JP2002031674A - Method for correcting sounding body directivity and its apparatus - Google Patents

Method for correcting sounding body directivity and its apparatus

Info

Publication number
JP2002031674A
JP2002031674A JP2000215545A JP2000215545A JP2002031674A JP 2002031674 A JP2002031674 A JP 2002031674A JP 2000215545 A JP2000215545 A JP 2000215545A JP 2000215545 A JP2000215545 A JP 2000215545A JP 2002031674 A JP2002031674 A JP 2002031674A
Authority
JP
Japan
Prior art keywords
microphone
sounding body
sound
microphones
directivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000215545A
Other languages
Japanese (ja)
Other versions
JP3540988B2 (en
Inventor
Kenji Kiyohara
健司 清原
Kenichi Furuya
賢一 古家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000215545A priority Critical patent/JP3540988B2/en
Publication of JP2002031674A publication Critical patent/JP2002031674A/en
Application granted granted Critical
Publication of JP3540988B2 publication Critical patent/JP3540988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for correcting a sounding body directivity which prevents a high frequency region from being indistinct even when a gain in the rear of a speaker becomes high in a delay sum array method. SOLUTION: In the delay sum array method, a position of the sounding body is detected from output signals of a plurality of microphones. Output signals from a plurality of microphones near the sounding body (near microphone output signals) among the plurality of microphones are monitored by a frequency region. A direction of the microphone having the highest high region of a spectrum envelope of frequency characteristics among the near microphone output signals is detected as a front face of the sounding body. A difference from frequency characteristics of the other microphones is detected and corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数のマイクロホ
ンで構成されるマイクロホンアレーの出力信号を信号処
理して高いSN比で目的音を収音する際に発話者などの
発音体の指向性を補正する方法およびその装置に係り、
特に発音体に近い位置にある複数のマイクロホンからの
出力(以下、「近傍マイク出力」と呼ぶ)を周波数領域
で監視し、該近傍マイク出力のうち、その周波数特性の
スペクトル包絡の高域が最も高くなっているマイクロホ
ンの方向を発音体の正面として検出し、他のマイクロホ
ンの周波数特性との差を検出し、その差を補正する方法
および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing the output signal of a microphone array composed of a plurality of microphones to collect a target sound with a high SN ratio, and thereby to determine the directivity of a sounding body such as a speaker. The present invention relates to a correction method and an apparatus therefor,
In particular, outputs from a plurality of microphones located close to the sounding body (hereinafter, referred to as “proximal microphone output”) are monitored in the frequency domain, and among the nearby microphone outputs, the highest band of the spectral envelope of the frequency characteristic is the highest. The present invention relates to a method and an apparatus for detecting a direction of a microphone that is raised as a front of a sounding body, detecting a difference from a frequency characteristic of another microphone, and correcting the difference.

【0002】[0002]

【従来の技術】近年、マルチメディア技術の進歩に伴
い、マイクロホンとスピーカを用いた、拡声通話形態に
よるテレビ会議などの通信会議が可能になりつつある。
その場合に、通信会議の机上に話者数分のマイクロホン
を設置することなくマイクロホンを意識しない自然な通
話が可能で、かつ音声等の目的音のみを収音する収音装
置が求められている。
2. Description of the Related Art In recent years, with the advancement of multimedia technology, it has become possible to conduct a teleconference such as a video conference using a microphone and a speaker in a voice call mode.
In such a case, there is a need for a sound collection device that can make a natural call without being conscious of the microphone without installing microphones for the number of speakers on the desk of the communication conference and that collects only a target sound such as voice. .

【0003】そのような収音装置の例として、複数のマ
イクロホン(マイクロホンアレー)を設置して、それら
の出力を信号処理して目的音を抽出する収音装置があ
る。このようなマイクロホンアレーを用いて雑音を抑圧
し目的音を抽出する信号処理方式には、遅延和方式、AM
NORなど多数知られているが(例えば、大賀、山崎、金
田共著「音響システムとディジタル処理」電子情報通信
学会、1995年,pp.173-197)、例えば、遅延和方式では
次のように目的音を抽出する。
[0003] As an example of such a sound pickup device, there is a sound pickup device in which a plurality of microphones (microphone arrays) are installed and their outputs are subjected to signal processing to extract a target sound. Signal processing methods for suppressing noise and extracting a target sound using such a microphone array include a delay-and-sum method and an AM method.
Although many are known, such as NOR (eg, Oga, Yamazaki, Kaneda, "Acoustic system and digital processing" IEICE, 1995, pp.173-197), for example, the purpose of the delay-sum method is as follows Extract sound.

【0004】図1は遅延和方式による目的音抽出の原理
を説明する図である。図1において、1は収音部(マイ
クロホンアレー)、21,22,・・・,2Mはマイクロホ
ン(Mはマイクロホンの数)、31,32,・・・,3M
遅延器、4は加算器、5は出力信号、6は雑音抑圧部、
dはマイクロホン間隔、s(t)は収音部1に到来する音波
(tは時間を表す)、θは音波s(t)が収音部1に到来す
る到来角度である。
FIG. 1 is a diagram for explaining the principle of target sound extraction by the delay-and-sum method. In Figure 1, 1 is sound pickup unit (microphone array), 2 1, 2 2, ···, 2 M microphones (M is the number of microphones), 3 1, 3 2, ···, 3 M delay , 4 is an adder, 5 is an output signal, 6 is a noise suppression unit,
d is a microphone interval, s (t) is a sound wave arriving at the sound pickup unit 1 (t represents time), and θ is an arrival angle at which the sound wave s (t) arrives at the sound pickup unit 1.

【0005】図1のマイクロホン21,22,・・・,2M
が等間隔dで直線状に並び、音波s(t)が遠方から、この
直線状に並んだマイクロホンに角度θで到来するものと
する。このとき、マイクロホン21に到達した音波がマ
イクロホン22に到達するまでに伝播する距離は、マイ
クロホン間隔dと到来角θとからdsinθで表される(図
1)。同様に、i番目のマイクロホン2i(i=2,・・・,M)
に到達するまでの伝播する距離は、(i−1)dsinθで表さ
れる。従って、マイクロホン2i(i=2,・・・,M)に到達
するまでの遅延時間τiは、マイクロホン21を基準とす
ると、この伝播距離を音速cで割ることにより、次式(1)
で表される。
The microphones 2 1 , 2 2 ,..., 2 M in FIG.
Are arranged linearly at equal intervals d, and the sound wave s (t) arrives at a microphone θ at an angle θ from a distance. The distance the sound wave reaching the microphone 2 1 propagates before reaching the microphone 2 2 is represented by dsinθ from the arrival angle θ a microphone spacing d (Figure 1). Similarly, the i-th microphone 2 i (i = 2,..., M)
Is represented by (i−1) dsin θ. Accordingly, the microphone 2 i (i = 2, ··· , M) is a delay time tau i to reach, when the reference microphones 2 1, by dividing the propagation distance at the speed of sound c, the following equation (1 )
It is represented by

【0006】 τi=(i−1)dsinθ/c (1) ここで、各マイクロホン2i(i=1,・・・,M)から出力信
号Xi(t)で表すと、これは音波s(t)がτiだけ遅れたもの
であるから、次式(2)のようになる。 Xi(t)=s(t−τi) (2) ここで遅延器3i(i=1,・・・,M)の遅延量Diを適切に設
定すると、θ方向から到来する音波のみを強調して出力
信号5を出力できることを以下に示す。
Τ i = (i−1) dsin θ / c (1) Here, when each microphone 2 i (i = 1,..., M) represents an output signal X i (t), this is a sound wave. Since s (t) is delayed by τ i , the following equation (2) is obtained. X i (t) = s ( t-τ i) (2) where the delay unit 3 i (i = 1, ··· , M) when appropriately setting the delay amount D i of sound waves arriving from θ direction The following shows that the output signal 5 can be output with only the emphasis.

【0007】遅延器3i(i=1,・・・,M)の遅延量Diを次
式(3)のように設定する。 Di =D0−τi (3) ここでD0は、τiの値が小さすぎると遅延特性をディジ
タルフィルタで実現する際の精度が低下することを防ぐ
ために付加する固定遅延量である。このとき、遅延器3
i(i=1,・・・,M)の出力は、式(2)の信号に式(3)の遅延D
iが生じたものなので、次式(4)のようになる。
The delay amount D i of the delay unit 3 i (i = 1,..., M) is set as in the following equation (3). D i = D 0 −τ i (3) Here, D 0 is a fixed delay amount added in order to prevent a decrease in accuracy in realizing delay characteristics with a digital filter when the value of τ i is too small. . At this time, the delay unit 3
i (i = 1,..., M) is obtained by adding the signal of equation (2) to the delay D of equation (3).
Since i occurs, the following equation (4) is obtained.

【0008】 Xi(t−Di) =s(t−τi−Di) =s(t−τi−(D0−τi)) =s(t−D0) (4) すなわち、マイクロホンの番号iに関わらず、s(t)がD0
だけ遅れた同一の信号となる。このように位相を揃えて
から加算器4によって信号を足し合わせれば、このθ方
向から到来する音波は足し合わされた分、強調される。
一方、θ方向とは別のθN方向から到来する音波は、τi
とは異なる遅延時間τNをもって受音されるため、式(3)
の遅延量では位相は揃わず、加算器4によって信号を足
し合わせても強調されることはない。
X i (t−D i ) = s (t−τ i −D i ) = s (t−τ i − (D 0 −τ i )) = s (t−D 0 ) (4) , Regardless of the microphone number i, s (t) is D 0
The same signal is delayed. When the signals are added by the adder 4 after the phases are aligned in this way, the sound waves arriving from the θ direction are emphasized by the added amount.
On the other hand, sound waves and theta directions coming from another theta N direction, tau i
Since the sound is received with a delay time τ N different from
With the delay amount of, the phases are not aligned, and the signals are not emphasized even when the signals are added by the adder 4.

【0009】このようにして、遅延和方式では目的の方
向θから到来する音波を強調し、他の方向θNから到来
する雑音を相対的に抑圧する。このとき、目的の方向θ
を走査し、マイクロホンアレーの出力信号を監視すれ
ば、θが目的話者の方向に向いたとき出力信号が大きく
なるので、目的話者の方向を探すことができる。そし
て、この目的話者の方向θからの音波を強調するように
式(4)に従って位相を揃えて加算することにより、すな
わちマイクロホンアレーの指向性をθの方向に向けるこ
とにより、目的音を高いSN比で収音することができ
る。
As described above, in the delay-and-sum method, the sound wave coming from the target direction θ is emphasized, and the noise coming from the other direction θ N is relatively suppressed. At this time, the desired direction θ
Is scanned, and the output signal of the microphone array is monitored, the output signal increases when θ is directed to the direction of the target speaker, so that the direction of the target speaker can be searched. Then, the target sound is increased by aligning and adding the phases according to Equation (4) so as to emphasize the sound wave from the direction θ of the target speaker, that is, by directing the directivity of the microphone array in the direction of θ. Sound can be collected at the SN ratio.

【0010】なお、ここでは説明の便宜上、複数のマイ
クロホンを等間隔dで直線上に並んだものとして説明し
たが、このマイクロホンの間隔は不等間隔にすることも
可能で、並べる形状も2次元的、3次元的に並べてもよ
い。また、図2のように点音源的な音源Sがマイクロホ
ンアレーに比較的近い距離に位置する場合は、音源Sか
らの球面波的な性質を利用して、遅延器31,32,・・
・,3Mの後段にゲイン部71,72,・・・,7Mを設け、こ
のゲイン部に適切な荷重(ゲイン)を与えることが収音
SN比の向上に重要である。荷重の与え方としては、次
式(5),(6),(7)で表されるような与え方がある(野村、
金田、小島「近接音場型マイクロホンアレー」日本音響
学会誌、53巻2号(1997)、pp.110-116)。
Here, for convenience of explanation, a plurality of microphones are described as being arranged on a straight line at equal intervals d. However, the microphones can be arranged at irregular intervals, and the arrangement shape is two-dimensional. Or three-dimensionally. When the point sound source S is located at a relatively short distance from the microphone array as shown in FIG. 2, the delay units 3 1 , 3 2 ,.・
It is important to improve the sound pickup S / N ratio by providing gain sections 7 1 , 7 2 ,..., 7 M at the subsequent stage of 3 M and applying an appropriate load (gain) to these gain sections. As a method of applying a load, there is a method of applying a load represented by the following equations (5), (6), and (7) (Nomura,
Kaneda, Kojima, “Near-field Microphone Array”, Journal of the Acoustical Society of Japan, 53, 2 (1997), pp. 110-116).

【0011】[0011]

【数1】 ここに、r1,r2,・・・,rMは音源Sから各マイクロホ
ン21,22,・・・,2Mまでの距離、rcは室内の臨界
距離、すなわち音源の直接音パワーと残響音パワーとが
等しくなる距離であり、室容積V(m3)、室の残響時間T
(秒)に対し、rc=√(0.0032V/T)で表される(H.Kutt
ruff,「Room Acoustics(Third Edition)」,Elsevier Ap
plied Science,pp.100-132(1991))。このときマイクロ
ホンアレーは音源Sの位置の“点”に対して最も感度が
高くなるようになり、いわば感度の“焦点”が形成され
るようになる。このとき、各マイクロホンまでの距離r
i(i=1,・・・,M)に対する遅延器31,32,・・・,3M
の遅延D0−ri/c(c:音速)と上述のゲインg0すなわ
ちaを変化させて感度の焦点を走査し、アレー出力を監
視すれば、目的話者の存在する点に感度の焦点が向いた
ときアレー出力が大きくなるので、これによって目的話
者の位置を見出すことができる。
(Equation 1) Here, r 1, r 2, · · ·, r M 1 2 each microphone from the sound source S, 2 2, · · ·, distance to 2 M, r c is the critical length of the chamber, i.e., the direct sound of the sound source This is the distance at which the power and the reverberation sound power become equal, and the room volume V (m 3 ) and the room reverberation time T
(Sec), r c = √ (0.0032V / T) (H.Kutt
ruff, `` Room Acoustics (Third Edition) '', Elsevier Ap
plied Science, pp. 100-132 (1991)). At this time, the microphone array has the highest sensitivity with respect to the "point" of the position of the sound source S, so that a "focus" of the sensitivity is formed. At this time, the distance r to each microphone
delay units 3 1 , 3 2 ,..., 3 M for i (i = 1,..., M)
Delay D 0 -r i / c (c : sound velocity) and by changing the above-mentioned gain g 0 i.e. a scan the focal point of the sensitivity, by monitoring an array output, the sensitivity to the point of presence of the target speaker When the focus is turned on, the array output becomes large, so that the position of the target speaker can be found.

【0012】このようにして、方向ないし位置として目
的話者の存在領域を見出し、その存在領域にアレーの指
向性を向けることにより、高い収音SN比で目的音を収
音することができる。
In this way, by finding the target speaker's existence area as the direction or position and directing the array directivity to the existence area, the target sound can be picked up with a high sound collection SN ratio.

【0013】[0013]

【発明が解決しようとする課題】人間が発話する際、そ
の指向性は正面を向いており、一般にその高域成分は、
後方に向かうに従い減衰する(例えば、電子通信学会編
「聴覚と音声」1975年コロナ社発行、p236)。その様子
を図3に示す。この図は、正面を基準に人間の口の指向
周波数特性を表している。この図から正面に対して後方
において500Hzでは約5dB、4kHzでは約10dB減衰してい
る様子が解る。このとき、図2の遅延和アレー方式で、
発話者の後頭部付近に焦点が向くと、高域のこもった音
が収音されるという問題があった。
When a human utters, its directivity is facing forward, and its high-frequency component is generally
Decays toward the rear (for example, "Hearing and Speech" edited by the Institute of Electronics and Communication Engineers, 1975, published by Corona, p. 236). This is shown in FIG. This figure shows the directional frequency characteristics of the human mouth with reference to the front. From this figure, it can be seen that the frequency is about 5 dB at 500 Hz and about 10 dB at 4 kHz with respect to the front. At this time, the delay-and-sum array method of FIG.
There is a problem that high-frequency muffled sound is picked up when the focus is directed to the vicinity of the back of the speaker's head.

【0014】[0014]

【課題を解決するための手段】上記の問題を解決するた
めに、発話者などの発音体の位置を検出する音源位置検
出手段と、該マイクロホンの出力のうち発音体に近い位
置にある複数のマイクロホンからの出力(以下「近傍マ
イク出力」と呼ぶ)を周波数領域で監視する周波数特性
監視手段と、該近傍マイク出力のうち、その周波数特性
のスペクトル包絡が高域が最も高くなっているマイクロ
ホンの方向を発音体の正面として検出する発音体指向性
検出手段と他のマイクロホン出力のスペクトル特性との
差を検出するスペクトル差検出手段とその差を補正する
スペクトル差補正手段を設ける(図4参照)。
In order to solve the above-mentioned problems, a sound source position detecting means for detecting a position of a sounding body such as a speaker, and a plurality of microphone outputs close to the sounding body among outputs of the microphone. Frequency characteristic monitoring means for monitoring the output from the microphone (hereinafter referred to as “proximal microphone output”) in the frequency domain, and the microphone having the highest spectral envelope of the frequency characteristic among the nearby microphone outputs. There are provided a sounding body directivity detecting means for detecting the direction as the front of the sounding body, a spectrum difference detecting means for detecting a difference between the spectrum characteristics of other microphone outputs, and a spectrum difference correcting means for correcting the difference (see FIG. 4). .

【0015】本発明は上記構成を備えることにより、図
2の遅延和アレー方式における荷重ゲインの計算結果が
発話者の後方のゲインを高くする結果となっても、高域
のこもった音が収音されるという問題を回避することが
できる。
According to the present invention, even if the calculation result of the weight gain in the delay-and-sum array method of FIG. 2 results in increasing the gain behind the speaker, the muffled sound in the high frequency range can be collected. The problem of being sounded can be avoided.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して実施例を説
明する。図5は、本発明の第1の実施例を示す。この図
において、発音体指向性補正装置21のマイクロホンアレ
ー22は天井等に2次元的(平面的)に配置されている。
このマイクロホンアレー22の出力xi(t)は焦点操作部11
によって遅延器3と荷重部7が走査され、各焦点毎に遅
延器3で位相を揃えられて信号yi(t)となり、荷重部7
で荷重されてgi×yi(t)となる。この出力gi×yi(t)はパ
ワー計算部23に送られパワー(Σgi×yi(t))^2が計算さ
れる。音源位置検出部24では各焦点毎のパワーが比較さ
れ、最大パワーとなる焦点位置を音源位置として検出す
る。この音源位置情報は遅延器3'に送られ、音源位置
に焦点が向くようにマイク出力xi(t)の位相を揃えた信
号y'(t)を正面候補抽出部25に送る。正面候補抽出部25
ではy(t)の中から音源位置に近い周辺のマイク出力(の
位相を揃えた信号)を正面候補信号yi'(t)として抽出し
ハイパスフィルタ26に送り、yi'(t)以外のyi(t)を荷重
部7"に送る。ハイパスフィルタ26を通った信号yi"(t)
はパワー計算部27に送られ、高域のパワー(yi"(t))^2
を計算した後、正面方向検出部27に送られる。正面方向
検出部27では最も高域パワーの大きいマイク出力(yi
(t))を正面方向として検出し、正面方向決定部30に正
面方向情報を送る。一方、正面候補yi'(t)は周波数領域
変換部でFFT(高速フーリエ変換)されてYi(ω)とな
り、スペクトル包絡抽出部29に送られスペクトル包絡Si
(ω)を算出する。正面方向決定部30はSi(ω)の中から正
面方向決定部30により送られた正面方向情報を基に正面
方向スペクトル包絡S0(ω)を選択する。スペクトル差検
出部31ではDi(ω)=S0(ω)/Si(ω)を算出し、スペク
トル包絡S0(ω)を選択する。スペクトル差検出部31では
Di(ω)=S0(ω)/Si(ω)を算出し、スペクトル差補正
部32でZi(ω)=Yi(ω)×Di(ω)を算出してスペクトル
補正を行う。このZi(ω)は時間領域変換部33で逆FFTし
時間波形zi(t)に変換される。このzi(t)は音源位置検出
部24からの音源位置情報に基づいた荷重をもつ荷重部
7'に送られgi×zi(t)となり、荷重部7"に送られたzi
(t)はgi×yi(t)となり、それぞれ加算部4'に送られ総
和をとられ、出力5に送られる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows a first embodiment of the present invention. In this figure, a microphone array 22 of a sounding body directivity correction device 21 is two-dimensionally (planarly) arranged on a ceiling or the like.
The output xi (t) of this microphone array 22 is
The delay unit 3 and the load unit 7 are scanned by the delay unit 3, and the phase is adjusted by the delay unit 3 for each focal point to become a signal yi (t).
Gi × yi (t). The output gi × yi (t) is sent to the power calculator 23, and the power (Σgi × yi (t)) ^ 2 is calculated. The sound source position detector 24 compares the powers of the respective focal points, and detects the focal position having the maximum power as the sound source position. The sound source position information is sent to the delay unit 3 ', and a signal y' (t) in which the phases of the microphone outputs xi (t) are aligned so that the focus is directed to the sound source position is sent to the front candidate extracting unit 25. Front candidate extraction unit 25
In (y), a microphone output (a signal having the same phase) near the sound source position is extracted from y (t) as a front candidate signal yi '(t) and sent to the high-pass filter 26, and yi other than yi' (t) (t) to the load 7 ". The signal yi" (t) passed through the high-pass filter 26 is sent.
Is sent to the power calculator 27, and the high-frequency power (yi "(t)) ^ 2
Is calculated and sent to the front direction detection unit 27. The front direction detection unit 27 outputs the microphone output (yi
(t)) is detected as the front direction, and the front direction information is sent to the front direction determination unit 30. On the other hand, the front candidate yi ′ (t) is subjected to FFT (Fast Fourier Transform) by the frequency domain transform unit to be Yi (ω), sent to the spectrum envelope extraction unit 29, and sent to the spectrum envelope Si
(ω) is calculated. The front direction determining unit 30 selects the front direction spectrum envelope S0 (ω) from Si (ω) based on the front direction information sent by the front direction determining unit 30. The spectrum difference detection unit 31 calculates Di (ω) = S0 (ω) / Si (ω) and selects the spectrum envelope S0 (ω). In the spectrum difference detector 31,
Di (ω) = S0 (ω) / Si (ω) is calculated, and the spectrum difference correction unit 32 calculates Zi (ω) = Yi (ω) × Di (ω) to perform spectrum correction. This Zi (ω) is inversely FFTed by the time domain conversion unit 33 and converted into a time waveform zi (t). This zi (t) is sent to the load unit 7 ′ having a load based on the sound source position information from the sound source position detection unit 24 and becomes gi × zi (t), and zi sent to the load unit 7 ″.
(t) becomes gi × yi (t), which is sent to the adder 4 ′, summed up, and sent to the output 5.

【0017】なお、上記実施例においてマイクロホンア
レーを天井等に2次元的(平面的)に配置する代わりに
3次元的に配置してもよい。
In the above embodiment, the microphone array may be arranged three-dimensionally instead of two-dimensionally (in a plane) on the ceiling or the like.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、図2の
遅延和アレー方式における荷重ゲインの計算結果が人間
の後方のゲインを高くする結果となっても、発音体位置
を検出する音源位置検出手段と、該マイクロホンの出力
のうち、発音体に近い位置にある複数のマイクロホンか
らの出力(以下、「近傍マイク出力」と呼ぶ)を周波数
領域で監視する周波数特性監視手段と、該近傍マイク出
力のうち、その周波数特性のスペクトル包絡の高域が最
も高くなっているマイクの方向を発音体の正面として検
出する発音体指向性検出手段とを設け、スペクトル差検
出手段で他のマイクロホンの周波数特性との差を検出
し、スペクトル差補正手段でその差を補正するので、図
2の遅延和アレー方式で人間の後方のゲインが高くなっ
ても、高域のこもりを防げるという、これまでにない優
れた効果を奏する。
As described above, according to the present invention, even if the calculation result of the weight gain in the delay-and-sum array method shown in FIG. Position detection means, frequency characteristic monitoring means for monitoring, in the frequency domain, outputs from a plurality of microphones located at a position close to the sounding body (hereinafter referred to as “proximal microphone output”), Of the microphone output, a sounding body directivity detecting means for detecting, as the front of the sounding body, the direction of the microphone in which the high frequency of the spectral envelope of the frequency characteristic is the highest, and the other microphone is detected by the spectrum difference detecting means. Since the difference from the frequency characteristic is detected and the difference is corrected by the spectrum difference correcting means, even if the gain behind the human becomes high by the delay-and-sum array method of FIG. That prevented, an excellent effect than ever before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遅延和方式による雑音抑圧収音の原理を説明す
る図。
FIG. 1 is a view for explaining the principle of noise suppression sound pickup by a delay-and-sum method.

【図2】音源がマイクロホンアレーに近い位置に位置す
る場合に遅延器の後段のゲインの荷重を適切に設定して
収音SN比を向上させることを説明するための図。
FIG. 2 is a diagram for explaining how to appropriately set a load of a gain at a subsequent stage of a delay unit and improve a sound collection S / N ratio when a sound source is located at a position close to a microphone array.

【図3】人間の口の指向性を説明するための図。FIG. 3 is a diagram for explaining directivity of a human mouth.

【図4】発音体の指向性を検出する様子を説明するため
の図。
FIG. 4 is a diagram for explaining how to detect the directivity of a sounding body.

【図5】本発明の実施例を示す構成図。FIG. 5 is a configuration diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 収音部 2 マイクロホン 3 遅延器 4 加算器(加算部) 6 雑音抑圧部 7 ゲイン部(荷重部) 11 焦点操作部 21 発音体指向性補正装置 22 マイクロホンアレー 23 パワー計算部 24 音源位置検出部 25 正面候補抽出部 26 ハイパスフィルタ 27 正面方向検出部 28 周波数領域変換部 29 スペクトル包絡抽出部 30 正面方向決定部 31 スペクトル差検出部 32 スペクトル差補正部 33 時間領域変換部 DESCRIPTION OF SYMBOLS 1 Sound collection part 2 Microphone 3 Delayer 4 Adder (Addition part) 6 Noise suppression part 7 Gain part (Load part) 11 Focus operation part 21 Sound emitting body directivity correction device 22 Microphone array 23 Power calculation part 24 Sound source position detection part 25 Front candidate extraction unit 26 High pass filter 27 Front direction detection unit 28 Frequency domain conversion unit 29 Spectrum envelope extraction unit 30 Front direction determination unit 31 Spectrum difference detection unit 32 Spectrum difference correction unit 33 Time domain conversion unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数のマイクロホンから成るマイクロホン
アレーと該マイクロホンアレーの出力信号を信号処理す
るマイクロホンアレー装置とを用いた収音方法における
発音体指向性補正方法において、 複数のマイクロホンの出力信号から発音体位置を検出
し、該マイクロホンの出力信号のうち発音体に近い位置
にある複数のマイクロホンからの出力信号(以下、「近
傍マイク出力信号」と呼ぶ)を周波数領域で監視し、該
近傍マイク出力信号のうち、その周波数特性のスペクト
ル包絡の高域が最も高くなっているマイクロホンの方向
を発音体の正面として検出し、他のマイクロホンの周波
数特性との差を検出し、その差を補正することを特徴と
する発音体指向性補正方法。
1. A sound source directivity correction method in a sound collection method using a microphone array including a plurality of microphones and a microphone array device for processing an output signal of the microphone array, wherein sound is generated from output signals of the plurality of microphones. The body position is detected, and among the output signals of the microphone, output signals from a plurality of microphones close to the sounding body (hereinafter, referred to as “proximal microphone output signal”) are monitored in a frequency domain, and the output of the nearby microphone is monitored. Detecting the direction of the microphone where the high frequency of the spectral envelope of the frequency characteristic is the highest in the signal as the front of the sounding body, detecting the difference from the frequency characteristics of other microphones, and correcting the difference A method for correcting directivity of a sounding body, characterized by the following.
【請求項2】複数のマイクロホンから成るマイクロホン
アレーと該マイクロホンアレーの出力信号を信号処理す
るマイクロホンアレー装置とを用いた収音装置における
発音体指向性補正装置において、 複数のマイクロホンの出力信号を入力して発音体位置を
検出する音源位置検出手段と、該マイクロホンの出力信
号のうち発音体に近い位置にある複数のマイクロホンか
らの出力信号(以下、「近傍マイク出力信号」と呼ぶ)
を周波数領域で監視する周波数特性監視手段と、該近傍
マイク出力信号のうち、その周波数特性のスペクトル包
絡の高域が最も高くなっているマイクロホンの方向を発
音体の正面として検出する発音体指向性検出手段と他の
マイクロホン出力信号のスペクトル特性との差を検出す
るスペクトル差検出手段とその差を補正するスペクトル
差補正手段を設けたことを特徴とする発音体指向性補正
装置。
2. A sounding body directivity correction device for a sound pickup device using a microphone array comprising a plurality of microphones and a microphone array device for processing an output signal of the microphone array, wherein output signals of the plurality of microphones are inputted. Sound source position detecting means for detecting the position of the sounding body, and output signals from a plurality of microphones located closer to the sounding body among the output signals of the microphone (hereinafter, referred to as "proximal microphone output signal")
Characteristic monitoring means for monitoring the sound in the frequency domain, and sounding body directivity for detecting, as the front of the sounding body, the direction of the microphone having the highest frequency envelope of the frequency characteristic of the nearby microphone output signal. A sounding body directivity correction apparatus, comprising: a spectrum difference detection means for detecting a difference between the detection means and a spectrum characteristic of another microphone output signal; and a spectrum difference correction means for correcting the difference.
【請求項3】請求項2に記載の発音体指向性補正装置に
おいて、 前記周波数特性監視手段は、近傍マイク出力信号を周波
数領域に変換する周波数領域変換手段と周波数領域信号
から周波数特性のスペクトル包絡を抽出するスペクトル
包絡抽出手段から構成されることを特徴とする発音体指
向性補正装置。
3. The sounding body directivity correction apparatus according to claim 2, wherein said frequency characteristic monitoring means includes a frequency domain conversion means for converting a nearby microphone output signal into a frequency domain, and a spectrum envelope of a frequency characteristic from the frequency domain signal. A sound envelop directivity correction device comprising a spectrum envelope extracting means for extracting the sound.
【請求項4】請求項3に記載の発音体指向性補正装置に
おいて、 前記スペクトル包絡抽出手段は、該周波数領域信号から
低次のケプストラムを抽出する手段と該低次のケプスト
ラムから該スペクトル包絡を抽出する手段から構成され
ることを特徴とする発音体指向性補正装置。
4. The sounding body directivity correction apparatus according to claim 3, wherein the spectrum envelope extracting means extracts a low-order cepstrum from the frequency domain signal, and extracts the spectrum envelope from the low-order cepstrum. A sounding body directivity correction apparatus, characterized by comprising extraction means.
JP2000215545A 2000-07-17 2000-07-17 Sounding body directivity correction method and device Expired - Fee Related JP3540988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215545A JP3540988B2 (en) 2000-07-17 2000-07-17 Sounding body directivity correction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215545A JP3540988B2 (en) 2000-07-17 2000-07-17 Sounding body directivity correction method and device

Publications (2)

Publication Number Publication Date
JP2002031674A true JP2002031674A (en) 2002-01-31
JP3540988B2 JP3540988B2 (en) 2004-07-07

Family

ID=18710953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215545A Expired - Fee Related JP3540988B2 (en) 2000-07-17 2000-07-17 Sounding body directivity correction method and device

Country Status (1)

Country Link
JP (1) JP3540988B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107122A (en) * 2006-10-24 2008-05-08 Osaka Univ Ultrasonic array sensor system and delay addition processing method
US9674607B2 (en) 2014-01-28 2017-06-06 Mitsubishi Electric Corporation Sound collecting apparatus, correction method of input signal of sound collecting apparatus, and mobile equipment information system
JP2020088653A (en) * 2018-11-27 2020-06-04 キヤノン株式会社 Signal processing apparatus, control method of the same, and program
US10834499B2 (en) 2015-12-04 2020-11-10 Sennheiser Electronic Gmbh & Co. Kg Conference system with a microphone array system and a method of speech acquisition in a conference system
US11064291B2 (en) 2015-12-04 2021-07-13 Sennheiser Electronic Gmbh & Co. Kg Microphone array system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107122A (en) * 2006-10-24 2008-05-08 Osaka Univ Ultrasonic array sensor system and delay addition processing method
US9674607B2 (en) 2014-01-28 2017-06-06 Mitsubishi Electric Corporation Sound collecting apparatus, correction method of input signal of sound collecting apparatus, and mobile equipment information system
US10834499B2 (en) 2015-12-04 2020-11-10 Sennheiser Electronic Gmbh & Co. Kg Conference system with a microphone array system and a method of speech acquisition in a conference system
US11064291B2 (en) 2015-12-04 2021-07-13 Sennheiser Electronic Gmbh & Co. Kg Microphone array system
US11381906B2 (en) 2015-12-04 2022-07-05 Sennheiser Electronic Gmbh & Co. Kg Conference system with a microphone array system and a method of speech acquisition in a conference system
US11509999B2 (en) 2015-12-04 2022-11-22 Sennheiser Electronic Gmbh & Co. Kg Microphone array system
US11765498B2 (en) 2015-12-04 2023-09-19 Sennheiser Electronic Gmbh & Co. Kg Microphone array system
JP2020088653A (en) * 2018-11-27 2020-06-04 キヤノン株式会社 Signal processing apparatus, control method of the same, and program
JP7245034B2 (en) 2018-11-27 2023-03-23 キヤノン株式会社 SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP3540988B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US9269367B2 (en) Processing audio signals during a communication event
KR100499124B1 (en) Orthogonal circular microphone array system and method for detecting 3 dimensional direction of sound source using thereof
JP4965707B2 (en) Sound identification method and apparatus
US10580428B2 (en) Audio noise estimation and filtering
US8891785B2 (en) Processing signals
JP5141691B2 (en) Sound processing apparatus, correction apparatus, correction method, and computer program
TWI720314B (en) Correlation-based near-field detector
JP2009522942A (en) System and method using level differences between microphones for speech improvement
JP6065028B2 (en) Sound collecting apparatus, program and method
JP5446745B2 (en) Sound signal processing method and sound signal processing apparatus
JP2010124370A (en) Signal processing device, signal processing method, and signal processing program
CN110830870A (en) Earphone wearer voice activity detection system based on microphone technology
JP3332143B2 (en) Sound pickup method and device
JP3154468B2 (en) Sound receiving method and device
JP3540988B2 (en) Sounding body directivity correction method and device
JP3341815B2 (en) Receiving state detection method and apparatus
JP5635024B2 (en) Acoustic signal emphasizing device, perspective determination device, method and program thereof
JP3377167B2 (en) Public space loudspeaker method and apparatus
JP3588576B2 (en) Sound pickup device and sound pickup method
JP3411475B2 (en) Sound pickup device
JP3332144B2 (en) Target sound source area detection method and apparatus
JP3518579B2 (en) Speaker-following room loudspeaker and voice input method
Takada et al. Sound source separation using null-beamforming and spectral subtraction for mobile devices
Suzuki et al. Spot-forming method by using two shotgun microphones
JPH0884392A (en) Sound reception method and its device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees