead and lag of the A and B signals are obtained. Further, a lead / lag detection characteristic with respect to "signal time difference / signal frequency change period" is shown in FIG. If “signal time difference / signal frequency change period” is ± 0.2 or less, it can be judged correctly, but the frequency change period Td of ambulance alarm sound is 1.3 seconds, 0.2 times of that is 0.26 seconds, and the distance difference is equivalent to 85 m Even time differences can be detected.

車両へのマイク配置は、車両から突起が無い事及び車両強度に影響しない事が要求される。一方複数マイクで水平面の複数方向指向性を形成するには、車両の一画の平面に近接した平面に複数マイクを配置できることが好ましい。また、到来音波が車両の陰にならないことが要求される。
その条件を満たす位置として、リアスポイラ面に搭載する実施例を図9に示す。空間から到来する音波を受けるには、硬質であるリアスポイラ上面に小型マイクサイズの数mmの穴を開けその部分は防水であるが、空気振動を通す軟材料を設置する。これにより、車両の一区画に複数マイクがほぼ自由空間上に配置された特性相当となり、これらのマイク信号の演算により複数方向指向性が形成される。
なおマイク間距離は5cm程度マイク数4個で指向性形成可能である。
The placement of the microphone on the vehicle is required to have no protrusion from the vehicle and to not affect the strength of the vehicle. On the other hand, in order to form the directivity in the horizontal direction in the horizontal direction by the plurality of microphones, it is preferable that the plurality of microphones can be arranged in a plane close to the plane of one stroke of the vehicle. Also, it is required that the incoming sound wave does not become a shadow of the vehicle.
An example mounted on the rear spoiler surface as a position satisfying the condition is shown in FIG. In order to receive sound waves coming from space, a small microphone-sized hole of several mm is made on the upper surface of the rigid rear spoiler, and a soft material that is waterproof but allows air vibration is installed. As a result, the plurality of microphones in one section of the vehicle corresponds to the characteristic disposed almost in free space, and a plurality of directional patterns are formed by calculation of these microphone signals.
The inter-microphone distance can be formed with directivity of about 5 cm with four microphones.

車両の一区画の平面に近接した平面の複数マイクから指向性を形成方法の基本となる2マイクによる指向性形成例を示す図10に示す。この特性は数7〜数9に示す動作となり、指向性特性は図11に示すようになる。このような構成を組み合わせることにより複数方向の指向性を形成できる。なおこの構成の場合はマイク間距離5Cm間隔の配置例である。
この基本の2個ペアを複数個使用すれば、4方向指向性、8方向指向性形成が可能となる。
形成する指向性例を、図12(4方向指向性の例)、図13(8方向指向性の例)に示す。
FIG. 10 shows an example of directivity formation by two microphones which is the basis of a method of forming directivity from a plurality of microphones in a plane close to the plane of a section of a vehicle. This characteristic is the operation shown in the equations 7 to 9, and the directivity characteristic is as shown in FIG. By combining such configurations, directivity in a plurality of directions can be formed. In the case of this configuration, it is an arrangement example of the inter-microphone distance 5 Cm.
If two or more basic two pairs are used, four-directional directivity and eight-directional directivity can be formed.
Examples of directivity to be formed are shown in FIG. 12 (example of four directional directivity) and FIG. 13 (example of eight directional directivity).

k=ω/c c:音波速度
ω:音源角周波数 d:マイク間距離

Figure 0006518864
k = ω / c c: sound velocity
ω: source angular frequency d: distance between microphones
Figure 0006518864

ここで

Figure 0006518864
here
Figure 0006518864

と設定すると

Figure 0006518864
If you set
Figure 0006518864

101:車両上面の一区画に配置した複数マイク
102:演算を伴う合成により複数方向指向性を形成
103:A方向指向性出力
104:B方向指向性出力
105:C方向指向性出力
106:D方向指向性出力
101: A plurality of microphones arranged in one section of the upper surface of the vehicle
102: Multiple directional directivity is formed by composition involving operation
103: A direction directivity output
104: B direction directivity output
105: C direction directivity output
106: D direction directivity output

111:方向Aのクラクション音抽出後の信号
112:方向Bのクラクション音抽出後の信号
113:方向Cのクラクション音抽出後の信号
114:方向Dのクラクション音抽出後の信号
111: Signal after extraction of horn sound in direction A
112: Signal after extraction of horn sound in direction B
113: Signal after extraction of horn sound in direction C
114: Signal after extraction of horn sound in direction D

131:方向Aのパトカーサイレン音抽出後の信号
132:方向Bのパトカーサイレン音抽出後の信号
133:方向Cのパトカーサイレン音抽出後の信号
134:方向Dのパトカーサイレン音抽出後の信号
131: Signal after police car siren sound extraction of direction A
132: Signal after police car siren sound extraction of direction B
133: Direction C signal after police car siren sound extraction
134: Signal after police car siren sound extraction in direction D

140:クラクション音の音源方向検出処理部
141:救急車警報音の音源方向検出処理部
142:パトカーサイレン音の音源方向検出処理部
140: Sound source direction detection processing unit of horn sound
141: Source direction detection processing unit for ambulance warning sound
142: Sound source direction detection processing unit of police car siren sound

311:右方向の指向性出力に検出すべきメディアのフィルタ通過させた信号
312:左方向の指向性出力に検出すべきメディアのフィルタ通過させた信号
313:前方向の指向性出力に検出すべきメディアのフィルタ通過させた信号
314:後方向の指向性出力に検出すべきメディアのフィルタ通過させた信号
320:Arctan(逆正接)処理により角度検出部
311: Filtered signal of media to be detected in directional output in the right direction
312: Filtered signal of media to be detected in directional output in left direction
313: Filtered signal of media to be detected in directional output in forward direction
314: Filtered signal of media to be detected in directional output in the backward direction
320: Angle detector by Arctan (inverse tangent) processing

610:A方向指向性信号に抽出フイルタを通過した信号にSGN関数による2値化処理
611:B方向指向性信号に抽出フイルタを通過した信号にSGN関数による2値化処理
620:A方向2値化信号の周波数に比例した値に変換
621:B方向2値化信号の周波数に比例した値に変換
630:A方向周波数変化信号に対する帯域制限フィルタ
631:B方向周波数変化信号に対する帯域制限フィルタ
640:時間積分部
650:時間平均化部
610: A direction directional signal The signal passed through the extraction filter is binarized by the SGN function
611: B-directional signal The signal passed through the extraction filter to the directional signal is binarized by the SGN function
620: Converted to a value proportional to the frequency of the A-direction binarized signal
621: Convert to a value proportional to the frequency of B-direction binarized signal
630: Band limiting filter for A direction frequency change signal
631: Band limiting filter for B direction frequency change signal
640: time integration unit
650: Time averaging unit

910:車両のリアスポイラ内部に防水処理を施し複数マイクを搭載 910: Equipped with multiple microphones with waterproofing inside the rear spoiler of the vehicle

Claims (6)

車の運転支援及び自動運転のため、クラクション音、緊急車両の警報音などの検出対象メディアごとの音源方向を検出するシステムにおいて、
車両の上部空間に面した平面の10cm×10cm以内の一区画に複数のマイクを配置し、その信号の演算を伴う合成処理により複数方向の指向性を形成させ、その指向性出力を分岐し、検出対象メディアごとの信号を通過させる周波数選択フィルタを介して、各メディアごと各指向性方向別に分別された信号から、音源方向検出処理を行なう構成とし、
クラクション音など音源と自車間距離が数m以内の近距離で瞬時検出すべきメディアに対しては、上記分別された信号から最大振幅方向を求め音源方向と見なし、
緊急車両の警報音など音源と自車間距離が数mを超え、音波伝播で障害物による反射、回折が想定されるメディアに対しては、上記分別された信号から周波数成分変化パターンの時間的な進み遅れを検出し、
進み遅れ時間差が概ね10mSec 以下と小さいと判定される場合は上記分別された信号から、最大振幅方向を求め音源方向と見なし、進み遅れ時間差がそれより大きい場合は、上記分別された信号から最も時間的に進んだ指向性方向が音源方向とみなす音源方向検出処理を行う車載音源方向検出システム。
In a system for detecting a sound source direction for each medium to be detected, such as a horn sound and an alarm sound of an emergency vehicle, for driving assistance of a car and automatic driving.
A plurality of microphones are arranged in one section within 10 cm × 10 cm of the plane facing the upper space of the vehicle, and combining processing accompanied by calculation of the signals forms directivity in multiple directions, and the directivity output is branched, Sound source direction detection processing is performed from signals separated for each medium for each directivity direction via a frequency selection filter that passes the signal for each medium to be detected,
For media that should be instantaneously detected within a few meters of the distance between the sound source and the vehicle, such as a horn sound, the direction of the maximum amplitude is determined from the separated signals and considered as the sound source direction,
For media in which the distance between the sound source and the own vehicle, such as alarm sounds of emergency vehicles, exceeds a few meters and reflections and obstacles are expected due to sound wave propagation from the obstacles, the above separated signals give rise to the temporal change of frequency component change pattern Detecting lead and delay,
If it is judged that the lead-lag time difference is as small as approximately 10mSec or less, the maximum amplitude direction is determined from the above separated signal and regarded as the sound source direction. If the lead-lag time difference is larger than that, the most time is taken from the separated signal. An on-vehicle sound source direction detection system that performs sound source direction detection processing in which the directivity direction that has been advanced is regarded as the sound source direction.
最大振幅方向を求める方法として、各メディアごと各方向別に分別された信号から、最大振幅が得られる分別方向が音源方向と見なす方法、又は前方向指向性振幅、後方向指向性振幅、左方向指向性振幅、右方向指向性振幅を検出し、Y方向の振幅とX方向の振幅に分解し、音源方向角度=Arctan(Y方向の振幅/X方向の振幅)として音源方向を求める請求項1の車載音源方向検出システム。   As a method of obtaining the maximum amplitude direction, a method in which the classification direction in which the maximum amplitude is obtained is regarded as the sound source direction from signals separated into each media direction, or forward directivity amplitude, backward directivity amplitude, left directivity The sound source direction is detected by detecting the dynamic amplitude and the right directional directivity amplitude, decomposing it into the amplitude in the Y direction and the amplitude in the X direction, and setting the sound source direction angle = Arctan (amplitude in Y direction / amplitude in X direction). Vehicle sound source direction detection system. 各メディアごと、各方向別の指向性出力の周波数成分の変化パターンを検出する場合、信号を符号関数による2値化処理をおこなった後に周波数に比例した値に変換する請求項1の車載音源方向検出システム。   The vehicle sound source direction according to claim 1, wherein when detecting the change pattern of the frequency component of the directional output in each direction for each medium, the signal is converted to a value proportional to the frequency after being binarized by the code function. Detection system. 2系統の周波数成分変化パターンの時間的進み遅れを検出する場合、周波数に比例した値に変換後、帯域通過フィルタを通した2系統信号をVfA,VfBとしVfA,VfBを減算した後積分した信号をVintとし、VfAとVfBを加算した信号をVaddとして、VintとVaddを乗算した後平均化した信号であるLaedが正か負かにより信号の進み遅れを検出する請求項1の車載音源方向検出システム。   When detecting the time lead / delay of the frequency component change pattern of 2 systems, convert the signal proportional to the frequency, then set the 2 system signal passed through the band pass filter as VfA, VfB and subtract VfA, VfB and integrate The vehicle sound source direction detection according to claim 1, wherein Vint is Vint and a signal obtained by adding VfA and VfB is Vadd, and after Vint is multiplied by Vadd, the signal advance / delay is detected depending on whether Laed which is an averaged signal is positive or negative. system. 車両の上部空間に面した平面の一区画に、マイク受音部相当の数mmの複数の穴を開け、その上部は、防水でありながら音波振動が通過する軟質材料で覆う構造とし、穴を開けた部分の下部に複数マイクを設置する、請求項1の車載音源方向検出システム。 A plurality of holes of several mm equivalent to the microphone receiver are made in one section of the plane facing the upper space of the vehicle, and the upper part is made of a waterproof material that is covered with a soft material through which sound vibration passes. The vehicle-mounted sound source direction detection system according to claim 1, wherein a plurality of microphones are installed under the opened portion. 複数マイク設置位置が車のリアスポイラ内である請求項5の車載音源方向検出システム。 6. The on-vehicle sound source direction detection system according to claim 5, wherein the plurality of microphones are installed in a rear spoiler of a car.
JP2018200446A 2018-10-24 2018-10-24 Vehicle sound source direction detection system Active JP6518864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200446A JP6518864B1 (en) 2018-10-24 2018-10-24 Vehicle sound source direction detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200446A JP6518864B1 (en) 2018-10-24 2018-10-24 Vehicle sound source direction detection system

Publications (2)

Publication Number Publication Date
JP6518864B1 true JP6518864B1 (en) 2019-05-22
JP2020067381A JP2020067381A (en) 2020-04-30

Family

ID=66625573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200446A Active JP6518864B1 (en) 2018-10-24 2018-10-24 Vehicle sound source direction detection system

Country Status (1)

Country Link
JP (1) JP6518864B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763684B2 (en) * 1991-02-28 1998-06-11 株式会社ケンウッド Emergency vehicle detection device
JPH06231388A (en) * 1993-01-29 1994-08-19 Sadayoshi Iwabuchi On-vehicle emergency vehicle presence/absence in forming device
JPH07218614A (en) * 1994-01-31 1995-08-18 Suzuki Motor Corp Method and apparatus for calculating position of sound source
JP2002240660A (en) * 2001-02-14 2002-08-28 Yazaki Corp Informing device for vehicle
JP4812302B2 (en) * 2005-01-12 2011-11-09 学校法人鶴学園 Sound source direction estimation system, sound source direction estimation method, and sound source direction estimation program
WO2011001684A1 (en) * 2009-07-02 2011-01-06 パナソニック株式会社 Vehicle position detecting device and vehicle position detecting method
JP5831963B1 (en) * 2015-04-07 2015-12-16 井上 時子 Sound source direction tracking system
JP6375475B1 (en) * 2017-06-07 2018-08-15 井上 時子 Sound source direction tracking system

Also Published As

Publication number Publication date
JP2020067381A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US11244564B2 (en) Vehicle acoustic-based emergency vehicle detection
JP5905846B2 (en) Crossing determination device and program
KR100513523B1 (en) Autonomous intelligent cruise control device
CN106537175B (en) Device and method for the acoustic inspection of surrounding objects of a vehicle
EP2697664B1 (en) Approaching vehicle detecting system and approaching vehicle detecting method
US10302760B2 (en) Vehicle water detection system
US10502823B2 (en) Method and device for detecting objects
JP2017521683A (en) Radar equipment
US11580853B2 (en) Method for acquiring the surrounding environment and system for acquiring the surrounding environment for a motor vehicle
GB2493278A (en) Anti-collision system based on passive acoustic sensor
JP2016125883A (en) Rader system and cover member
EP3378706B1 (en) Vehicular notification device and vehicular notification method
JP2015055541A (en) Surrounding object detection apparatus
WO2020070909A1 (en) Sensing device, moving body system, and sensing method
US20170059703A1 (en) System for use in a vehicle
JP5736399B2 (en) Vehicle approach notification device
JP6711319B2 (en) Perimeter monitoring radar device
JP5573788B2 (en) Driving support device
JP6518864B1 (en) Vehicle sound source direction detection system
KR101938898B1 (en) Method and device for detecting a beam of radar array antenna
JP2011018166A (en) Travel safety device for vehicle
JP2008145237A (en) Radio wave type object detector
JP2013053946A (en) Rader device
KR20220166704A (en) Non-line-of-sight radar apparatus
JP2009018680A (en) Relative relationship measuring system and on-vehicle relative relationship measuring device

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6518864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250