JP6508500B2 - Method of producing sintered ore - Google Patents

Method of producing sintered ore Download PDF

Info

Publication number
JP6508500B2
JP6508500B2 JP2018503282A JP2018503282A JP6508500B2 JP 6508500 B2 JP6508500 B2 JP 6508500B2 JP 2018503282 A JP2018503282 A JP 2018503282A JP 2018503282 A JP2018503282 A JP 2018503282A JP 6508500 B2 JP6508500 B2 JP 6508500B2
Authority
JP
Japan
Prior art keywords
mass
particles
ore
fine powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503282A
Other languages
Japanese (ja)
Other versions
JPWO2017150428A1 (en
Inventor
健太 竹原
健太 竹原
山本 哲也
哲也 山本
寿幸 廣澤
寿幸 廣澤
隆英 樋口
隆英 樋口
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2017150428A1 publication Critical patent/JPWO2017150428A1/en
Application granted granted Critical
Publication of JP6508500B2 publication Critical patent/JP6508500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ドワイト・ロイド式焼結機などで用いられる高炉原料としての焼結鉱の製造方法に関する。   The present invention relates to a method for producing sintered ore as a blast furnace raw material used in a Dwight-Lloyd type sintering machine or the like.

焼結鉱は、複数銘柄の粉鉄鉱石(一般に、125〜1000μm程度のシンターフィードと呼ばれているもの)に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉と、粉コークス等の固体燃料とを適量ずつ配合した焼結配合原料に、水分を添加して混合−造粒し、得られた造粒原料を焼結機に装入して焼成することによって製造される。その焼結配合原料は、一般に、水分を含むことで造粒時に互いに凝集して擬似粒子となる。そして、この擬似粒子化した焼結用造粒原料は、焼結機のパレット上に装入されたとき、焼結原料装入層の良好な通気を確保するのに役立ち、焼結反応を円滑に進める。焼結反応中では、熱せられた造粒粒子の水分が蒸発し、風下の造粒粒子が高水分となり強度が低下する領域が形成される(湿潤帯)。この湿潤帯は、造粒粒子が潰れやすくなり、充填層の空気の流れ道をふさぎ、通気を悪化させる。   Sinter is a multi-grade powdered iron ore (generally called Sinter feed of about 125 to 1000 μm), secondary raw material powder such as limestone, silica stone, serpentine, etc., dust, scale, return mineral, etc. Water is added to the sinter compounding raw material mixed with appropriate amounts of miscellaneous raw material powder and solid fuel such as powdered coke, mixed and granulated, and the obtained granulated raw material is charged into a sintering machine Manufactured by firing. In general, the sinter compounding raw materials aggregate with one another at the time of granulation due to the inclusion of water to form pseudo particles. And, this pseudogranulated sintering raw material for sintering, when being loaded on the pallet of the sintering machine, helps to ensure good ventilation of the sintering raw material charge layer, and makes the sintering reaction smooth. Advance to During the sintering reaction, the moisture of the heated granulated particles evaporates, and the granulated particles in the leeward become high moisture to form a region in which the strength decreases (wet zone). This wet zone tends to crush the granulated particles, blocking the flow path of the air in the packed bed and deteriorating the aeration.

一方で近年、鉄鉱石の微粉化が進行しており、この微粉鉱を用いた造粒粒子は強度が小さくなる。特に、水が加わった際に強度が大きく低下し、通気低減の要因となる問題がある。また微粉鉱は、焼結鉱の製造において重要な造粒が困難となることが知られている。焼結用粉鉄鉱石を取り巻くこのような環境の中で、最近、難造粒性である微粉を多く含む鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。   On the other hand, in recent years, pulverization of iron ore has progressed, and the granulated particles using this fine ore have a reduced strength. In particular, when water is added, the strength is greatly reduced, which causes a reduction in ventilation. Fine ore is also known to be difficult to granulate which is important in the production of sintered ore. In such an environment surrounding powdered iron ore for sintering, recently, a technology has been proposed for producing high-quality sintered ore using iron ore containing a large amount of fine powder which is hard to be granulated. There is.

従来、こうした高炉原料としての焼結鉱の製造方法として、以下のような技術が知られている(特許文献1〜9)。   Conventionally, the following techniques are known as a manufacturing method of the sintered ore as such blast furnace materials (patent documents 1-9).

特開昭62−37325号公報Japanese Patent Application Laid-Open No. 62-37325 特開平1−312036号公報Unexamined-Japanese-Patent No. 1-312036 gazette 特開2007−247020号公報JP 2007-247020 A 特開平11−61282号公報Japanese Patent Application Laid-Open No. 11-61282 特開平7−331342号公報Japanese Patent Laid-Open No. 7-331342 特開平7−48634号公報Japanese Patent Application Laid-Open No. 7-48634 特開2005−194616号公報JP, 2005-194616, A 特開2006−63350号公報Unexamined-Japanese-Patent No. 2006-63350 特開2003−129139号公報Unexamined-Japanese-Patent No. 2003-129139

特許文献1はHybrid Pelletized Sinter法(以下、「HPS法」という)を開示している。この技術は、鉄分の高い微粉鉄鉱石を多量に含む焼結配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである。しかしながら、この技術では、焼結原料を多量に処理する際に、ペレタイザーを多数設置する必要があり、製造コストが大きくなるという課題があった。   Patent Document 1 discloses a Hybrid Pelletized Sinter method (hereinafter referred to as "HPS method"). This technology is intended to produce a low slag ratio and high reducibility sintered ore by granulating a sinter compounding material containing a large amount of fine iron ore with high iron content using a drum mixer and a pelletizer. It is. However, in this technology, when processing a large amount of sintering raw material, it is necessary to install many pelletizers, and there is a problem that manufacturing cost becomes large.

また、造粒工程の前に、微粉鉄鉱石と製鉄ダストとを撹拌混合機で予め混合し、さらに撹拌混合機で造粒を行う方法や微粉を主体とする焼結原料を撹拌機で撹拌後に造粒機を用いて造粒する方法が提案されている(特許文献2〜3)。しかしながら、これらの方法では造粒粒子が微粉原料主体であり、造粒粒子よりも強度が高い核粒子(鉄鉱石)を有する場合に比べ、造粒粒子の強度が減少するという課題があった。   Also, before the granulation step, a method of mixing finely powdered iron ore and iron making dust in advance with a stirring mixer, and further granulating with a stirring mixer, or after stirring a sintering raw material mainly composed of fine powder with a stirrer The method of granulating using a granulator is proposed (patent documents 2-3). However, in these methods, granulated particles are mainly composed of fine powder material, and there is a problem that the strength of the granulated particles is reduced as compared with the case where core particles (iron ore) having higher strength than granulated particles are included.

さらに、微粉とシンターフィードを配合した焼結原料をアイリッヒミキサーで予め混合処理したのちドラムミキサーにて造粒する方法(特許文献4〜6)などの提案もある。しかしながら、これらの手法では、微粉割合が増加した際に、付着粉層が過剰となり、造粒粒子の燃焼性悪化が課題であった。また、核粒子の不足することにより造粒性が悪化し、造粒が不完全のまま焼成を行うといった問題もあった。   Furthermore, there are proposals such as methods (Patent Documents 4 to 6) in which sintering raw materials in which fine powder and sinter feed are mixed are mixed in advance with an Eirich mixer and then granulated with a drum mixer. However, in these methods, when the fine powder ratio increases, the attached powder layer becomes excessive, and the combustion property deterioration of the granulated particles is a problem. In addition, there is a problem that the granulation property is deteriorated due to the shortage of the core particles, and the baking is performed while the granulation is incomplete.

さらにまた、微粉を含みかつ結晶水を多く含む難造粒性鉱石を処理する報告(特許文献7〜9)が提案されている。しかしながら、これらの方法では、焼結中に、高結晶鉱石からの大量の水分の蒸発により、湿潤帯での圧損上昇を防ぐことが困難であった。また、造粒粒子の強度が低下しやすい微鉄鉱石を多く使用する際には、更に湿潤帯での圧損が上昇しやすいという課題もあった。   Furthermore, the report (patent documents 7-9) which processes the non-granulation ore which contains fine powder and contains many crystal waters is proposed. However, in these methods, during sintering, it is difficult to prevent the rise in pressure loss in the wet zone due to the evaporation of a large amount of water from the high-crystal ore. Moreover, when using many fine iron ores in which the strength of granulated particles tends to decrease, there is also a problem that the pressure loss in the wet zone tends to increase.

本発明は、上記のような問題点に着目してなされたものであり、難造粒性である微粉を多く含む鉄鉱石を使っても、高強度の造粒粒子を製造することが可能となり、高品質の焼結鉱を得ることができる焼結鉱の製造方法を提案することを目的とするものである。   The present invention has been made focusing on the above problems, and it is possible to produce granulated particles of high strength even using iron ore containing a large amount of fine powder which is difficult to granulate. It is an object of the present invention to propose a method of producing sintered ore which can obtain high quality sintered ore.

本出願人らは、微鉄鉱石を用いた際の造粒粒子強度を向上させる方法、また、湿潤帯での圧損上昇を抑制するために結晶水の蒸発を低減する方法、および、低結晶水かつ微粉を多く含む鉱石を使用する際に効率的に造粒を行う方法を検討し、以下のような本発明を達成した。   The present applicants have a method of improving the strength of granulated particles when using fine iron ore, a method of reducing evaporation of crystal water to suppress pressure loss increase in the wet zone, and low crystal water And when using the ore containing many fine powders, the method of efficiently granulating was examined, and the following inventions were achieved.

即ち、本発明は、粒径1mm以上の核粒子を20mass%以上含み、粒径0.125mm以下の微粉を10〜50mass%含む鉄鉱石および凝結材および副原料から構成される焼結原料を、高速撹拌機を用いて撹拌した後に造粒し、その後に焼成することを特徴とする焼結鉱の製造方法である。   That is, the present invention comprises a sintered material comprising iron ore containing 20 mass% or more of core particles having a particle diameter of 1 mm or more and 10 to 50 mass% of fine powder having a particle diameter of 0.125 mm or less It is a method of producing sintered ore characterized by granulation after stirring using a high speed stirrer and subsequent firing.

なお、本発明に係る前記焼結鉱の製造方法においては、
(1)粒径0.125mm以下の微粉を25〜40mass%含む鉄鉱石を含む焼結原料を、撹拌し、造粒すること、
(2)結晶水は4mass%以下であること、
(3)高速撹拌機の撹拌羽根の周速を6m/s以上とすること、
(4)高速撹拌機で事前処理する際の水分は6mass%以下であること、
が、より好ましい解決手段になり得るものと考えられる。
In the method of producing sintered ore according to the present invention,
(1) Stirring and granulating a sintered raw material containing iron ore containing 25 to 40 mass% of fine powder having a particle size of 0.125 mm or less
(2) Crystal water is 4 mass% or less,
(3) To make the peripheral speed of the stirring blade of the high speed stirrer 6 m / s or more,
(4) Water content of 6 mass% or less when pretreated with a high-speed stirrer,
Is considered to be a more preferable solution.

本発明によれば、核粒子を多く含ませることで、難造粒性である微粉を多く含む鉄鉱石を使った場合でも、高品質の焼結鉱を製造することができるとともに、焼結鉱生産率の改善が可能となる。   According to the present invention, by containing a large amount of core particles, high quality sinter can be produced even when using iron ore containing a large amount of fine powder which is difficult to granulate, and sinter ore. It is possible to improve the production rate.

本発明の焼結鉱の製造方法を実施する設備列の一例を説明するための図である。It is a figure for demonstrating an example of the equipment row | line | column which implements the manufacturing method of the sintered ore of this invention. 微粉割合を変えた際高速撹拌を行った場合と行わなかった場合との焼結生産率を比較するためのグラフである。When changing a fine powder ratio, it is a graph for comparing the sintering production rate with the case where it does not carry out at the time of performing high-speed stirring. 核粒子割合と焼結生産率との関係を示すグラフである。It is a graph which shows the relationship between a core particle ratio and a sintering production rate. 高速撹拌機の撹拌羽根の周速と調和平均径との関係を示すグラフである。It is a graph which shows the relationship between the circumferential speed of the stirring blade of a high speed stirrer, and a harmonic mean diameter. 撹拌時の水分と粒径4.75mm以上の割合との関係を示すグラフである。It is a graph which shows the relationship between the water at the time of stirring, and the ratio of particle size 4.75 mm or more.

図1は、本発明の焼結鉱の製造方法を実施する設備列の一例を説明するための図である。図1に従って本発明の焼結鉱の製造方法を説明すると、まず、粒径1mm以上の核粒子を20mass%以上含み、粒径0.125mm以下の微粉を10〜50mass%含む鉄鉱石、凝結材、副原料から構成される焼結原料11を準備する。焼結原料11は、上述した粒径1mm以上の核粒子を30mass%以上含み、粒径0.125mm以下の微粉を10〜50mass%含む鉄鉱石と、粉コークスなどの凝結材と、返鉱、珪石、石灰、生石灰などの副原料と、からなることが好ましい。   FIG. 1 is a figure for demonstrating an example of the equipment row | line | column which implements the manufacturing method of the sintered ore of this invention. The method for producing the sintered ore according to the present invention will be described according to FIG. 1. First, an iron ore containing 20% by mass or more of core particles having a particle diameter of 1 mm or more and 10 to 50 mass% of fine powder having a particle diameter of 0.125 mm or less , The sintering raw material 11 comprised from an auxiliary raw material is prepared. The sintering material 11 contains iron ore containing 30 mass% or more of core particles having a particle diameter of 1 mm or more and 10 to 50 mass% of fine powder having a particle diameter of 0.125 mm or less, a coagulating material such as powdered coke, return ore, It is preferable to consist of secondary raw materials such as silica stone, lime and quick lime.

次に、準備した焼結原料11の事前処理を高速撹拌機12で実施する。高速撹拌機12の目的は、粗大な造粒粒子の生成を抑止するために、粗大な造粒粒子の種となる微粉の凝集体を造粒前に壊砕することにある。微粉の凝集体を効率的に壊砕するためには、ミクロ的には、凝集体自身に、せん断力を加えて、直接微粉を剥離させることが有効である。高速撹拌機12の一例としては、たとえば、アイリッヒミキサー、ペレガイアミキサー、プロシェアミキサーなどを用いることができる。このうちアイリッヒミキサーは、「高速撹拌造粒機」として知られ、液体架橋による粒子の凝集、成長に伴う造粒機能を併せもつ設備である。   Next, pre-treatment of the prepared sintering material 11 is performed by the high speed stirrer 12. The purpose of the high-speed stirrer 12 is to break up agglomerates of fine powder, which become seeds of coarse granulated particles, before granulation in order to suppress the formation of coarse granulated particles. Microscopically, it is effective to apply shear force to the aggregate itself to directly exfoliate the fine powder in order to efficiently break up the fine powder aggregate. As an example of the high-speed stirrer 12, for example, an Eirich mixer, a Peregeria mixer, a Proshare mixer, etc. can be used. Among these, the Eirich mixer is known as a "high-speed stirring granulator", and is a facility having a granulating function associated with aggregation and growth of particles by liquid crosslinking.

次に、事前処理を高速撹拌機12で行われた焼結原料11を、ドラムミキサー13によって、水分添加の下で撹拌混合して造粒する。造粒後の焼結原料11は焼結機14に供給され、焼結機14において焼結鉱となる。そして、焼結鉱は、コークス、石灰石などとともに高炉原料として高炉15に供給されて銑鉄を製造する。   Next, the sintering raw material 11 which performed pre-processing with the high-speed stirrer 12 is stirred and mixed by the drum mixer 13 under moisture addition, and it granulates. The sintered raw material 11 after granulation is supplied to the sintering machine 14 and becomes sintered ore in the sintering machine 14. Then, the sintered ore is supplied to the blast furnace 15 as a blast furnace raw material together with coke, limestone and the like to produce pig iron.

なお、図1に示した設備列では、ドラムミキサーによる造粒後、造粒粒子を直接焼結機に装入して焼成しているが、焼結機までの構成について以下のような設備列をとることもできる。すなわち、(1)撹拌機、ドラムミキサー、ドラムミキサー、と複数のドラムミキサーを配置する設備列、(2)撹拌機、ドラムミキサー、ペレタイザー、ドラムミキサーと複数のドラムミキサーの間にペレタイザーを配置する設備列、(3)本発明では、湿潤帯での圧損低減のため、低結晶水鉱石使用の開発を行ったが、さらに湿潤帯の形成を抑制するために、ドラムミキサーによる造粒後に乾燥プロセスを配置する設備列、などにも、本発明を好適に適用することができる。   In the equipment row shown in FIG. 1, after granulation with a drum mixer, granulated particles are directly charged into a sintering machine and fired. However, the equipment row as described below for the configuration up to the sintering machine You can also take That is, (1) an agitator, a drum mixer, a drum mixer, and an installation row for arranging a plurality of drum mixers, and (2) arranging a pelletizer between the agitator, the drum mixer, the pelletizer, the drum mixer and the plurality of drum mixers Equipment row, (3) In the present invention, low crystal water ore was used to reduce pressure loss in the wet zone, but in order to further suppress the formation of the wet zone, the drying process after granulation by the drum mixer The present invention can also be suitably applied to equipment rows in which the

上述した設備列により本発明の焼結鉱の製造を実施するが、本発明の焼結鉱の製造方法における特徴は、焼結原料として、粒径1mm以上の核粒子を20mass%以上含み、粒径0.125mm以下の微粉を10〜50mass%含む鉄鉱石を用いる点、および、造粒前の事前処理として高速撹拌機による撹拌を行う点、にある。   The production of the sintered ore of the present invention is carried out according to the above-mentioned equipment row, and the feature of the method for producing sintered ore of the present invention is that the material contains 20 mass% or more of core particles having a particle diameter of 1 mm or more There is a point of using iron ore containing 10 to 50 mass% of fine powder having a diameter of 0.125 mm or less, and a point of performing stirring by a high-speed stirrer as a pretreatment before granulation.

まず、本発明の焼結鉱の製造方法においては、粒径1mm以上の核粒子を20mass%以上と核粒子を鉄鉱石中に多く含ませることで、造粒の際にその核粒子が核となるため、核粒子が少ない場合に比べて造粒が促進される。微粉を多く含む造粒粒子は強度が低いため、強度を増加させるには、圧力に対する造粒粒子の破壊を抑制することが重要である。そのため、微粉の凝集体よりも強度が高い核粒子を有することで、造粒粒子中の破壊しやすい部分を低下させることが、粒子強度上昇に繋がる。   First, in the method for producing a sintered ore according to the present invention, core particles containing at least 20 mass% of core particles having a particle diameter of 1 mm or more in iron ore are contained in the iron ore. Therefore, granulation is promoted compared to the case where the number of core particles is small. Since granulated particles containing a large amount of fine powder have low strength, it is important to suppress the destruction of the granulated particles against pressure in order to increase the strength. Therefore, reducing the easily breakable part in the granulated particles leads to an increase in particle strength by having the core particles having a strength higher than that of the fine powder aggregate.

なお、ここで、粒径1mm以上の核粒子と限定する理由は、核粒子は1mm以上であることが一般的であるためである。また、核粒子を20mass%以上と限定する理由は、以下の実施例2の結果から、核粒子が20mass%未満であると、焼結生産率が悪くなるためである。さらに、30mass%以上とすることが好ましい。上限は特に設けないが、80mass%以下であると好ましい。   Here, the reason for limitation to core particles having a particle size of 1 mm or more is that core particles are generally 1 mm or more. Moreover, the reason for limiting the core particle to 20 mass% or more is because the sintering production rate is deteriorated when the core particle is less than 20 mass% from the result of Example 2 below. Furthermore, it is preferable to set it as 30 mass% or more. The upper limit is not particularly set, but is preferably 80 mass% or less.

また、本発明の焼結鉱の製造方法においては、粒径0.125mm以下の微粉を10〜50mass%鉄鉱石中に含ませているが、微粉を多く含む原料は、水分の偏りにより、強度の低い微粉のみの造粒粒子が形成させやすくなる。高速撹拌機を用いることにより、これらの粒子は、破壊されることで、微粉の凝集が解砕され、原料が均一に分散される。そうすることにより、微粉の凝集がなくなり、付着粉層が小さくなるため、高強度の造粒粒子を製造することが可能となる。   Moreover, in the method for producing sintered ore according to the present invention, although the fine powder having a particle size of 0.125 mm or less is contained in 10 to 50 mass% iron ore, the raw material containing a large amount of fine powder has strength due to the deviation of water. It is easy to form granulated particles of only fine powder of By using a high-speed stirrer, these particles are broken down to break up the aggregation of fine powder and the raw material is uniformly dispersed. By doing so, aggregation of the fine powder is eliminated and the adhered powder layer is reduced, so that granulated particles of high strength can be produced.

なお、ここで、粒径0.125mm以下の微粉を10〜50mass%鉄鉱石中に含ませる理由は、10%未満では結合強度の弱い擬似粒子が出来ないためであり、また、50%超えでは同様に結合強度が弱い粗大な粒子が出来る問題があるが、実質的に125μm以下の微粉鉄鉱石を50mass%超えて配合することはなく上限を50%とした。粒径を125μm以下とした理由は、粒径125μm以下においては、水分を添加した粉体充填層における粒子層同士の接着性を表す付着力が増加するために造粒性が大きく異なる挙動を示したためである。   Here, the reason why fine powder with a particle size of 0.125 mm or less is contained in 10 to 50 mass% iron ore is that pseudo particles with weak bonding strength can not be produced if it is less than 10%. Similarly, there is a problem that coarse particles with weak bonding strength can be formed, but the content is not more than 50 mass% of substantially 125 μm or less pulverized iron ore, and the upper limit is 50%. The particle size of 125 μm or less shows that the particle size of 125 μm or less shows largely different behavior of granulation because adhesion showing the adhesion between particle layers in the powder filled layer to which water is added is increased. It is because

さらに、本発明の焼結鉱の製造方法において、高速撹拌機による解砕は、微粉の凝集を崩壊させるのに十分な力が必要であり、これまで提案されてきた撹拌羽根の周速よりも大きな力を与えることで、微粉の凝集の解砕が可能となる。また、微粉の凝集は、焼結原料の水分が、造粒水分に達している際にすでに、高くなっている。そのため、水分を添加する前の、低水分の状態で原料を撹拌することで、より微粉の凝集物の解砕効果が促進される。   Furthermore, in the method for producing sintered ore according to the present invention, crushing with a high-speed stirrer requires a sufficient force to break up the agglomeration of fine powder, and the circumferential speed of the stirring blade has been proposed so far. By applying a large force, it is possible to break up the aggregation of the fine powder. In addition, the aggregation of the fine powder is already high when the water content of the sintering raw material reaches the granulated water content. Therefore, by stirring the raw material in a low water state before adding water, the crushing effect of the agglomerate of fine powder is further promoted.

さらにまた、本発明の焼結鉱の製造方法の好適例において、微粉鉱使用時に減産の原因となる湿潤帯を抑制するため、湿潤帯の原因となる結晶水が少ない鉱石を用いて焼結原料を造粒し、焼結鉱を製造する方法を提案するものである。この方法により、得られた造粒粒子は、前記したように、高結晶水鉱石を用いる場合に比べ、焼結機内で高温になった際の水分の発生が低減される。湿潤帯での水分が低減されると、湿潤帯の圧損が低下することにより、焼結中の焼結原料(焼結ベッド)での通気が改善される。その結果として、焼結鉱生産率の改善が可能となる。また、水分の蒸発を抑制することで、燃料である凝結材を低下できる効果もある。   Furthermore, in the preferred embodiment of the method for producing sintered ore according to the present invention, the raw material is sintered using an ore having a small amount of crystal water causing the wet zone in order to suppress the wet zone causing the reduction of production when using fine powder We propose a method of granulating and producing sinter. According to this method, as described above, in the granulated particles obtained, the generation of moisture when the temperature becomes high in the sintering machine is reduced as compared with the case of using high-crystal water ore. When the moisture in the wet zone is reduced, the pressure loss of the wet zone is reduced to improve the ventilation in the sintering material (sinter bed) during sintering. As a result, it is possible to improve the sinter production rate. Further, by suppressing the evaporation of water, there is also an effect that the coagulating material which is the fuel can be reduced.

以上、本発明を実施の形態を参照して説明してきたが、本発明の高速撹拌後、造粒した造粒粒子の全量を焼結原料として使用することもでき、また、本発明の高速撹拌後、造粒した造粒粒子と高速撹拌せずに造粒した造粒粒子とを混合して焼結原料に適用することも本発明の権利範囲に含まれる。また、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。   As mentioned above, although the present invention has been described with reference to the embodiment, after high speed stirring of the present invention, the whole amount of granulated particles granulated can be used as a sintering raw material, and the high speed stirring of the present invention After that, mixing the granulated particles granulated and the granulated particles granulated without high-speed stirring and applying them to the sintering raw material is also included in the scope of the present invention. Furthermore, the present invention is not limited to the configuration described in the above-described embodiment, but also includes other embodiments and modifications which can be considered within the scope of matters described in the claims. .

次に、本発明の効果を確認するために行った実施例について説明する。
本発明では、核粒子割合は粒子径1mm以上の粒子、微粉割合は鉄鉱石中の粒子径0.125mm以下の粒子、のそれぞれの重量割合として定義した。ここで、測定方法は、採取した鉄鉱石を乾燥させ、JIS Z 8801の網篩いを用いて篩い、各粒度の重量を測定し、鉄鉱石全体の重量から、各粒度の重量割合を算出した。また、焼結原料の水分は、焼結原料中の水の重量を、水分を含む焼結原料の重量で除した値であり、本発明では、乾燥した焼結原料および添加した水の重量から計算される値である。ここで、焼結原料は、上記核粒子および微粉を含む鉄鉱石および、凝結材、副原料含むものを用いた。しかしながら、一般に焼結原料は複数銘柄の粉鉄鉱石に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉、生石灰などのバインダーと、粉コークス等の固体燃料としての凝結材とを適量ずつ配合するものである。
Next, an example carried out to confirm the effect of the present invention will be described.
In the present invention, the core particle ratio is defined as the weight ratio of particles having a particle diameter of 1 mm or more, and the fine powder ratio as particles having a particle diameter of 0.125 mm or less in iron ore. Here, in the measurement method, the collected iron ore is dried, sieved using a mesh sieve of JIS Z 8801, the weight of each particle size is measured, and the weight ratio of each particle size is calculated from the weight of the entire iron ore. Further, the water content of the sintering material is a value obtained by dividing the weight of water in the sintering material by the weight of the sintering material containing water, and in the present invention, from the weight of the dried sintering material and the added water It is a calculated value. Here, the sintering raw material used the iron ore containing the said core particle and fine powder, and the thing containing a coagulating agent and an auxiliary raw material. However, in general, sintering materials are powder iron ore of multiple brands, auxiliary materials such as limestone, silica, serpentine, dusts, scales, miscellaneous materials such as returned ore, binders such as quick lime, coke, etc. An appropriate amount of coagulating material as solid fuel is blended.

<実施例1:高速撹拌および微粉割合の影響について>
試験は、粒径1mm以上の核粒子が30mass%以上、結晶水が4mass%以下であり、微粉比率が10mass%(核粒子:42mass%、結晶水:4mass%)、25mass%(核粒子:40mass%、結晶水:3mass%)、40mass%(核粒子:36mass%、結晶水:3mass%)である鉄鉱石を用いた。ここで、試料の結晶水は、配合した鉄鉱石の各結晶水の重量割合から、加重平均によって求めた平均値である。本発明において、配合した鉄鉱石の結晶水は、この平均値の計算方法で求めたものである。この各鉱石の結晶水の測定はJIS M 8700に準拠して行った。これらの鉄鉱石69〜70mass%と返鉱16mass%と石灰石14mass%と珪石0〜1mass%を内掛けで配合し、凝結材である粉コークス5%を外掛けで添加した。そこに、焼結原料の水分が6mass%になるように水分を添加した。
<Example 1: About the influence of high-speed stirring and a fine powder ratio>
In the test, the core particles having a particle diameter of 1 mm or more are 30 mass% or more, the crystal water is 4 mass% or less, the fine powder ratio is 10 mass% (core particles: 42 mass%, crystal water: 4 mass%), 25 mass% (core particles: 40 mass) %, Crystal water: 3 mass%), and 40 mass% (core particles: 36 mass%, crystal water: 3 mass%) were used. Here, the water of crystallization of the sample is an average value determined by weighted average from the weight ratio of each water of crystallization of the blended iron ore. In the present invention, the crystal water of iron ore blended is obtained by the calculation method of the average value. The measurement of the crystal water of each ore was performed according to JIS M 8700. 69 to 70 mass% of these iron ores, 16 mass% of returned ore, 14 mass% of limestone and 0 to 1 mass% of silica stone are compounded internally, and 5% of powdered coke which is a coagulating material is externally added. Water was added thereto so that the water content of the sintering raw material was 6 mass%.

これらの試料に対し、高速撹拌機による事前処理を用いた場合と用いない場合で試験を行った。高速撹拌機は、アイリッヒミキサーを用い、撹拌羽根の長さは直径:350mmであり、容器は直径750mmである。撹拌羽根の周速v(m/s)は、撹拌羽根の回転数N(rpm)および撹拌羽根の長さ350mmより、
ν=0.35×π×N/60
とした。本発明では、周速は6m/sで60秒撹拌を行った。
These samples were tested with and without pre-treatment with a high speed stirrer. The high-speed stirrer uses an Eirich mixer, the length of the stirring blade is 350 mm in diameter, and the container is 750 mm in diameter. The circumferential velocity v (m / s) of the stirring blade is determined by the number of revolutions N (rpm) of the stirring blade and the length 350 mm of the stirring blade.
ν = 0.35 × π × N / 60
And In the present invention, the peripheral speed was stirred at 6 m / s for 60 seconds.

その後、これらの焼結原料に対して水分7mass%になるように水分を添加しつつ、ドラムミキサーを用いて、5分間造粒を行い、鍋試験機を用いて、焼成を行った。焼結後のシンターケーキを2mの高さから1回落とした際、粒径が+10mmであるものを成品とし、その重量を(シンターケーキ重量−床敷鉱重量)で除した値を歩留とした。焼結生産率(t/(m・h))は、成品重量を焼成時間および試験鍋の断面積で除した値とした。Thereafter, granulation was performed for 5 minutes using a drum mixer while adding water so as to be 7 mass% of water with respect to these sintering materials, and baking was performed using a pan tester. When the sinter cake after sintering is dropped once from a height of 2 m, a product with a particle size of +10 mm is a product, and the value obtained by dividing the weight by (sinter cake weight-bed bed weight) is the yield did. The sintered production rate (t / (m 2 · h)) was obtained by dividing the product weight by the baking time and the cross-sectional area of the test pan.

測定結果を図2に示す。図2に示すように、通常の微粉割合である10mass%以上よりも微粉比率が増加すると、ドラムミキサーのみの場合、焼結生産率が減少することが分かった。一方で、高速撹拌による事前処理をした場合、微粉の増加に伴い焼結生産率は減少するものの、ドラムミキサーのみで造粒した場合に比べ、著しく減少が抑制されることが分かった。   The measurement results are shown in FIG. As shown in FIG. 2, it was found that when the fine powder ratio increases more than 10 mass% or more, which is a normal fine powder ratio, the sintering production rate decreases in the case of the drum mixer alone. On the other hand, it was found that although the sintering production rate decreases with the increase of the fine powder when pre-treatment by high-speed stirring is performed, the decrease is suppressed remarkably as compared with the case of granulation using only the drum mixer.

<実施例2:核粒子割合の影響について>
結晶水が4mass%以下であり、粒径0.125mm以下の微粉比率が40mass%である鉄鉱石を用いて、核粒子の割合を変化させた試験を行った。核粒子の割合は13mass%(結晶水:2mass%)、25mass%(結晶水:2mass%)、32mass%(結晶水:2mass%)、43mass%(結晶水:4mass%)の範囲で実験を行った。これらの鉄鉱石69〜70mass%と返鉱16mass%と石灰石14mass%と珪石0〜1mass%を内掛けで配合し、凝結材である粉コークス5%を外掛けで添加した。そこに、焼結原料の水分が6mass%になるように水分を添加した。これらの試料を高速撹拌機により撹拌を行った。高速撹拌機は、撹拌羽根の長さは直径350mmであり、容器は直径750mmである。本発明では、周速は6m/sで60秒撹拌を行った。その後、これらの焼結原料に対して水分7mass%になるように水分を添加しつつ、ドラムミキサーを用いて、5分間造粒を行い、鍋試験機を用いて、焼成を行った。
<Example 2: Regarding the influence of the nuclear particle ratio>
An experiment was conducted in which the ratio of core particles was changed using iron ore having a crystal water content of 4 mass% or less and a fine powder ratio of a particle diameter of 0.125 mm or less of 40 mass%. The experiment was carried out in the range of 13 mass% (crystal water: 2 mass%), 25 mass% (crystal water: 2 mass%), 32 mass% (crystal water: 2 mass%), and 43 mass% (crystal water: 4 mass%) The 69 to 70 mass% of these iron ores, 16 mass% of returned ore, 14 mass% of limestone and 0 to 1 mass% of silica stone are compounded internally, and 5% of powdered coke which is a coagulating material is externally added. Water was added thereto so that the water content of the sintering raw material was 6 mass%. These samples were stirred by a high speed stirrer. In the high speed stirrer, the length of the stirring blade is 350 mm in diameter, and the container is 750 mm in diameter. In the present invention, the peripheral speed was stirred at 6 m / s for 60 seconds. Thereafter, granulation was performed for 5 minutes using a drum mixer while adding water so as to be 7 mass% of water with respect to these sintering materials, and baking was performed using a pan tester.

測定結果を図3に示す。図3に示すように、核粒子を20mass%以上で焼結生産率は改善されるが、特に、30mass%以上用いた場合、焼結生産率は格段に改善されていることが分かった。これは、核粒子が入ることにより、造粒粒子強度が増加することおよび、核が焼結原料に多く混合されることで造粒が促進され、焼結中の通気が改善したためであると考えられる。   The measurement results are shown in FIG. As shown in FIG. 3, it was found that the sintering production rate is improved at 20 mass% or more of the core particles, but particularly when 30 mass% or more is used, the sintering production rate is remarkably improved. It is thought that this is because the inclusion of the core particles increases the strength of the granulated particles and that the mixing of many cores with the sintering material promotes granulation and improves aeration during sintering. Be

<実施例3:高速撹拌機の撹拌羽根の好適な周速について>
次に、結晶水が少なく、高微粉比率かつ核粒子割合が高い鉄鉱石を用いた焼結原料を高速撹拌で処理する際の好適な周速を検討した。試料の条件としては、結晶水が2mass%であり微粉比率が25mass%、核粒子の割合が30mass%の鉄鉱石を用いた。この鉄鉱石70mass%と返鉱16mass%と石灰石14mass%とを内掛けで配合し、凝結材である粉コークス5mass%を外掛けで添加した。そこに、焼結原料の水分が6mass%になるように水分を添加した。
<Example 3: Preferred circumferential speed of the stirring blade of the high speed stirrer>
Next, the suitable circumferential speed at the time of processing the sintering raw material using iron ore with little crystal water, a high fine powder ratio, and a high core particle ratio by high speed stirring was examined. As the conditions of the sample, iron ore having 2 mass% of crystal water, 25 mass% of fine powder ratio, and 30 mass% of core particles is used. 70 mass% of this iron ore, 16 mass% of returned ore, and 14 mass% of limestone were compounded internally, and 5 mass% of powdered coke which is a coagulating material was externally added. Water was added thereto so that the water content of the sintering raw material was 6 mass%.

この試料を高速撹拌機により60秒撹拌した。高速撹拌機は、撹拌羽根の長さは直径350mmであり、容器は直径750mmである。本発明では、周速は0〜12m/sで変化させた。その後、これらの焼結原料に対して水分7mass%になるように水分を添加しつつ、ドラムミキサーを用いて、5分間造粒を行った。本実施では、造粒後の粒子の調和平均径を評価した。調和平均径は、粉体層の通気を評価するために一般的に用いられる指標であり、調和平均径が大きいほど、造粒が進行していることを示し、通気が良くなる。   The sample was stirred for 60 seconds with a high speed stirrer. In the high speed stirrer, the length of the stirring blade is 350 mm in diameter, and the container is 750 mm in diameter. In the present invention, the peripheral speed was changed at 0 to 12 m / s. Thereafter, granulation was carried out for 5 minutes using a drum mixer while adding water to these sintered materials so that the water content became 7 mass%. In the present embodiment, the harmonic mean diameter of the particles after granulation was evaluated. The harmonic mean diameter is an index generally used to evaluate the ventilation of the powder layer, and the larger the harmonic mean diameter, the more the granulation progresses and the better ventilation.

調和平均径は、撹拌処理後の粉体サンプルを1kg採取し、乾燥後、目開き0.25、0.5、1、2.8、4.75、8mmの篩いを用いて目開きの広い順で当該粉体サンプルを篩い、各粒度の重量割合を測定した。調和平均径は下記の(1)式で求めた。

Figure 0006508500
ここで、wは各粒経間で得られた重量割合であり、xは各粒径間の代表粒子径である。各粒径間の代表粒子径は、それぞれ大きいほうの目開きと小さいほうの目開きの相乗平均を用いて、0.25mm以下の粒子については0.125mm、8mm以上の粒子については8mmと、採取された粒子の中の最大の粒子径との相乗平均とした。As for the harmonic mean diameter, 1 kg of the powder sample after agitation processing is collected, and after drying, it has a wide opening with a sieve of 0.25, 0.5, 1, 2.8, 4.75, 8 mm. The said powder sample was sieved in order, and the weight ratio of each particle size was measured. The harmonic mean diameter was determined by the following equation (1).
Figure 0006508500
Here, w i is a weight ratio obtained between each particle diameter, and x i is a representative particle diameter between each particle diameter. The representative particle size between each particle size is 0.125 mm for particles of 0.25 mm or less, and 8 mm for particles of 8 mm or more, using the geometric mean of the larger opening and the smaller opening respectively. The geometric mean was taken with the largest particle size among the collected particles.

図4にドラムミキサーにより造粒した後の造粒子の調和平均径を示す。この結果、周速が6m/sになるまで、周速の増加に伴い、調和平均径が増加することが分かった。また周速が6m/s以上の場合、調和平均径は一定になった。周速の増加に伴い、調和平均径が増加した理由は、撹拌する際に、周速が低い場合には撹拌羽根による焼結原料中の水分の分散が不十分であり、水分が行き渡らず、造粒されない粒子が残存したためである。また、周速が十分大きい場合には、水分の分散が十分となり、造粒されない粒子が減少し、調和平均径が増加した。   FIG. 4 shows the harmonic mean diameter of the formed particles after granulation with a drum mixer. As a result, it was found that the harmonic mean diameter increases with the increase of the peripheral speed until the peripheral speed becomes 6 m / s. When the circumferential speed is 6 m / s or more, the harmonic mean diameter becomes constant. The reason why the harmonic mean diameter increases with the increase in circumferential speed is that when the circumferential speed is low, the dispersion of the water in the sintering material by the stirring blade is insufficient when stirring, and the water does not spread, It is because the particle which is not granulated remains. In addition, when the circumferential speed was sufficiently large, the dispersion of the water was sufficient, the number of non-granulated particles decreased, and the harmonic mean diameter increased.

<実施例4:撹拌前の水分量の影響について>
次に、結晶水が少なく、高微粉比率かつ核粒子割合が高い鉱石を用いた焼結原料を高速撹拌で処理する際の好適な撹拌前の水分について検討した。試料の条件としては、結晶水が2mass%であり微粉比率が25mass%、核粒子の割合が30mass%の鉄鉱石を用いた。この鉄鉱石70mass%と返鉱16mass%と石灰石14mass%とを内掛けで配合し、凝結材である粉コークス5mass%を外掛けで添加した。そこに、焼結原料の水分が0〜7mass%になるように水分を添加した。その後、これらの焼結原料に対して水分7mass%になるように水分を添加しつつ、ドラムミキサーを用いて、5分間造粒を行った。
<Example 4: About the influence of the water content before stirring>
Next, preferred water content before stirring when processing a sintered material using an ore having a small amount of crystal water, a high fine powder ratio and a high core particle ratio by high speed stirring was examined. As the conditions of the sample, iron ore having 2 mass% of crystal water, 25 mass% of fine powder ratio, and 30 mass% of core particles is used. 70 mass% of this iron ore, 16 mass% of returned ore, and 14 mass% of limestone were compounded internally, and 5 mass% of powdered coke which is a coagulating material was externally added. Water was added thereto so that the water content of the sintering raw material was 0 to 7 mass%. Thereafter, granulation was carried out for 5 minutes using a drum mixer while adding water to these sintered materials so that the water content became 7 mass%.

本試験では、撹拌による微粉の凝集物の解砕がしやすくなる水分を検討するため、撹拌後の粒子のなかで、大きい粒子である4.75mm以上の粒子の割合で評価した。通常、造粒粒子は3〜5mmの粒子を製造するプロセスであり、造粒前に粒径4.75mm以上の粒子は、造粒後に粗大粒子が生成し、この粗大粒子は、焼成の際、燃焼性悪化の原因となる。そのため、撹拌後の粒子としては、粒径4.75mm以上の粒子を減少させることが望ましい。また、粒径4.75mm以上の粒子が減少することは、核粒子に付着する微粉が解砕されることを意味している。そのため微粉の分散が進み原料が均一に分散、混合される指標となる。   In the present test, in order to investigate the moisture that facilitates the disintegration of the fine powder aggregate by stirring, the ratio of particles of 4.75 mm or more, which are large particles, was evaluated among the particles after stirring. Usually, granulated particles are a process of producing particles of 3 to 5 mm, and before granulation, particles having a particle diameter of 4.75 mm or more form coarse particles after granulation, and these coarse particles are subjected to It causes the deterioration of combustibility. Therefore, as particles after agitation, it is desirable to reduce particles having a particle diameter of 4.75 mm or more. In addition, the reduction of particles having a particle diameter of 4.75 mm or more means that the fine powder adhering to the core particles is broken up. Therefore, the dispersion of the fine powder progresses, and the raw material becomes an index to be uniformly dispersed and mixed.

図5に撹拌時の水分と撹拌後の粒径4.75mm以上の粒子の割合を示す。この結果、水分が減少させることで、撹拌後の粒径4.75mm以上の粒子の割合を低下できることが分かった。特に水分が6mass%以下の場合、粒径4.75mm以上の粒子割合が一定となっていることが分かった。これは、水分が低下することで、焼結原料中の微粉の凝集物の水分も低減されたためである。微粉の凝集物の水分が減少することで、凝集に必要な粒子同士の付着力が低下して、撹拌羽根による凝集物の解砕が進行した。   FIG. 5 shows the water content at the time of stirring and the ratio of particles having a particle size of 4.75 mm or more after stirring. As a result, it was found that the proportion of particles having a particle size of 4.75 mm or more after stirring can be reduced by reducing the water content. In particular, it was found that when the water content was 6 mass% or less, the proportion of particles having a particle diameter of 4.75 mm or more was constant. This is because the reduction of the water content also reduced the water content of the fine powder aggregates in the sintering material. By reducing the water content of the fine powder aggregate, the adhesion between the particles necessary for aggregation was reduced, and the disintegration of the aggregate by the stirring blade proceeded.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の微粉原料の混練方法を構成する場合も本発明の権利範囲に含まれる。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the configuration described in the above-described embodiment, and the items described in the appended claims It also includes other embodiments and modifications that are considered within the scope. For example, it is also included in the scope of the present invention when combining the kneading method of the fine powder raw material of the present invention combining a part or all of each above-mentioned embodiment and modification.

本発明の焼結鉱の製造方法によれば、核粒子を多く含ませることで、難造粒性である微粉を多く含む鉄鉱石を使った場合でも、高品質の焼結鉱を製造することができるとともに、焼結鉱生産率の改善が可能となり、種々の焼結鉱の製造方法に本発明を好適に用いることができる。   According to the method of producing sintered ore of the present invention, by containing a large amount of core particles, it is possible to produce high quality sintered ore even when using iron ore containing a large amount of fine powder which is difficult to granulate. As a result, the production rate of sintered ore can be improved, and the present invention can be suitably used in various methods for producing sintered ore.

11 焼結原料
12 高速撹拌機
13 ドラムミキサー
14 焼結機
15 高炉
11 Sintered raw material 12 High speed agitator 13 Drum mixer 14 Sintering machine 15 Blast furnace

Claims (3)

粒径1mm以上の核粒子を20mass%以上含み、粒径0.125mm以下の微粉を10〜50mass%含む鉄鉱石および凝結材および副原料から構成される焼結原料を、高速撹拌機の撹拌羽根の周速を6m/s以上、水分は6mass%以下として、高速撹拌機を用いて撹拌した後に造粒し、その後に焼成することを特徴とする焼結鉱の製造方法。 Wherein a particle diameter 1mm or more core particles above 20 mass%, the formed sintered material the following fines particle diameter 0.125mm from 10~50Mass% including iron ore and condensed materials and auxiliary materials, stirring blades of high-speed stirrer A method of producing a sintered ore characterized in that the peripheral speed is 6 m / s or more, the water content is 6 mass% or less, the mixture is stirred using a high-speed stirrer and then granulated and then fired. 粒径0.125mm以下の微粉を25〜40mass%含む鉄鉱石を含む焼結原料を、撹拌し、造粒することを特徴とする請求項1に記載の焼結鉱の製造方法。   The method for producing sintered ore according to claim 1, wherein the sintering raw material containing iron ore containing 25 to 40 mass% of fine powder with a particle size of 0.125 mm or less is stirred and granulated. 鉄鉱石の結晶水は4mass%以下であることを特徴とする請求項1または2に記載の焼結鉱の製造法。
The process for producing sinter ore according to claim 1 or 2, wherein the crystal water of iron ore is 4 mass% or less.
JP2018503282A 2016-03-04 2017-02-27 Method of producing sintered ore Active JP6508500B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016042153 2016-03-04
JP2016042153 2016-03-04
PCT/JP2017/007419 WO2017150428A1 (en) 2016-03-04 2017-02-27 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2017150428A1 JPWO2017150428A1 (en) 2018-06-21
JP6508500B2 true JP6508500B2 (en) 2019-05-08

Family

ID=59743993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503282A Active JP6508500B2 (en) 2016-03-04 2017-02-27 Method of producing sintered ore

Country Status (7)

Country Link
JP (1) JP6508500B2 (en)
KR (1) KR102189069B1 (en)
CN (1) CN108699623B (en)
AU (1) AU2017227235B2 (en)
BR (1) BR112018067367B1 (en)
PH (1) PH12018550145A1 (en)
WO (1) WO2017150428A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988712B2 (en) * 2018-06-21 2022-01-05 Jfeスチール株式会社 Sintered ore manufacturing method
JP7110830B2 (en) * 2018-08-29 2022-08-02 日本製鉄株式会社 Granulation method of mixed raw materials
JP7366832B2 (en) * 2019-04-23 2023-10-23 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
WO2020218170A1 (en) * 2019-04-23 2020-10-29 株式会社神戸製鋼所 Method for producing iron ore pellet
JP7419155B2 (en) 2020-05-07 2024-01-22 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
CN114804822B (en) * 2022-04-06 2023-05-02 西安墙体材料研究设计院有限公司 Method for preparing sintered pavement brick by utilizing vanadium tailings

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237325A (en) 1985-06-27 1987-02-18 Nippon Kokan Kk <Nkk> Calcined lump ore and its production
JPH01312036A (en) 1988-06-13 1989-12-15 Kawasaki Steel Corp Manufacture of raw material for sintering from dust from iron manufacture and fine iron ore
JP2790008B2 (en) 1993-08-03 1998-08-27 住友金属工業株式会社 Pre-processing method for sintering raw materials
JP2953308B2 (en) 1994-06-06 1999-09-27 住友金属工業株式会社 Sinter production method
JP3397091B2 (en) 1997-08-18 2003-04-14 日本鋼管株式会社 Sinter production method
JP3820132B2 (en) 2001-10-26 2006-09-13 新日本製鐵株式会社 Pretreatment method of sintering raw material
JP4356929B2 (en) 2003-12-08 2009-11-04 株式会社神戸製鋼所 Method for producing sintered ore
JP4231468B2 (en) 2004-08-24 2009-02-25 株式会社神戸製鋼所 Method for producing sintered ore
JP4568243B2 (en) 2006-03-17 2010-10-27 新日本製鐵株式会社 Method of kneading fine powder material
CN101037720A (en) * 2007-04-28 2007-09-19 中南大学 Method for sintering iron ore powder with super high material layer
JP5464317B2 (en) * 2007-11-22 2014-04-09 Jfeスチール株式会社 Manufacturing method of forming raw material for sinter production
KR101328256B1 (en) * 2011-12-12 2013-11-14 주식회사 포스코 Method for manufacturing sintered ore
JP5935979B2 (en) * 2012-03-27 2016-06-15 Jfeスチール株式会社 Method for producing pseudo-particles for producing sinter and method for producing sinter
JP6071409B2 (en) * 2012-10-19 2017-02-01 日新製鋼株式会社 Pre-granulation method for sintering raw materials
JP6036295B2 (en) * 2012-12-28 2016-11-30 新日鐵住金株式会社 Pretreatment method of sintering raw materials
TR201613592T1 (en) * 2014-04-01 2017-02-21 Jfe Steel Corp Raw granulated material production device for sintering.

Also Published As

Publication number Publication date
JPWO2017150428A1 (en) 2018-06-21
BR112018067367A2 (en) 2019-01-15
CN108699623A (en) 2018-10-23
AU2017227235A1 (en) 2018-09-27
CN108699623B (en) 2022-05-10
AU2017227235B2 (en) 2020-03-12
PH12018550145A1 (en) 2019-03-18
BR112018067367B1 (en) 2022-05-03
KR102189069B1 (en) 2020-12-09
KR20180110034A (en) 2018-10-08
WO2017150428A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6508500B2 (en) Method of producing sintered ore
KR101643272B1 (en) Method and apparatus for manufacturing raw granulating material for sintering and method of producing sintered ore for blast furnace
JP2007247020A (en) Method for kneading raw fine powder
TWI509081B (en) Method for producing granulation material for sintering
JP4996100B2 (en) Method for producing sintered ore
JP6380762B2 (en) Method for producing sintered ore
JP6273957B2 (en) Sinter ore manufacturing method
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP6468367B2 (en) Method for producing sintered ore
JP6256728B2 (en) Production equipment for granulating raw materials for sintering
JP6939842B2 (en) Sintered ore manufacturing method
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
JP6337737B2 (en) Method for producing sintered ore
WO2023233871A1 (en) Method for producing granulated starting material for sintering, and method for producing sintered ore
WO2020137484A1 (en) Sintered ore production method
JP2017172020A (en) Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same
JP2004285398A (en) Method of producing sintered ore
JP6493305B2 (en) Method for producing sintered ore
JP2015014039A (en) Method and apparatus for production of granulation raw material for sintering
JP5831397B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6508500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250