JP2017044388A - Performance evaluation device - Google Patents

Performance evaluation device Download PDF

Info

Publication number
JP2017044388A
JP2017044388A JP2015165893A JP2015165893A JP2017044388A JP 2017044388 A JP2017044388 A JP 2017044388A JP 2015165893 A JP2015165893 A JP 2015165893A JP 2015165893 A JP2015165893 A JP 2015165893A JP 2017044388 A JP2017044388 A JP 2017044388A
Authority
JP
Japan
Prior art keywords
heat exchanger
upstream
wind speed
thermocouple
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015165893A
Other languages
Japanese (ja)
Other versions
JP6514607B2 (en
Inventor
研 安田
Ken Yasuda
研 安田
優磨 古橋
Yuma Furuhashi
優磨 古橋
達夫 野部
Tatsuo Nobe
達夫 野部
真成 鵜飼
Masanari Ukai
真成 鵜飼
光秀 安田
Mitsuhide Yasuda
光秀 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Kogakuin University
Original Assignee
Tokyo Gas Co Ltd
Kogakuin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Kogakuin University filed Critical Tokyo Gas Co Ltd
Priority to JP2015165893A priority Critical patent/JP6514607B2/en
Publication of JP2017044388A publication Critical patent/JP2017044388A/en
Application granted granted Critical
Publication of JP6514607B2 publication Critical patent/JP6514607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform performance evaluation more easily as compared with that of the prior art.SOLUTION: A performance evaluation device 100 comprises upstream side thermocouples 103 arranged at an upstream side of an outdoor heat exchanger 23 to measure a temperature of air blown to the outdoor heat exchanger 23 as an upstream average temperature; a downstream side thermocouple 104 to measure a temperature of air discharged out of an outdoor device 20; an air velocity sensor 105 for measuring an air velocity of air discharged out of the outdoor device 20; and a heat exchanger radiation amount calculating part 110 for weighting a temperature difference between an upstream average temperature and a downstream average temperature for every grid on the basis of an air velocity ratio for every grid, and calculating radiation amount of the outdoor heat exchanger 23 on the basis of wind speed measured by the air velocity sensor 105.SELECTED DRAWING: Figure 1

Description

本発明は、室内を空調する空気調和装置の性能評価を行う性能評価装置に関する。   The present invention relates to a performance evaluation apparatus that performs performance evaluation of an air conditioner that air-conditions a room.

従来の空気調和装置の性能評価を行う性能評価装置は、室外機の熱交換器(凝縮器)を複数に区画したグリッド毎に、上流側に上流温度センサを配置し、下流側に下流温度センサを配置するとともに、風速センサを配置していた。   A conventional performance evaluation apparatus for evaluating the performance of an air conditioner has an upstream temperature sensor arranged on the upstream side and a downstream temperature sensor on the downstream side for each grid in which a plurality of outdoor unit heat exchangers (condensers) are partitioned. And a wind speed sensor.

そして、上流温度センサにより計測された上流温度と、下流温度センサにより計測された下流温度と、風速センサにより計測された風速とに基づいて、グリッド毎の放熱量を導出し、これらグリッド毎の放熱量を積算して熱交換器の放熱量を導出するようになされていた(例えば、非特許文献1)。   Then, based on the upstream temperature measured by the upstream temperature sensor, the downstream temperature measured by the downstream temperature sensor, and the wind speed measured by the wind speed sensor, the heat release amount for each grid is derived, and the release of each grid is released. The amount of heat is integrated to derive the amount of heat released from the heat exchanger (for example, Non-Patent Document 1).

野部達夫、芳賀裕輔、中村北斗、田中光太郎、木口雅之、プローブ挿入法によるマルチパッケージ型空調機の運用時性能評価手法、日本建築学会環境系論文集、第76巻 第668号、927−933、2011年10月Tatsuo Nobe, Yusuke Haga, Hokuto Nakamura, Kotaro Tanaka, Masayuki Kiguchi, Performance Evaluation Method for Multi-Package Air Conditioner by Probe Insertion Method, Architectural Institute of Japan Environmental Studies, Vol.76, No.668, 927-933 October 2011

上述した性能評価装置では、下流温度センサとしてシース熱電対を用い、熱交換器の上流側から、熱交換器のフィン間の隙間を通すようにして下流側に先端部(結合点)を配置するようにしていた。しかしながら、熱交換器のフィン間のピッチは高性能化に伴い狭くなってきており、それに伴いシース熱電対の径も小さくする必要があり、既成品のシース熱電対を用いることが困難となっていた。また、径の小さいシース熱電対をフィン間の隙間に通す設置作業も困難であった。   In the above-described performance evaluation apparatus, a sheath thermocouple is used as the downstream temperature sensor, and the tip portion (joining point) is arranged on the downstream side from the upstream side of the heat exchanger so as to pass through the gaps between the fins of the heat exchanger. It was like that. However, the pitch between the fins of the heat exchanger is becoming narrower with higher performance, and the diameter of the sheathed thermocouple needs to be reduced accordingly, making it difficult to use a ready-made sheathed thermocouple. It was. In addition, it is difficult to install the sheath thermocouple having a small diameter through the gap between the fins.

本発明は、このような課題に鑑み、従来と比して容易に性能評価を行うことが可能な性能評価装置を提供することを目的としている。   The present invention has been made in view of such problems, and an object thereof is to provide a performance evaluation apparatus capable of performing performance evaluation more easily than in the past.

上記課題を解決するために、本発明の性能評価装置は、空気調和装置の室外機に設けられた熱交換器の上流側に配置され、該熱交換器に送風される空気の平均温度を上流平均温度として計測する上流温度センサと、前記室外機から排出される空気の平均温度を下流平均温度として計測する下流温度センサと、前記室外機から排出される空気の風速を計測する風速センサと、前記熱交換器を複数に区画したグリッド毎における、該グリッドの前記上流側の風速と前記風速センサにより計測される風速との風速比に基づいて、前記上流温度センサにより計測された前記上流平均温度と、前記下流温度センサにより計測された前記下流平均温度との温度差をグリッド毎に重み付けし、重み付けした温度差、および、前記風速センサにより計測された風速に基づいて、前記熱交換器の放熱量を導出する熱交換器放熱量導出部と、を備える。   In order to solve the above-mentioned problems, the performance evaluation device of the present invention is arranged on the upstream side of a heat exchanger provided in an outdoor unit of an air conditioner, and the average temperature of air blown to the heat exchanger is increased upstream. An upstream temperature sensor that measures the average temperature, a downstream temperature sensor that measures the average temperature of the air discharged from the outdoor unit as a downstream average temperature, a wind speed sensor that measures the wind speed of the air discharged from the outdoor unit, The upstream average temperature measured by the upstream temperature sensor based on the wind speed ratio between the wind speed on the upstream side of the grid and the wind speed measured by the wind speed sensor in each grid that divides the heat exchanger into a plurality of grids. And the temperature difference with the downstream average temperature measured by the downstream temperature sensor is weighted for each grid, the weighted temperature difference, and the wind speed sensor Based on the speed, and a heat exchanger heat radiation amount deriving unit that derives the heat radiation amount of the heat exchanger.

また、前記上流温度センサは、前記熱交換器における前記グリッド毎に配置され、前記上流平均温度は、前記上流温度センサにより計測されたグリッド毎の上流温度が平均された値であるとよい。   Moreover, the said upstream temperature sensor is arrange | positioned for every said grid in the said heat exchanger, The said upstream average temperature is good in the upstream average temperature for every grid measured by the said upstream temperature sensor being a value averaged.

また、前記上流温度センサは、異なる金属でなる1対のリード線が接合点で接合される熱電対であり、前記熱交換器における前記グリッド毎に前記接合点が配置されるとともに、前記複数の接合点にそれぞれ接合された少なくとも同一金属でなる前記リード線の長さが相互に同一であり、各リード線は、一端が前記接合点のいずれかに接合され、他端が他の同一金属でなるリード線の他端と結合されているとよい。   In addition, the upstream temperature sensor is a thermocouple in which a pair of lead wires made of different metals are joined at joint points, and the joint points are arranged for each grid in the heat exchanger, The lengths of the lead wires made of at least the same metal respectively joined to the joint points are the same, and each lead wire has one end joined to one of the joint points and the other end made of another same metal. The other end of the lead wire is preferably coupled.

本発明によれば、従来と比して容易に性能評価を行うことが可能な性能評価装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the performance evaluation apparatus which can perform a performance evaluation easily compared with the past.

実施形態にかかる性能評価システムの構成を説明するための図である。It is a figure for demonstrating the structure of the performance evaluation system concerning embodiment. (a)は、上流熱電対、下流熱電対および風速センサの配置を示す図である。(b)は、上流熱電対の接合点の配置を示す図である。(A) is a figure which shows arrangement | positioning of an upstream thermocouple, a downstream thermocouple, and a wind speed sensor. (B) is a figure which shows arrangement | positioning of the junction of an upstream thermocouple.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(性能評価システム1)
図1は、本実施形態にかかる性能評価システム1の構成を説明するための図である。図1に示すように、性能評価システム1は、ビルや学校等の施設に設置され、施設内の空気を冷暖房するGHP(ガスヒートポンプエアコン)10の性能を評価する性能評価装置100によって構成される。なお、GHP10は冷暖房を行うことが可能であるが、本発明の性能評価システム1は冷房運転時のGHP10の性能評価を行うものであるため、GHP10については冷房運転している場合について説明し、暖房運転している場合の説明は省略する。また、図1中、冷房運転時の冷媒の流れを実線の矢印で示す。
(Performance evaluation system 1)
FIG. 1 is a diagram for explaining a configuration of a performance evaluation system 1 according to the present embodiment. As shown in FIG. 1, the performance evaluation system 1 is installed in a facility such as a building or a school, and includes a performance evaluation device 100 that evaluates the performance of a GHP (gas heat pump air conditioner) 10 that cools and heats the air in the facility. . Although the GHP 10 can perform cooling and heating, the performance evaluation system 1 of the present invention performs performance evaluation of the GHP 10 during cooling operation. A description of the heating operation is omitted. Further, in FIG. 1, the flow of the refrigerant during the cooling operation is indicated by a solid line arrow.

GHP10は、施設の屋上等に設置される室外機20、および、施設の内部に設置される室内機30により構成される。室外機20は、ガスエンジン21、コンプレッサ22、室外機熱交換器23、排気ガス熱交換器24、ラジエーター25、室外機ファン26、室外機モータ27、GHP制御部28およびハウジング29を含んで構成される。GHP10では、ガスエンジン21、コンプレッサ22、室外機熱交換器23、排気ガス熱交換器24、ラジエーター25、室外機ファン26、室外機モータ27およびGHP制御部28がハウジング29内に収容されている。   The GHP 10 includes an outdoor unit 20 installed on the rooftop of a facility, and an indoor unit 30 installed inside the facility. The outdoor unit 20 includes a gas engine 21, a compressor 22, an outdoor unit heat exchanger 23, an exhaust gas heat exchanger 24, a radiator 25, an outdoor unit fan 26, an outdoor unit motor 27, a GHP control unit 28, and a housing 29. Is done. In the GHP 10, a gas engine 21, a compressor 22, an outdoor unit heat exchanger 23, an exhaust gas heat exchanger 24, a radiator 25, an outdoor unit fan 26, an outdoor unit motor 27, and a GHP control unit 28 are accommodated in a housing 29. .

室内機30は、室内の空気と冷媒とで熱交換を行う室内機熱交換器31、室内機熱交換器31に室内の空気を送り熱交換を促進させる室内機ファン32、および、室内機ファン32を回転駆動させる室内機モータ33を含んで構成される。   The indoor unit 30 includes an indoor unit heat exchanger 31 that exchanges heat between indoor air and a refrigerant, an indoor unit fan 32 that sends indoor air to the indoor unit heat exchanger 31 to promote heat exchange, and an indoor unit fan An indoor unit motor 33 that rotationally drives 32 is included.

また、GHP10は、室外機20および室内機30の間で冷媒を循環させる冷媒管41、冷媒の循環方向を切り替える四方弁42、および、冷媒を膨張させる膨張弁43を含む冷媒循環系と、室外機20内で冷却水を循環させる冷却水管51を含む冷却水循環系とが設けられている。   The GHP 10 includes a refrigerant circulation system including a refrigerant pipe 41 that circulates a refrigerant between the outdoor unit 20 and the indoor unit 30, a four-way valve 42 that switches a circulation direction of the refrigerant, and an expansion valve 43 that expands the refrigerant, A cooling water circulation system including a cooling water pipe 51 for circulating cooling water in the machine 20 is provided.

冷房運転時の冷媒循環系では、コンプレッサ22の出口と室外機熱交換器23とが、四方弁42を介して冷媒管41によって接続される。また、室外機熱交換器23と室内機熱交換器31とが、膨張弁43を介して冷媒管41によって接続される。また、室内機熱交換器31とコンプレッサ22の入口とが、四方弁42を介して冷媒管41によって接続される。   In the refrigerant circulation system during the cooling operation, the outlet of the compressor 22 and the outdoor unit heat exchanger 23 are connected by a refrigerant pipe 41 via a four-way valve 42. Further, the outdoor unit heat exchanger 23 and the indoor unit heat exchanger 31 are connected by a refrigerant pipe 41 via an expansion valve 43. The indoor unit heat exchanger 31 and the inlet of the compressor 22 are connected by a refrigerant pipe 41 via a four-way valve 42.

また、冷房運転時の冷却水循環系では、ガスエンジン21と、排気ガス熱交換器24と、ラジエーター25とが、冷却水管51によって接続される。   In the cooling water circulation system during the cooling operation, the gas engine 21, the exhaust gas heat exchanger 24, and the radiator 25 are connected by a cooling water pipe 51.

ガスエンジン21は、燃料ガス(都市ガス等)を燃焼させて回転動力を生成し、生成した回転動力によりコンプレッサ22を回転させる。コンプレッサ22は、ガスエンジン21の回転動力により回転駆動し、冷媒管41を流れる冷媒を圧縮して室外機熱交換器23に送出する。室外機熱交換器23は、ハウジング29に設けられた空気入口29aに沿って配置され、外部から室外機ファン26によりハウジング29内に送風された空気と、室外機熱交換器23に流入した冷媒とで熱交換させ、冷媒を冷却する。室外機熱交換器23を通過した冷媒は、冷媒管41を介して膨張弁43に流入し、膨張弁43で膨張された後、冷媒管41を介して室内機30の室内機熱交換器31に流入する。   The gas engine 21 burns fuel gas (city gas or the like) to generate rotational power, and the compressor 22 is rotated by the generated rotational power. The compressor 22 is rotationally driven by the rotational power of the gas engine 21, compresses the refrigerant flowing through the refrigerant pipe 41, and sends it to the outdoor unit heat exchanger 23. The outdoor unit heat exchanger 23 is disposed along an air inlet 29 a provided in the housing 29, and air blown into the housing 29 from the outside by the outdoor unit fan 26 and refrigerant flowing into the outdoor unit heat exchanger 23. To exchange heat and cool the refrigerant. The refrigerant that has passed through the outdoor unit heat exchanger 23 flows into the expansion valve 43 through the refrigerant pipe 41, is expanded by the expansion valve 43, and then passes through the refrigerant pipe 41 to the indoor unit heat exchanger 31 of the indoor unit 30. Flow into.

室内機熱交換器31に流入した冷媒は、室内機ファン32により室内機30内に送風された空気と熱交換を行うことで加熱された後、冷媒管41によって四方弁42を介して室外機20のコンプレッサ22に流入する。このようにして、GHP10では、冷媒管41内を冷媒が循環し、室内機熱交換器31により室内機30が設置された室内の空気を冷却する。   The refrigerant flowing into the indoor unit heat exchanger 31 is heated by exchanging heat with the air blown into the indoor unit 30 by the indoor unit fan 32, and then the outdoor unit through the four-way valve 42 by the refrigerant pipe 41. 20 compressor 22 flows. In this way, in the GHP 10, the refrigerant circulates in the refrigerant pipe 41, and the indoor unit heat exchanger 31 cools the air in the room where the indoor unit 30 is installed.

排気ガス熱交換器24は、ガスエンジン21から排出される排気ガスを冷却して外部に排出する。ラジエーター25は、冷却水管51を循環する冷却水と、室外機ファン26によりハウジング29内に送風された空気とで熱交換させ、冷却水を冷却する。   The exhaust gas heat exchanger 24 cools the exhaust gas discharged from the gas engine 21 and discharges it to the outside. The radiator 25 exchanges heat between the cooling water circulating through the cooling water pipe 51 and the air blown into the housing 29 by the outdoor unit fan 26 to cool the cooling water.

室外機ファン26は、ハウジング29に設けられた空気出口29bの近傍に配置され、室外機モータ27により回転駆動し、空気入口29aから室外機熱交換器23およびラジエーター25を介して空気出口29bへ空気を送風することにより、室外機熱交換器23とラジエーター25とに空気を送り熱交換を促進させる。   The outdoor unit fan 26 is disposed in the vicinity of an air outlet 29b provided in the housing 29, is driven to rotate by an outdoor unit motor 27, and passes from the air inlet 29a to the air outlet 29b via the outdoor unit heat exchanger 23 and the radiator 25. By blowing air, air is sent to the outdoor unit heat exchanger 23 and the radiator 25 to promote heat exchange.

GHP制御部28は、CPU(中央処理装置)を含む半導体集積回路で構成され、GHP10全体(例えば、ガスエンジン21、室外機モータ27、室内機モータ33等)を制御する。   The GHP control unit 28 is configured by a semiconductor integrated circuit including a CPU (Central Processing Unit), and controls the entire GHP 10 (for example, the gas engine 21, the outdoor unit motor 27, the indoor unit motor 33, etc.).

室内機ファン32は、室内機モータ33により回転駆動し、室内機熱交換器31に空気を送り熱交換を促進させるとともに、室内機熱交換器31により冷却された空気を室内に送風する。   The indoor unit fan 32 is rotationally driven by the indoor unit motor 33, sends air to the indoor unit heat exchanger 31 to promote heat exchange, and blows the air cooled by the indoor unit heat exchanger 31 into the room.

性能評価装置100は、性能評価部101、データロガー102、上流熱電対103、下流熱電対104および風速センサ105を含んで構成される。性能評価部101は、CPU(中央処理装置)を含む半導体集積回路で構成され、熱交換器放熱量導出部110、室外機製造熱量導出部112、および、COP(Coefficient Of Performance)導出部114として機能する。   The performance evaluation apparatus 100 includes a performance evaluation unit 101, a data logger 102, an upstream thermocouple 103, a downstream thermocouple 104, and a wind speed sensor 105. The performance evaluation unit 101 is composed of a semiconductor integrated circuit including a CPU (Central Processing Unit), and serves as a heat exchanger heat release deriving unit 110, an outdoor unit production heat deriving unit 112, and a COP (Coefficient Of Performance) deriving unit 114. Function.

データロガー102は、性能評価部101に接続されるとともに、上流熱電対103、下流熱電対104および風速センサ105に接続されており、上流熱電対103および下流熱電対104により計測される上流平均温度および下流平均温度を収集、保存するとともに、風速センサ105により計測される風速を収集、保存する。   The data logger 102 is connected to the performance evaluation unit 101 and is connected to the upstream thermocouple 103, the downstream thermocouple 104, and the wind speed sensor 105, and the upstream average temperature measured by the upstream thermocouple 103 and the downstream thermocouple 104. In addition, the downstream average temperature is collected and stored, and the wind speed measured by the wind speed sensor 105 is collected and stored.

図2(a)は、上流熱電対103、下流熱電対104および風速センサ105の配置を示す図であり、図2(b)は、上流熱電対103の接合点120の配置を示す図である。なお、図2(a)においては、説明の便宜上、上流熱電対103の第1熱電対線122および第2熱電対線124の一部を省略している。   2A is a diagram illustrating the arrangement of the upstream thermocouple 103, the downstream thermocouple 104, and the wind speed sensor 105, and FIG. 2B is a diagram illustrating the arrangement of the junction points 120 of the upstream thermocouple 103. . In FIG. 2A, for convenience of explanation, a part of the first thermocouple wire 122 and the second thermocouple wire 124 of the upstream thermocouple 103 is omitted.

図2(a)に示すように、上流熱電対103は、互いに異なる金属でなる複数(本実施形態においては18個)の第1熱電対線122および第2熱電対線124と、第1熱電対線122と同一の金属でなる第1リード線126と、第2熱電対線124と同一の金属でなる第2リード線128とが設けられている。   As shown in FIG. 2A, the upstream thermocouple 103 includes a plurality of (18 in the present embodiment) first thermocouple wires 122 and second thermocouple wires 124 made of different metals, and a first thermocouple. A first lead wire 126 made of the same metal as the pair wire 122 and a second lead wire 128 made of the same metal as the second thermocouple wire 124 are provided.

また、第1熱電対線122および第2熱電対線124の接合点120は、室外機熱交換器23における空気入口29aに臨む側面に対して所定間隔離隔するとともに、図2(b)に示すように、室外機熱交換器23における空気入口29aに臨む側面を9等分した各グリッド160(160a〜160i)にそれぞれ配置されている。なお、グリッド160、および、各グリッド160に配置される接合点120の数については、詳しくは後述する。   Further, the junction 120 of the first thermocouple wire 122 and the second thermocouple wire 124 is spaced apart from the side face of the outdoor unit heat exchanger 23 facing the air inlet 29a by a predetermined distance, as shown in FIG. As described above, the outdoor unit heat exchanger 23 is arranged on each grid 160 (160a to 160i) obtained by dividing the side face facing the air inlet 29a into nine equal parts. The grid 160 and the number of joint points 120 arranged in each grid 160 will be described in detail later.

また、各接合点120に接合された第1熱電対線122の長さ(各接合点120から第1結合点130までの長さ)は全て同一であり、第1結合点130で全ての第1熱電対線122が第1リード線126に結合される。第1リード線126の一端は、各接合点120に接合された第1熱電対線122が纏めて接合されており、第1リード線126の他端は、データロガー102に接続される。   Further, the lengths of the first thermocouple wires 122 joined to the joint points 120 (the lengths from the joint points 120 to the first joint points 130) are all the same, and all the first thermocouple wires 122 at the first joint points 130 are the same. One thermocouple wire 122 is coupled to the first lead 126. One end of the first lead wire 126 is joined to the first thermocouple wire 122 joined to each joining point 120, and the other end of the first lead wire 126 is connected to the data logger 102.

同様に、各接合点120に接合された第2熱電対線124の長さ(接合点120から第2結合点132までの長さ)は全て同一であり、第2結合点132で全ての第2熱電対線124が第2リード線128に結合される。第2リード線128の一端は、各接合点120に接合された第2熱電対線124が纏めて接合されており、第2リード線128の他端は、データロガー102に接続されている。   Similarly, the lengths of the second thermocouple wires 124 joined to the respective joint points 120 (the length from the joint point 120 to the second joint point 132) are all the same, and all the second thermocouple wires 124 at the second joint point 132 are the same. Two thermocouple wires 124 are coupled to the second lead 128. One end of the second lead wire 128 is joined together with a second thermocouple wire 124 joined to each joint point 120, and the other end of the second lead wire 128 is connected to the data logger 102.

このように、各接合点120に接合された第1熱電対線122および第2熱電対線124の長さを同一にすることで、第1熱電対線122および第2熱電対線124それぞれの抵抗を同一にすることができる。これにより、上流熱電対103では、各接合点120での平均温度、つまり、室外機熱交換器23の上流の平均温度(以下、上流平均温度ともいう)を計測することができる。   In this way, by making the lengths of the first thermocouple wire 122 and the second thermocouple wire 124 joined to each joint point 120 the same for each of the first thermocouple wire 122 and the second thermocouple wire 124. The resistance can be the same. As a result, the upstream thermocouple 103 can measure the average temperature at each junction 120, that is, the average temperature upstream of the outdoor unit heat exchanger 23 (hereinafter also referred to as upstream average temperature).

下流熱電対104は、互いに異なる金属でなる複数(本実施形態においては4つ)の第1熱電対線142および第2熱電対線144と、第1熱電対線142と同一の金属でなる第1リード線146と、第2熱電対線144と同一の金属でなる第2リード線148とが設けられている。   The downstream thermocouple 104 includes a plurality of (four in the present embodiment) first thermocouple wires 142 and second thermocouple wires 144 made of different metals, and first thermocouple wires 142 made of the same metal. One lead wire 146 and a second lead wire 148 made of the same metal as the second thermocouple wire 144 are provided.

第1熱電対線142および第2熱電対線144の接合点140は、ハウジング29の空気出口29bに所定間隔離隔して配置されている。また、各接合点140に接合された第1熱電対線142の長さ(各接合点140から第1結合点150までの長さ)は全て同一であり、第1結合点150で全ての第1熱電対線142が第1リード線146に結合される。第1リード線146の一端は、各接合点140に接合された第1熱電対線142が纏めて結合されており、第1リード線146の他端は、データロガー102に接続されている。   The junction 140 of the first thermocouple wire 142 and the second thermocouple wire 144 is disposed at a predetermined distance from the air outlet 29 b of the housing 29. Further, the lengths of the first thermocouple wires 142 joined to the respective joint points 140 (the lengths from the respective joint points 140 to the first joint points 150) are all the same, and all the first thermocouple wires 142 are joined at the first joint points 150. One thermocouple wire 142 is coupled to the first lead 146. One end of the first lead wire 146 is coupled to the first thermocouple wire 142 joined to each joint point 140, and the other end of the first lead wire 146 is connected to the data logger 102.

同様に、各接合点140に接合された第2熱電対線144の長さ(各接合点140から第2結合点152までの長さ)は全て同一であり、第2結合点152で全ての第2熱電対線144が第2リード線148に結合される。第2リード線148の一端は、各接合点140に接合された第2熱電対線144が纏めて接合されており、第2リード線148の他端は、データロガー102に接続されている。   Similarly, the lengths of the second thermocouple wires 144 joined to the respective joint points 140 (the lengths from the respective joint points 140 to the second joint points 152) are all the same, and all of the lengths at the second joint points 152 are all. A second thermocouple wire 144 is coupled to the second lead 148. One end of the second lead wire 148 is joined together with the second thermocouple wire 144 joined to each joint point 140, and the other end of the second lead wire 148 is connected to the data logger 102.

このように、各接合点140に接合された第1熱電対線142および第2熱電対線144の長さを同一にすることで、第1熱電対線142および第2熱電対線144それぞれの抵抗を同一にできる。これにより、下流熱電対104では、各接合点140での平均温度、つまり、ハウジング29から排出される空気の平均温度(以下、下流平均温度ともいう)を計測することができる。なお、下流熱電対104は、ハウジング29から排出される空気の平均温度を計測することが可能であれば、1つの熱電対(接合点)だけ設けられていてもよい。   In this way, by making the lengths of the first thermocouple wire 142 and the second thermocouple wire 144 joined to each joint point 140 the same, the first thermocouple wire 142 and the second thermocouple wire 144 respectively The resistance can be the same. Thereby, in the downstream thermocouple 104, the average temperature at each junction 140, that is, the average temperature of the air discharged from the housing 29 (hereinafter also referred to as the downstream average temperature) can be measured. The downstream thermocouple 104 may be provided with only one thermocouple (junction point) as long as the average temperature of the air discharged from the housing 29 can be measured.

風速センサ105は、ハウジング29の空気出口29bに配置され、ハウジング29から排出される空気の風速を計測する。   The wind speed sensor 105 is disposed at the air outlet 29 b of the housing 29 and measures the wind speed of the air discharged from the housing 29.

ここで、グリッド160は、室外機熱交換器23を、風向に直交する平面上で9つに区画したものである。室外機熱交換器23の上流側側面は、ハウジング29の空気入口29aに臨んで配置されているが、室外機10が配置される位置によっては、室外機熱交換器23の場所ごとに送り込まれる空気の温度(上流温度)が変化する。また、ハウジング29内における室外機ファン26の位置、空気出口29bの位置との関係によって、室外機熱交換器23の場所ごとで風速が異なる。そこで、グリッド160は、上流温度が同一であり、かつ、風速が同一とみなせる範囲(例えば、1辺が30cmの四角形)を同一のグリッドとなるように区画しており、本実施形態においては9つに区画しているが、その区画数は任意に設定することができる。   Here, the grid 160 partitions the outdoor unit heat exchanger 23 into nine on a plane orthogonal to the wind direction. The upstream side surface of the outdoor unit heat exchanger 23 is disposed so as to face the air inlet 29a of the housing 29. However, depending on the position where the outdoor unit 10 is disposed, the outdoor unit heat exchanger 23 is fed for each location of the outdoor unit heat exchanger 23. Air temperature (upstream temperature) changes. Further, the wind speed varies depending on the location of the outdoor unit heat exchanger 23 depending on the relationship between the position of the outdoor unit fan 26 and the position of the air outlet 29 b in the housing 29. Therefore, the grid 160 is divided so that the upstream temperature is the same and the wind speed is the same (for example, a square having a side of 30 cm) so as to be the same grid. The number of sections can be arbitrarily set.

そして、本実施形態においては、空気出口29bに近い上方の3つのグリッド160a〜160cと、中央の3つのグリッド160d〜160fと、空気出口29bから遠い3つのグリッド160g〜160iとの風速比が3:2:1であるとし、風速比に応じた数の接合点120が各グリッド160に配置されている。具体的には、図2(b)に示すように、風速比が3であるグリッド160a〜160cには3つの接合点120が配置され、風速比が2であるグリッド160d〜160fには2つの接合点120が配置され、風速比が1であるグリッド160g〜160iには1つの接合点120が配置されている。   In this embodiment, the wind speed ratio of the upper three grids 160a to 160c close to the air outlet 29b, the three central grids 160d to 160f, and the three grids 160g to 160i far from the air outlet 29b is 3. : 2: 1 It is assumed that the number of junction points 120 corresponding to the wind speed ratio is arranged in each grid 160. Specifically, as shown in FIG. 2B, three joints 120 are arranged in the grids 160a to 160c having a wind speed ratio of 3, and two grids 160d to 160f having a wind speed ratio of 2 are arranged. One joint point 120 is disposed on the grids 160g to 160i in which the joint point 120 is disposed and the wind speed ratio is 1.

図1に戻り、性能評価装置100は、冷房運転時の性能評価を常時(リアルタイムで)行うことができる。具体的には、熱交換器放熱量導出部110は、上流熱電対103で計測された上流平均温度と、下流熱電対104で計測された下流平均温度との温度差を、グリッド160毎の風速比に基づいて重み付けした重み付け平均温度差Tを(1)式により導出する。

Figure 2017044388
ここで、Tは重み付け平均温度差(K・m)であり、aは各グリッド160での上流側の風速と、ハウジング29の空気出口29bでの風速との風速比であり、Sは各グリッド160の面積(m)であり、tin,aveは上流平均温度(K)であり、tout,aveは下流平均温度(K)であり、nはグリッド数である。なお、各グリッド160の風速比aは、各グリッド160の上流側に風速センサを配置して、予め計測することにより導出することができる。また、各グリッド160の風速比aは、一度導出すれば、風速によらずほぼ変化しないことが過去の測定実績(非特許文献1)により確認されている。 Returning to FIG. 1, the performance evaluation apparatus 100 can always perform performance evaluation during cooling operation (in real time). Specifically, the heat exchanger heat radiation amount deriving unit 110 calculates the temperature difference between the upstream average temperature measured by the upstream thermocouple 103 and the downstream average temperature measured by the downstream thermocouple 104 as the wind speed for each grid 160. A weighted average temperature difference T weighted based on the ratio is derived from the equation (1).
Figure 2017044388
Here, T is the weighted average temperature difference (K · m 2), a n is the velocity of the upstream side of each grid 160, a wind speed ratio of the wind speed at the air outlet 29b of the housing 29, S n Is the area (m 2 ) of each grid 160 , tin, ave is the upstream average temperature (K), t out, ave is the downstream average temperature (K), and n is the number of grids. Incidentally, the wind speed ratio a n of each grid 160 may place the wind velocity sensor on the upstream side of each grid 160, it can be derived by pre-measurement. Further, the wind speed ratio a n of each grid 160 Once derived, it does not substantially change regardless of the wind speed is confirmed by the past measurement results (Non-Patent Document 1).

また、熱交換器放熱量導出部110は、導出した重み付け平均温度差Tを用いて(2)式により室外機総熱交換量Qを導出する。

Figure 2017044388
ここで、Qは室外機総熱交換量(W)であり、ρは空気密度(kg/m)であり、Cは定圧比熱(kJ/(kg/K))である。 Further, the heat exchanger heat radiation amount deriving unit 110 derives the outdoor unit total heat exchange amount Q by the equation (2) using the derived weighted average temperature difference T.
Figure 2017044388
Here, Q is the outdoor unit total heat exchange amount (W), ρ is the air density (kg / m 3 ), and C p is the constant pressure specific heat (kJ / (kg / K)).

このように、風速比によりグリッド160毎に温度差を重み付けした重み付け平均温度差Tを導出することにより、風速比に比例して放熱量が増加するグリッド160毎の放熱量を、グリッド160毎の下流の温度を計測して個別に導出しなくてもよく、グリッド160毎の放熱量を積算した室外機総熱交換量Qを容易に導出することができる。   In this way, by deriving the weighted average temperature difference T obtained by weighting the temperature difference for each grid 160 by the wind speed ratio, the heat release amount for each grid 160 in which the heat release amount increases in proportion to the wind speed ratio is obtained for each grid 160. The downstream temperature may not be measured and derived individually, and the outdoor unit total heat exchange amount Q obtained by integrating the heat radiation amount for each grid 160 can be easily derived.

室外機製造熱量導出部112は、室外機製造熱量を(3)式により導出する。

Figure 2017044388
ここで、Eは室外機製造熱量(W)であり、ECDは室外機熱交換器23の放熱量(W)であり、EIGはガス消費量(W)であり、Eはラジエーター25の放熱量(W)であり、Eは排ガス熱量(W)である。なお、上記の室外機総熱交換量Qは、室外機熱交換器23の放熱量ECDとラジエーター25の放熱量Eとの合計量である。また、ガス消費量EIGは、ガスエンジン21で消費されたガス量から導出することができ、排ガス熱量Eは、排気ガス熱交換器24から排出される排気ガスの熱量から導出することができる。 The outdoor unit production heat quantity deriving unit 112 derives the outdoor unit production heat quantity by Equation (3).
Figure 2017044388
Here, E P is the outdoor unit producing heat (W), E CD is the heat radiation amount of the outdoor unit heat exchanger 23 (W), E IG is a gas consumption (W), E R is the radiator a heat radiation amount of 25 (W), E X is exhaust heat (W). Note that the outdoor unit total heat exchange rate Q of the above, the total amount of the heat radiation amount E R of the heat radiation amount E CD and radiator 25 of the outdoor unit heat exchanger 23. The gas consumption E IG may be derived from the amount of gas consumed by the gas engine 21, the exhaust gas heat E X is be derived from heat of the exhaust gas discharged from the exhaust gas heat exchanger 24 it can.

(3)式によれば、ガス消費量EIGからラジエーター25の放熱量Eと排ガス熱量Eとを減算することでコンプレッサ22の動力が導出され、室外機熱交換器23の放熱量ECDからコンプレッサ22の動力を減算することで、室外機10で製造される室外機製造熱量E、つまり、室内機熱交換器31から出力される冷房熱量が導出される。 According to (3), the power of the compressor 22 is derived by subtracting the heat radiation amount E R and the exhaust gas heat E X radiator 25 from gas consumption E IG, heat radiation amount of the outdoor unit heat exchanger 23 E By subtracting the power of the compressor 22 from the CD, the outdoor unit manufacturing heat amount E P manufactured by the outdoor unit 10, that is, the cooling heat amount output from the indoor unit heat exchanger 31 is derived.

そして、COP導出部114は、導出した室外機製造熱量Eを用いて(4)式によりCOPを導出する。

Figure 2017044388
ここで、EIEは、電力消費量(W)であり、本実施形態においては室外機モータ27および室内機モータ33の電力消費量が主である。 Then, COP derivation unit 114 derives the COP by and (4) using the derived outdoor unit produced heat E P.
Figure 2017044388
Here, E IE is power consumption (W), and in this embodiment, the power consumption of the outdoor unit motor 27 and the indoor unit motor 33 is mainly used.

以上のように、性能評価装置100は、室外機熱交換器23の上流側のグリッド160毎に上流熱電対103の接合点120を配置し、ハウジング29の空気出口29bに下流熱電対104を配置した。そして、上流熱電対103により計測された上流平均温度と、下流熱電対104により計測された下流平均温度との温度差を、予め導出されたグリッド160毎の風速比に基づいて重み付けし、重み付けした重み付け平均温度差T、および、風速センサ105により計測された風速に基づいて、室外機総熱交換量Qを導出する。これにより、室外機熱交換器23の各グリッド160の下流に熱電対を配置する必要がなく、計測装置の設置が容易となり、従来よりも容易に性能評価を行うことができる。   As described above, the performance evaluation apparatus 100 arranges the junction 120 of the upstream thermocouple 103 for each grid 160 on the upstream side of the outdoor unit heat exchanger 23, and arranges the downstream thermocouple 104 at the air outlet 29 b of the housing 29. did. Then, the temperature difference between the upstream average temperature measured by the upstream thermocouple 103 and the downstream average temperature measured by the downstream thermocouple 104 is weighted based on the wind speed ratio for each grid 160 previously derived, and weighted. The outdoor unit total heat exchange amount Q is derived based on the weighted average temperature difference T and the wind speed measured by the wind speed sensor 105. Thereby, it is not necessary to arrange a thermocouple downstream of each grid 160 of the outdoor unit heat exchanger 23, the installation of the measuring device is facilitated, and the performance evaluation can be performed more easily than before.

特に、従来技術では、室外機熱交換器23の下流側にグリッド160毎に熱電対を配置する場合には、室外機熱交換器23のフィンのピッチよりも小さい径の特注のシース熱電対を用意する必要があり、かつ、シース熱電対を室外機熱交換器23の下流側に配置する高度な設置技術が必要となる。一方、性能評価装置100では、このような必要が無いため、低コストで性能評価を行うことができるとともに、設置作業を簡略化することができる。   In particular, in the prior art, when a thermocouple is arranged for each grid 160 on the downstream side of the outdoor unit heat exchanger 23, a custom sheathed thermocouple having a diameter smaller than the fin pitch of the outdoor unit heat exchanger 23 is used. In addition, it is necessary to prepare an advanced installation technique in which the sheath thermocouple is arranged on the downstream side of the outdoor unit heat exchanger 23. On the other hand, in the performance evaluation apparatus 100, since there is no such need, performance evaluation can be performed at low cost and installation work can be simplified.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、上記実施形態においては、GHP10の性能評価を行うようにしたが、これに限らず、EHP(電気モータヒートポンプエアコン)の性能評価を行うようにしてもよい。なお、EHPの性能評価を行う場合には、(3)式、(4)式に代えて(5)式および(6)式を用いることになる。

Figure 2017044388
Figure 2017044388
ここで、EはEHPのコンプレッサの消費電力(W)である。 For example, in the above embodiment, the performance evaluation of the GHP 10 is performed. However, the present invention is not limited to this, and the performance evaluation of an EHP (electric motor heat pump air conditioner) may be performed. When evaluating the performance of EHP, equations (5) and (6) are used instead of equations (3) and (4).
Figure 2017044388
Figure 2017044388
Here, E T is the power consumption of the compressor EHP (W).

また、上記実施形態においては、温度センサ(上流温度センサ、下流温度センサ)として熱電対(上流熱電対103、下流熱電対104)を適応するようにしたが、これに限らず、熱電対以外の温度センサ、例えばサーミスタ等を適応してもよい。   In the above embodiment, the thermocouple (upstream thermocouple 103, downstream thermocouple 104) is adapted as the temperature sensor (upstream temperature sensor, downstream temperature sensor), but the present invention is not limited to this. A temperature sensor, such as a thermistor, may be applied.

また、上記実施形態においては、グリッド160毎に上流熱電対103の接合点120を配置するようにしたが、室外機熱交換器23の上流側に温度分布がなければ、グリッド分割せずに1つの接合点120のみを配置するようにしてもよい。   Moreover, in the said embodiment, although the junction 120 of the upstream thermocouple 103 was arrange | positioned for every grid 160, if there is no temperature distribution in the upstream of the outdoor unit heat exchanger 23, 1 will be divided without grid division. Only one joint point 120 may be arranged.

また、上記実施形態においては、(1)式および(2)式により、室外機熱交換器23の放熱量ECDとラジエーター25の放熱量Eとの合計量として室外機総熱交換量Qを導出するようにしたが、これに限らず、ラジエーター25の放熱量Eを別に導出することができれば、(1)式および(2)式により、室外機熱交換器23の放熱量ECDとして室外機総熱交換量Qを導出するようにしてもよい。 In the above embodiment, (1) and (2) by equation outdoor unit total heat exchange rate as the total amount of the heat radiation amount E R of the heat radiation amount E CD and radiator 25 of the outdoor unit heat exchanger 23 Q However, the present invention is not limited to this, and if the heat radiation amount E R of the radiator 25 can be derived separately, the heat radiation amount E CD of the outdoor unit heat exchanger 23 can be obtained by the equations (1) and (2). As described above, the outdoor unit total heat exchange amount Q may be derived.

本発明は、室内を空調する空気調和装置の性能評価を行う性能評価装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a performance evaluation device that performs performance evaluation of an air conditioner that air-conditions a room.

10 GHP(空気調和装置)
23 室外機熱交換器(熱交換器)
100 性能評価装置
103 上流熱電対(上流温度センサ)
104 下流熱電対(下流温度センサ)
105 風速センサ
110 熱交換器放熱量導出部
10 GHP (Air Conditioner)
23 Outdoor unit heat exchanger (heat exchanger)
100 Performance Evaluation Device 103 Upstream Thermocouple (Upstream Temperature Sensor)
104 Downstream thermocouple (downstream temperature sensor)
105 Wind Speed Sensor 110 Heat Exchanger Radiation Derivation Unit

Claims (3)

空気調和装置の室外機に設けられた熱交換器の上流側に配置され、該熱交換器に送風される空気の平均温度を上流平均温度として計測する上流温度センサと、
前記室外機から排出される空気の平均温度を下流平均温度として計測する下流温度センサと、
前記室外機から排出される空気の風速を計測する風速センサと、
前記熱交換器を複数に区画したグリッド毎における、該グリッドの前記上流側の風速と前記風速センサにより計測される風速との風速比に基づいて、前記上流温度センサにより計測された前記上流平均温度と、前記下流温度センサにより計測された前記下流平均温度との温度差をグリッド毎に重み付けし、重み付けした温度差、および、前記風速センサにより計測された風速に基づいて、前記熱交換器の放熱量を導出する熱交換器放熱量導出部と、
を備えることを特徴とする性能評価装置。
An upstream temperature sensor that is arranged on the upstream side of the heat exchanger provided in the outdoor unit of the air conditioner and measures the average temperature of the air blown to the heat exchanger as the upstream average temperature;
A downstream temperature sensor for measuring an average temperature of air discharged from the outdoor unit as a downstream average temperature;
A wind speed sensor for measuring the wind speed of the air discharged from the outdoor unit;
The upstream average temperature measured by the upstream temperature sensor based on the wind speed ratio between the wind speed on the upstream side of the grid and the wind speed measured by the wind speed sensor in each grid that divides the heat exchanger into a plurality of grids. And the downstream average temperature measured by the downstream temperature sensor are weighted for each grid, and the heat exchanger discharge is based on the weighted temperature difference and the wind speed measured by the wind speed sensor. A heat exchanger radiating amount deriving section for deriving heat,
A performance evaluation apparatus comprising:
前記上流温度センサは、前記熱交換器における前記グリッド毎に配置され、
前記上流平均温度は、前記上流温度センサにより計測されたグリッド毎の上流温度が平均された値であることを特徴とする請求項1に記載の性能評価装置。
The upstream temperature sensor is arranged for each grid in the heat exchanger,
The performance evaluation apparatus according to claim 1, wherein the upstream average temperature is a value obtained by averaging the upstream temperatures for each grid measured by the upstream temperature sensor.
前記上流温度センサは、異なる金属でなる1対の熱電対線が接合点で接合される熱電対であり、前記熱交換器の前記グリッド毎に前記接合点が配置されるとともに、前記複数の接合点にそれぞれ接合された少なくとも同一金属でなる前記熱電対線の長さが相互に同一であり、
各熱電対線は、一端が前記接合点のいずれかに接合され、他端が他の同一金属でなる熱電対線の他端と結合されていることを特徴とする請求項2に記載の性能評価装置。
The upstream temperature sensor is a thermocouple in which a pair of thermocouple wires made of different metals are joined at a joint point, and the joint point is arranged for each grid of the heat exchanger, and the plurality of joints The lengths of the thermocouple wires made of at least the same metal bonded to each point are the same,
The performance according to claim 2, wherein one end of each thermocouple wire is joined to one of the joining points and the other end is joined to the other end of another thermocouple wire made of the same metal. Evaluation device.
JP2015165893A 2015-08-25 2015-08-25 Heat dissipation amount derivation device Expired - Fee Related JP6514607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165893A JP6514607B2 (en) 2015-08-25 2015-08-25 Heat dissipation amount derivation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165893A JP6514607B2 (en) 2015-08-25 2015-08-25 Heat dissipation amount derivation device

Publications (2)

Publication Number Publication Date
JP2017044388A true JP2017044388A (en) 2017-03-02
JP6514607B2 JP6514607B2 (en) 2019-05-15

Family

ID=58211597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165893A Expired - Fee Related JP6514607B2 (en) 2015-08-25 2015-08-25 Heat dissipation amount derivation device

Country Status (1)

Country Link
JP (1) JP6514607B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259832A (en) * 1991-02-15 1992-09-16 Chino Corp Temperature measuring apparatus for heat exchanger
JP2000055743A (en) * 1998-08-06 2000-02-25 Anritsu Keiki Kk Multi-point mean temp. measuring apparatus
JP2002005547A (en) * 2000-06-19 2002-01-09 Kubota Corp Apparatus for heat-source evaluation
JP2007309628A (en) * 2006-05-18 2007-11-29 Riitekku:Kk Thermal output measuring device and its measuring method for hot air generator, and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259832A (en) * 1991-02-15 1992-09-16 Chino Corp Temperature measuring apparatus for heat exchanger
JP2000055743A (en) * 1998-08-06 2000-02-25 Anritsu Keiki Kk Multi-point mean temp. measuring apparatus
JP2002005547A (en) * 2000-06-19 2002-01-09 Kubota Corp Apparatus for heat-source evaluation
JP2007309628A (en) * 2006-05-18 2007-11-29 Riitekku:Kk Thermal output measuring device and its measuring method for hot air generator, and air conditioner

Also Published As

Publication number Publication date
JP6514607B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
Vaisi et al. Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger
Li et al. Experimental and numerical study of an integrated fin and micro-channel gas cooler for a CO2 automotive air-conditioning
Mohammadnia et al. Fan operating condition effect on performance of self-cooling thermoelectric generator system
Petrik et al. CFD analysis and heat transfer characteristics of finned tube heat exchangers
Chang et al. Modeling and performance simulation of a gas cooler for a CO2 heat pump system
Park et al. Effect of heat conduction through the fins of a microchannel serpentine gas cooler of transcritical CO2 system
JP6514607B2 (en) Heat dissipation amount derivation device
Paeng et al. Experimental measurement and numerical computation of the air side convective heat transfer coefficients in a plate fin-tube heat exchanger
JP2009068736A (en) Heat exchanger
Abedalh et al. Thermal performance of HAVC system using heat pipe heat exchanger
Gołębiowska et al. Numerical assessment of the experimental thermoelectric cooling system effectiveness
EP1484583A1 (en) Flow velocity measurement method and apparatus, including applications thereof for measuring heat flow, and wind velocity and/or direction
KR101955812B1 (en) Capacity performance curves creation method of water-cooled vrf heat pump
Hong et al. Measurements of Frost Growth on Louvered Folded Fins of Microchannel Heat Exchangers, Part 1: Experimental Methodology.
KR101456878B1 (en) Control Method of Performance Test System for Heat Pump
JP4897850B2 (en) Cooling tower performance evaluation system for air conditioning
Karakoyun et al. An experimental investigation on radiant floor heating systems at various operating conditions
Erro et al. Advanced phase-change internal heat exchanger development for multistage thermoelectric heat pumps
CN112649184A (en) Method and device for testing heat dissipation capacity of radiator and test box
Kumar et al. Effect of fin geometry for various tubes shape using CFD simulation on multi-channel heat exchanger in mobile air conditioning (MAC)
Chen et al. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery
Kowalczyk et al. Investigations of thermal-flow characteristics of minichannel evaporator of air heat pump
Martinez et al. Development of a Smart Modular Heat Recovery Unit adaptable into a ventilated façade
Balen et al. Analysis of the coil energy recovery loop system
Todorović et al. Theoretical and experimental study of heat transfer in wall heating panels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6514607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees