JP6514607B2 - Heat dissipation amount derivation device - Google Patents

Heat dissipation amount derivation device Download PDF

Info

Publication number
JP6514607B2
JP6514607B2 JP2015165893A JP2015165893A JP6514607B2 JP 6514607 B2 JP6514607 B2 JP 6514607B2 JP 2015165893 A JP2015165893 A JP 2015165893A JP 2015165893 A JP2015165893 A JP 2015165893A JP 6514607 B2 JP6514607 B2 JP 6514607B2
Authority
JP
Japan
Prior art keywords
upstream
thermocouple
wind speed
heat exchanger
outdoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015165893A
Other languages
Japanese (ja)
Other versions
JP2017044388A (en
Inventor
研 安田
研 安田
優磨 古橋
優磨 古橋
達夫 野部
達夫 野部
真成 鵜飼
真成 鵜飼
光秀 安田
光秀 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Kogakuin University
Original Assignee
Tokyo Gas Co Ltd
Kogakuin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Kogakuin University filed Critical Tokyo Gas Co Ltd
Priority to JP2015165893A priority Critical patent/JP6514607B2/en
Publication of JP2017044388A publication Critical patent/JP2017044388A/en
Application granted granted Critical
Publication of JP6514607B2 publication Critical patent/JP6514607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、室内を空調する空気調和装置の性能評価を行う放熱量導出装置に関する。 The present invention relates to a heat release amount deriving device that performs performance evaluation of an air conditioner that air-conditions a room.

従来の空気調和装置の性能評価を行う性能評価装置は、室外機の熱交換器(凝縮器)を複数に区画したグリッド毎に、上流側に上流温度センサを配置し、下流側に下流温度センサを配置するとともに、風速センサを配置していた。   The performance evaluation device for performing the performance evaluation of the conventional air conditioning apparatus arranges an upstream temperature sensor on the upstream side for each grid in which the heat exchanger (condenser) of the outdoor unit is divided into a plurality, and the downstream temperature sensor And the wind speed sensor.

そして、上流温度センサにより計測された上流温度と、下流温度センサにより計測された下流温度と、風速センサにより計測された風速とに基づいて、グリッド毎の放熱量を導出し、これらグリッド毎の放熱量を積算して熱交換器の放熱量を導出するようになされていた(例えば、非特許文献1)。   Then, based on the upstream temperature measured by the upstream temperature sensor, the downstream temperature measured by the downstream temperature sensor, and the wind speed measured by the wind speed sensor, the heat release amount for each grid is derived, and the discharge for each grid is released. The amount of heat is integrated to derive the heat release amount of the heat exchanger (for example, Non-Patent Document 1).

野部達夫、芳賀裕輔、中村北斗、田中光太郎、木口雅之、プローブ挿入法によるマルチパッケージ型空調機の運用時性能評価手法、日本建築学会環境系論文集、第76巻 第668号、927−933、2011年10月Nobe Tatsuo, Haga Yusuke, Nakamura Hokuto, Tanaka Kotaro, Kiguchi Masayuki, Performance evaluation method of multi-package air conditioner at the time of operation by probe insertion method, Proceedings of the Architectural Institute of Japan, Volume 76, 668, 927-933 , October 2011

上述した性能評価装置では、下流温度センサとしてシース熱電対を用い、熱交換器の上流側から、熱交換器のフィン間の隙間を通すようにして下流側に先端部(結合点)を配置するようにしていた。しかしながら、熱交換器のフィン間のピッチは高性能化に伴い狭くなってきており、それに伴いシース熱電対の径も小さくする必要があり、既成品のシース熱電対を用いることが困難となっていた。また、径の小さいシース熱電対をフィン間の隙間に通す設置作業も困難であった。   In the above-described performance evaluation apparatus, a sheath thermocouple is used as the downstream temperature sensor, and the tip portion (coupling point) is disposed downstream from the heat exchanger upstream so as to pass through the gap between the fins of the heat exchanger. It was like that. However, the pitch between the fins of the heat exchanger has been narrowed with higher performance, and along with this, the diameter of the sheath thermocouple needs to be made smaller, and it has become difficult to use the existing sheath thermocouple. The In addition, it is also difficult to install the sheath thermocouple having a small diameter through the gap between the fins.

本発明は、このような課題に鑑み、従来と比して容易に性能評価を行うことが可能な放熱量導出装置を提供することを目的としている。 An object of the present invention is to provide a heat dissipation amount deriving device capable of performing performance evaluation more easily than in the prior art in view of such problems.

上記課題を解決するために、本発明の放熱量導出装置は、空気調和装置の室外機に設けられた熱交換器の上流側において複数に区画したグリッド毎に計測点が配置され、前記計測点で計測される上流温度が平均された上流平均温度計測する上流温度センサと、前記室外機から排出される空気の平均温度を下流平均温度として計測する下流温度センサと、前記室外機から排出される空気の風速を計測する風速センサと、予め計測された前記グリッドの前記上流側の風速と前記風速センサにより計測される風速との風速比に基づいて、前記上流温度センサにより計測された前記上流平均温度と、前記下流温度センサにより計測された前記下流平均温度との温度差をグリッド毎に重み付けし、重み付けした温度差、および、前記風速センサにより計測された風速に基づいて、前記熱交換器の放熱量を導出する熱交換器放熱量導出部と、を備える。 In order to solve the above problems, the heat radiation amount derivation device of the present invention, the measuring points are arranged for each grid is divided into Oite plurality on the upstream side of the heat exchanger provided in an outdoor unit of an air conditioner, the From the upstream temperature sensor for measuring the upstream average temperature obtained by averaging the upstream temperature measured at the measurement point, the downstream temperature sensor for measuring the average temperature of the air discharged from the outdoor unit as the downstream average temperature, and from the outdoor unit and wind sensor for measuring the wind velocity of air exhausted, and wind speed previously measured the upstream side of each of the grid, based on the wind speed ratio of the wind speed measured by the wind velocity sensor, measured by the upstream temperature sensor The temperature difference between the calculated upstream average temperature and the downstream average temperature measured by the downstream temperature sensor is weighted for each grid, the weighted temperature difference, and the wind speed sensor Ri based on the measured wind speed, and a heat exchanger heat radiation amount deriving unit that derives the heat radiation amount of the heat exchanger.

また、前記上流温度センサは、異なる金属でなる1対のリード線が接合点で接合される熱電対であり、前記熱交換器における前記グリッド毎に前記接合点が配置されるとともに、前記複数の接合点にそれぞれ接合された少なくとも同一金属でなる前記リード線の長さが相互に同一であり、各リード線は、一端が前記接合点のいずれかに接合され、他端が他の同一金属でなるリード線の他端と結合されているとよい。   The upstream temperature sensor is a thermocouple in which a pair of lead wires made of different metals are joined at a junction point, and the junction point is disposed for each of the grids in the heat exchanger, and the plurality of the upstream temperature sensors are disposed. The lengths of the leads made of at least the same metal joined to the junctions are identical to each other, one end of each lead is joined to one of the junctions, and the other end is made of another identical metal. And the other end of the lead wire.

本発明によれば、従来と比して容易に性能評価を行うことが可能な放熱量導出装置を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the thermal radiation amount derivation | leading-out apparatus which can perform performance evaluation easily compared with the past.

実施形態にかかる性能評価システムの構成を説明するための図である。It is a figure for demonstrating the structure of the performance evaluation system concerning embodiment. (a)は、上流熱電対、下流熱電対および風速センサの配置を示す図である。(b)は、上流熱電対の接合点の配置を示す図である。(A) is a figure which shows arrangement | positioning of an upstream thermocouple, a downstream thermocouple, and a wind speed sensor. (B) is a figure which shows arrangement | positioning of the junction point of an upstream thermocouple.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values and the like shown in this embodiment are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the specification and the drawings, elements having substantially the same functions and configurations will be denoted by the same reference numerals to omit repeated description, and elements not directly related to the present invention will not be illustrated. Do.

(性能評価システム1)
図1は、本実施形態にかかる性能評価システム1の構成を説明するための図である。図1に示すように、性能評価システム1は、ビルや学校等の施設に設置され、施設内の空気を冷暖房するGHP(ガスヒートポンプエアコン)10の性能を評価する性能評価装置100によって構成される。なお、GHP10は冷暖房を行うことが可能であるが、本発明の性能評価システム1は冷房運転時のGHP10の性能評価を行うものであるため、GHP10については冷房運転している場合について説明し、暖房運転している場合の説明は省略する。また、図1中、冷房運転時の冷媒の流れを実線の矢印で示す。
(Performance evaluation system 1)
FIG. 1 is a diagram for explaining the configuration of a performance evaluation system 1 according to the present embodiment. As shown in FIG. 1, the performance evaluation system 1 is installed in a facility such as a building or a school, and is configured by a performance evaluation device 100 that evaluates the performance of a GHP (gas heat pump air conditioner) 10 for cooling and heating air in the facility. . Although GHP 10 can perform air conditioning and heating, since performance evaluation system 1 of the present invention is for performing performance evaluation of GHP 10 during cooling operation, the case where cooling operation is performed for GHP 10 will be described, The description of the heating operation is omitted. Further, in FIG. 1, the flow of the refrigerant at the time of the cooling operation is indicated by a solid arrow.

GHP10は、施設の屋上等に設置される室外機20、および、施設の内部に設置される室内機30により構成される。室外機20は、ガスエンジン21、コンプレッサ22、室外機熱交換器23、排気ガス熱交換器24、ラジエーター25、室外機ファン26、室外機モータ27、GHP制御部28およびハウジング29を含んで構成される。GHP10では、ガスエンジン21、コンプレッサ22、室外機熱交換器23、排気ガス熱交換器24、ラジエーター25、室外機ファン26、室外機モータ27およびGHP制御部28がハウジング29内に収容されている。   The GHP 10 is composed of an outdoor unit 20 installed on the roof of the facility and the like, and an indoor unit 30 installed inside the facility. The outdoor unit 20 includes a gas engine 21, a compressor 22, an outdoor unit heat exchanger 23, an exhaust gas heat exchanger 24, a radiator 25, an outdoor unit fan 26, an outdoor unit motor 27, a GHP control unit 28, and a housing 29. Be done. In the GHP 10, the gas engine 21, the compressor 22, the outdoor unit heat exchanger 23, the exhaust gas heat exchanger 24, the radiator 25, the outdoor unit fan 26, the outdoor unit motor 27 and the GHP control unit 28 are accommodated in the housing 29. .

室内機30は、室内の空気と冷媒とで熱交換を行う室内機熱交換器31、室内機熱交換器31に室内の空気を送り熱交換を促進させる室内機ファン32、および、室内機ファン32を回転駆動させる室内機モータ33を含んで構成される。   The indoor unit 30 includes an indoor unit heat exchanger 31 which exchanges heat between indoor air and a refrigerant, an indoor unit fan 32 which sends indoor air to the indoor unit heat exchanger 31 and promotes heat exchange, and an indoor unit fan It comprises the indoor unit motor 33 which rotationally drives 32.

また、GHP10は、室外機20および室内機30の間で冷媒を循環させる冷媒管41、冷媒の循環方向を切り替える四方弁42、および、冷媒を膨張させる膨張弁43を含む冷媒循環系と、室外機20内で冷却水を循環させる冷却水管51を含む冷却水循環系とが設けられている。   The GHP 10 also includes a refrigerant circulation system that includes a refrigerant pipe 41 that circulates the refrigerant between the outdoor unit 20 and the indoor unit 30, a four-way valve 42 that switches the circulation direction of the refrigerant, and an expansion valve 43 that expands the refrigerant; A cooling water circulation system including a cooling water pipe 51 for circulating the cooling water in the machine 20 is provided.

冷房運転時の冷媒循環系では、コンプレッサ22の出口と室外機熱交換器23とが、四方弁42を介して冷媒管41によって接続される。また、室外機熱交換器23と室内機熱交換器31とが、膨張弁43を介して冷媒管41によって接続される。また、室内機熱交換器31とコンプレッサ22の入口とが、四方弁42を介して冷媒管41によって接続される。   In the refrigerant circulation system during the cooling operation, the outlet of the compressor 22 and the outdoor unit heat exchanger 23 are connected by the refrigerant pipe 41 via the four-way valve 42. Further, the outdoor unit heat exchanger 23 and the indoor unit heat exchanger 31 are connected by the refrigerant pipe 41 via the expansion valve 43. Further, the indoor unit heat exchanger 31 and the inlet of the compressor 22 are connected by the refrigerant pipe 41 via the four-way valve 42.

また、冷房運転時の冷却水循環系では、ガスエンジン21と、排気ガス熱交換器24と、ラジエーター25とが、冷却水管51によって接続される。   In the cooling water circulation system during the cooling operation, the gas engine 21, the exhaust gas heat exchanger 24, and the radiator 25 are connected by the cooling water pipe 51.

ガスエンジン21は、燃料ガス(都市ガス等)を燃焼させて回転動力を生成し、生成した回転動力によりコンプレッサ22を回転させる。コンプレッサ22は、ガスエンジン21の回転動力により回転駆動し、冷媒管41を流れる冷媒を圧縮して室外機熱交換器23に送出する。室外機熱交換器23は、ハウジング29に設けられた空気入口29aに沿って配置され、外部から室外機ファン26によりハウジング29内に送風された空気と、室外機熱交換器23に流入した冷媒とで熱交換させ、冷媒を冷却する。室外機熱交換器23を通過した冷媒は、冷媒管41を介して膨張弁43に流入し、膨張弁43で膨張された後、冷媒管41を介して室内機30の室内機熱交換器31に流入する。   The gas engine 21 burns a fuel gas (city gas or the like) to generate rotational power, and causes the compressor 22 to rotate by the generated rotational power. The compressor 22 is rotationally driven by the rotational power of the gas engine 21, compresses the refrigerant flowing through the refrigerant pipe 41, and sends it to the outdoor unit heat exchanger 23. The outdoor unit heat exchanger 23 is disposed along the air inlet 29a provided in the housing 29, and the air blown into the housing 29 from the outside by the outdoor unit fan 26 and the refrigerant flowing into the outdoor unit heat exchanger 23 Heat exchange and cool the refrigerant. The refrigerant having passed through the outdoor unit heat exchanger 23 flows into the expansion valve 43 through the refrigerant pipe 41 and is expanded by the expansion valve 43, and then the indoor unit heat exchanger 31 of the indoor unit 30 through the refrigerant pipe 41 Flow into

室内機熱交換器31に流入した冷媒は、室内機ファン32により室内機30内に送風された空気と熱交換を行うことで加熱された後、冷媒管41によって四方弁42を介して室外機20のコンプレッサ22に流入する。このようにして、GHP10では、冷媒管41内を冷媒が循環し、室内機熱交換器31により室内機30が設置された室内の空気を冷却する。   The refrigerant flowing into the indoor unit heat exchanger 31 is heated by heat exchange with the air blown into the indoor unit 30 by the indoor unit fan 32, and then the outdoor unit is heated by the refrigerant pipe 41 via the four-way valve 42. It flows into 20 compressors 22. Thus, in the GHP 10, the refrigerant circulates in the refrigerant pipe 41, and the indoor unit heat exchanger 31 cools the indoor air in which the indoor unit 30 is installed.

排気ガス熱交換器24は、ガスエンジン21から排出される排気ガスを冷却して外部に排出する。ラジエーター25は、冷却水管51を循環する冷却水と、室外機ファン26によりハウジング29内に送風された空気とで熱交換させ、冷却水を冷却する。   The exhaust gas heat exchanger 24 cools the exhaust gas discharged from the gas engine 21 and discharges it to the outside. The radiator 25 exchanges heat between the cooling water circulating through the cooling water pipe 51 and the air blown into the housing 29 by the outdoor unit fan 26 to cool the cooling water.

室外機ファン26は、ハウジング29に設けられた空気出口29bの近傍に配置され、室外機モータ27により回転駆動し、空気入口29aから室外機熱交換器23およびラジエーター25を介して空気出口29bへ空気を送風することにより、室外機熱交換器23とラジエーター25とに空気を送り熱交換を促進させる。   The outdoor unit fan 26 is disposed in the vicinity of the air outlet 29b provided in the housing 29, is rotationally driven by the outdoor unit motor 27, and passes from the air inlet 29a to the air outlet 29b via the outdoor unit heat exchanger 23 and the radiator 25. By blowing air, air is sent to the outdoor unit heat exchanger 23 and the radiator 25 to promote heat exchange.

GHP制御部28は、CPU(中央処理装置)を含む半導体集積回路で構成され、GHP10全体(例えば、ガスエンジン21、室外機モータ27、室内機モータ33等)を制御する。   The GHP control unit 28 is configured by a semiconductor integrated circuit including a CPU (central processing unit), and controls the entire GHP 10 (for example, the gas engine 21, the outdoor unit motor 27, the indoor unit motor 33, etc.).

室内機ファン32は、室内機モータ33により回転駆動し、室内機熱交換器31に空気を送り熱交換を促進させるとともに、室内機熱交換器31により冷却された空気を室内に送風する。   The indoor unit fan 32 is rotationally driven by the indoor unit motor 33, sends air to the indoor unit heat exchanger 31 to promote heat exchange, and blows the air cooled by the indoor unit heat exchanger 31 into the room.

性能評価装置100は、性能評価部101、データロガー102、上流熱電対103、下流熱電対104および風速センサ105を含んで構成される。性能評価部101は、CPU(中央処理装置)を含む半導体集積回路で構成され、熱交換器放熱量導出部110、室外機製造熱量導出部112、および、COP(Coefficient Of Performance)導出部114として機能する。   The performance evaluation apparatus 100 includes a performance evaluation unit 101, a data logger 102, an upstream thermocouple 103, a downstream thermocouple 104, and a wind speed sensor 105. The performance evaluation unit 101 is configured of a semiconductor integrated circuit including a CPU (central processing unit), and serves as a heat exchanger heat release amount derivation unit 110, an outdoor unit production heat amount derivation unit 112, and a COP (Coefficient Of Performance) derivation unit 114. Function.

データロガー102は、性能評価部101に接続されるとともに、上流熱電対103、下流熱電対104および風速センサ105に接続されており、上流熱電対103および下流熱電対104により計測される上流平均温度および下流平均温度を収集、保存するとともに、風速センサ105により計測される風速を収集、保存する。   The data logger 102 is connected to the performance evaluation unit 101 and connected to the upstream thermocouple 103, the downstream thermocouple 104, and the wind speed sensor 105, and the average upstream temperature measured by the upstream thermocouple 103 and the downstream thermocouple 104 And the downstream average temperature are collected and stored, and the wind speed measured by the wind speed sensor 105 is collected and stored.

図2(a)は、上流熱電対103、下流熱電対104および風速センサ105の配置を示す図であり、図2(b)は、上流熱電対103の接合点120の配置を示す図である。なお、図2(a)においては、説明の便宜上、上流熱電対103の第1熱電対線122および第2熱電対線124の一部を省略している。   2A shows the arrangement of the upstream thermocouple 103, the downstream thermocouple 104, and the wind speed sensor 105, and FIG. 2B shows the arrangement of the junction 120 of the upstream thermocouple 103. . In FIG. 2A, for convenience of explanation, a part of the first thermocouple wire 122 and the second thermocouple wire 124 of the upstream thermocouple 103 is omitted.

図2(a)に示すように、上流熱電対103は、互いに異なる金属でなる複数(本実施形態においては18個)の第1熱電対線122および第2熱電対線124と、第1熱電対線122と同一の金属でなる第1リード線126と、第2熱電対線124と同一の金属でなる第2リード線128とが設けられている。   As shown in FIG. 2A, the upstream thermocouple 103 includes a plurality of (18 in the present embodiment) first and second thermocouple wires 122 and 124 made of different metals, and the first thermocouple A first lead wire 126 made of the same metal as the wire pair 122 and a second lead wire 128 made of the same metal as the second thermocouple wire 124 are provided.

また、第1熱電対線122および第2熱電対線124の接合点120は、室外機熱交換器23における空気入口29aに臨む側面に対して所定間隔離隔するとともに、図2(b)に示すように、室外機熱交換器23における空気入口29aに臨む側面を9等分した各グリッド160(160a〜160i)にそれぞれ配置されている。なお、グリッド160、および、各グリッド160に配置される接合点120の数については、詳しくは後述する。   The junction point 120 of the first thermocouple wire 122 and the second thermocouple wire 124 is separated from the side facing the air inlet 29a of the outdoor unit heat exchanger 23 by a predetermined distance, and is shown in FIG. As described above, the grids 160 (160a to 160i) are respectively arranged by dividing the side facing the air inlet 29a in the outdoor unit heat exchanger 23 into nine equal parts. The grid 160 and the number of junctions 120 arranged on each grid 160 will be described in detail later.

また、各接合点120に接合された第1熱電対線122の長さ(各接合点120から第1結合点130までの長さ)は全て同一であり、第1結合点130で全ての第1熱電対線122が第1リード線126に結合される。第1リード線126の一端は、各接合点120に接合された第1熱電対線122が纏めて接合されており、第1リード線126の他端は、データロガー102に接続される。   Further, the lengths of the first thermocouple wires 122 joined to the respective junctions 120 (the lengths from the respective junctions 120 to the first junctions 130) are all the same, and One thermocouple wire 122 is coupled to the first lead wire 126. One end of the first lead wire 126 is collectively joined to the first thermocouple wire 122 joined to each junction 120, and the other end of the first lead wire 126 is connected to the data logger 102.

同様に、各接合点120に接合された第2熱電対線124の長さ(接合点120から第2結合点132までの長さ)は全て同一であり、第2結合点132で全ての第2熱電対線124が第2リード線128に結合される。第2リード線128の一端は、各接合点120に接合された第2熱電対線124が纏めて接合されており、第2リード線128の他端は、データロガー102に接続されている。   Similarly, the lengths (lengths from the junction 120 to the second junction 132) of the second thermocouple wires 124 joined to the respective junctions 120 are all the same, and all second junctions 132 Two thermocouple wires 124 are coupled to the second lead 128. One end of the second lead wire 128 is collectively joined to the second thermocouple wire 124 joined to each junction point 120, and the other end of the second lead wire 128 is connected to the data logger 102.

このように、各接合点120に接合された第1熱電対線122および第2熱電対線124の長さを同一にすることで、第1熱電対線122および第2熱電対線124それぞれの抵抗を同一にすることができる。これにより、上流熱電対103では、各接合点120での平均温度、つまり、室外機熱交換器23の上流の平均温度(以下、上流平均温度ともいう)を計測することができる。   Thus, by making the lengths of the first thermocouple wire 122 and the second thermocouple wire 124 joined to each junction point 120 the same, each of the first thermocouple wire 122 and the second thermocouple wire 124 The resistance can be made identical. As a result, the upstream thermocouple 103 can measure the average temperature at each junction 120, that is, the average temperature upstream of the outdoor unit heat exchanger 23 (hereinafter also referred to as the upstream average temperature).

下流熱電対104は、互いに異なる金属でなる複数(本実施形態においては4つ)の第1熱電対線142および第2熱電対線144と、第1熱電対線142と同一の金属でなる第1リード線146と、第2熱電対線144と同一の金属でなる第2リード線148とが設けられている。   The downstream thermocouple 104 is made of a plurality of (four in the present embodiment) first and second thermocouple wires 142 and 144 made of different metals, and the same metal as the first thermocouple wire 142. A first lead wire 146 and a second lead wire 148 made of the same metal as the second thermocouple wire 144 are provided.

第1熱電対線142および第2熱電対線144の接合点140は、ハウジング29の空気出口29bに所定間隔離隔して配置されている。また、各接合点140に接合された第1熱電対線142の長さ(各接合点140から第1結合点150までの長さ)は全て同一であり、第1結合点150で全ての第1熱電対線142が第1リード線146に結合される。第1リード線146の一端は、各接合点140に接合された第1熱電対線142が纏めて結合されており、第1リード線146の他端は、データロガー102に接続されている。   A junction 140 of the first thermocouple wire 142 and the second thermocouple wire 144 is disposed at a predetermined distance from the air outlet 29 b of the housing 29. Further, the lengths of the first thermocouple wires 142 joined to the respective junctions 140 (the lengths from the respective junctions 140 to the first junction 150) are all the same, and One thermocouple wire 142 is coupled to the first lead wire 146. One end of the first lead wire 146 is collectively coupled to the first thermocouple wire 142 joined to each junction point 140, and the other end of the first lead wire 146 is connected to the data logger 102.

同様に、各接合点140に接合された第2熱電対線144の長さ(各接合点140から第2結合点152までの長さ)は全て同一であり、第2結合点152で全ての第2熱電対線144が第2リード線148に結合される。第2リード線148の一端は、各接合点140に接合された第2熱電対線144が纏めて接合されており、第2リード線148の他端は、データロガー102に接続されている。   Similarly, the lengths (the lengths from each junction 140 to the second junction 152) of the second thermocouple wire 144 joined to each junction 140 are all the same, and all the A second thermocouple wire 144 is coupled to the second lead 148. One end of the second lead wire 148 is collectively joined to the second thermocouple wire 144 joined to each junction point 140, and the other end of the second lead wire 148 is connected to the data logger 102.

このように、各接合点140に接合された第1熱電対線142および第2熱電対線144の長さを同一にすることで、第1熱電対線142および第2熱電対線144それぞれの抵抗を同一にできる。これにより、下流熱電対104では、各接合点140での平均温度、つまり、ハウジング29から排出される空気の平均温度(以下、下流平均温度ともいう)を計測することができる。なお、下流熱電対104は、ハウジング29から排出される空気の平均温度を計測することが可能であれば、1つの熱電対(接合点)だけ設けられていてもよい。   Thus, by making the lengths of the first thermocouple wire 142 and the second thermocouple wire 144 joined to the respective junctions 140 identical, the respective ones of the first thermocouple wire 142 and the second thermocouple wire 144 can be obtained. The resistance can be made the same. As a result, the downstream thermocouple 104 can measure the average temperature at each junction 140, that is, the average temperature of the air discharged from the housing 29 (hereinafter, also referred to as the downstream average temperature). In addition, as long as the downstream thermocouple 104 can measure the average temperature of the air discharged from the housing 29, only one thermocouple (junction point) may be provided.

風速センサ105は、ハウジング29の空気出口29bに配置され、ハウジング29から排出される空気の風速を計測する。   The wind speed sensor 105 is disposed at the air outlet 29 b of the housing 29 and measures the wind speed of the air discharged from the housing 29.

ここで、グリッド160は、室外機熱交換器23を、風向に直交する平面上で9つに区画したものである。室外機熱交換器23の上流側側面は、ハウジング29の空気入口29aに臨んで配置されているが、室外機10が配置される位置によっては、室外機熱交換器23の場所ごとに送り込まれる空気の温度(上流温度)が変化する。また、ハウジング29内における室外機ファン26の位置、空気出口29bの位置との関係によって、室外機熱交換器23の場所ごとで風速が異なる。そこで、グリッド160は、上流温度が同一であり、かつ、風速が同一とみなせる範囲(例えば、1辺が30cmの四角形)を同一のグリッドとなるように区画しており、本実施形態においては9つに区画しているが、その区画数は任意に設定することができる。   Here, the grid 160 divides the outdoor unit heat exchanger 23 into nine parts on a plane perpendicular to the wind direction. The upstream side surface of the outdoor unit heat exchanger 23 is disposed to face the air inlet 29 a of the housing 29. However, depending on the position where the outdoor unit 10 is disposed, the outdoor unit heat exchanger 23 is fed at each location. The temperature of the air (upstream temperature) changes. In addition, the wind speed differs depending on the location of the outdoor unit heat exchanger 23 depending on the relationship between the position of the outdoor unit fan 26 and the position of the air outlet 29 b in the housing 29. Therefore, the grid 160 divides the range where the upstream temperature is the same and the wind speed can be considered the same (for example, a square having a side of 30 cm) to be the same grid, and in the present embodiment, 9 The number of compartments can be set arbitrarily.

そして、本実施形態においては、空気出口29bに近い上方の3つのグリッド160a〜160cと、中央の3つのグリッド160d〜160fと、空気出口29bから遠い3つのグリッド160g〜160iとの風速比が3:2:1であるとし、風速比に応じた数の接合点120が各グリッド160に配置されている。具体的には、図2(b)に示すように、風速比が3であるグリッド160a〜160cには3つの接合点120が配置され、風速比が2であるグリッド160d〜160fには2つの接合点120が配置され、風速比が1であるグリッド160g〜160iには1つの接合点120が配置されている。   And in this embodiment, the wind speed ratio of three grids 160a-160c of upper near the air outlet 29b, three grids 160d-160f of the center, and three grids 160g-160i far from the air outlet 29b is 3 2: 1, and a number of junctions 120 corresponding to the wind speed ratio are arranged on each grid 160. Specifically, as shown in FIG. 2B, three junctions 120 are disposed in the grids 160a to 160c having the wind speed ratio of 3, and two grid points 160d to 160f having the wind speed ratio of 2 are provided. The junctions 120 are disposed, and one junction 120 is disposed in the grids 160g to 160i in which the wind speed ratio is one.

図1に戻り、性能評価装置100は、冷房運転時の性能評価を常時(リアルタイムで)行うことができる。具体的には、熱交換器放熱量導出部110は、上流熱電対103で計測された上流平均温度と、下流熱電対104で計測された下流平均温度との温度差を、グリッド160毎の風速比に基づいて重み付けした重み付け平均温度差Tを(1)式により導出する。

Figure 0006514607
ここで、Tは重み付け平均温度差(K・m)であり、aは各グリッド160での上流側の風速と、ハウジング29の空気出口29bでの風速との風速比であり、Sは各グリッド160の面積(m)であり、tin,aveは上流平均温度(K)であり、tout,aveは下流平均温度(K)であり、nはグリッド数である。なお、各グリッド160の風速比aは、各グリッド160の上流側に風速センサを配置して、予め計測することにより導出することができる。また、各グリッド160の風速比aは、一度導出すれば、風速によらずほぼ変化しないことが過去の測定実績(非特許文献1)により確認されている。 Returning to FIG. 1, the performance evaluation apparatus 100 can always perform performance evaluation during cooling operation (in real time). Specifically, the heat exchanger heat release amount deriving unit 110 sets the temperature difference between the upstream average temperature measured by the upstream thermocouple 103 and the downstream average temperature measured by the downstream thermocouple 104 to the wind speed of each grid 160. The weighted average temperature difference T weighted based on the ratio is derived by equation (1).
Figure 0006514607
Here, T is the weighted average temperature difference (K · m 2), a n is the velocity of the upstream side of each grid 160, a wind speed ratio of the wind speed at the air outlet 29b of the housing 29, S n Is the area (m 2 ) of each grid 160, t in, ave is the upstream average temperature (K), t out, ave is the downstream average temperature (K), and n is the number of grids. Incidentally, the wind speed ratio a n of each grid 160 may place the wind velocity sensor on the upstream side of each grid 160, it can be derived by pre-measurement. Further, the wind speed ratio a n of each grid 160 Once derived, it does not substantially change regardless of the wind speed is confirmed by the past measurement results (Non-Patent Document 1).

また、熱交換器放熱量導出部110は、導出した重み付け平均温度差Tを用いて(2)式により室外機総熱交換量Qを導出する。

Figure 0006514607
ここで、Qは室外機総熱交換量(W)であり、ρは空気密度(kg/m)であり、Cは定圧比熱(kJ/(kg/K))である。 Further, the heat exchanger heat release amount deriving unit 110 derives the outdoor unit total heat exchange amount Q by the equation (2) using the derived weighted average temperature difference T.
Figure 0006514607
Here, Q is the outdoor unit total heat exchange amount (W), ρ is the air density (kg / m 3 ), and C p is constant pressure specific heat (kJ / (kg / K)).

このように、風速比によりグリッド160毎に温度差を重み付けした重み付け平均温度差Tを導出することにより、風速比に比例して放熱量が増加するグリッド160毎の放熱量を、グリッド160毎の下流の温度を計測して個別に導出しなくてもよく、グリッド160毎の放熱量を積算した室外機総熱交換量Qを容易に導出することができる。   Thus, by deriving the weighted average temperature difference T obtained by weighting the temperature difference for each grid 160 according to the wind speed ratio, the heat release amount for each grid 160 in which the heat release amount increases in proportion to the wind speed ratio The downstream temperature does not have to be measured and derived individually, and the outdoor unit total heat exchange amount Q obtained by integrating the heat release amount for each grid 160 can be easily derived.

室外機製造熱量導出部112は、室外機製造熱量を(3)式により導出する。

Figure 0006514607
ここで、Eは室外機製造熱量(W)であり、ECDは室外機熱交換器23の放熱量(W)であり、EIGはガス消費量(W)であり、Eはラジエーター25の放熱量(W)であり、Eは排ガス熱量(W)である。なお、上記の室外機総熱交換量Qは、室外機熱交換器23の放熱量ECDとラジエーター25の放熱量Eとの合計量である。また、ガス消費量EIGは、ガスエンジン21で消費されたガス量から導出することができ、排ガス熱量Eは、排気ガス熱交換器24から排出される排気ガスの熱量から導出することができる。 The outdoor unit production heat quantity deriving unit 112 derives the outdoor unit production heat quantity by equation (3).
Figure 0006514607
Here, E P is the heat produced by the outdoor unit (W), E CD is the heat release amount (W) of the outdoor unit heat exchanger 23, E IG is the gas consumption (W), and E R is a radiator a heat radiation amount of 25 (W), E X is exhaust heat (W). Note that the outdoor unit total heat exchange rate Q of the above, the total amount of the heat radiation amount E R of the heat radiation amount E CD and radiator 25 of the outdoor unit heat exchanger 23. The gas consumption E IG may be derived from the amount of gas consumed by the gas engine 21, the exhaust gas heat E X is be derived from heat of the exhaust gas discharged from the exhaust gas heat exchanger 24 it can.

(3)式によれば、ガス消費量EIGからラジエーター25の放熱量Eと排ガス熱量Eとを減算することでコンプレッサ22の動力が導出され、室外機熱交換器23の放熱量ECDからコンプレッサ22の動力を減算することで、室外機10で製造される室外機製造熱量E、つまり、室内機熱交換器31から出力される冷房熱量が導出される。 According to (3), the power of the compressor 22 is derived by subtracting the heat radiation amount E R and the exhaust gas heat E X radiator 25 from gas consumption E IG, heat radiation amount of the outdoor unit heat exchanger 23 E CD from the by subtracting the power of the compressor 22, the outdoor unit producing heat E P produced by the outdoor unit 10, i.e., cooling heat that is output from the indoor unit heat exchanger 31 is derived.

そして、COP導出部114は、導出した室外機製造熱量Eを用いて(4)式によりCOPを導出する。

Figure 0006514607
ここで、EIEは、電力消費量(W)であり、本実施形態においては室外機モータ27および室内機モータ33の電力消費量が主である。 Then, COP derivation unit 114 derives the COP by and (4) using the derived outdoor unit produced heat E P.
Figure 0006514607
Here, E IE is the power consumption (W), and in the present embodiment, the power consumption of the outdoor unit motor 27 and the indoor unit motor 33 is the main.

以上のように、性能評価装置100は、室外機熱交換器23の上流側のグリッド160毎に上流熱電対103の接合点120を配置し、ハウジング29の空気出口29bに下流熱電対104を配置した。そして、上流熱電対103により計測された上流平均温度と、下流熱電対104により計測された下流平均温度との温度差を、予め導出されたグリッド160毎の風速比に基づいて重み付けし、重み付けした重み付け平均温度差T、および、風速センサ105により計測された風速に基づいて、室外機総熱交換量Qを導出する。これにより、室外機熱交換器23の各グリッド160の下流に熱電対を配置する必要がなく、計測装置の設置が容易となり、従来よりも容易に性能評価を行うことができる。   As described above, the performance evaluation apparatus 100 arranges the junction 120 of the upstream thermocouple 103 for each grid 160 on the upstream side of the outdoor unit heat exchanger 23, and arranges the downstream thermocouple 104 at the air outlet 29b of the housing 29. did. Then, the temperature difference between the upstream average temperature measured by the upstream thermocouple 103 and the downstream average temperature measured by the downstream thermocouple 104 is weighted based on the wind speed ratio for each grid 160 derived in advance and weighted. Based on the weighted average temperature difference T and the wind speed measured by the wind speed sensor 105, the outdoor unit total heat exchange amount Q is derived. As a result, it is not necessary to arrange a thermocouple downstream of each grid 160 of the outdoor unit heat exchanger 23, the installation of the measuring device becomes easy, and performance evaluation can be performed more easily than in the past.

特に、従来技術では、室外機熱交換器23の下流側にグリッド160毎に熱電対を配置する場合には、室外機熱交換器23のフィンのピッチよりも小さい径の特注のシース熱電対を用意する必要があり、かつ、シース熱電対を室外機熱交換器23の下流側に配置する高度な設置技術が必要となる。一方、性能評価装置100では、このような必要が無いため、低コストで性能評価を行うことができるとともに、設置作業を簡略化することができる。   In particular, in the prior art, when arranging a thermocouple for each grid 160 downstream of the outdoor unit heat exchanger 23, a custom sheathed thermocouple with a diameter smaller than the pitch of the fins of the outdoor unit heat exchanger 23 is used. It is necessary to prepare, and a highly advanced installation technique for arranging a sheath thermocouple downstream of the outdoor unit heat exchanger 23 is required. On the other hand, in the performance evaluation apparatus 100, since there is no such need, performance evaluation can be performed at low cost, and installation work can be simplified.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such embodiments. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the appended claims, and of course these also fall within the technical scope of the present invention. It is understood.

例えば、上記実施形態においては、GHP10の性能評価を行うようにしたが、これに限らず、EHP(電気モータヒートポンプエアコン)の性能評価を行うようにしてもよい。なお、EHPの性能評価を行う場合には、(3)式、(4)式に代えて(5)式および(6)式を用いることになる。

Figure 0006514607
Figure 0006514607
ここで、EはEHPのコンプレッサの消費電力(W)である。 For example, in the above-described embodiment, the performance evaluation of the GHP 10 is performed, but not limited to this, the performance evaluation of an EHP (electric motor heat pump air conditioner) may be performed. When evaluating the performance of EHP, the equations (5) and (6) are used instead of the equations (3) and (4).
Figure 0006514607
Figure 0006514607
Here, E T is the power consumption of the compressor EHP (W).

また、上記実施形態においては、温度センサ(上流温度センサ、下流温度センサ)として熱電対(上流熱電対103、下流熱電対104)を適応するようにしたが、これに限らず、熱電対以外の温度センサ、例えばサーミスタ等を適応してもよい。   Further, in the above embodiment, thermocouples (upstream thermocouple 103, downstream thermocouple 104) are adapted as temperature sensors (upstream temperature sensor, downstream temperature sensor), but the invention is not limited thereto. A temperature sensor, such as a thermistor or the like may be adapted.

また、上記実施形態においては、グリッド160毎に上流熱電対103の接合点120を配置するようにしたが、室外機熱交換器23の上流側に温度分布がなければ、グリッド分割せずに1つの接合点120のみを配置するようにしてもよい。   In the above embodiment, the junction point 120 of the upstream thermocouple 103 is disposed for each grid 160. However, if there is no temperature distribution on the upstream side of the outdoor unit heat exchanger 23, the grid division is not performed 1 Only one junction point 120 may be arranged.

また、上記実施形態においては、(1)式および(2)式により、室外機熱交換器23の放熱量ECDとラジエーター25の放熱量Eとの合計量として室外機総熱交換量Qを導出するようにしたが、これに限らず、ラジエーター25の放熱量Eを別に導出することができれば、(1)式および(2)式により、室外機熱交換器23の放熱量ECDとして室外機総熱交換量Qを導出するようにしてもよい。 In the above embodiment, (1) and (2) by equation outdoor unit total heat exchange rate as the total amount of the heat radiation amount E R of the heat radiation amount E CD and radiator 25 of the outdoor unit heat exchanger 23 Q Although so as to derive, not limited to this, if it is possible to derive separate heat radiation amount E R radiator 25, (1) and (2), the heat radiation amount of the outdoor unit heat exchanger 23 E CD Alternatively, the outdoor unit total heat exchange amount Q may be derived.

本発明は、室内を空調する空気調和装置の性能評価を行う放熱量導出装置に利用することができる。
The present invention can be used for a heat release amount deriving device that performs performance evaluation of an air conditioner that air-conditions the room.

10 GHP(空気調和装置)
23 室外機熱交換器(熱交換器)
100 性能評価装置
103 上流熱電対(上流温度センサ)
104 下流熱電対(下流温度センサ)
105 風速センサ
110 熱交換器放熱量導出部
10 GHP (air conditioner)
23 outdoor unit heat exchanger (heat exchanger)
100 Performance evaluation device 103 upstream thermocouple (upstream temperature sensor)
104 downstream thermocouple (downstream temperature sensor)
105 Wind speed sensor 110 Heat exchanger heat release amount derivation part

Claims (2)

空気調和装置の室外機に設けられた熱交換器の上流側において複数に区画したグリッド毎に計測点が配置され、前記計測点で計測される上流温度が平均された上流平均温度計測する上流温度センサと、
前記室外機から排出される空気の平均温度を下流平均温度として計測する下流温度センサと、
前記室外機から排出される空気の風速を計測する風速センサと、
予め計測された前記グリッドの前記上流側の風速と前記風速センサにより計測される風速との風速比に基づいて、前記上流温度センサにより計測された前記上流平均温度と、前記下流温度センサにより計測された前記下流平均温度との温度差をグリッド毎に重み付けし、重み付けした温度差、および、前記風速センサにより計測された風速に基づいて、前記熱交換器の放熱量を導出する熱交換器放熱量導出部と、
を備えることを特徴とする放熱量導出装置。
Is arranged measurement points in each grid is divided into Oite plurality on the upstream side of the heat exchanger provided in an outdoor unit of an air conditioning apparatus, measuring the upstream average temperature of the upstream temperature were averaged measured by said measurement point Upstream temperature sensor,
A downstream temperature sensor that measures an average temperature of air discharged from the outdoor unit as a downstream average temperature;
A wind speed sensor that measures the wind speed of air discharged from the outdoor unit;
And wind speed previously measured the upstream side of each of the grid, based on the wind speed ratio of the wind speed measured by the wind velocity sensor, wherein the upstream average temperature measured by the upstream temperature sensor, by the downstream temperature sensor A heat exchanger that weights the temperature difference with the measured downstream average temperature for each grid and derives the heat release amount of the heat exchanger based on the weighted temperature difference and the wind speed measured by the wind speed sensor A heat release amount deriving unit,
A heat release amount deriving device comprising:
前記上流温度センサは、異なる金属でなる1対の熱電対線が接合点で接合される熱電対であり、前記熱交換器の前記グリッド毎に前記接合点が配置されるとともに、前記複数の接合点にそれぞれ接合された少なくとも同一金属でなる前記熱電対線の長さが相互に同一であり、
各熱電対線は、一端が前記接合点のいずれかに接合され、他端が他の同一金属でなる熱電対線の他端と結合されていることを特徴とする請求項に記載の放熱量導出装置。
The upstream temperature sensor is a thermocouple in which a pair of thermocouple wires made of different metals are joined at a junction point, the junction point is disposed for each grid of the heat exchanger, and the plurality of junctions The lengths of the thermocouple wires of at least the same metal joined to each other are identical to one another,
The discharge according to claim 1 , wherein each thermocouple wire has one end joined to one of the junctions and the other end coupled to the other end of the other same metal thermocouple wire. Heat output device.
JP2015165893A 2015-08-25 2015-08-25 Heat dissipation amount derivation device Expired - Fee Related JP6514607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165893A JP6514607B2 (en) 2015-08-25 2015-08-25 Heat dissipation amount derivation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165893A JP6514607B2 (en) 2015-08-25 2015-08-25 Heat dissipation amount derivation device

Publications (2)

Publication Number Publication Date
JP2017044388A JP2017044388A (en) 2017-03-02
JP6514607B2 true JP6514607B2 (en) 2019-05-15

Family

ID=58211597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165893A Expired - Fee Related JP6514607B2 (en) 2015-08-25 2015-08-25 Heat dissipation amount derivation device

Country Status (1)

Country Link
JP (1) JP6514607B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259832A (en) * 1991-02-15 1992-09-16 Chino Corp Temperature measuring apparatus for heat exchanger
JP2000055743A (en) * 1998-08-06 2000-02-25 Anritsu Keiki Kk Multi-point mean temp. measuring apparatus
JP2002005547A (en) * 2000-06-19 2002-01-09 Kubota Corp Apparatus for heat-source evaluation
JP2007309628A (en) * 2006-05-18 2007-11-29 Riitekku:Kk Thermal output measuring device and its measuring method for hot air generator, and air conditioner

Also Published As

Publication number Publication date
JP2017044388A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Lu et al. Experimental study of crosswind effects on the performance of small cylindrical natural draft dry cooling towers
Luo et al. Modeling of the surface temperature field of a thermoelectric radiant ceiling panel system
Li et al. Experimental and numerical study of an integrated fin and micro-channel gas cooler for a CO2 automotive air-conditioning
JP2011247564A (en) Air conditioning system and its control method
Moria et al. Exergoeconomic analysis of a Peltier effect air cooler using experimental data
Mohammadnia et al. Fan operating condition effect on performance of self-cooling thermoelectric generator system
Petrik et al. CFD analysis and heat transfer characteristics of finned tube heat exchangers
JP2011214738A (en) Method of managing energy consumption efficiency in duct circulation type air conditioning system
Datta et al. Obstructed airflow through the condenser of an automotive air conditioner–Effects on the condenser and the overall performance of the system
Vakiloroaya et al. Investigation of energy-efficient strategy for direct expansion air-cooled air conditioning systems
JP6514607B2 (en) Heat dissipation amount derivation device
Chang et al. Modeling and performance simulation of a gas cooler for a CO2 heat pump system
Paeng et al. Experimental measurement and numerical computation of the air side convective heat transfer coefficients in a plate fin-tube heat exchanger
JP6523798B2 (en) Heat source equipment and heat source equipment control method
Astrain et al. Study and optimization of the heat dissipater of a thermoelectric refrigerator
KR101955812B1 (en) Capacity performance curves creation method of water-cooled vrf heat pump
JP4897850B2 (en) Cooling tower performance evaluation system for air conditioning
T'joen et al. Performance prediction of compact fin-and-tube heat exchangers in maldistributed airflow
Mago et al. Modeling the cooling process path of a dehumidifying coil under frosting conditions
Kowalczyk et al. Investigations of thermal-flow characteristics of minichannel evaporator of air heat pump
Kumar et al. Effect of fin geometry for various tubes shape using CFD simulation on multi-channel heat exchanger in mobile air conditioning (MAC)
Balen et al. Analysis of the coil energy recovery loop system
Chen et al. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery
Martinez et al. Development of a Smart Modular Heat Recovery Unit adaptable into a ventilated façade
Bury et al. Evaluation of selected methods of mitigation of media flow maldistribution impact in finned cross-flow heat exchangers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6514607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees