JP6375475B1 - Sound source direction tracking system - Google Patents

Sound source direction tracking system Download PDF

Info

Publication number
JP6375475B1
JP6375475B1 JP2017128075A JP2017128075A JP6375475B1 JP 6375475 B1 JP6375475 B1 JP 6375475B1 JP 2017128075 A JP2017128075 A JP 2017128075A JP 2017128075 A JP2017128075 A JP 2017128075A JP 6375475 B1 JP6375475 B1 JP 6375475B1
Authority
JP
Japan
Prior art keywords
sound source
microphone
source direction
rotation control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017128075A
Other languages
Japanese (ja)
Other versions
JP2018207463A (en
Inventor
高山一男
中村正孝
Original Assignee
井上 時子
井上 時子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 井上 時子, 井上 時子 filed Critical 井上 時子
Priority to JP2017128075A priority Critical patent/JP6375475B1/en
Application granted granted Critical
Publication of JP6375475B1 publication Critical patent/JP6375475B1/en
Publication of JP2018207463A publication Critical patent/JP2018207463A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】テレビ会議システム、人を補助するロボット等ではマイク、カメラを含むシステムの正面方向を回転機構により音源方向に自動的に追従するシステムを提供する。
【解決手段】音源方向に自動的に追従せるシステムは、機器の正面方向を音源方向に追従させるため、2系統のマイク信号間の時間差に伴う広帯域化した位相差検出を行いその進み遅れを判定し、フィードバック制御により進み遅れが零となる方向に回転制御させる。その場合回転した機器の正面方向が回転制御により音源方向近傍に位置しているか否かを粗く検出し、音源方向近傍に位置している場合は一定距離配置の指向性特性を有するマイクシステム信号出力を利用し進み遅れを判定し限定した角度内の回転制御を行い、音源方向近傍で無い場合は一定距離配置の無指向性マイク信号を利用し進み遅れを判定し、全方位の回転制御を行い音源方向追従させる。
【選択図】図1
Provided is a system for automatically following a front direction of a system including a microphone and a camera to a sound source direction by a rotation mechanism in a video conference system, a robot for assisting a person, and the like.
A system that automatically follows the direction of a sound source detects the advance / delay by detecting a phase difference with a wide band accompanying a time difference between two microphone signals in order to make the front direction of the device follow the direction of the sound source. Then, the rotation is controlled in a direction in which the advance delay is zero by feedback control. In that case, it is roughly detected whether the front direction of the rotated device is located near the sound source direction by rotation control, and if it is located near the sound source direction, a microphone system signal output having a directivity characteristic of a fixed distance arrangement To determine the advance / delay and perform rotation control within a limited angle.If it is not in the vicinity of the sound source direction, use an omnidirectional microphone signal placed at a fixed distance to determine the advance / delay and perform omnidirectional rotation control. Follow the sound source direction.
[Selection] Figure 1

Description

本発明は、テレビ会議システム、人を補助するロボットで話者方向にカメラ視点及びマイク指向性を向けるシステム等に適用可能な技術である。マイクを含むシステムを迅速かつ正確に音源方向に向かせるため、反射波影響を排除する方式に関するものである。   The present invention is a technology applicable to a video conference system, a system that directs a camera viewpoint and a microphone directivity in a speaker direction with a robot that assists a person. The present invention relates to a method for eliminating the influence of reflected waves in order to direct a system including a microphone to a sound source direction quickly and accurately.

音声は比帯域が広く、広帯域で音声到来方向検出をする必要がある。従来技術として、周波数成分分解合成(FFT/IFFT)を行い広帯域検出を行う方法があるが、検出に処理時間が必要となり、制御の迅速性が損なわれる。これに対し2つの無指向性マイクを数cm程度に近接配置し、2つの信号を減算処置した後積分処理した、第一の信号と、2つの信号を加算処理した第二の信号を乗算した信号で、回転制御を行うことにより、360°の音波到来方向を追従させるシステムが特許文献1に示されている。
しかし、特許文献1の方式は反射波があるとその影響により、音源到来方向検出が正しく検出されず、制御誤差が生ずる。音源到来方向検出は、検出信号の時間平均を長くとって制御すると誤差は小さくなるが、迅速な応答が出来なくなる。
Since the voice has a wide specific band, it is necessary to detect the direction of voice arrival in a wide band. As a conventional technique, there is a method of performing wideband detection by performing frequency component decomposition synthesis (FFT / IFFT), but processing time is required for detection, and the speed of control is impaired. On the other hand, two omnidirectional microphones are arranged close to each other by about several centimeters, the two signals are subtracted and then integrated, and the first signal and the second signal obtained by adding the two signals are multiplied. Japanese Patent Application Laid-Open No. 2004-133867 discloses a system that follows a 360 ° sound wave arrival direction by performing rotation control using a signal.
However, in the method of Patent Document 1, if there is a reflected wave, the sound source arrival direction detection is not correctly detected due to the influence of the reflected wave, and a control error occurs. When the sound source arrival direction detection is controlled by taking a long time average of the detection signal, the error becomes small, but a quick response cannot be made.

特許文献2にはあらかじめ想定した音源位置から外れた場合も聞きやすい音にする手法が示されているが、回転制御を行っていないため、適用できる音源角度範囲は限定的である。
また、迅速性が実現できない、反射波の影響を受ける問題がある。
Japanese Patent Application Laid-Open No. 2004-228561 shows a method for making the sound easy to hear even when it deviates from the assumed sound source position. However, since rotation control is not performed, the applicable sound source angle range is limited.
In addition, there is a problem of being affected by reflected waves that cannot be achieved quickly.

特許文献3には音源方向にカメラを向ける装置が示されているが、音響インテンシティを求める手段を使用しており、迅速性が実現できない、反射波の影響を受ける問題がある。   Patent Document 3 discloses a device that directs a camera in the direction of a sound source, but uses a means for obtaining sound intensity, and there is a problem of being affected by a reflected wave that cannot be achieved quickly.

音源方向追従システム 特開2016-201595 出願人 井上時子Sound source direction tracking system JP 2016-201595 Applicant Tokiko Inoue 音響入力装置 特開2009-135594 出願人 パナソニック電工株式会社Acoustic input device JP2009-135594 Applicant Panasonic Electric Works Co., Ltd. 音源探査装置 特願昭63-168011 出願人 株式会社東芝Sound source exploration device Japanese Patent Application No. 63-168011 Applicant Toshiba Corporation

マイクを含むシステムの正面方向を回転機構により、音源方向に自動的に追従せるシステムにおいて、壁、窓からの反射波が発生する環境下でも反射波影響を回避し、迅速かつ正確な音源方向追従を行わせることが課題である。   In a system that can automatically follow the sound source direction with the rotation mechanism, the front direction of the system including the microphone avoids the influence of the reflected wave even in the environment where the reflected wave from the wall and window is generated, and quickly and accurately follows the sound source direction. It is a problem to make it.

まずは、反射波の影響による制御誤差を定量的に解析する。
図2にシステム正面方向が音源方向に対し左右どちらにズレているかの方向を検出する構成を示す。音波到来方向に対し、マイクシステム角度(θe)を変化させた場合は音源からの到達時間が変化しそれに伴ない数1,数3に示すように位相も変化する。その信号を減算,積分,乗算を行うとVdet’となり(数8)、マイクA、B間位相差に応じた値を出力する。φb=φaの場合は出力零となり、φb>φaの場合はプラスの値をφb<φaの場合はマイナスの値を出力するこの値で右回転/左回転の回転制御を行い零となる方向で停止させることにより、音源方向に追従させている。
First, the control error due to the influence of the reflected wave is quantitatively analyzed.
FIG. 2 shows a configuration for detecting the direction in which the front direction of the system is shifted to the left or right with respect to the sound source direction. When the microphone system angle (θe) is changed with respect to the sound wave arrival direction, the arrival time from the sound source changes, and the phase also changes as shown in Equations 1 and 3. When the signal is subtracted, integrated and multiplied, Vdet ′ is obtained (Expression 8), and a value corresponding to the phase difference between the microphones A and B is output. When φb = φa, the output is zero.When φb> φa, a positive value is output. When φb <φa, a negative value is output. By stopping, it follows the direction of the sound source.

マイクA点受音信号:Ea
振幅:V 音源からの到達時間:Ta
位相を数1に示す
ベクトル表記では数2となる

Figure 0006375475
Figure 0006375475
Microphone A point received signal: Ea
Amplitude: V Arrival time from sound source: Ta
In the vector notation showing the phase in Equation 1, it becomes Equation 2.
Figure 0006375475
Figure 0006375475

マイクA点受音信号:Eb
振幅:V 音源からの到達時間:Tb
位相を数3に示す
ベクトル表記では数4となる

Figure 0006375475
Figure 0006375475
Figure 0006375475
Figure 0006375475
Figure 0006375475
Figure 0006375475
Microphone A point received signal: Eb
Amplitude: V Arrival time from sound source: Tb
In the vector notation showing the phase in Equation 3, Equation 4 is obtained.
Figure 0006375475
Figure 0006375475
Figure 0006375475
Figure 0006375475
Figure 0006375475
Figure 0006375475

数8が示すように、図2の構成はφbとφaの位相差に応じた出力
が得られ、 φb=φaとなる方向に回転制御される。
As shown in Expression 8, the configuration of FIG. 2 can obtain an output corresponding to the phase difference between φb and φa, and is rotationally controlled in the direction of φb = φa.

反射波がある場合の制御誤差について解析する
図3は反射波が有る場合のモデルを示す
ここに於いて、
fa:音源周波数
τu: 直接波に対する反射波の伝播時間差
Kdu : 反射波レベル/直接波レベル
θu:反射波到来角度(直接波基準)
θe:マイクシステム回転角度
d:マイク間距離 c:音波速度 Tm=d/c

反射波の影響を解析する場合は周波数に対する直接波と反射波の位相差の観点で解析する必要がある。
図3において音源周波数をfaとして直接波と反射波の遅延時間をτuとすると遅延による位相偏移Δθは

Figure 0006375475
FIG. 3, which analyzes the control error when there is a reflected wave, shows a model when there is a reflected wave.
fa: Sound source frequency
τu: Difference in propagation time of reflected wave with respect to direct wave
Kdu: Reflected wave level / direct wave level θu: Reflected wave arrival angle (direct wave reference)
θe: Microphone system rotation angle
d: Distance between microphones c: Sonic velocity Tm = d / c

When analyzing the influence of the reflected wave, it is necessary to analyze from the viewpoint of the phase difference between the direct wave and the reflected wave with respect to the frequency.
In FIG. 3, when the sound source frequency is fa and the delay time of the direct wave and the reflected wave is τu, the phase shift Δθ due to the delay is
Figure 0006375475

数8に示したように回転制御はφa=φbとなる方向に制御されるのでθeに対するθaとθbの差を数値演算で求めることによりにより制御誤差を計算できる。
図4、 図5 は周波数をパラメータとし、マイク傾き角度(θe)を-180°〜180°可変した場合のマイクA,B間位相差(θb-θa)を示す(d=4cm)。
図4 は反射波レベルが零の場合であるが、音源周波数に関わらずシステム正面方向(θe=0)で位相差零となる。
しかし反射波が存在し、反射波レベルが0.5(-6dB)、遅延時間が2mSec、 θu=90°の場合は図5のように音源周波数に依存した大きな位相差乱れを生じる。
Since the rotation control is controlled in the direction of φa = φb as shown in Expression 8, the control error can be calculated by calculating the difference between θa and θb with respect to θe by numerical calculation.
4 and 5 show the phase difference (θb−θa) between microphones A and B when the microphone tilt angle (θe) is varied from −180 ° to 180 ° with the frequency as a parameter (d = 4 cm).
FIG. 4 shows the case where the reflected wave level is zero, but the phase difference becomes zero in the front direction of the system (θe = 0) regardless of the sound source frequency.
However, when there is a reflected wave, the reflected wave level is 0.5 (-6 dB), the delay time is 2 mSec, and θu = 90 °, a large phase difference depending on the sound source frequency occurs as shown in FIG.

次に遅延時間可変の場合と反射波レベル可変の場合に対する制御角度誤差(θe)の数値計算結果を示す。
図6に遅延時間が異なる場合の角度誤差を示す。音源周波数変化に対応し、角度誤差の変化が繰り返すがその周波数周期は”1/遅延時間”となり遅延時間が長いと周波数周期は短くなる。
図7は直接波に対する反射波レベル(Kdu)を可変した場合の制御誤差を示す。反射波レベルが0.1(-20dB)程度の場合は誤差は±6°程度で、周波数によりプラス方向マイナス方向に均等に変化するため、入力周波数が時間変化する場合は時間平均を持たせた制御により誤差を小さくすることができる。しかしKdUが0.5(-6dB)と大きくなると、最大誤差が25°程度と大きくなり、迅速な制御の場合は最大制御誤差となる確率が高くなる。なお、Kduに対する最大制御誤差角度はほぼ正比例となる。
図8にKdu=0.5 (-6dB)における希望波に対する反射波到来角度(θu)に対する最大制御誤差を示す。正面方向(θu=0°)と背面方向(θu=180°)の時は誤差が小さくなり横方向は誤差が大きくなる。
Next, numerical calculation results of the control angle error (θe) in the case where the delay time is variable and the case where the reflected wave level is variable are shown.
FIG. 6 shows the angle error when the delay times are different. Corresponding to the sound source frequency change, the change of the angle error repeats, but its frequency cycle is “1 / delay time”, and if the delay time is long, the frequency cycle becomes short.
FIG. 7 shows a control error when the reflected wave level (Kdu) with respect to the direct wave is varied. When the reflected wave level is about 0.1 (-20dB), the error is about ± 6 °, and the frequency changes evenly in the plus and minus directions depending on the frequency. Therefore, when the input frequency changes with time, control with a time average is used. The error can be reduced. However, when KdU increases to 0.5 (−6 dB), the maximum error increases to about 25 °, and the probability of the maximum control error increases in the case of rapid control. Note that the maximum control error angle with respect to Kdu is almost directly proportional.
FIG. 8 shows the maximum control error with respect to the reflected wave arrival angle (θu) with respect to the desired wave at Kdu = 0.5 (−6 dB). When the front direction (θu = 0 °) and the rear direction (θu = 180 °), the error is small and the horizontal direction is large.

図1に解決手段の全体構成を示す。距離を置いて配置した10A,10B,10C,10Dからなる2系統のマイク信号の時間差に伴う広帯域化した位相差の進み遅れをブロック30で判定し、音波到来方向検出を行うことを基本とする。
なおここでいう、広帯域化した位相差の進み遅れの判定とは、事例として図2に示すような構成により、反射波が無い場合は図4に示すように音源周波数が変化しても位相差検出特性がほぼ変化しないことの意味である。特にθe可変時のマイク間位相差のプラスマイナスの極性が周波数に依存しないことを利用している。
更にシステム正面方向が音源方向近傍か否かの判定をブロック60で行い、2系統のマイクシシテムの指向性を無指向性か有指向性かをスイッチ22A,22Bで切り替えることにより、迅速制御の場合でも、反射波の影響による制御誤差を低減する。
システム正面方向が音源方向近傍で無い場合は最大±180°の範囲の回転制御が必要であり、無指向性マイクシステムでないと到来方向検出ができない。しかし、システム正面方向が音源方向±60°程度以内の場合はシステム正面方向近傍に指向性を有する2系統のマイクシステムによる、到来方向検出を行うことが可能となり、その場合は特に横方向からの反射波による回転制御誤差を小さくできる。
FIG. 1 shows the overall configuration of the solving means. Basically, the block 30 determines the advance / delay of the phase difference that has been widened due to the time difference between the two microphone signals 10A, 10B, 10C, and 10D arranged at a distance, and detects the arrival direction of the sound wave. .
Here, the determination of the advance / delay of the phase difference with a wider band is an example of the configuration shown in FIG. 2, and when there is no reflected wave, the phase difference even if the sound source frequency changes as shown in FIG. This means that the detection characteristics are not substantially changed. In particular, it is used that the plus / minus polarity of the phase difference between microphones when θe is variable does not depend on the frequency.
Further, in the case of quick control, it is determined in block 60 whether the front direction of the system is in the vicinity of the sound source direction, and the directivity of the two microphone systems is switched between non-directional and directional with the switches 22A and 22B. However, the control error due to the influence of the reflected wave is reduced.
When the front direction of the system is not near the sound source direction, rotation control in the range of maximum ± 180 ° is necessary, and the direction of arrival cannot be detected unless it is an omnidirectional microphone system. However, when the system front direction is within ± 60 ° of the sound source direction, it becomes possible to detect the direction of arrival by using two microphone systems having directivity near the system front direction. The rotation control error due to the reflected wave can be reduced.

指向性形成を併用した場合(BF有り)と併用しない場合(BF無し)の反射波影響による制御誤差特性の数値シミュレーション結果を図9に示す。
ここで希望波レベル基準の反射波レベル(Kdu)は0.5(-6dB)として、音源周波数を可変し最も誤差が大きくなる周波数での誤差(最悪値)をプロットしている。
このグラフは、最悪となる周波数での評価であり、反射波レベルには依存するが、遅延時間には依存しない。指向性形成を併用することにより、制御誤差を小さくすることができている。特に反射波到来角度が±45°以外の角度に対する誤差が大きく改善される。 なお、到来角度が±45°以内(同一方向からの反射波)の反射波レベルは小さい場合が多く、全体としては誤差が大きく改善される。
本発明によるこの特性により、システムの正面方向を回転機構により、発話方向(音源方向)に自動的に追従せるシステムで、反射波がある場合でも、別の場所の話者が発話し始めた場合の迅速かつ正確な回転制御が可能となる。
FIG. 9 shows the numerical simulation results of the control error characteristics due to the influence of the reflected wave when the directivity formation is used together (with BF) and when it is not used (without BF).
Here, the reflected wave level (Kdu) based on the desired wave level is 0.5 (−6 dB), and the error (worst value) is plotted at the frequency where the sound source frequency is varied and the error becomes the largest.
This graph is an evaluation at the worst frequency, and depends on the reflected wave level, but does not depend on the delay time. By using the directivity formation together, the control error can be reduced. In particular, the error with respect to an angle other than the reflected wave arrival angle of ± 45 ° is greatly improved. In many cases, the reflected wave level within an arrival angle of ± 45 ° (reflected wave from the same direction) is small, and the error is greatly improved as a whole.
Due to this characteristic of the present invention, a system in which the front direction of the system automatically follows the direction of speech (sound source direction) by a rotation mechanism, and a speaker in another location starts speaking even when there is a reflected wave. Swift and accurate rotation control is possible.

選択図 本発明全体構成Selection diagram Overall configuration of the present invention 音源方向検出基本方式Sound source direction detection basic method 反射波影響モデルReflected wave effect model 反射波レベルが零の場合のマイク間位相差Phase difference between microphones when the reflected wave level is zero 反射波レベルが0.5(-6dB)、遅延時間:2mSecの場合のマイク間位相差Phase difference between microphones when reflected wave level is 0.5 (-6dB) and delay time is 2mSec 反射波の遅延時間可変に対する制御角度誤差Control angle error for variable delay time of reflected wave <反射波レベル/直接波レベル> に対する制御誤差Control error for <reflected wave level / direct wave level> 反射波到来角度に対する制御角度誤差Control angle error for reflected wave arrival angle 指向性形成が無い場合と有る場合制御誤差変化(本発明の効果を示す図)Change in control error when there is no directivity formation (figure showing the effect of the present invention) 実施例1:具体的な全体構成Example 1: Specific overall configuration 実施例1:指向性形成方式Example 1: Directionality formation method 図11方式の指向性特性Figure 11 directivity characteristics 実施例2:大まかな音波到来方向検出方式Example 2: Rough sound wave arrival direction detection method 実施例3:指向性信号を合成したマイク信号出力方式Example 3: Microphone signal output method combining directional signals

次に掲載する実施例1〜3に発明を実施するための形態を挙げる。 Next, Examples 1 to 3 listed below are modes for carrying out the invention.

(実施例1)
図10 に本発明の第一の実施例を示す。
10A,10B,10C,10Dからなる4個のマイクを1辺4cmの平面4角形の4隅に配置する。全方位検出時は無指向性マイクによる制御となるが、その場合は10Aの無指向性マイクA(VomL)、10BのマイクB(VomR)を使用する。回転制御によりシステム正面方向が音源方向近傍となったことを検出し、その場合は指向性形成信号に切り替えるが、その場合はマイクC(10C),マイクA(10A)ペアでブロック20Aで指向性形成した信号(VbfL)及び、マイクD(10D),マイクB(10B)ペアでブロック20Bで指向性形成した信号(VbfR) を利用する。 VbfLとVbfRは距離d離れた位置での受音相当となり、音源到来角度に応じた広帯域位相差が生じ、到来方向検出が可能となる。音波到来方向がシステム正面方向か否かをブロック60で検出しスイッチ22A,22Bで切り替えたマイク出力信号はViL,ViRであるが、その信号を広帯域化した位相差検出による音源方向検出ブロック30に入力し到来方向検出を行う。その場合システム正面方向から離れた角度から到来する反射波は指向性形成効果で振幅が減衰され、迅速応答の場合でも角度制御誤差が生じにくくなる。
(Example 1)
FIG. 10 shows a first embodiment of the present invention.
Four microphones consisting of 10A, 10B, 10C, and 10D are arranged at the four corners of a plane quadrangle with a side of 4 cm. At the time of omnidirectional detection, control is performed by an omnidirectional microphone. In this case, a 10A omnidirectional microphone A (VomL) and a 10B microphone B (VomR) are used. It is detected by rotation control that the front direction of the system is close to the sound source direction, and in that case, the directivity forming signal is switched. In this case, the directivity is set in the block 20A with the microphone C (10C) and microphone A (10A) pair. The formed signal (VbfL) and the signal (VbfR) having the directivity formed in the block 20B by the microphone D (10D) and microphone B (10B) pair are used. VbfL and VbfR correspond to sound reception at a distance d away, and a wide-band phase difference is generated according to the sound source arrival angle, so that the arrival direction can be detected. The microphone output signals detected by the block 60 to determine whether or not the sound wave arrival direction is the front direction of the system and switched by the switches 22A and 22B are ViL and ViR. Input and detect direction of arrival. In that case, the amplitude of the reflected wave arriving from an angle away from the front direction of the system is attenuated by the directivity forming effect, and an angle control error hardly occurs even in the case of a quick response.

指向性形成実施例を図11に示す。
減算/積分方式による、方式である。
1A,1Bからなるマイク信号を、減算、積分
係数乗算、加算を行い指向性を形成する。
図11の方式の指向性関数D(θ)は以下となる。
k=ω/c c:音波速度 ω:音源角周波数
d:マイク間距離
とすると

Figure 0006375475
A directivity forming embodiment is shown in FIG.
This is a method based on the subtraction / integration method.
The microphone signal composed of 1A and 1B is subtracted, multiplied by an integral coefficient, and added to form directivity.
The directivity function D (θ) of the method of FIG. 11 is as follows.
k = ω / c c: sound velocity ω: sound source angular frequency
d: When the distance between microphones
Figure 0006375475

ここで

Figure 0006375475
here
Figure 0006375475

と仮定すると
D(θ)は以下のように近似できる

Figure 0006375475
Assuming
D (θ) can be approximated as
Figure 0006375475

したがって係数Kaを正にするか負にするかにより指向性を反転することができる。
Kaが正の場合:180°方向にビーム形成
Kaが負の場合:0°方向にビーム形成
指向性の数値計算例を図12 に示す
Therefore, the directivity can be reversed depending on whether the coefficient Ka is positive or negative.
When Ka is positive: Beam formation in 180 ° direction
When Ka is negative: An example of numerical calculation of beamforming directivity in the 0 ° direction is shown in FIG.

(実施例2)
大まかな音波到来を検出する実施例を示す。3マイクによる4方向指向性形成を行い、システム正面方向の振幅値が他の方向の振幅より大きいことを検出するロジックである(図13)。
3マイク信号は図10 のマイクA、マイクB、マイクCの信号から分岐して生成する。指向性形成の実現手段例は図11に示す方式と同様である。
ブロック4のKa値可変により指向性方向を反転させることができることを利用する。マイクA(10A)とマイクC(10C)でLa方向Lc方向の指向性を形成し、マイクA(10A)とマイクB(10B)でLb方向Ld方向の指向性を形成する。これをブロック60で振幅比較を行いシステム正面が音源方向近傍かを検出する。
なお正面方向有指向性マイク信号と無指向性マイク信号とのレベル比較で音波が正面から到来していることを検出する方法もあるが無指向性信号利用の場合は反射波の影響で定在波が生じ、正しく検出できない場合があるが、本方式では、正しく検出可能である。
(Example 2)
An embodiment for detecting the arrival of a rough sound wave will be described. This is logic that performs 4-directional directivity formation with 3 microphones and detects that the amplitude value in the front direction of the system is larger than the amplitude in the other direction (FIG. 13).
The three-mic signal is generated by branching from the signals of the microphone A, microphone B, and microphone C in FIG. An example of means for realizing directivity formation is the same as that shown in FIG.
The fact that the directivity direction can be reversed by changing the Ka value of block 4 is utilized. The microphone A (10A) and the microphone C (10C) form a directivity in the La direction Lc direction, and the microphone A (10A) and the microphone B (10B) form a directivity in the Lb direction Ld direction. This is compared in amplitude at block 60 to detect whether the front of the system is near the sound source direction.
There is also a method to detect that sound waves are coming from the front by comparing the level of the directional microphone signal with the omnidirectional signal, but when using the omnidirectional signal, it is fixed due to the influence of the reflected wave. Although a wave may occur and cannot be detected correctly, this method can detect it correctly.

(実施例3)
音源方向追従に使用する、左右に距離を置いて配置した正面方向指向性マイクシステムの出力は反射波影響が軽減された信号であり聞きやすい音となる。その時、20A,20Bで形成した2系統の指向性信号をブロック70で合成することによりさらに聞きやすい音とすることができる。単純な加算の場合でも定量的には無相関ノイズの場合は合成によりノイズレベルは√2倍となり、信号レベルは2倍となるので信号レベル/雑音レベルは1.4倍(3dB)向上できる。
図14にその構成を示す。
(Example 3)
The output of the front directional microphone system used for sound source direction tracking and arranged at a distance from the left and right is a signal in which the influence of the reflected wave is reduced, and the sound is easy to hear. At that time, by synthesizing two directional signals formed by 20A and 20B in the block 70, it is possible to make the sound easier to hear. Even in the case of simple addition, quantitatively, in the case of uncorrelated noise, the noise level is doubled by synthesis and the signal level is doubled, so that the signal level / noise level can be improved by 1.4 times (3 dB).
FIG. 14 shows the configuration.

(1)テレビ会議システムにおいてカメラを話者に向け、先方に話者の顔を見せると供に、
指向性形成により音声信号のS/Nを向上させる。
(2)人を補助するロボットにおいて、ロボットの顔を話者に向かせるヒューマンインタ
フェース。
(3)聴覚障碍者に発話者の顔画像を提供し、顔及び口の動きを認識させる。
(4)防犯システムにおいて音のする方向の画像および音を録画する。
(1) In a video conference system, point the camera at the speaker and show the speaker's face to the other party.
Improve S / N of audio signal by directivity formation.
(2) A human interface that assists humans with the robot's face facing the speaker.
(3) Provide the face image of the speaker to the hearing impaired and recognize the movement of the face and mouth.
(4) Record the sound direction image and sound in the crime prevention system.

1A:無指向性マイク2個による、指向性形成を実現する方式説明用無向性マイクA
1B:無指向性マイク2個による、指向性形成を実現する方式説明用無向性マイクB
2:指向性形成用減算器
3:指向性形成用積分器
4:指向性形成用係数器(Ka値を乗算する)
5:指向性形成用加算器
10:平面に配置された4個の無指向性マイク
10A:無指向性マイクA
10B:無指向性マイクB
10C:無指向性マイクC
10D:無指向性マイクD
22A:指向性切り替え用スイッチA
22B:指向性切り替え用スイッチB
30:音源方向検出ブロック(広帯域化した位相差検出)
30A:音源方向検出ブロック用2価化処理A、瞬時最大振幅成分のみ抽出が目的
30B:音源方向検出ブロック用2価化処理B、瞬時最大振幅成分のみ抽出が目的
40:音源方向検出ブロック用減算器
41:音源方向検出ブロック用加算器
42:音源方向検出ブロック用積分器
43:音源方向検出ブロック用乗算器
50:到来方向検出平均化部
51:音源方向追従用モーター駆動部
52:音源方向追従用モーター
60:システム正面方向近傍からの音源到来方向検出部
61:指向性切り替えスイッチ制御部
1A: Method-oriented omnidirectional microphone A that achieves directivity with two omnidirectional microphones
1B: An omnidirectional microphone B for explaining a method for realizing directivity formation by two omnidirectional microphones
2: Subtractor for directivity formation
3: Integrator for directivity formation
4: Directivity forming coefficient unit (multiply by Ka value)
5: Directivity forming adder 10: Four omnidirectional microphones arranged in a plane
10A: Omnidirectional microphone A
10B: Omnidirectional microphone B
10C: Omnidirectional microphone C
10D: Omnidirectional microphone D
22A: Directivity switching switch A
22B: Directivity switching switch B
30: Sound source direction detection block (broadband phase difference detection)
30A: Binarization processing A for sound source direction detection block, the purpose is to extract only the instantaneous maximum amplitude component
30B: Binarization processing B for sound source direction detection block, the purpose is to extract only the instantaneous maximum amplitude component
40: Subtractor for sound source direction detection block
41: Adder for sound source direction detection block
42: Integrator for sound source direction detection block
43: Multiplier for sound source direction detection block
50: Direction-of-arrival detection averaging unit
51: Motor drive unit for sound source direction tracking
52: Motor for sound source direction tracking
60: Sound source arrival direction detector near the front of the system
61: Directional changeover switch controller

Claims (3)

機器の正面方向を広帯域周波数成分を有する音源方向に追従させるため、2系統のマイク信号の時間差に伴う広帯域化した位相差検出結果の進み遅れを判定し、フィードバック制御により進み遅れが無くなる方向に回転制御するシステムにおいて、機器の正面方向が回転制御により音源方向近傍即ち音源方向に対し概ね±60°以内に位置しているか否かを粗く検出する手段により、音源方向近傍に位置している場合は受音位置が一定距離だけ離れて配置された指向性特性を有するマイクシステム信号出力を使用した回転制御を行い、音源方向近傍で無い場合はマイク位置が一定距離だけ離れて配置された無指向性マイク信号を利用した回転制御を行う音源方向追従システム。The front direction of the equipment to follow the sound source direction with broadband frequency component, 2 to determine the broadband the phase difference detection result lead lag due to the time difference between the microphone signal of the system, the more leading direction delays is eliminated in the feedback control In a rotation control system, when the front direction of the device is positioned in the vicinity of the sound source direction by means of roughly detecting whether or not the front direction of the device is positioned in the vicinity of the sound source direction by rotation control, that is, approximately within ± 60 ° with respect to the sound source direction. Performs rotation control using a microphone system signal output with directivity characteristics in which the sound receiving position is located a certain distance away, and if it is not near the sound source direction, the microphone position is omnidirectionally located a certain distance away Sound source direction tracking system that performs rotation control using a signal from a directional microphone. 平面の前後方向、及び左右方向に配置されたマイク信号から複数方向の指向性を形成し、複数方向の受音信号振幅を比較し、機器正面方向に指向性を有する信号振幅が他方向の信号振幅のどれよりも高い場合に機器正面方向が音源方向近傍であることを判定する請求項1の音源方向追従システム。A multi-directional directivity is formed from microphone signals arranged in the front-rear direction and the left-right direction of the plane, and the received signal amplitudes in the multi-directional directions are compared. The sound source direction tracking system according to claim 1, wherein when the amplitude is higher than any of the amplitudes, the device front direction is determined to be in the vicinity of the sound source direction . 受音位置が一定距離だけ離れて配置された指向性特性を有するマイクシステムの信号出力を合成し反射波及び雑音を抑圧した信号を得る、請求項1の音源方向追従システム。 The sound source direction tracking system according to claim 1, wherein the signal output of a microphone system having directivity characteristics in which sound receiving positions are separated by a certain distance is synthesized to obtain a signal in which reflected waves and noise are suppressed.
JP2017128075A 2017-06-07 2017-06-07 Sound source direction tracking system Active JP6375475B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128075A JP6375475B1 (en) 2017-06-07 2017-06-07 Sound source direction tracking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128075A JP6375475B1 (en) 2017-06-07 2017-06-07 Sound source direction tracking system

Publications (2)

Publication Number Publication Date
JP6375475B1 true JP6375475B1 (en) 2018-08-15
JP2018207463A JP2018207463A (en) 2018-12-27

Family

ID=63165892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128075A Active JP6375475B1 (en) 2017-06-07 2017-06-07 Sound source direction tracking system

Country Status (1)

Country Link
JP (1) JP6375475B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067381A (en) * 2018-10-24 2020-04-30 井上 時子 On-vehicle sound source direction detection system
CN113284490A (en) * 2021-04-23 2021-08-20 歌尔股份有限公司 Control method, device and equipment of electronic equipment and readable storage medium
CN113631942A (en) * 2020-02-24 2021-11-09 京东方科技集团股份有限公司 Sound source tracking control method and control device, and sound source tracking system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131616B (en) * 2019-12-28 2022-05-17 科大讯飞股份有限公司 Audio sharing method based on intelligent terminal and related device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033811A (en) * 2003-07-11 2005-02-03 Fuji Xerox Co Ltd Communication system, system to facilitate conferencing, communication device, and method for conducting conference
JP2009239346A (en) * 2008-03-25 2009-10-15 Yamaha Corp Photographing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033811A (en) * 2003-07-11 2005-02-03 Fuji Xerox Co Ltd Communication system, system to facilitate conferencing, communication device, and method for conducting conference
JP2009239346A (en) * 2008-03-25 2009-10-15 Yamaha Corp Photographing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067381A (en) * 2018-10-24 2020-04-30 井上 時子 On-vehicle sound source direction detection system
CN113631942A (en) * 2020-02-24 2021-11-09 京东方科技集团股份有限公司 Sound source tracking control method and control device, and sound source tracking system
CN113631942B (en) * 2020-02-24 2024-04-16 京东方科技集团股份有限公司 Sound source tracking control method, control device and sound source tracking system
CN113284490A (en) * 2021-04-23 2021-08-20 歌尔股份有限公司 Control method, device and equipment of electronic equipment and readable storage medium

Also Published As

Publication number Publication date
JP2018207463A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6375475B1 (en) Sound source direction tracking system
TWI713844B (en) Method and integrated circuit for voice processing
US8891785B2 (en) Processing signals
US8981994B2 (en) Processing signals
KR100499124B1 (en) Orthogonal circular microphone array system and method for detecting 3 dimensional direction of sound source using thereof
JP3863323B2 (en) Microphone array device
JP6240995B2 (en) Mobile object, acoustic source map creation system, and acoustic source map creation method
EP3566461B1 (en) Method and apparatus for audio capture using beamforming
EP3566462B1 (en) Audio capture using beamforming
WO2008121905A2 (en) Enhanced beamforming for arrays of directional microphones
JP2001025082A (en) Microphone array system
US20050201204A1 (en) High precision beamsteerer based on fixed beamforming approach beampatterns
US20150312690A1 (en) Audio Processing Apparatus and Audio Processing Method
Merks et al. Sound source localization with binaural hearing aids using adaptive blind channel identification
JP2018034221A (en) Robot system
JPH1118193A (en) Reception state detection method and its system
JP2019080246A (en) Directivity control device and directivity control method
Tashev et al. Cost function for sound source localization with arbitrary microphone arrays
Orchard et al. Localisation of a sound source in different positions using Kinect sensors
JPH1118191A (en) Sound pickup method and its device
JP2006162461A (en) Apparatus and method for detecting location of sound source
JP2002031674A (en) Method for correcting sounding body directivity and its apparatus
Chung et al. Indoor positioning of sound sources with a microphone array
CA3218013A1 (en) A method and system for directional processing of audio information
KR101152345B1 (en) Directivity actuating device a dual omnidirectional microphone type

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

R150 Certificate of patent or registration of utility model

Ref document number: 6375475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250