JP6516134B2 - Filter, lens, imaging optical system and imaging system having phase conversion function - Google Patents

Filter, lens, imaging optical system and imaging system having phase conversion function Download PDF

Info

Publication number
JP6516134B2
JP6516134B2 JP2013137622A JP2013137622A JP6516134B2 JP 6516134 B2 JP6516134 B2 JP 6516134B2 JP 2013137622 A JP2013137622 A JP 2013137622A JP 2013137622 A JP2013137622 A JP 2013137622A JP 6516134 B2 JP6516134 B2 JP 6516134B2
Authority
JP
Japan
Prior art keywords
phase
optical system
distribution
phase distribution
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013137622A
Other languages
Japanese (ja)
Other versions
JP2017015742A (en
Inventor
堀 健治
健治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013137622A priority Critical patent/JP6516134B2/en
Priority to PCT/JP2014/003519 priority patent/WO2015004881A1/en
Publication of JP2017015742A publication Critical patent/JP2017015742A/en
Application granted granted Critical
Publication of JP6516134B2 publication Critical patent/JP6516134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光学系によって作られる実像または虚像の被写界深度を拡張する技術に関する。取り分けWFC(wave-front coding)、EDOF(Extended Depth of Field)技術が適用可能なレンズ、コンタクトレンズ、眼内レンズ、結像光学系、接眼光学系及び撮像システムに関する。   The present invention relates to a technique for extending the depth of field of a real or virtual image produced by an optical system. In particular, the present invention relates to a lens, a contact lens, an intraocular lens, an imaging optical system, an eyepiece optical system, and an imaging system to which WFC (wave-front coding) or EDOF (Extended Depth of Field) technology can be applied.

WFC、EDOF技術は、像の明るさを損なうことなく結像光学系の被写界深度を拡張することを目的とした位相フィルターを光学系とともに用いる技術である。(特許文献1、非特許文献1などを参照)   WFC and EDOF techniques are techniques that use a phase filter together with an optical system for the purpose of extending the depth of field of an imaging optical system without deteriorating the brightness of an image. (See Patent Document 1, Non-Patent Document 1, etc.)

前記位相フィルター分布を記述する位相関数として、直交三次関数、即ち、Cubic Phase Mask (CPM)が提案されている。(非特許文献1)
更に、前記被写界深度拡を更に拡張しようと、位相関数としてa x3 + b y3 + c x2y + d xy2で表される多項式やZernike多項式の一つであるr3 cos(3q)も提案されている。(特許文献4) 加えて、被写界深度拡大性を向上させようと、さまざまな位相関数の試みが報告されている。(非特許文献2から11などを参照)
As a phase function describing the phase filter distribution, an orthogonal cubic function, namely, Cubic Phase Mask (CPM) has been proposed. (Non-patent document 1)
Furthermore, to further extend the depth-of-field extension, a polynomial represented by ax 3 + by 3 + cx 2 y + d xy 2 as a phase function or r 3 cos ( 3 q) which is one of Zernike polynomials Proposed. (Patent Document 4) In addition, various phase function attempts have been reported to improve the depth of field extensibility. (See Non-Patent Documents 2 to 11 etc.)

また、被写界深度を拡張する方法としてレンズ開口を複数の輪帯領域に分割する手法が報告されている。(特許文献5)   Further, as a method of extending the depth of field, a method of dividing the lens aperture into a plurality of annular zones has been reported. (Patent Document 5)

また、前記目的の位相フィルター及び光学系が発生させる色収差についての報告もなされている。(非特許文献12、13、14)   There are also reports on the chromatic aberration generated by the target phase filter and optical system. (Non-patent documents 12, 13 and 14)

前記位相フィルターの機能をコンタクトレンズ、角膜変形処理、眼内レンズに適用しようという提案もなされている。(特許文献2、3)   It has also been proposed to apply the function of the phase filter to contact lenses, corneal deformation processing, and intraocular lenses. (Patent Documents 2 and 3)

共役位置に対して前後方向の深度を考慮した深度拡張の報告もなされている。(特許文献6)
インコヒーレント光学系の瞳関数から点像分布を計算する方法は周知の技術である。(非特許文献15)
光学系の球面収差の過剰補正と二線ボケとの関係の報告もされている。(非特許文献16)
プリズムの色消し条件も周知の技術である。(非特許文献17)
There is also a report of depth extension considering the depth in the back and forth direction with respect to the conjugate position. (Patent Document 6)
The method of calculating point image distribution from the pupil function of incoherent optical system is a known technique. (Non-Patent Document 15)
The relationship between overcorrection of the spherical aberration of the optical system and two-line blurring has also been reported. (Non-Patent Document 16)
The achromatic condition of the prism is also a known technique. (Non-Patent Document 17)

米国特許5748371U.S. Patent No. 5,748,371 米国特許6536898US Patent 6536898 米国特許7025454US Patent 7025454 特許公開文献WO/1999/057599Patent Publication WO / 1999/057599 特開2009−271537号公報JP, 2009-271537, A 特開2012−253602号公報JP, 2012-253602, A

E. R. Dowski, Jr., and W. T. Cathey, Extended depth of field through wave-front coding, Appl. Opt. 34, 1859 -1866 (1995)E. R. Dowski, Jr., and W. T. Cathey, Extended depth of field through wave-front coding, Appl. Opt. 34, 1859-1866 (1995) W. L. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875-877 (2001)W. L. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875-877 (2001) Sherif S. Sherif, W. Thomas Cathey, and Ed R. Dowski, "Phase plate to extend the depth of field of incoherent hybrid imaging systems," Appl. Opt. Vol. 43, 2709-2721 (2004)Sherif S. Sherif, W. Thomas Cathey, and Ed R. Dowski, "Phase plate to extend the depth of field hybrid technology systems", Appl. Opt. Vol. 43, 2709-2721 (2004) Zhao, Hui; Li, Yingcai, "Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system," Appl. Opt, Vol. 49 229-238 (2010)Zhao, Hui; Li, Yingcai, "Performance of an improved logarithmic phase mask with optimized parameters in a wave front-coding system," Appl. Opt, Vol. 49 229-238 (2010) Albertina Castro and Jorge Ojeda-Castaneda, "Asymmetric phase masks for extended depth of field," Appl. Opt.Vol. 43, 3474-3479 (2004)Albertina Castro and Jorge Ojeda-Castaneda, "Asymmetric phase masks for extended depth of field," Appl. Opt. Vol. 43, 3474-3479 (2004) J. Ojeda-Castaneda "Annular phase-only mask for high focal depth," Optics letters, Vol. 30, No. 13,pp. 1647-1649 (2005)J. Ojeda-Castaneda "Annular phase-only mask for high focal depth," Optics letters, Vol. 30, No. 13, pp. 1647-1649 (2005) Q. Yang, L. Liu, and J. Sun, Opt. Commun. 272, 56 (2007)Q. Yang, L. Liu, and J. Sun, Opt. Commun. 272, 56 (2007) N. Caron and Y. Sheng, Appl. Opt. 47, E39 (2008).N. Caron and Y. Sheng, Appl. Opt. 47, E39 (2008). Feng Zhou, Guangwei Li, Haitao Zhang, and Dongsheng Wang, "Rational phase mask to extend the depth of field in optical-digital hybrid imaging systems," OPTICS LETTERS, Vol. 34, 380-382 (2009)Feng Zhou, Guangwei Li, Haitao Zhang, and Dongsheng Wang, "Rational phase mask to extend the depth of field in optical-digital hybrid imaging systems," OPTICS LETTERS, Vol. 34, 380-382 (2009) Yasuhisa Takahashi and Shinichi Komatsu, "Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging," OPTICS LETTERS, Vol. 3, 1515-1517 (2008)Yasuhisa Takahashi and Shinichi Komatsu, "Optimized free-form phase mask for extension of depth of field in wave front-coded imaging," OPTICS LETTERS, Vol. 3, 1515-1517 (2008) Shuai Yuan and Chrysanthe Preza, "Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging," Optics Express. Vol.19, 23298-23314 (2011)Shuai Yuan and Chrysanthe Preza, "Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy," Optics Express. Vol.19, 23298-23314 (2011) Wach, Hans B; Dowski jr , Edward R; Cathey, W Thomas, "Control of Chromatic Focal Shift Through Wave-Front Coding," Appl. Optics, Vol. 37, 5359-5367 (1998)Wach, Hans B; Dowski jr, Edward R; Cathey, W Thomas, "Control of Chromatic Focal Shift Through Wave-Front Coding," Appl. Optics, Vol. 37, 5359-5367 (1998) Hans B. Wach, Edward R. Dowski, Jr., and W. Thomas Cathey, "Channel reduction and applications to image processing," Appl. Opt. Vol. 39, 1794-1798 (2000)Hans B. Wach, Edward R. Dowski, Jr., and W. Thomas Cathey, "Channel reduction and applications to image processing," Appl. Opt. Vol. 39, 1794-1798 (2000) Rongfu Zhang and Kang Lu, "Variations in the point spread function characteristics of wavelengths for a wavefront coding imaging system," Opt. letters, Vol. 36, 4647-4649 (2011)Rongfu Zhang and Kang Lu, "Variations in the point spread function characteristics of wavelengths for a wave front coding imaging system," Opt. Letters, Vol. 36, 4647-4649 (2011) J.W. Goodman: "Introduction to Fourier Optics" (McGraw-Hill, 1968)J. W. Goodman: "Introduction to Fourier Optics" (McGraw-Hill, 1968) 小倉磐夫: "現代のカメラとレンズ技術", 写真工業出版社 (1982)Toshio Ogura: "Contemporary Camera and Lens Technology", Photography Industry Publishing Company (1982) 山田幸五郎著 「幾何光学」光学工業技術協会 (1981)Yamada Kogoro "Geometrical Optics" Optical Industry Research Association (1981)

上記文献リストに示されている位相関数のうち、直交三次関数Cubic Phase Mask (CPM)に似ている関数に対応する点像分布関数 (PSF)も線状に分布する傾向を持ち、位相フィルターの影響を受けた画像は劣化が目立ってしまう。所謂、ボケ形状の悪い、もとの物体にはないパターンを含む画像となってしまう。   Among the phase functions shown in the above reference list, the point spread function (PSF) corresponding to the function similar to the orthogonal cubic function Cubic Phase Mask (CPM) also tends to be distributed in a linear manner, and the phase filter Deterioration is noticeable in the affected image. It results in an image that has a so-called blur pattern and a pattern not found in the original object.

レンズ開口を複数の輪帯領域に分割する方法が報告されている(特許文献5)が、レンズ開口内の不連続境界はフレアや迷光の発生原因となり、取り分け画像処理に際して良好な結果を得ることを難しくしてしまう。   Although a method of dividing the lens aperture into a plurality of annular zones has been reported (Patent Document 5), the discontinuous boundary in the lens aperture causes flare and stray light, and in particular, good results can be obtained in image processing Makes it difficult.

位相変化を不連続境界を持たない回転対称な関数とする場合、その点像分布関数(PSF)に輪帯状の集中部を発生させてしまうことがある。   When making a phase change into a rotationally symmetric function without a discontinuous boundary, a point spread function (PSF) may generate a ring-shaped concentrated portion.

従来に於いて、十分な被写界深度拡張機能を持ちつつ、その点像分布関数 (PSF)が直線状または好ましくないパターンとなることなく、かつ、共役距離に対する前後位置を考慮した位相関数作成の指針は示されていなかった。   In the prior art, while having a sufficient depth-of-field extension function, the point spread function (PSF) does not become a straight line or an undesirable pattern, and a phase function is created considering the position before and after the conjugate distance No guidance was given.

位相フィルターに起因する色収差発生を低減するための光学的指針が示されていなかった。   No optical guidelines have been shown to reduce the occurrence of chromatic aberrations due to phase filters.

本発明が解決しようとする課題は、光学系と伴に用いる位相フィルターに於いて、前記光学系によって作成される像の深度を拡大させる機能を持ちつつ、前記光学系により作成される点像分布関数 (PSF)内に直線線状などの不自然な光の集中部を発生させず、同時に、その有効面内に不連続境界を含まない被写界深度拡張位相フィルターを実現する手段を提供することである。   The problem to be solved by the present invention is that, in a phase filter used together with an optical system, a point image distribution produced by the optical system while having a function of enlarging the depth of an image produced by the optical system. Providing a means to realize a depth-of-field extended phase filter that does not generate an unnatural light concentration such as a straight line in the function (PSF) and at the same time does not include discontinuous boundaries in its effective surface It is.

併せて解決しようとする課題は、位相関数を用いる光学系の仕様に応じて関数の設定を変更する指針を提示することである。   The problem to be solved at the same time is to present a guideline for changing the setting of the function according to the specification of the optical system using the phase function.

更に解決しようとする課題は、位相フィルターが発生する色収差を小さく保つ条件を提示することである。   A further problem to be solved is to present conditions for keeping the chromatic aberration generated by the phase filter small.

上記の点像分布関数 (PSF)内に直線線状などの不自然な光の集中部が発生するという課題を解決する手段は、光学系を通過する波面を変化させる位相関数に光軸を中心とした螺旋、円周、または、放射形状の分布、即ち「回転成分」を適宜含ませることである。加えて、開口の周辺領域の位相値幅を中央領域の位相値幅よりも大きくすることで点像分布関数(PSF)の分布をより中心部に集中させることである。   The means for solving the problem that an unnatural light concentrated portion such as a straight line is generated in the point spread function (PSF) described above centers the optical axis on the phase function that changes the wavefront passing through the optical system. The spiral, circumferential or radial shape distribution, or "rotational component" is included as appropriate. In addition, by making the phase value width of the peripheral region of the aperture larger than the phase value width of the central region, the distribution of the point spread function (PSF) is more concentrated in the central portion.

上記の有効面内の不連続境界は、位相分布を造形的に平滑化させることで取り除く。   Discontinuous boundaries in the above-mentioned effective surface are removed by smoothing the phase distribution formally.

上記の輪帯状の集中の発生を防ぐための手段は、使用する光学系に本発明で提示する条件を備えた位相フィルターを取り付けた状態の点像分布関数(PSF)を設計時に計算し、輪帯状の集中が見られる場合はこれを回避する位相分布に変更することである。   The means for preventing the occurrence of the ring-shaped concentration described above calculates the point spread function (PSF) in the state where the phase filter equipped with the conditions presented in the present invention is attached to the used optical system at design If band concentration is observed, change it to a phase distribution that avoids this.

上記の共役距離に対する前後位置を考慮した位相関数作成を行うために、特許文献6で提示した位相分布と被写界深度拡張の関係を指針とする。   In order to create a phase function in consideration of the position before and after the above conjugate distance, the relationship between the phase distribution and the depth of field extension presented in Patent Document 6 is used as a guideline.

上記の位相フィルターに起因する色収差発生を小さく抑えるために、光学分散値の異なる材質からなる複数の位相フィルターを非特許文献17に提示されている条件を満たすように組み合わせて使用する。   In order to suppress the occurrence of the chromatic aberration caused by the above phase filter, a plurality of phase filters made of materials having different optical dispersion values are used in combination so as to satisfy the condition presented in Non-Patent Document 17.

本発明によれば、被写界深度の拡張と同時に好ましくないボケの回避、光ノイズの発生原の回避、及び位相フィルターに起因する色収差を小さく抑えた位相変換作用を持つ位相フィルター、レンズ、結像光学系、及び撮像システムを実現することが可能となる。   According to the present invention, a phase filter, a lens, and a lens having a phase conversion function that avoids undesirable blurring at the same time as the depth of field simultaneously, avoids an origin of generation of light noise, and minimizes chromatic aberration caused by the phase filter. It is possible to realize an imaging optical system and an imaging system.

撮像システムの全体構成図である。It is a whole block diagram of an imaging system. 座標系および瞳関数を説明するための図である。It is a figure for demonstrating a coordinate system and a pupil function. 瞳の中央部と周辺部を通過する光線の様子を示す模式図である。It is a schematic diagram which shows the mode of the light ray which passes through the center part and peripheral part of a pupil. Cubic Phase Mask (CPM)の位相分布とその点像分布関数(PSF)の図である。It is a figure of phase distribution of Cubic Phase Mask (CPM), and its point spread function (PSF). CPMに中心点からの距離rを掛けた位相分布とその点像分布関数(PSF)の図である。It is a figure of phase distribution which multiplied distance r from a central point to CPM, and its point spread function (PSF). CPMに中心点からの距離rの自乗を掛けた位相分布とその点像分布関数(PSF)の図である。It is a figure of the phase distribution which multiplied the square of the distance r from the central point to CPM, and its point spread function (PSF). CPMに中心点からの距離rの3乗を掛けた位相分布とその点像分布関数(PSF)の図である。It is a figure of phase distribution which multiplied 3rd power of distance r from a central point to CPM, and its point spread function (PSF). 実施形態群1である一条螺旋位相分布の一例とその点像分布関数(PSF)の図である。It is a figure of an example of the single-strand spiral phase distribution which is Embodiment group 1, and its point spread function (PSF). 図8の位相分布に中心点からの距離rを掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 9 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the distance r from the central point and its point spread function (PSF). 図8の位相分布に中心点からの距離rの自乗を掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 9 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the square of a distance r from the center point and a point spread function (PSF) thereof. 図8の位相分布に中心点からの距離rの3乗を掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 9 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the third power of the distance r from the center point, and its point spread function (PSF). 図8の位相分布に中心点からの距離rの4乗を掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 9 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the fourth power of the distance r from the center point and the point spread function (PSF) thereof. 図12の旋回量を半分にした位相分布とその点像分布関数(PSF)の図である。It is a figure of the phase distribution which halved the amount of rotations of FIG. 12, and its point spread function (PSF). 中心点からの距離が有効径の0から1/2倍では平面、周辺部は図12と同じ関数にした位相分布とその点像分布関数(PSF)の図である。FIG. 13 is a diagram of a phase distribution and its point spread function (PSF) in which the distance from the center point is a plane when the distance from the central point is 0 to 1/2 of the effective diameter, and the peripheral portion is the same function as FIG. 中心点からの距離が有効径の0から1/2倍では平面、周辺部は図13と同じ関数にした位相分布とその点像分布関数(PSF)の図である。FIG. 14 is a diagram of a phase distribution and its point spread function (PSF) in which the distance from the central point is a plane when the distance from the central point is 0 to 1/2 of the effective diameter, and the peripheral portion is the same function as FIG. 実施形態群2の六条螺旋位相分布の一例とその点像分布関数(PSF)の図である。It is a figure of an example of the six-line spiral phase distribution of Embodiment group 2, and its point spread function (PSF). 図16の位相分布に中心点からの距離rを掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 17 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 16 by the distance r from the central point and its point spread function (PSF). 図16の位相分布に中心点からの距離rの自乗を掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 17 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 16 by the square of the distance r from the central point and its point spread function (PSF). 図16の位相分布に中心点からの距離rの3乗を掛けた位相分布とその点像分布関数(PSF)の図である。FIG. 17 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 16 by the third power of the distance r from the center point and the point spread function (PSF) thereof. 四条螺旋位相分布の一例とその点像分布関数(PSF)の図である。It is a figure of an example of four-row spiral phase distribution, and its point-spread function (PSF). 中心点からの距離が有効径の0から1/2倍では平面、周辺部は四条螺旋位相分布の一例とその点像分布関数(PSF)の図である。FIG. 7 is a diagram of an example of a four-line helical phase distribution and its point spread function (PSF) when the distance from the central point is 0 to 1/2 of the effective diameter, and the peripheral portion is a four-strip helical phase distribution; 中心点からの距離が有効径の0から1/3倍では平面、周辺部は四条螺旋位相分布の一例とその点像分布関数(PSF)の図である。FIG. 7 is a diagram of an example of a four-line helical phase distribution and its point spread function (PSF) when the distance from the central point is 0 to 1/3 of the effective diameter, and the periphery is an example of a four-line helical phase distribution. 中心点からの距離が有効径の0から1/4倍では平面、周辺部は四条螺旋位相分布の一例とその点像分布関数(PSF)の図である。FIG. 7 is a diagram of an example of a four-line helical phase distribution and its point spread function (PSF) when the distance from the central point is 0 to 1⁄4 of the effective diameter, 図21の旋回回転方向を逆方向とした位相分布とその点像分布関数(PSF)の図である。It is a figure of phase distribution which made the direction of turning rotation of FIG. 21 reverse, and its point spread function (PSF). 図21の位相分布に比して旋回量を2倍とした位相分布とその点像分布関数(PSF)の図である。It is a figure of phase distribution which made the amount of rotations twice as large as phase distribution of Drawing 21, and its point spread function (PSF). 旋回せず、放射形状の位相分布の一例とその点像分布関数(PSF)の図である。It is a figure of an example of phase distribution of radiation shape, and its point spread function (PSF), without turning. 実施形態群3の同心状位相分布の一例とその点像分布関数(PSF)の図である。It is a figure of an example of concentric-like phase distribution of Embodiment group 3, and its point spread function (PSF). 図27位相分布に中心点からの距離rを掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。FIG. 27 is a diagram of the phase distribution obtained by multiplying the phase distribution by the distance r from the center point and its point spread function (PSF). The fluctuation period has been finely adjusted. 図27の位相分布に中心点からの距離rの自乗を掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。FIG. 28 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 27 by the square of a distance r from the center point and a point spread function (PSF) thereof. The fluctuation period has been finely adjusted. 図27の位相分布に中心点からの距離rの3乗を掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。FIG. 28 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 27 by the cube of the distance r from the center point and the point spread function (PSF) thereof. The fluctuation period has been finely adjusted. 図27の位相分布に中心点からの距離rの4乗を掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。FIG. 28 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 27 by the fourth power of the distance r from the center point and the point spread function (PSF) thereof. The fluctuation period has been finely adjusted. 図27の位相分布に近い位相分布に中心点からの距離が有効径の0から1/2倍では平面、周辺部は同心位相分布の一例とその点像分布関数(PSF)の図である。27 is a diagram of a phase distribution close to the phase distribution of FIG. 27 when the distance from the central point is 0 to 1/2 times the effective diameter, and the peripheral portion is an example of a concentric phase distribution and its point spread function (PSF). 図32の位相分布に中心点からの距離rを掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。It is a figure of phase distribution which multiplied distance r from the central point by phase distribution of FIG. 32, and its point spread function (PSF). The fluctuation period has been finely adjusted. 図32の位相分布に中心点からの距離rの自乗を掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。FIG. 33 is a diagram of a phase distribution obtained by multiplying the phase distribution of FIG. 32 by the square of a distance r from the center point and a point spread function (PSF) thereof. The fluctuation period has been finely adjusted. 図32の位相分布に中心点からの距離rの3乗を掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。It is a figure of phase distribution which multiplied 3rd power of distance r from the central point to phase distribution of Drawing 32, and its point spread function (PSF). The fluctuation period has been finely adjusted. 図33の位相分布に中心点からの距離rの4乗を掛けた位相分布とその点像分布関数(PSF)の図である。変動周期を微調整してある。It is a figure of phase distribution which multiplied 4th power of distance r from the central point to phase distribution of Drawing 33, and its point spread function (PSF). The fluctuation period has been finely adjusted. 中心値が極大値である実施形態群3の同心状位相分布の一例とその点像分布関数(PSF)の図である。It is a figure of an example of concentric-like phase distribution of embodiment group 3 whose central value is a maximum value, and its point spread function (PSF). 図37の位相分布と比して同心円周期が2倍である位相分布とその点像分布関数(PSF)の図である。FIG. 38 A diagram of a phase distribution whose concentric circle cycle is twice that of the phase distribution of FIG. 37 and its point spread function (PSF). 図37の位相分布と比して同心円周期が3倍である位相分布とその点像分布関数(PSF)の図である。FIG. 38 A diagram of a phase distribution whose concentric circle cycle is three times that of the phase distribution of FIG. 37 and its point spread function (PSF). 図37の位相分布と比して同心円周期が約4倍である位相分布とその点像分布関数(PSF)の図である。FIG. 38 is a diagram of a phase distribution whose concentric circle cycle is about four times that of the phase distribution of FIG. 37 and its point spread function (PSF). 図37の位相分布と比して同心円周期が約8倍である位相分布とその点像分布関数(PSF)の図である。FIG. 38 A diagram of a phase distribution whose concentric circle cycle is about eight times that of the phase distribution of FIG. 37 and its point spread function (PSF). 位相分布を値の範囲で区分分けして、変形する手法の一例を紹介する図である。It is a figure which introduce | transduces an example of the method of dividing phase distribution into the range of a value, and deform | transforming. 位相フィルターに於ける色収差補正の原理を説明する図である。It is a figure explaining the principle of the chromatic aberration correction in a phase filter. 位相フィルターを接合する様子を説明する図である。It is a figure explaining a mode that the phase filter is joined. 位相フィルターを接眼光学系に用いる様子の一例を示している図である。It is a figure which shows an example of a mode that a phase filter is used for an eyepiece optical system. 位相フィルターを眼球の一部に実現する形態を説明するための図である。It is a figure for demonstrating the form which implement | achieves a phase filter in a part of eyeball.

[実施形態]
以下、本発明の実施形態の1つとして、結像光学系を備えた撮像装置を説明する。
[Embodiment]
Hereinafter, an imaging apparatus provided with an imaging optical system will be described as one of the embodiments of the present invention.

先ず、撮像装置の全体構成を説明する。図1は、撮像装置の全体構成を示すブロック図である。図1に示すとおり撮像装置には、結像光学系11、光波面変換素子12、撮像素子、画像処理回路などが備えられる。なを、本発明により形成される被写界深度が拡張された点像分布の形状は良好であるため、前記画像処理回路を用いないで使用することも可能な場合もある。   First, the overall configuration of the imaging device will be described. FIG. 1 is a block diagram showing an entire configuration of an imaging apparatus. As shown in FIG. 1, the imaging apparatus includes an imaging optical system 11, a light wavefront conversion element 12, an imaging element, an image processing circuit, and the like. Since the shape of the point spread distribution with the extended depth of field formed by the present invention is good, it may be possible to use it without using the image processing circuit.

光波面変換素子12の配置位置は、結像光学系11の内部又はその近傍であることが望ましい。光波面変換素子12には可変光学素子を用いても良い。   It is desirable that the arrangement position of the light wavefront conversion element 12 be inside or in the vicinity of the imaging optical system 11. A variable optical element may be used as the light wavefront conversion element 12.

点像分布関数(PSF)について説明する。点像分布関数(PSF)は理想点物体の像面上の分布であるが、波動光学的な観点からは「インコヒーレント系で瞳関数をフーリエ変換し、その振幅を自乗したもの」でもあることが知られている。   The point spread function (PSF) will be described. The point spread function (PSF) is a distribution on the image plane of an ideal point object, but from the wave-optical point of view, it is also a "incoherent system in which the pupil function is Fourier transformed and its amplitude is squared". It has been known.

位相分布を実現する方法について説明する。空間的な位相の変化を実現する方法としては、光学部材の厚さ分布を使う方法、光学部材の厚さ分布を使う方法、及び、前記2方法を同時に使う方法がある。また、空間位相変調素子のような可変光学素子を用いても良い。   A method of realizing the phase distribution will be described. As a method of realizing the spatial phase change, there are a method using the thickness distribution of the optical member, a method using the thickness distribution of the optical member, and a method using the above two methods simultaneously. Also, a variable optical element such as a spatial phase modulation element may be used.

光波面変換素子12の実現形態を説明する。光波面変換素子は平面状の部材に限らず、レンズのように、曲面に対して所望の位相分布を追加したものであっても良い。   The implementation form of the light wavefront conversion element 12 will be described. The light wavefront conversion element is not limited to a planar member, and may be a lens, to which a desired phase distribution is added to a curved surface.

光波面変換素子の開口に就いて説明する。開口面上の位置を指定する方法には、図2(a)で示す直交座標形式と図2(b)で示す極座標形式とが挙げられる。開口を正面から見た様子を図2(c)に示す。中心部 21と周辺部22とに分けることができる。
光波面変換素子に望ましい開口形状は、取り付けて使用する光学系の開口を遮蔽せず、且つ、開口径が前記光学系と比して大きすぎないものが望ましい。円形の開口を持つ光学系と伴に使用する場合は円形であることが望ましい。円形開口の関数表記例を図2(d)に示す。
The aperture of the light wavefront conversion element will be described. As a method of designating the position on the opening surface, there are an orthogonal coordinate form shown in FIG. 2A and a polar coordinate form shown in FIG. 2B. The appearance of the opening as viewed from the front is shown in FIG. It can be divided into a central part 21 and a peripheral part 22.
A desirable aperture shape for the light wavefront conversion element is one that does not shield the aperture of the optical system attached and used, and the aperture diameter is not too large compared to the optical system. A circular shape is desirable when used with an optical system having a circular aperture. An example of the function notation of the circular opening is shown in FIG.

位相分布内に不連続部がある場合、不連続部は散乱の原因となるめ画像ノイズの原因となる。ノイズ発生源を避けるために、特異点や不連続境界を持たない関数形状を用いるか、不連続部を滑らかな形状に加工して用いることが望ましい。   If there are discontinuities in the phase distribution, the discontinuities cause image noise that causes scattering. In order to avoid noise sources, it is desirable to use a function shape that does not have singular points or discontinuous boundaries, or to process discontinuities into smooth shapes.

位相フィルターに於ける位相値の正負は、検討する位置に光軸と平行に入射する光線の位相を、位相フィルターの光軸位置を通過する光線と比べ、位相が進む場合を正、遅れる場合を負とする。光学部材の厚さのみが位相に作用する場合、光軸部よりも薄い箇所を通る光線は位相に正の増加を受け、光軸部よりも厚い箇所を通る光線は位相に負の減少を受ける。光学部材の屈折率分布のみが位相に作用する場合、光軸部よりも低い屈折率からなる箇所を通る光線は位相に正の増加を受け、光軸部よりも高い屈折率からなる箇所を通る光線は位相に負の減少を受ける。   The phase value of the phase filter is positive or negative when the phase of a light beam entering parallel to the optical axis at the position to be examined is ahead of the light beam passing through the optical axis position of the phase filter. Be negative. When only the thickness of the optical member acts on the phase, light rays passing thinner than the optical axis undergo positive increase in phase, and light rays passing thicker than the optical axis suffer negative decrease on phase . When only the refractive index distribution of the optical member acts on the phase, a ray passing through a portion having a lower refractive index than the optical axis receives a positive increase in phase and passes a portion having a higher refractive index than the optical axis Rays undergo a negative decrease in phase.

領域としての位相値を比較する方法として様々な方法が考えられる。幾つか例を挙げると、設定した基準値との大小を面積で積分した値での比較、平均値と分散値の比較、それぞれの境域内の最大値から最小値を引いた差の比較などが挙げられる。   Various methods can be considered as a method of comparing phase values as regions. To give a few examples, comparison with the value which integrated the size with the set reference value with the area, comparison of average value and dispersion value, comparison of difference of subtracting the minimum value from the maximum value in each range, etc. It can be mentioned.

瞳面内に於いて、中心部とは光軸を含む光軸近傍領域を指し、中央部とは、図3に於いて光線32が通過している「中心部を含む瞳中央部分」。周辺部とは、図3に於いて光線31が通過している、「中央部を取り囲む部分」である。   In the pupil plane, the central portion refers to an area near the optical axis including the optical axis, and the central portion is a "pupil central portion including the central portion" through which the light beam 32 passes in FIG. The peripheral portion is a "portion surrounding the central portion" through which the light beam 31 passes in FIG.

図3からも分かるように、結像光学系に於いて開口中心に近い部分を通過する光線群が形成する画像は、開口周辺部を通過する光線群と比べてより広い被写界深度を有している。従って、被写界深度に及ぼす影響は開口周辺部を通過する光線の方が大きい。更に、円形開口の場合面積に於いても中心部に比べて周辺部の寄与が大きい。   As can be seen from FIG. 3, in the imaging optical system, an image formed by a group of rays passing through a portion close to the aperture center has a wider depth of field than a group of rays passing through the aperture peripheral portion. doing. Therefore, the effect on the depth of field is greater for rays passing through the aperture periphery. Furthermore, in the case of the circular opening, the contribution of the peripheral portion is larger than that of the central portion in the area.

以下、位相分布の設計手法を説明する。位相分布の設計に於いて関数を用いる手法の利点は、製造の全ての行程に渡って一義的な形状を共有することができる点、製造する前に結像性能を計算によって知ることができる点、使用する材質を変更する必要性が生じた場合いの設計変更が簡単に行える点、色消し条件を満たす形状の寸法の計算が簡単に行える点、及び、スケールを変えた同形状分布部品の作成も極めて容易にできる点が挙げられる。   Hereinafter, a design method of the phase distribution will be described. The advantage of using a function in the design of phase distribution is that unique shapes can be shared over the entire manufacturing process, and the imaging performance can be known by calculation before manufacturing. , The point that the design change can be easily performed when there is a need to change the material to be used, the point that the calculation of the dimension of the shape that satisfies the achromatic condition can be easily performed, and There is a point which can also be made extremely easy.

位相分布の設計に於いてCADなどでの造形手段を使用する手法の利点は、単一の関数で記述できない形状や、特異点、不連続境界を持つ分布を容易に修正して不連続部を含まない滑らかな形状とすることができる点、既存の分布を修正した分布の作成を容易に行うことができる点が挙げられる。従って、CADなどでの造形手段を使用する手法は関数を接続した分布や数式での作成が難しい分布を作成する場合に有効である。   The advantage of the method of using modeling means in CAD etc. in the design of phase distribution is that the shape which can not be described by a single function, or the distribution with singular points or discontinuous boundaries can be easily corrected to make discontinuities It can be a smooth shape that is not included, and that it is easy to create a distribution that has been modified from the existing distribution. Therefore, the method of using the forming means in CAD or the like is effective in the case of creating a distribution in which functions are connected or a distribution in which it is difficult to create with mathematical expressions.

[事例の比較]
以下、位相分布のパターン事例を挙げ、それらの違いを述べる。
[Case comparison]
Hereinafter, examples of patterns of phase distribution will be listed, and differences between them will be described.

[各事例に共通する計算条件]
以下に示す位相関数グラフは、各自間の違いを識別し易くするために底面が正方形である立体グラフ表示をするが、PSFの計算時には図2(d)の円形開口係数を掛けて計算したものである。
[Calculation conditions common to each case]
The phase function graph shown below is a stereograph display in which the bottom surface is a square in order to make it easy to identify differences between the two, but when calculating PSF, it is calculated by multiplying the circular aperture coefficient in FIG. It is.

[比較計算例]
先ず、以後提示する様々な位相分布に対する比較計算例としてx3+y3の成分を有する位相関数例とそのPSF計算結果を示す。(瞳関数の位相分布を図4(a), PSFを図4(b))
[Example of comparison calculation]
First, a phase function example having components of x 3 + y 3 and its PSF calculation results will be shown as comparison calculation examples for various phase distributions presented hereinafter. (The phase distribution of the pupil function is shown in Fig. 4 (a), PSF is shown in Fig. 4 (b))

これに原点からの距離、即ち半径の長さrを掛けた位相分布を図5(a), PSFを図5(b)に示す。     The phase distribution obtained by multiplying this by the distance from the origin, that is, the length r of the radius, is shown in FIG. 5 (a), and the PSF is shown in FIG. 5 (b).

これに原点からの距離、即ち半径の長さrの2乗を掛けた位相分布を図6(a), PSFを図6(b)に示す。    The phase distribution obtained by multiplying this by the square of the distance r from the origin, ie, the radius r, is shown in FIG. 6 (a), and the PSF is shown in FIG. 6 (b).

これに原点からの距離、即ち半径の長さrの3乗を掛けた位相分布を図7(a), PSFを図7(b)に示す。    The phase distribution obtained by multiplying this by the third power of the distance r from the origin, ie, the radius r, is shown in FIG. 7 (a) and FIG. 7 (b).

[実施形態群]
本発明の実施形態を3群に分けて提示するが、どの群もその位相分布形状に「回転成分」を含む。
この「回転成分」を含む理由は、PSFの分布に直線状のものが発生することを防ぐためである。
[Embodiment group]
Embodiments of the present invention are presented in three groups, each group including a "rotational component" in its phase distribution shape.
The reason for including this "rotational component" is to prevent the occurrence of linear ones in the distribution of PSF.

実施形態群1を用いて、一条の螺旋形状を含む位相分布を紹介する。螺旋分布とは、分布の半径方向の極大値をつないだ線、半径方向の極小値をつないだ線、または隣接する等値部をつないだ線が螺旋となる分布のことを指す。   Embodiment group 1 is used to introduce a phase distribution including a single spiral shape. The helical distribution refers to a distribution in which the line connecting the local maxima in the radial direction, the line connecting the local minima in the radial direction, or the line connecting the adjacent equal parts forms a spiral.

螺旋形状を用いる利点は深度分布の設計を特許文献6で示した指針に基づいて行えるとともに、この深度分布の設計とは独立にPSF形状の設計を行うことが可能となる点である。   The advantage of using the spiral shape is that the depth distribution can be designed based on the guidelines shown in Patent Document 6, and the PSF shape can be designed independently of the design of the depth distribution.

図8(a)は、螺旋状であってその極大値は中心からの距離、即ち、半径が変わっても一定、中心から計った極大値間の距離、即ち、螺旋幅も一定である一条螺旋分布の例、図8(b)はそのPSFである。   FIG. 8 (a) shows a spiral having a distance from the center, that is, a constant distance even if the radius changes, and a distance between the maximum values measured from the center, that is, a constant spiral width. An example of the distribution, FIG. 8 (b) is its PSF.

図9(a)は、図8の位相分布に中心点からの距離rを掛けた位相分布。図9(b)は、その点像分布関数(PSF)の図である。   FIG. 9A shows a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the distance r from the center point. FIG. 9B is a diagram of the point spread function (PSF).

図10(a)は、図8の位相分布に中心点からの距離の長さrの2乗を掛けた位相分布。図10(b)は、その点像分布関数(PSF)の図である。   FIG. 10A shows a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the square of the length r of the distance from the central point. FIG. 10B is a diagram of the point spread function (PSF).

図11(a)は、図8の位相分布に中心点からの距離の長さrの3乗を掛けた位相分布。図11(b)は、その点像分布関数(PSF)の図である。   FIG. 11A shows a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the third power of the length r from the central point. FIG. 11B is a diagram of the point spread function (PSF).

図12(a)は、図8の位相分布に中心点からの距離の長さrの4乗を掛けた位相分布。図12(b)は、その点像分布関数(PSF)の図である。   FIG. 12A shows a phase distribution obtained by multiplying the phase distribution of FIG. 8 by the fourth power of the length r of the distance from the central point. FIG. 12B is a diagram of the point spread function (PSF).

実施形態群1の図8から12を比較することによりrの次数の変化によるPSF形状の変化を知ることができる。実施形態群1の事例は「回転成分」を含み、比較形態群と比してrの次数の変化によるPSFの中心部への集中度合いが大きい事が分かる。被写界深度拡張と位相関数の次数に関しては特許文献6で述べられている。   By comparing FIGS. 8 to 12 of Embodiment group 1, it is possible to know the change of the PSF shape due to the change of the order of r. It is understood that the case of the embodiment group 1 includes the "rotational component", and the degree of concentration of the PSF in the central portion due to the change of the order of r is larger than that of the comparison form group. The depth of field extension and the order of the phase function are described in US Pat.

図13(a)は図12(a)の旋回量を半分にした位相分布、図13(b)はそのPSFである。   FIG. 13 (a) shows a phase distribution in which the turning amount of FIG. 12 (a) is halved, and FIG. 13 (b) shows its PSF.

図14(a)は図13(a)の中心点からの距離が有効径の0から1/2倍では平面、周辺部は図13(a)と同じ関数にした位相分布、図14(b)はそのPSFである。   FIG. 14 (a) is a phase distribution where the distance from the center point of FIG. 13 (a) is from 0 to 1/2 of the effective diameter, and the peripheral portion has the same function as FIG. 13 (a). ) Is that PSF.

図15(a)は図12(a)の中心点からの距離が有効径の0から1/2倍では平面、周辺部は図12(a)と同じ関数にした位相分布、図15(b)はそのPSFである。   FIG. 15 (a) is a phase distribution where the distance from the center point in FIG. 12 (a) is 0 to 1/2 times the effective diameter, and the peripheral portion has the same function as FIG. 12 (a). ) Is that PSF.

実施形態群1の中の図12と図13、及び、図14と図15の比較により一条螺旋分布に於ける旋回量とPSFの関係を知ることができる。旋回量が大きくなる程、PSFの形状は同心に近い形状となっていく。   The relationship between the turning amount and the PSF in the single-strand spiral distribution can be known by comparing FIGS. 12 and 13 in the first embodiment group 1 and FIGS. 14 and 15. As the turning amount increases, the shape of the PSF becomes closer to the concentric shape.

実施形態群1の中の図12と図15、及び、図13と図14の比較により一条螺旋分布に於ける中央平坦部の存在とPSFの関係を知ることができる。中心平坦部が存在すると、PSFの中心への集中度合いが高まる。   The relationship between the presence of the central flat portion and the PSF in the single-strand spiral distribution can be known by comparison of FIGS. 12 and 15 and FIGS. 13 and 14 in Embodiment Group 1. The presence of a central flat increases the concentration of the PSF at the center.

実施形態群2を用いて、放射・多条螺旋形状の位相分布を紹介する。   Embodiment group 2 is used to introduce the phase distribution of the radiation and multi-strip spiral shape.

図16(a)は六条の螺旋位相分布の一例、図16(b)はその点像分布関数(PSF)の図である。   FIG. 16 (a) is an example of a helical phase distribution of six lines, and FIG. 16 (b) is a diagram of its point spread function (PSF).

図17(a)は図16の位相分布に中心点からの距離rを掛けた位相分布、図17(b)はその点像分布関数(PSF)の図である。   FIG. 17 (a) is a phase distribution obtained by multiplying the phase distribution of FIG. 16 by the distance r from the center point, and FIG. 17 (b) is a diagram of the point spread function (PSF).

図18(a)は図16の位相分布に中心点からの距離rの自乗を掛けた位相分布、図18(b)はその点像分布関数(PSF)の図である。   18 (a) is a phase distribution obtained by multiplying the phase distribution of FIG. 16 by the square of the distance r from the center point, and FIG. 18 (b) is a diagram of the point spread function (PSF).

図19(a)は図16の位相分布に中心点からの距離rの3乗を掛けた位相分布、図19(b)はその点像分布関数(PSF)の図である。   FIG. 19 (a) is a phase distribution obtained by multiplying the phase distribution of FIG. 16 by the third power of the distance r from the center point, and FIG. 19 (b) is a diagram of the point spread function (PSF).

実施形態群2の中の図16から図19の比較により多条螺旋形状の位相分布に於けるrの次数の変化によるPSF形状の変化を知ることができる。実施形態群2の事例は「回転成分」または「回転対称成分」を含み、比較形態群と比してrの次数の変化によるPSFの中心部への集中度合いが大きい事が分かる。被写界深度拡張と位相関数の次数に関しては特許文献6で述べられている。   The comparison of FIGS. 16 to 19 in Embodiment group 2 makes it possible to know the change in PSF shape due to the change in the order of r in the phase distribution of the multi-strip spiral shape. The case of Embodiment group 2 includes the “rotational component” or the “rotational symmetry component”, and it can be understood that the degree of concentration of the PSF in the central portion due to the change of the order of r is larger than that of the comparative form group. The depth of field extension and the order of the phase function are described in US Pat.

図20(a)は四条の螺旋位相分布の一例、図20(b)はその点像分布関数(PSF)の図である。   FIG. 20 (a) is an example of a helical phase distribution of four streaks, and FIG. 20 (b) is a diagram of its point spread function (PSF).

図10、図17、及び、図20を比較することにより螺旋分布に於いて条数が変化するときのPSFの変化を知ることができる。条数が多くなる程、より少ない旋回量でもPSFは回転対称に近くなる。   By comparing FIGS. 10, 17 and 20, it is possible to know the change in PSF when the number of threads changes in the helical distribution. As the number of threads increases, PSF becomes closer to rotational symmetry even with a smaller amount of turning.

図21(a)は図16(a)の中心点からの距離が有効径の0から1/2倍では平面、周辺部は図16(a)と同じ関数にした位相分布、図21(b)はそのPSFである。   Fig. 21 (a) is a phase distribution where the distance from the center point in Fig. 16 (a) is 0 to 1/2 times the effective diameter, and the peripheral portion has the same function as Fig. 16 (a); ) Is that PSF.

図22(a)は図16(a)の中心点からの距離が有効径の0から1/3倍では平面、周辺部は図16(a)と同じ関数にした位相分布、図22(b)はそのPSFである。   22 (a) shows a phase distribution when the distance from the center point in FIG. 16 (a) is 0 to 1/3 of the effective diameter, and the peripheral portion has the same phase distribution as FIG. 16 (a), FIG. ) Is that PSF.

図23(a)は図16(a)の中心点からの距離が有効径の0から1/4倍では平面、周辺部は図16(a)と同じ関数にした位相分布、図23(b)はそのPSFである。   FIG. 23 (a) is a phase distribution where the distance from the center point in FIG. 16 (a) is 0 to 1⁄4 of the effective diameter, and the periphery has the same function as FIG. 16 (a); ) Is that PSF.

図24(a)は図21(a)の旋回回転方向を逆方向とした位相分布、図24(b)はその点像分布関数(PSF)の図である。   Fig.24 (a) is a phase distribution which made reverse direction the turning rotation direction of Fig.21 (a), FIG.24 (b) is a figure of the point-spread function (PSF).

図25(a)は図21(a)の位相分布に比して旋回量を2倍とした位相分布、図25(b)はその点像分布関数(PSF)の図である。   FIG. 25 (a) is a phase distribution in which the amount of rotation is doubled as compared with the phase distribution in FIG. 21 (a), and FIG. 25 (b) is a diagram of the point spread function (PSF).

図26(a)は旋回しない六条位相分布の例である。中心点からの距離が有効径の0から1/2倍では平面、周辺部に正の位相変換領域と負の位相変換領域を有する1/6回転の回転対称性を有し、位相変化量は中心点からの距離rに比例して増加している。図26(b)はその点像分布関数(PSF)の図である。   FIG. 26 (a) is an example of a six-row phase distribution without turning. If the distance from the central point is 0 to 1/2 of the effective diameter, it has a rotational symmetry of 1/6 rotation with a plane, a positive phase conversion area and a negative phase conversion area in the periphery, and the phase change amount is It increases in proportion to the distance r from the center point. FIG. 26B is a diagram of the point spread function (PSF).

実施形態群3を用いて、同心状の位相分布を紹介する。「同心状」とは、中心の周りに角度を任意量回転させても同形状になることを意味する。   Embodiment group 3 is used to introduce concentric phase distribution. "Concentric" means that the same shape is obtained by rotating the angle by an arbitrary amount around the center.

同心状の位相フィルターを用いる場合、同時に使用する光学系との合成PSFに於いて、「円環状の集中」を発生させる危険性を有する。この「円環状の集中」は二線ボケの原因となる。   In the case of using a concentric phase filter, there is a risk that "toroidal concentration" will occur in the combined PSF with the simultaneously used optical system. This "annular concentration" causes two-line blurring.

図27(a)は中心から半径方向に行くにつれて位相分布が正弦状に変化する同心状位相分布、図27(b)はその点像分布関数(PSF)の図である。   FIG. 27 (a) is a concentric phase distribution in which the phase distribution changes sinusoidally as it goes from the center to the radial direction, and FIG. 27 (b) is a diagram of the point spread function (PSF).

図28(a)は図27(a)に中心点からの距離rを掛けた位相分布、図28(b)はその点像分布関数(PSF)の図である。正弦の周期を微調整してある。   FIG. 28 (a) is a phase distribution obtained by multiplying FIG. 27 (a) by the distance r from the center point, and FIG. 28 (b) is a view of the point spread function (PSF). Fine adjustment of the sine cycle.

図29(a)は図27(a)に中心点からの距離rの自乗を掛けた位相分布、図29(b)はその点像分布関数(PSF)の図である。正弦の周期を微調整してある。   FIG. 29 (a) is a phase distribution of FIG. 27 (a) multiplied by the square of the distance r from the center point, and FIG. 29 (b) is a diagram of the point spread function (PSF). Fine adjustment of the sine cycle.

図30(a)は図27(a)に中心点からの距離rの3乗を掛けた位相分布、図30(b)はその点像分布関数(PSF)の図である。正弦の周期を微調整してある。   FIG. 30 (a) is a phase distribution obtained by multiplying FIG. 27 (a) by the third power of the distance r from the center point, and FIG. 30 (b) is a diagram of the point spread function (PSF). Fine adjustment of the sine cycle.

図31(a)は図27(a)に中心点からの距離rの4乗を掛けた位相分布、図31(b)はその点像分布関数(PSF)の図である。正弦の周期を微調整してある。   FIG. 31 (a) is a phase distribution obtained by multiplying FIG. 27 (a) by the fourth power of the distance r from the center point, and FIG. 31 (b) is a diagram of the point spread function (PSF). Fine adjustment of the sine cycle.

実施形態群3の中の図27から図31の比較により同心状位相分布に於けるrの次数の変化によるPSF形状の変化を知ることができる。実施形態群3の事例は「回転成分」を含み、比較形態群と比してrの次数の変化によるPSFの中心部への集中度合いが大きい事が分かる。被写界深度拡張と位相関数の次数に関しては特許文献6で述べられている。   The comparison of FIGS. 27 to 31 in Embodiment group 3 makes it possible to know the change in PSF shape due to the change in the order of r in the concentric phase distribution. The case of the embodiment group 3 includes the “rotational component”, and it can be understood that the degree of concentration of the PSF in the central portion due to the change of the order of r is larger than that of the comparison form group. The depth of field extension and the order of the phase function are described in US Pat.

図32(a)は中心点からの距離が有効径の0から1/2倍では平面、周辺部は半径方向に位相分布が正弦状に変化する同心状位相分布、図32(b)はその点像分布関数(PSF)の図である。   Fig. 32 (a) is a concentric phase distribution in which the phase distribution changes sinusoidally in the radial direction when the distance from the central point is 0 to 1/2 times the effective diameter, and Fig. 32 (b) It is a figure of a point spread function (PSF).

図33(a)は図32(a)に中心点からの距離rを掛けた位相分布、図33(b)そのは点像分布関数(PSF)の図である。変動周期を微調整してある。   FIG. 33 (a) is a phase distribution obtained by multiplying FIG. 32 (a) by the distance r from the center point, and FIG. 33 (b) is a diagram of a point spread function (PSF). The fluctuation period has been finely adjusted.

図34(a)は図32(a)に中心点からの距離rの自乗を掛けた位相分布、図34(b)そのは点像分布関数(PSF)の図である。変動周期を微調整してある。   FIG. 34 (a) is a phase distribution obtained by multiplying FIG. 32 (a) by the square of the distance r from the center point, and FIG. 34 (b) is a diagram of a point spread function (PSF). The fluctuation period has been finely adjusted.

図35(a)は図32(a)に中心点からの距離rの3乗を掛けた位相分布、図35(b)そのは点像分布関数(PSF)の図である。変動周期を微調整してある。   FIG. 35 (a) is a phase distribution obtained by multiplying FIG. 32 (a) by the third power of the distance r from the center point, and FIG. 35 (b) is a diagram of a point spread function (PSF). The fluctuation period has been finely adjusted.

図36(a)は図32(a)に半径rの4乗を掛けた位相分布、図36(b)そのは点像分布関数(PSF)の図である。変動周期を微調整してある。   FIG. 36 (a) is a phase distribution obtained by multiplying FIG. 32 (a) by the fourth power of the radius r, and FIG. 36 (b) is a diagram of a point spread function (PSF). The fluctuation period has been finely adjusted.

実施形態群3の中の図32から図36の比較により中央に平面部を持つ同心状位相分布に於けるrの次数の変化によるPSF形状の変化を知ることができる。実施形態群3の事例は「回転成分」を含み、比較形態群と比してrの次数の変化によるPSFの中心部への集中度合いが大きい事が分かる。被写界深度拡張と位相関数の次数に関しては特許文献6で述べられている。   By comparison of FIGS. 32 to 36 in the embodiment group 3, it is possible to know the change of the PSF shape due to the change of the order of r in the concentric phase distribution having the flat portion at the center. The case of the embodiment group 3 includes the “rotational component”, and it can be understood that the degree of concentration of the PSF in the central portion due to the change of the order of r is larger than that of the comparison form group. The depth of field extension and the order of the phase function are described in US Pat.

図37(a)は中心から半径方向に行くにつれて位相分布が余弦状に変化する同心状位相分布、図37(b)はその点像分布関数(PSF)の図である。   FIG. 37 (a) is a concentric phase distribution in which the phase distribution changes like a cosine as going from the center to the radial direction, and FIG. 37 (b) is a diagram of the point spread function (PSF).

図38(a)は図37(a)の位相分布と比して同心円周期が2倍である位相分布とその点像分布関数(PSF)の図である。   FIG. 38 (a) is a diagram of a phase distribution whose concentric circle cycle is twice that of the phase distribution of FIG. 37 (a) and its point spread function (PSF).

図39(a)は図37(a)の位相分布と比して同心円周期が3倍である位相分布とその点像分布関数(PSF)の図である。   FIG. 39 (a) is a diagram of a phase distribution whose concentric circle cycle is three times that of the phase distribution of FIG. 37 (a) and its point spread function (PSF).

図40(a)は図37(a)の位相分布と比して同心円周期が約4倍である位相分布とその点像分布関数(PSF)の図である。   FIG. 40 (a) is a diagram of a phase distribution whose concentric circle period is about 4 times that of the phase distribution of FIG. 37 (a) and its point spread function (PSF).

図41(a)は図37(a)の位相分布と比して同心円周期が8倍である位相分布とその点像分布関数(PSF)の図である。   FIG. 41 (a) is a diagram of a phase distribution whose concentric circle cycle is eight times that of the phase distribution of FIG. 37 (a) and its point spread function (PSF).

実施形態群3の中の図37から図41の比較により同心状余弦位相分布に於けるrの次数の変化によるPSF形状の変化を知ることができる。実施形態群3の事例は「回転成分」を含み、比較形態群と比してrの次数の変化によるPSFの中心部への集中度合いが大きい事が分かる。被写界深度拡張と位相関数の次数に関しては特許文献6で述べられている。   The comparison of FIG. 37 to FIG. 41 in Embodiment group 3 makes it possible to know the change in PSF shape due to the change in the order of r in the concentric cosine phase distribution. The case of the embodiment group 3 includes the “rotational component”, and it can be understood that the degree of concentration of the PSF in the central portion due to the change of the order of r is larger than that of the comparison form group. The depth of field extension and the order of the phase function are described in US Pat.

[位相分布設計値の変更方法]
図42は位相分布を値の範囲で区分分けして変形する手法の一例を紹介する図である。 図42(a)は変形を行う前の位相分布を表し、図42(b)は変形を行った後の位相分布を表している。位相分布に対して変更を加える部分は421、変更を加えない部分は422である。421の各部に対して一定の係数を掛けることにより位相分布形状が423のように変形されている。この手法は、撮影系の被写界深度の設計に於いて、光学系の合焦距離よりも近い方向の被写界深度と遠い方向の被写界深度を分けて設定する場合などに有用なものである。なを、変形後の領域423と変更を施さない領域422との接続部に於いて不連続が発生しないように分布形状の微調整を行うことが好ましい。
[How to change the phase distribution design value]
FIG. 42 is a diagram introducing an example of a method of dividing the phase distribution into ranges of values and modifying the phase distribution. FIG. 42 (a) shows a phase distribution before deformation, and FIG. 42 (b) shows a phase distribution after deformation. The part that changes the phase distribution is 421, and the part that does not change is 422. The phase distribution shape is deformed as shown by 423 by multiplying each part of 421 by a constant coefficient. This method is useful when, for example, the depth of field in the direction closer to the focusing distance of the optical system and the depth of field in the direction farther from the focusing distance of the optical system are separately set. It is a thing. It is preferable to finely adjust the distribution shape so that discontinuities do not occur at the connection between the area 423 after deformation and the area 422 where no change is made.

[色収差補正原理]
図43は、位相フィルターに於ける色収差補正の原理を説明する図である。位相フィルターの色収差補正に当たっては、プリズムやレンズに於ける色消しと同様に、頂角及び材質の光学分散値の異なる部品を組み合わせる手法が適用可能である。主たるプリズムの頂角をσ1色収差補正のためのプリズムの頂角をσ2とし、主たるプリズムの光学分散値をν1プリズムの部分分散をdn1色収差補正のためのプリズムの頂角をσ2とするとき、σ1ε / dn112), σ2ε / dn212)の条件を満たすことが望ましい(非特許文献17、13-8式) 。位相フィルターに於いては位相変動成分の変動幅をプリズムの頂角に対応するものとみなし色消し条件とする。また、プリズムやレンズに於ける色消しと同様に、組み合わせる部品数は3部品以上であっても構わない。
Chromatic aberration correction principle
FIG. 43 is a diagram for explaining the principle of chromatic aberration correction in the phase filter. In order to correct the chromatic aberration of the phase filter, it is possible to apply a method of combining parts having different apex angles and optical dispersion values of the material, as in the achromatization of the prism and the lens. The apex angle of the main prism is σ 1 The apex angle of the prism for chromatic aberration correction is σ 2 and the optical dispersion value of the main prism is ν 1 The partial dispersion of the v 1 prism is d n 1 The apex angle of the prism for chromatic aberration correction is σ 2 It is desirable that the condition of σ 1 = δ ε / dn 11 −ν 2 ) and σ 2 = δ ε / dn 21 −) 2 ) be satisfied (Non-Patent Documents 17 and 13) 8 types). In the phase filter, the fluctuation range of the phase fluctuation component is regarded as corresponding to the apex angle of the prism, and is set as the achromatic condition. Further, the number of parts to be combined may be three or more as in the achromatization in the prism and the lens.

図44は、位相フィルターを接合する様子を説明する図である。互いに対応する部分の凹凸が逆に近い形状の部材を接着剤を介して接合している。接合に当たって泡などの混入を減らすためには、同心状の形状よりも、螺旋または放射状の形状が有効である。 また、この時、隣接する材質の屈折率差が0.5以上になると接合境界での反射率が高くなりすぎてしまう。   FIG. 44 is a diagram for explaining how a phase filter is bonded. The members having the shapes close to each other in the concave and convex portions corresponding to each other are joined with an adhesive. In order to reduce the mixing of bubbles and the like at the time of bonding, a spiral or radial shape is more effective than a concentric shape. Further, at this time, if the difference in refractive index between adjacent materials is 0.5 or more, the reflectance at the junction boundary becomes too high.

図45は、本発明を接眼光学系に用いる様子の一例を示している図である。接眼光学系に入射する空中像451、前側レンズ部452、光波面変換素子453、後側レンズ部454、アイポイント455が配置されている。本発明により点像分布関数(PSF)に直線などの不自然な形を含まないようになれば、図1のpost processingを伴わない光学系に於いても被写界深度が広がった画像を使用することが可能である。   FIG. 45 is a view showing an example of using the present invention for an eyepiece optical system. An aerial image 451 incident on the eyepiece optical system, a front lens unit 452, a light wavefront conversion element 453, a rear lens unit 454, and an eye point 455 are disposed. If the point spread function (PSF) does not include an unnatural shape such as a straight line according to the present invention, the image with the extended depth of field is used even in the optical system without post processing in FIG. It is possible.

図46は、本発明を、コンタクトレンズ、角膜加工、または眼内レンズに適用する形態を表す。本発明の位相変換作用を有するコンタクトレンズを角膜461に取り付けることにより、眼球レンズ462の被写界深度を拡張することが可能である。また、角膜自体に本発明の位相変換機能を持つような加工を施しても眼球レンズ462の被写界深度を拡張することが可能である。更に、眼内レンズ463に対して本発明の位相変換機能を持たせることにより被写界深度を拡張することが可能である。本発明により点像分布関数(PSF)に直線などの不自然な形を含まないようになれば、図1のpost processingを伴わない使用法に於いても被写界深度が広がった画像を得ることができる。   Figure 46 depicts an application of the present invention to contact lenses, corneal processing, or intraocular lenses. By attaching the contact lens having the phase conversion function of the present invention to the cornea 461, it is possible to extend the depth of field of the eye lens 462. Further, even if the cornea itself is processed to have the phase conversion function of the present invention, it is possible to extend the depth of field of the eyeball lens 462. Furthermore, it is possible to extend the depth of field by giving the phase conversion function of the present invention to the intraocular lens 463. According to the present invention, if the point spread function (PSF) does not include an unnatural shape such as a straight line, an image in which the depth of field is extended is obtained in the usage without post processing in FIG. be able to.

各実施形態群で示した位相分布を、単一の光学面上でのみ形成する必要はなく、分布成分を複数の光学面に分割して形成することで部品加工を容易にすることや多種の光学系に対して共通部品を流用することが可能となる。   It is not necessary to form the phase distribution shown in each group of embodiments only on a single optical surface, and it is possible to facilitate component processing by dividing and forming the distribution component into a plurality of optical surfaces. It becomes possible to divert common parts to the optical system.

本発明の光波面変換素子は、屈折面だけに用いることに限定されるものではなく、反射面、部分透過面、回折面に於いて用いても良い。   The light wavefront conversion element of the present invention is not limited to use only on the refractive surface, and may be used on the reflective surface, the partial transmission surface, and the diffractive surface.

11…結像光学系、12…光波面変換素子、21…開口中心部、22…開口周辺部、31…開口周辺部を通過する光線、32…開口中心部を通過する光線、421…位相分布に対して変更を加える部分、422…位相分布に対して変更を加えない部分、423…変形された位相分布、431…主たるプリズム、432…色収差補正のためのプリズム、451…接眼光学系に入射する空中像、452…前側レンズ部、453…光波面変換素子、454…後側レンズ部、455…アイポイント、461…角膜、462…眼球レンズ、463…眼内レンズ   11: imaging optical system, 12: light wavefront conversion element, 21: aperture central part, 22: aperture peripheral part, 31: light beam passing through aperture peripheral part, 32: light beam passing through aperture central part, 421: phase distribution Part where changes are made, 422: part where no change is made to the phase distribution, 423: a modified phase distribution, 431: a main prism, 432: a prism for correcting chromatic aberration, 451: incident on an eyepiece optical system Aerial image, 452: front lens portion, 453: light wavefront conversion element, 454: rear lens portion, 455: eye point, 461: cornea, 462: eye lens, 463: intraocular lens

Claims (4)

結像光学系と伴に用いる位相フィルターであって、前記結像光学系の近傍または内部に配置され、前記結像光学系による波面の位相を空間的に変調することにより、前記結像光学系が作成する像の深度を拡げる作用をし、前記位相分布内に不連続点、不連続境界線及び不連続領域を含まず、有効面内の周辺領域の位相値幅が中央領域の位相値幅よりも大きく、その周辺領域に於いて位相を正方向に変換させる部分と負方向に変換させる部分を少なくともそれぞれ1つ以上有し、前記周辺領域において前記位相を正方向に変換させる部分及び前記位相を負方向に変換させる部分に於ける位相変化量は周辺部へ行く程大きくなる部分を有し、周辺部の位相変換量の分布において光軸を中心とした螺旋部分を含むもの。A phase filter for use with an imaging optical system, which is disposed in the vicinity of or in the inside of the imaging optical system, and spatially modulates the phase of the wave front by the imaging optical system, thereby forming the imaging optical system Acts to extend the depth of the image created by the image, and the phase distribution does not include discontinuities, discontinuous boundaries and discontinuities in the phase distribution, and the phase value width of the peripheral area in the effective plane is greater than the phase value width of the central area Largely, there are at least one or more portions for converting the phase in the positive direction and at least one portion for converting the phase in the negative direction in the peripheral region, and a portion for converting the phase in the positive direction in the peripheral region and the phase The amount of phase change in the portion to be converted into a direction has a portion that increases toward the peripheral portion, and includes a helical portion centered on the optical axis in the distribution of the amount of phase conversion in the peripheral portion. 結像光学系と伴に用いる位相フィルターであって、前記結像光学系の近傍または内部に配置され、前記結像光学系による波面の位相を空間的に変調することにより、前記結像光学系が作成する像の深度を拡げる作用をし、前記位相分布内に不連続点、不連続境界線及び不連続領域を含まず、有効面内の周辺領域の位相値幅が中央領域の位相値幅よりも大きく、その周辺領域に於いて位相を正方向に変換させる部分と負方向に変換させる部分を少なくともそれぞれ1つ以上有し、前記周辺領域において前記位相を正方向に変換させる部分及び前記位相を負方向に変換させる部分に於ける位相変化量は周辺部へ行く程大きくなる部分を有し、周辺部の位相変換量の分布に於いて光軸を中心とした同心形である部分を含むもの。A phase filter for use with an imaging optical system, which is disposed in the vicinity of or in the inside of the imaging optical system, and spatially modulates the phase of the wave front by the imaging optical system, thereby forming the imaging optical system Acts to extend the depth of the image created by the image, and the phase distribution does not include discontinuities, discontinuous boundaries and discontinuities in the phase distribution, and the phase value width of the peripheral area in the effective plane is greater than the phase value width of the central area Largely, there are at least one or more portions for converting the phase in the positive direction and at least one portion for converting the phase in the negative direction in the peripheral region, and a portion for converting the phase in the positive direction in the peripheral region and the phase The phase change amount in the portion to be converted into a direction has a portion that increases toward the peripheral portion, and includes a portion that is concentric with the optical axis in the distribution of the phase conversion amount in the peripheral portion. 結像光学系と伴に用いる位相フィルターであって、前記結像光学系の近傍または内部に配置され、前記結像光学系による波面の位相を空間的に変調することにより、前記結像光学系が作成する像の深度を拡げる作用をし、前記位相分布内に不連続点、不連続境界線及び不連続領域を含まず、有効面内の周辺領域の位相値幅が中央領域の位相値幅よりも大きく、その周辺領域に於いて位相を正方向に変換させる部分と負方向に変換させる部分を少なくともそれぞれ1つ以上有し、前記周辺領域において前記位相を正方向に変換させる部分及び前記位相を負方向に変換させる部分に於ける位相変化量は周辺部へ行く程大きくなる部分を有し、周辺部の位相変換量の分布に於いて光軸を中心とした放射状の形を含むもの。A phase filter for use with an imaging optical system, which is disposed in the vicinity of or in the inside of the imaging optical system, and spatially modulates the phase of the wave front by the imaging optical system, thereby forming the imaging optical system Acts to extend the depth of the image created by the image, and the phase distribution does not include discontinuities, discontinuous boundaries and discontinuities in the phase distribution, and the phase value width of the peripheral area in the effective plane is greater than the phase value width of the central area Largely, there are at least one or more portions for converting the phase in the positive direction and at least one portion for converting the phase in the negative direction in the peripheral region, and a portion for converting the phase in the positive direction in the peripheral region and the phase The amount of phase change in the portion to be converted into a direction has a portion that increases toward the peripheral portion, and the distribution of the amount of phase conversion in the peripheral portion includes a radial shape centered on the optical axis. 結像光学系と伴に用いる位相フィルターであって、前記結像光学系の近傍または内部に配置され、前記結像光学系による波面の位相を空間的に変調することにより、前記結像光学系が作成する像の深度を拡げる作用をし、前記位相分布内に不連続点、不連続境界線及び不連続領域を含まず、有効面内の周辺領域の位相値幅が中央領域の位相値幅よりも大きく、その周辺領域に於いて位相を正方向に変換させる部分と負方向に変換させる部分を少なくともそれぞれ1つ以上有し、前記周辺領域において前記位相を正方向に変換させる部分及び前記位相を負方向に変換させる部分に於ける位相変化量は周辺部へ行く程大きくなる部分を有し、位相分布形状はほぼ回転対称であって、前記位相分布形状が半径方向に少なくとも1つの極大輪帯領域または少なくとも1つの極小輪帯領域を有し、周辺領域の位相値幅が中央領域の位相値幅よりも大きいもの。A phase filter for use with an imaging optical system, which is disposed in the vicinity of or in the inside of the imaging optical system, and spatially modulates the phase of the wave front by the imaging optical system, thereby forming the imaging optical system Acts to extend the depth of the image created by the image, and the phase distribution does not include discontinuities, discontinuous boundaries and discontinuities in the phase distribution, and the phase value width of the peripheral area in the effective plane is greater than the phase value width of the central area Largely, there are at least one or more portions for converting the phase in the positive direction and at least one portion for converting the phase in the negative direction in the peripheral region, and a portion for converting the phase in the positive direction in the peripheral region and the phase The phase change amount in the portion to be converted into the direction has a portion that increases toward the peripheral portion, and the phase distribution shape is substantially rotationally symmetric, and the phase distribution shape is at least one maximum annular zone in the radial direction The Has at least one local minimum annular region, as the phase width of the peripheral region is greater than the phase-value width of the central region.
JP2013137622A 2013-06-29 2013-06-29 Filter, lens, imaging optical system and imaging system having phase conversion function Expired - Fee Related JP6516134B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013137622A JP6516134B2 (en) 2013-06-29 2013-06-29 Filter, lens, imaging optical system and imaging system having phase conversion function
PCT/JP2014/003519 WO2015004881A1 (en) 2013-06-29 2014-07-02 Filter with phase conversion effect, lens, image-forming optical system, and imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137622A JP6516134B2 (en) 2013-06-29 2013-06-29 Filter, lens, imaging optical system and imaging system having phase conversion function

Publications (2)

Publication Number Publication Date
JP2017015742A JP2017015742A (en) 2017-01-19
JP6516134B2 true JP6516134B2 (en) 2019-05-22

Family

ID=52279587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137622A Expired - Fee Related JP6516134B2 (en) 2013-06-29 2013-06-29 Filter, lens, imaging optical system and imaging system having phase conversion function

Country Status (2)

Country Link
JP (1) JP6516134B2 (en)
WO (1) WO2015004881A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286531B2 (en) * 2014-03-27 2018-02-28 マクセル株式会社 Phase filter, imaging optical system, and imaging system
CN106570902B (en) * 2016-11-04 2019-09-24 中国科学院国家空间科学中心 The opposite centroid computing method of PSF obtained based on detector pixel response spectrum
JP6932036B2 (en) 2017-07-31 2021-09-08 シスメックス株式会社 Cell imaging method, cell imaging device, particle imaging method and particle imaging device
US11762220B2 (en) 2020-04-30 2023-09-19 Coopervision International Limited Multifocal ophthalmic lenses and related methods
US11934043B2 (en) * 2020-04-30 2024-03-19 Coopervision International Limited Myopia control lens and related methods
US11754858B2 (en) * 2020-04-30 2023-09-12 Coopervision International Limited Multifocal ophthalmic lens and related methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275010B2 (en) * 1995-02-03 2002-04-15 ザ・リジェンツ・オブ・ザ・ユニバーシティ・オブ・コロラド Optical system with extended depth of field
JPH10282434A (en) * 1997-04-07 1998-10-23 Ishikawajima Harima Heavy Ind Co Ltd Spiral wedge type optical corrector
JP2001284221A (en) * 2000-03-30 2001-10-12 Canon Inc Projection optical system and projection exposure method
US6822794B2 (en) * 2000-12-15 2004-11-23 Agilent Technologies, Inc. Diffractive optical element for providing favorable multi-mode fiber launch and reflection management
US6842297B2 (en) * 2001-08-31 2005-01-11 Cdm Optics, Inc. Wavefront coding optics
JP4147033B2 (en) * 2002-01-18 2008-09-10 オリンパス株式会社 Endoscope device
KR101099847B1 (en) * 2004-01-16 2011-12-27 칼 짜이스 에스엠티 게엠베하 Polarization-modulating optical element
JP4385139B2 (en) * 2006-02-01 2009-12-16 国立大学法人電気通信大学 Displacement detection method, displacement detection apparatus, displacement detection program, phase singularity matching processing method, phase singularity matching processing program
JP4820998B2 (en) * 2006-04-20 2011-11-24 国立大学法人電気通信大学 Phase singularity detection method, phase singularity detection apparatus, and program
US8335034B2 (en) * 2007-07-20 2012-12-18 Medizinische Universitat Innsbruck Optical device with a pair of diffractive optical elements
FR2922324B1 (en) * 2007-10-12 2010-10-08 Sagem Defense Securite WAVE FRONT MODIFICATION IMAGING SYSTEM AND METHOD FOR INCREASING THE FIELD DEPTH OF AN IMAGING SYSTEM.
JP2009176391A (en) * 2008-01-28 2009-08-06 Sony Corp Optical pickup and optical disk device
JP5531261B2 (en) * 2009-03-27 2014-06-25 国立大学法人 千葉大学 Laser processing method, laser processing method using circularly polarized light vortex laser beam, method for producing member having needle-like body, and member having needle-like body
JP2012253602A (en) * 2011-06-03 2012-12-20 Nikon Corp Imaging optical system and imaging apparatus
TWI467226B (en) * 2011-11-15 2015-01-01 Ind Tech Res Inst Microscope system for phase object
US9091862B2 (en) * 2012-07-24 2015-07-28 Trustees Of Boston University Partitioned aperture wavefront imaging method and system

Also Published As

Publication number Publication date
WO2015004881A1 (en) 2015-01-15
JP2017015742A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6516134B2 (en) Filter, lens, imaging optical system and imaging system having phase conversion function
US10747024B2 (en) Wide-angle camera for head-mounted device, and head-mounted device
US9709820B2 (en) Fresnel lens and optical device
US20220390764A1 (en) Spectacle lens
CA2185685A1 (en) Zoned lens
TWI525345B (en) Optical system for laser light shaping and wave surface control
CN104503076B (en) Micro display eyepiece and head-mounted equipment
CN106772717A (en) A kind of Fresnel Lenses and virtual reality device
KR20220027210A (en) Spiral diopters with meridians of different light powers
JP2022100249A (en) Eyeglass lens for suppressing myopia progression
JP2021157126A (en) Spectacle lens
JP2018084788A (en) Progressive refractive power lens design method, and progressive refractive power lens
CN110488396A (en) It is a kind of for reducing the imaging method of parallel type bionic compound eyes off-axis aberration
TWI847010B (en) Spectacle lens
JP7358619B2 (en) eyeglass lenses
CN104459958B (en) Prime lens used for infrared camera
TW201901217A (en) Eyepiece optical system
US20230129377A1 (en) Spectacle lens
US20220206317A1 (en) Myopia control optical lens and manufacturing method thereof
CN110361874B (en) Vision correction device
CN210348107U (en) Vision correction device
JP6823948B2 (en) Imaging system, spatial filter and method of designing imaging system including such spatial filter
JP2009282391A (en) Large-sized optical plate
Hong et al. Depth-of-field extension method using variable annular pupil division
TWI854093B (en) Spectacle lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190404

R150 Certificate of patent or registration of utility model

Ref document number: 6516134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees