JP6508018B2 - Granule mixing device - Google Patents

Granule mixing device Download PDF

Info

Publication number
JP6508018B2
JP6508018B2 JP2015235136A JP2015235136A JP6508018B2 JP 6508018 B2 JP6508018 B2 JP 6508018B2 JP 2015235136 A JP2015235136 A JP 2015235136A JP 2015235136 A JP2015235136 A JP 2015235136A JP 6508018 B2 JP6508018 B2 JP 6508018B2
Authority
JP
Japan
Prior art keywords
funnel
active material
mixing
powder
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015235136A
Other languages
Japanese (ja)
Other versions
JP2017100078A (en
Inventor
智史 蛭川
智史 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015235136A priority Critical patent/JP6508018B2/en
Publication of JP2017100078A publication Critical patent/JP2017100078A/en
Application granted granted Critical
Publication of JP6508018B2 publication Critical patent/JP6508018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、例えば、リチウムイオン二次電池の活物質層の形成に用いる活物質造粒体などの粉粒体を混合する粉粒体の混合装置に関する。   The present invention relates to, for example, a powder-particle mixing apparatus that mixes powder particles such as active material granules used for forming an active material layer of a lithium ion secondary battery.

リチウムイオン二次電池の正極または負極の活物質層を形成するにあたり、活物質及び溶媒を含む湿潤状態の活物質造粒体を用いることがある。このようなリチウムイオン二次電池用の活物質造粒体に関連する従来技術として、例えば特許文献1が挙げられる。
ところで、このような活物質造粒体などの粉粒体を混合したい場合がある。この混合を行う混合装置としては、粉粒体を収容する容器の内部に、粉粒体を攪拌混合する攪拌羽根を配置した混合装置が知られている。
In forming an active material layer of a positive electrode or a negative electrode of a lithium ion secondary battery, a wet active material granule containing an active material and a solvent may be used. As a prior art relevant to the active material granule for such a lithium ion secondary battery, patent document 1 is mentioned, for example.
By the way, there are cases where it is desired to mix powder particles such as such active material granules. As a mixing apparatus which performs this mixing, the mixing apparatus which has arrange | positioned the stirring blade which carries out stirring mixing of the granular material in the inside of the container which accommodates a granular material is known.

特開平9−225281号公報JP-A-9-225281

しかしながら、上述の攪拌羽根を備える混合装置を用いて、リチウムイオン二次電池用の活物質造粒体などの粉粒体を混合すると、攪拌羽根により生じる剪断力によって、粉粒体が圧縮され凝集しがちである。   However, when powdery particles such as active material granules for a lithium ion secondary battery are mixed using a mixing apparatus provided with the above-mentioned stirring blade, the powdery particles are compressed and aggregated by the shear force generated by the stirring blade. I tend to do it.

本発明は、かかる現状に鑑みてなされたものであって、混合時に粉粒体が圧縮・凝集するのを抑制できる粉粒体の混合装置を提供することを目的とする。   This invention is made in view of this present condition, and it aims at providing the mixing device of the granular material which can control that granular material is compressed and aggregated at the time of mixing.

上記課題を解決するための本発明の一態様は、粉粒体を混合する粉粒体の混合装置であって、逆円錐台状の斜面をなし、中心に排出口を含む斜面部を有する漏斗と、上記漏斗の上方に配置され、上記粉粒体を貯留し、上記漏斗の上記斜面に向けて上記粉粒体をそれぞれ排出する複数のホッパーからなるホッパー群と、上記漏斗に対し上記ホッパー群を、上記漏斗の軸線周りに相対的に回転させる回転機構と、を備える粉粒体の混合装置である。   One aspect of the present invention for solving the above-mentioned problems is a mixing device of powder and granular material which mixes powder and granular material, and is a funnel which makes an inverted truncated cone-like slope and has a slope including an outlet at the center. And a hopper group comprising a plurality of hoppers disposed above the funnel for storing the granular material and discharging the granular material toward the slope of the funnel, and the hopper group for the funnel And a rotating mechanism for relatively rotating around the axis of the funnel.

上述の粉粒体の混合装置によれば、複数のホッパーから漏斗の斜面にそれぞれ排出された粉粒体は、斜面上を滑り落ちて中心の排出口から排出される際には、混合された状態となる。この混合装置では、攪拌羽根などの機械的応力によって粉粒体が圧縮・凝集することがない。このため、混合時に粉粒体が圧縮・凝集するのを抑制した、混合した粉粒体を得ることができる。
なお、上述の混合装置で混合する「粉粒体」としては、リチウムイオン二次電池の正極または負極の活物質層の形成に用いる(活物質造粒体を圧密化して活物質層を形成する場合に用いる)、活物質及び溶媒を含む湿潤状態の活物質造粒体が挙げられる。また、他の種類の電池において活物質層の形成に用いる活物質造粒体が挙げられる。また、電池以外に用いる粉粒体の混合に上述の混合装置を用いることもできる。
According to the above-described mixing apparatus of powdery and granular materials, the powdery and granular materials discharged respectively from the plurality of hoppers to the slope of the funnel are mixed when sliding down on the slope and being discharged from the central discharge port It becomes a state. In this mixing apparatus, the powder particles are not compressed or aggregated by mechanical stress such as a stirring blade. For this reason, it is possible to obtain a mixed powder which suppresses the compression and aggregation of the powder at the time of mixing.
In addition, it is used for formation of the active material layer of the positive electrode of a lithium ion secondary battery, or a negative electrode as "particulate matter" mixed by the above-mentioned mixing apparatus. (The active material granulated body is consolidated to form an active material layer In some cases, a wet active material granule containing an active material and a solvent may be used. Moreover, the active material granulated body used for formation of an active material layer in another type of battery is mentioned. Moreover, the above-mentioned mixing apparatus can also be used for mixing of the granular material used except batteries.

また、「漏斗に対しホッパー群を、漏斗の軸線周りに相対的に回転させる」構成としては、漏斗を固定する一方、ホッパー群を漏斗の軸線周りに回転させる構成、或いは、ホッパー群を固定する一方、漏斗をその軸線周りに回転させる構成が挙げられる。また、漏斗及びホッパー群を別々に回転させ、漏斗及びホッパー群の回転速度を異ならせて同方向に回転させる構成、或いは、漏斗とホッパー群を逆方向に回転させる構成が挙げられる。   Also, in the configuration “rotate the hopper group relative to the funnel relative to the funnel axis”, the funnel is fixed while the hopper group is rotated about the funnel axis, or the hopper group is fixed. On the other hand, there is a configuration in which the funnel is rotated about its axis. Alternatively, the funnel and hopper group may be separately rotated, and the funnel and hopper group may be rotated in the same direction with different rotational speeds, or the funnel and hopper group may be rotated in opposite directions.

更に、上記の粉粒体の混合装置であって、前記複数のホッパーは、前記漏斗の前記軸線周りに、等距離かつ等角度でそれぞれ配置されてなる粉粒体の混合装置とするのが好ましい。   Furthermore, it is preferable that the mixing apparatus of the above-mentioned powdery particles be provided as the mixing apparatus of the powdery particles, wherein the plurality of hoppers are disposed equidistantly and equiangularly around the axis of the funnel. .

上述の粉粒体の混合装置では、複数のホッパーが漏斗の軸線周りに等距離かつ等角度でそれぞれ配置されているので、各々のホッパーから排出された粉粒体は、漏斗の斜面の同じ高さの部位に落下する。このため、各々のホッパーから排出された粉粒体を、より均一に混合できる。   In the above-described granular material mixing apparatus, since the plurality of hoppers are respectively disposed equidistantly and equiangularly around the axis of the funnel, the granular material discharged from each hopper has the same height of the slope of the funnel. Falls to the site of For this reason, the granular material discharged | emitted from each hopper can be mixed more uniformly.

更に、上記のいずれかに記載の粉粒体の混合装置であって、前記漏斗は、固定されてなり、前記回転機構は、前記ホッパー群を上記漏斗の前記軸線周りに回転させる粉粒体の混合装置とするのが好ましい。   Furthermore, in the powder and granular material mixing apparatus described in any of the above, the funnel is fixed, and the rotating mechanism is configured to rotate the hopper group around the axis of the funnel. Preferably it is a mixing device.

上述の粉粒体の混合装置では、漏斗を固定し、回転機構はホッパー群を回転させるので、漏斗とホッパー群を共に回転させる場合に比べて、回転機構を簡単な構成とすることができる。   In the above-described powder and granular material mixing apparatus, the funnel is fixed, and the rotation mechanism rotates the hopper group, so that the rotation mechanism can be simplified as compared with the case where the funnel and the hopper group are rotated together.

実施形態に係る粉粒体の混合装置の斜視図である。It is a perspective view of the mixing device of the granular material concerning an embodiment. 実施例1〜4及び比較例1,2について、混合後の粉粒体のかさ密度比を示すグラフである。It is a graph which shows the bulk density ratio of the granular material after mixing about Examples 1-4 and Comparative Examples 1 and 2.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態に係る粉粒体の混合装置(以下、単に「混合装置」ともいう)1の斜視図を示す。この混合装置1は、後述するリチウムイオン二次電池の活物質層(活物質造粒体を圧密化してなる活物質層)の形成に用いる活物質造粒体(粉粒体)PTを混合する装置であり、製造ロット等が異なる複数(本実施形態では5つ)の粉粒体PT(PT1,PT2,PT3,PT4,PT5)を混合できる。この混合装置1は、漏斗10、ホッパー群20、回転機構30及び容器40等から構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the perspective view of the mixing apparatus of the granular material (it is also only hereafter called a "mixing apparatus") 1 which concerns on this embodiment is shown. The mixing apparatus 1 mixes active material granules (powder and particles) PT used for forming an active material layer (active material layer formed by compacting the active material granules) of a lithium ion secondary battery described later. The apparatus is an apparatus, and a plurality of (five in the present embodiment) powder particles PT (PT1, PT2, PT3, PT4, PT5) different in production lot etc. can be mixed. The mixing device 1 comprises a funnel 10, a hopper group 20, a rotation mechanism 30, a container 40 and the like.

このうち漏斗10は、金属製(具体的にはステンレス製)で軸線AXを有する形態をなし、斜面部11と上部円筒部13と下部円筒部15と2つの突出部17,17とからなる。このうち斜面部11は、軸線方向AHの上方ASに径大な円状の上端縁11cを、軸線方向AHの下方ATに径小な円状の排出口11hを有する逆円錐台状の部位である。この斜面部11は、その内側に逆円錐台状に拡がる斜面11mを有する。   Among them, the funnel 10 is made of metal (specifically, made of stainless steel) and has an axis AX, and includes a slope portion 11, an upper cylindrical portion 13, a lower cylindrical portion 15, and two projecting portions 17 and 17. Among them, the sloped portion 11 is an inverted truncated cone having a circular upper end edge 11c in the upper direction AS in the axial direction AH and a small circular outlet 11h in the lower direction AT in the axial direction AH. is there. The slope portion 11 has a slope 11m extending in the form of an inverted truncated cone on the inner side thereof.

また、上部円筒部13は、斜面部11の上端縁11cから軸線方向AHの上方ASに延びる上端縁11cと同径の円筒状部位である。一方、下部円筒部15は、斜面部11の排出口11hから軸線方向AHの下方ATに延びる排出口11hと同径の円筒状部位である。また、2つの突出部17,17は、それぞれ矩形板状であり、上部円筒部13の外周から径方向外側に水平にそれぞれ突出している。これらの突出部17,17は、図示しない支持部材に固定される。これにより、漏斗10が支持部材に固定される。   The upper cylindrical portion 13 is a cylindrical portion having the same diameter as the upper end edge 11 c extending from the upper end edge 11 c of the sloped portion 11 to the upper side AS in the axial direction AH. On the other hand, the lower cylindrical portion 15 is a cylindrical portion having the same diameter as the discharge port 11 h extending downward from the discharge port 11 h of the inclined surface 11 in the axial direction AH. Further, the two projecting portions 17 and 17 each have a rectangular plate shape, and horizontally project radially outward from the outer periphery of the upper cylindrical portion 13. These protrusions 17 and 17 are fixed to a support member (not shown). The funnel 10 is thereby fixed to the support member.

次述するホッパー群20を構成する複数のホッパー21(21a,21b,21c,21d,21e)からそれぞれ排出された粉粒体PT(PT1,PT2,PT3,PT4,PT5)は、漏斗10の上部円筒部13を通じて斜面部11内に入り、その斜面11mの所定の高さの部位に落下する。この粉粒体PTは、斜面11mを滑り落ちて排出口11hから排出され、更に下部円筒部15を通じて、後述する容器40内に収容される。   The powder particles PT (PT 1, PT 2, PT 3, PT 4, PT 5) discharged from the plurality of hoppers 21 (21 a, 21 b, 21 c, 21 d, 21 e) constituting the hopper group 20 described below It enters into the slope 11 through the cylindrical portion 13 and falls to a portion of a predetermined height of the slope 11m. The granular material PT slides down the slope 11m and is discharged from the discharge port 11h, and is further accommodated in a container 40 described later through the lower cylindrical portion 15.

ホッパー群20は、粉粒体PT(PT1,PT2,PT3,PT4,PT5)を貯留する複数(本実施形態では5個)のホッパー21(21a,21b,21c,21d,21e)から構成される。これらのホッパー21a,21b,21c,21d,21eは、いずれも漏斗10の軸線方向AHの上方ASに配置されている。各々のホッパー21は、金属製(具体的にはステンレス製)で、斜面部23と上部円筒部25と下部円筒部27と鍔部29とからなる。このうち斜面部23は、軸線方向AHの上方ASに径大な円状の上端縁23cを、軸線方向AHの下方ATに径小な円状の下端縁23hを有する逆円錐台状の部位である。   The hopper group 20 is composed of a plurality of (five in the present embodiment) hoppers 21 (21a, 21b, 21c, 21d, 21e) for storing powdery particles PT (PT1, PT2, PT3, PT4, PT5). . Each of the hoppers 21 a, 21 b, 21 c, 21 d and 21 e is disposed above AS in the axial direction AH of the funnel 10. Each hopper 21 is made of metal (specifically, stainless steel), and includes a slope portion 23, an upper cylindrical portion 25, a lower cylindrical portion 27, and a collar portion 29. Among them, the sloped portion 23 is an inverted truncated cone having a circular upper end 23c in the upper direction AS in the axial direction AH and a lower lower end 23h in the lower direction in the axial direction AH. is there.

また、上部円筒部25は、斜面部23の上端縁23cから軸線方向AHの上方ASに延びる上端縁23cと同径の円筒状部位である。一方、下部円筒部27は、斜面部23の下端縁23hから軸線方向AHの下方ATに延びる下端縁23hと同径の円筒状部位である。また、鍔部29は、円環板状であり、上部円筒部25の外周から径方向外側に水平に突出している。この鍔部29は、次述する回転機構30の円板部35に固定されている。これにより、各々のホッパー21が回転機構30の円板部35に固定される。各々のホッパー21a,21b,21c,21d,21eに貯留された粉粒体PT1,PT2,PT3,PT4,PT5は、下部円筒部27から漏斗10の斜面11mに向けてそれぞれ排出される。   The upper cylindrical portion 25 is a cylindrical portion having the same diameter as the upper end edge 23 c extending from the upper end edge 23 c of the sloped portion 23 upward AS in the axial direction AH. On the other hand, the lower cylindrical portion 27 is a cylindrical portion having the same diameter as the lower end edge 23 h extending downward in the axial direction AH from the lower end edge 23 h of the sloped portion 23. In addition, the collar portion 29 has an annular plate shape, and protrudes horizontally outward from the outer periphery of the upper cylindrical portion 25 in the radial direction. The collar portion 29 is fixed to a disc portion 35 of the rotation mechanism 30 described next. Thereby, each hopper 21 is fixed to the disc part 35 of the rotation mechanism 30. The granular materials PT1, PT2, PT3, PT4, PT5 stored in the hoppers 21a, 21b, 21c, 21d, 21e are discharged from the lower cylindrical portion 27 toward the slope 11m of the funnel 10, respectively.

回転機構30は、駆動部31と回転軸33と円板部35とを有する。このうち駆動部31は、電動モータであり、回転軸33を回転させる。この回転軸33は、その軸線が漏斗10の軸線AXと一致するように鉛直に配置されている。回転軸33の上端は、駆動部31に結合され、回転軸33の下端は、円板部35の中心に接続されている。円板部35は、水平方向に拡がる円板状をなし、その中心(漏斗10の軸線AX)の周りに、等距離かつ等角度で(具体的には72度毎に)、5つの開口35hが設けられている。   The rotation mechanism 30 has a drive unit 31, a rotation shaft 33, and a disk unit 35. Among them, the drive unit 31 is an electric motor and rotates the rotating shaft 33. The rotation axis 33 is vertically disposed such that its axis coincides with the axis AX of the funnel 10. The upper end of the rotary shaft 33 is coupled to the drive unit 31, and the lower end of the rotary shaft 33 is connected to the center of the disc portion 35. The disc portion 35 is in the form of a horizontally expanding disc and has five openings 35 h equidistantly and equiangularly (specifically every 72 degrees) around its center (axis AX of the funnel 10). Is provided.

これらの開口35hには、前述のホッパー21がそれぞれ上方ASから挿入されており、ホッパー21の鍔部29が、円板部35のうち開口35hの周縁部にそれぞれ係合し固定されている。これにより、複数のホッパー21a,21b,21c,21d,21eは、軸線AX周りに、等距離かつ等角度で(本実施形態では72度毎に)それぞれ配置されている。この回転機構30は、駆動部31を駆動させると、これに接続された回転軸33及び円板部35が、図1中に矢印で示すように軸線AX周りに回転するため、円板部35に固定された複数のホッパー21からなるホッパー群20を軸線AX周りに回転させることができる。   The hoppers 21 described above are respectively inserted from the upper AS into the openings 35 h, and the collar portion 29 of the hopper 21 is engaged with and fixed to the peripheral portion of the opening 35 h in the disc portion 35. Thus, the plurality of hoppers 21a, 21b, 21c, 21d and 21e are arranged equidistantly and equiangularly (every 72 degrees in the present embodiment) around the axis AX. In the rotation mechanism 30, when the drive unit 31 is driven, the rotation shaft 33 and the disk unit 35 connected thereto rotate around the axis AX as shown by the arrows in FIG. The hopper group 20 which consists of a plurality of hoppers 21 fixed to can be rotated about the axis AX.

容器40は、漏斗10の軸線方向AHの下方ATに配置されている。この容器40は、金属製(具体的にはステンレス製)で、有底円筒状である。容器40は、漏斗10で混合され下部円筒部15から排出された粉粒体PTを収容する。   The container 40 is arranged at the lower AT in the axial direction AH of the funnel 10. The container 40 is made of metal (specifically, stainless steel) and has a bottomed cylindrical shape. The container 40 accommodates the granular material PT mixed in the funnel 10 and discharged from the lower cylindrical portion 15.

次いで、上記混合装置1を用いた粉粒体PTの混合方法について説明する。例えば製造ロットがそれぞれ異なる5つの粉粒体PT(PT1,PT2,PT3,PT4,PT5)を用意する。本実施形態では、これらの粉粒体PTとして、リチウムイオン二次電池の正極活物質層(活物質造粒体を圧密化してなる正極活物質層)を形成するのに用いる、湿潤状態の活物質造粒体を用意した。具体的には、正極活物質、導電材及びカルボキシル基含有高分子を乾式混合した後に、これに溶媒(本実施形態では水)を水分率が30重量%となるように加えて、粒径1mm程度に造粒した湿潤状態の活物質造粒体を用意した。なお、本実施形態では、正極活物質としてLiNi1/3Co1/3Mn1/32 を、導電材としてアセチレンブラック(AB)を、カルボキシル基含有高分子としてポリアクリル酸(PAA)を用いた。 Next, a method of mixing the granular material PT using the mixing device 1 will be described. For example, five powdery particles PT (PT1, PT2, PT3, PT4, PT5) different in production lot are prepared. In this embodiment, the active state in the wet state is used to form a positive electrode active material layer (a positive electrode active material layer formed by compacting the active material granules) of the lithium ion secondary battery as the powder particles PT. A granular material was prepared. Specifically, after dry mixing of the positive electrode active material, the conductive material, and the carboxyl group-containing polymer, a solvent (water in the present embodiment) is added thereto so that the moisture content is 30% by weight, and the particle size is 1 mm A wet-state active material granulated body granulated to a certain degree was prepared. In this embodiment, LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black (AB) as a conductive material, and polyacrylic acid (PAA) as a carboxyl group-containing polymer Using.

そして、これらの製造ロットが異なる粉粒体(活物質造粒体)PT1,PT2,PT3,PT4,PT5を、5つのホッパー21a,21b,21c,21d,21e内に投入する。また、これと共に、回転機構30の駆動部31を駆動させて、ホッパー群20を漏斗10の軸線AX周りに、10〜30rpm(本実施形態では20rpm)で回転させる。
すると、各ホッパー21a,21b,21c,21d,21eに貯留された粉粒体PT1,PT2,PT3,PT4,PT5は、各ホッパー21a,21b,21c,21d,21eの下部円筒部27から少しずつ漏斗10内に向けて排出される。これらの粉粒体PT1,PT2,PT3,PT4,PT5は、漏斗10の斜面11mの所定の高さの部位に落下し、斜面11mを滑り落ちて排出口11hから排出される際には、混合された状態となっている。この粉粒体PTは、下部円筒部15を通じて容器40に向けて排出される。かくして、製造ロットの異なる5つの粉粒体PT1,PT2,PT3,PT4,PT5が混合された粉粒体PTが容器40内に収容される。
Then, powder particles (active material granules) PT1, PT2, PT3, PT4, and PT5 different in production lot from each other are charged into the five hoppers 21a, 21b, 21c, 21d, and 21e. At the same time, the drive unit 31 of the rotation mechanism 30 is driven to rotate the hopper group 20 around the axis AX of the funnel 10 at 10 to 30 rpm (20 rpm in the present embodiment).
Then, the powder particles PT1, PT2, PT3, PT4, PT5 stored in the hoppers 21a, 21b, 21c, 21d, 21e are little by little from the lower cylindrical portion 27 of the hoppers 21a, 21b, 21c, 21d, 21e. It is discharged into the funnel 10. These granular materials PT 1, PT 2, PT 3, PT 4 and PT 5 fall to a predetermined height of a slope 11 m of the funnel 10 and slide down the slope 11 m to be discharged from the discharge port 11 h. It is in a state of being The granular material PT is discharged toward the container 40 through the lower cylindrical portion 15. Thus, the powder particles PT in which five powder particles PT1, PT2, PT3, PT4, and PT5 different from each other in the production lot are mixed are accommodated in the container 40.

次いで、混合装置1で混合した上述の粉粒体(活物質造粒体)PTを用いた正極板、及びこの正極板を用いたリチウムイオン二次電池の製造方法について説明する。まず、混合された上述の粉粒体PTをロールプレス機に供給し、ロールの間で粉粒体PTを圧密化してシート状に成形する。続いて、この活物質造粒体からなるシートを、別途用意した帯状のアルミニウム箔からなる正極集電箔のうち、一方の主面の所定位置に圧着して、未乾燥の正極活物質層を形成する。その後、この未乾燥の正極活物質層を加熱乾燥させて、正極活物質層を形成する。また、活物質造粒体からなるシートを、同様に正極集電箔のうち他方の主面にも圧着して未乾燥の正極活物質層を形成し、これを加熱乾燥させて、正極活物質層を形成する。その後、この正極板をロールプレス機でプレスして、正極活物質層の密度をそれぞれ高める。これにより、粉粒体PTが圧密化されてなる正極活物質層を有する、リチウムイオン二次電池用の正極板が形成される。
次に、この帯状の正極板と、別途形成した帯状の負極板とを、セパレータを介して捲回して、電極体を形成する。次に、この電極体を用いて電池を組み立てる。かくして、リチウムイオン二次電池が得られる。
Next, a positive electrode plate using the above-described powder (particles of active material) PT mixed in the mixing apparatus 1 and a method of manufacturing a lithium ion secondary battery using the positive electrode plate will be described. First, the mixed powder PT is supplied to a roll press, and the powder PT is compacted between the rolls and formed into a sheet. Subsequently, the sheet made of the active material granules is pressure-bonded to a predetermined position on one main surface of a separately prepared strip-like aluminum foil and made of a positive electrode current collector foil, to obtain a non-dried positive electrode active material layer. Form. Thereafter, the undried positive electrode active material layer is dried by heating to form a positive electrode active material layer. Further, similarly, the sheet made of the active material granules is pressure-bonded also to the other main surface of the positive electrode current collector foil to form a non-dried positive electrode active material layer, which is heated and dried to obtain a positive electrode active material. Form a layer. Thereafter, the positive electrode plate is pressed by a roll press to increase the density of the positive electrode active material layer. As a result, a positive electrode plate for a lithium ion secondary battery, which has a positive electrode active material layer in which the powder particles PT are compacted, is formed.
Next, the strip-shaped positive electrode plate and a strip-shaped negative electrode plate formed separately are wound via a separator to form an electrode body. Next, a battery is assembled using this electrode body. Thus, a lithium ion secondary battery is obtained.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1〜4として、前述の粉粒体の混合装置1を用い、下記の表1に示すように、ホッパー群20の回転数を変更して、前述の粉粒体(活物質造粒体)PT1,PT2,PT3,PT4,PT5を混合した。具体的には、ホッパー群20の回転数を、3rpm(実施例1)、10rpm(実施例2)、20rpm(実施例3)、30rpm(実施例4)とした。
また、比較例2として、従来の粉粒体の混合装置、即ち、粉粒体を収容する容器の内部に、粉粒体を攪拌混合する攪拌羽根を配置した混合装置を用いて、製造ロットが異なる粉粒体PT1,PT2,PT3,PT4,PT5を混合した。なお、比較例1については後述する。
(Example and Comparative Example)
Next, the results of tests conducted to verify the effects of the present invention will be described. As Examples 1-4, using the mixing apparatus 1 of the above-mentioned granular material, as shown in the following Table 1, changing the number of rotations of the hopper group 20, the above-mentioned granular material (active material granulated body ) PT1, PT2, PT3, PT4 and PT5 were mixed. Specifically, the rotation speed of the hopper group 20 was set to 3 rpm (Example 1), 10 rpm (Example 2), 20 rpm (Example 3), and 30 rpm (Example 4).
In addition, as Comparative Example 2, a manufacturing lot is manufactured using a conventional mixing apparatus of powdery particles, that is, a mixing apparatus in which a stirring blade for stirring and mixing powdery particles is disposed in a container for containing powdery particles. Different granular materials PT1, PT2, PT3, PT4, and PT5 were mixed. Note that Comparative Example 1 will be described later.

Figure 0006508018
Figure 0006508018

まず、混合前の製造ロットが異なる粉粒体PT1,PT2,PT3,PT4,PT5について、かさ密度をそれぞれ測定した。具体的には、容積Vo(ml)の有底円筒状のカップ内に、漏斗を用いて、粉粒体PTがカップから溢れるまで粉粒体PTを投入する。その後、カップの上面にヘラを垂直に立てて接触させ、ヘラの刃をカップの上面に沿って滑らかに移動させて、カップの上面を越えている余分な粉粒体PTを除去する。その後、粉粒体PTの入ったカップの重量(g)を測定し、カップ内に収容された粉粒体PTの重量(g)を求め、更に、これを容積Voで割って、かさ密度(g/ml)を算出する。更に、この測定を3回(n=3)繰り返して、かさ密度の平均値を算出し、この平均値をその製造ロットのかさ密度とする。更に、製造ロット毎に求められた5つのかさ密度を平均して、混合前の平均かさ密度を求めた。この平均かさ密度を、比較例1のかさ密度とし、かさ密度比を求める基準(=1.00)とした。   First, bulk density was measured for powder particles PT1, PT2, PT3, PT4, and PT5 different in production lot before mixing. Specifically, in the bottomed cylindrical cup having a volume Vo (ml), using a funnel, the powder PT is introduced until the powder PT overflows from the cup. The spatula is then brought into vertical contact with the upper surface of the cup, and the blade of the spatula is smoothly moved along the upper surface of the cup to remove excess granular material PT that has exceeded the upper surface of the cup. After that, the weight (g) of the cup containing the powder PT is measured, the weight (g) of the powder PT contained in the cup is determined, and this is divided by the volume Vo to obtain the bulk density ( Calculate g / ml). Further, this measurement is repeated three times (n = 3) to calculate an average value of bulk density, and this average value is set as the bulk density of the production lot. Furthermore, the five bulk densities obtained for each production lot were averaged to determine the average bulk density before mixing. This average bulk density was used as the bulk density of Comparative Example 1, and was used as a standard (= 1.00) for obtaining the bulk density ratio.

次に、上述の実施例1〜4及び比較例2における混合後の粉粒体PTについて、上記と同様にして、かさ密度をそれぞれ測定し、比較例1のかさ密度を基準としたかさ密度比をそれぞれ求めた。かさ密度比が1.05以下のものを「良好」(表1中に○印で示す)、かさ密度比が1.05を越えるものを「不良」(表1中に×印で示す)と評価した。その結果を表1及び図2に示す。   Next, with respect to the powder particles PT after mixing in Examples 1 to 4 and Comparative Example 2 described above, the bulk density is measured in the same manner as above, and the bulk density ratio based on the bulk density of Comparative Example 1 is measured. I asked for each. Those with a bulk density ratio of 1.05 or less are "good" (indicated by ○ in Table 1), and those with a bulk density ratio exceeding 1.05 are "poor" (indicated by a × mark in Table 1). evaluated. The results are shown in Table 1 and FIG.

また、実施例1〜4及び比較例2における混合後の粉粒体PTについて、混合度(混ざり具合)の良否判定をそれぞれ行った。粉粒体PTは、製造ロット毎に下記の固形分率が異なるため、混合が不十分な粉粒体PTほど、そこから採取したサンプルの固形分率が大きくばらつく。従って、混合後の粉粒体PTについて、固形分率のバラツキを調査すれば、混合度が良好か否かを判断できる。具体的には、混合後の粉粒体PTを約2g採取し、160℃で30分間乾燥させる。乾燥前後でそれぞれ粉粒体PTの重量を測定して、下記の式により固形分率を算出した。
固形分率(%)=(乾燥後の粉粒体の重量)/(乾燥前の粉粒体の重量)×100
Moreover, about the granular material PT after the mixing in Examples 1-4 and the comparative example 2, the quality determination of the mixing degree (the degree of mixing) was performed, respectively. Since the granular material PT differs in the following solid content rate for every production lot, the solid content ratio of the sample extract | collected from it is disperse | distributed to a large extent, as the granular material PT in which mixing is inadequate. Therefore, it is possible to judge whether the degree of mixing is good or not by examining the variation of the solid fraction for the granular material PT after mixing. Specifically, about 2 g of the mixed powder PT is collected and dried at 160 ° C. for 30 minutes. The weight of the powder particles PT was measured before and after drying, and the solid fraction was calculated by the following equation.
Solid content rate (%) = (weight of powder and granule after drying) / (weight of powder and granule before drying) × 100

この固形分率の測定を、実施例1〜4及び比較例2の混合後の粉粒体PTについて、それぞれ10回ずつサンプリングして行って、固形分率のバラツキ(標準偏差σ)をそれぞれ求めた。そして、標準偏差σがσ≦0.3である場合を、「良好」(表1中に○印で示す)、0.3<σ≦0.7である場合を、「可」(表1中に△印で示す)、σ>0.7である場合を、「不良」(表1中に×印で示す)と判定した。その結果を表1に示す。   The measurement of the solid fraction is carried out by sampling 10 times each for the powder particles PT after the mixing in Examples 1 to 4 and Comparative Example 2 to determine the variation (standard deviation σ) of the solid fraction. The Then, when the standard deviation σ is σ ≦ 0.3, “good” (indicated by ○ in Table 1), and when 0.3 <σ ≦ 0.7, “good” (Table 1) The case where it was shown by (triangle | delta mark) and (sigma)> 0.7 was judged as "defect" (it shows by * mark in Table 1) in it. The results are shown in Table 1.

表1及び図2から判るように、比較例2の混合後の粉粒体PTは、かさ密度比が判定基準(1.05)を大きく越えて「不良」であるのに対し、実施例1〜4の混合後の粉粒体PTは、いずれも、かさ密度比が判定基準(1.05)を下回り「良好」であることが判る。
その理由は、比較例2では、混合時に攪拌羽根により生じる剪断力によって、粉粒体PTが大きく圧縮され易く、粉粒体PT同士が凝集し易い。このため、混合後の粉粒体PTで、かさ密度が高くなったと考えられる。これに対し、実施例1〜4では、混合時に粉粒体PTに攪拌羽根などによる大きな機械的応力が掛からない。このため、混合時に粉粒体PTが圧縮され難く、粉粒体PT同士が凝集し難いと考えられる。
また、表1から判るように、実施例1では、粉粒体PTの混合度が「可」であり、それ以外の比較例2及び実施例2〜4では、粉粒体PTの混合度が「良好」であった。この結果から、前述の混合装置1を用いて粉粒体PTを混合した場合でも、粉粒体PTを均一に混合できることが判る。
As can be seen from Table 1 and FIG. 2, in the powder and granular material PT after mixing in Comparative Example 2, the bulk density ratio is “defective” while largely exceeding the determination criterion (1.05), while Example 1 It is understood that the bulk density ratio of the powder particles PT after mixing of -4 is lower than the judgment standard (1.05) and "good".
The reason is that in Comparative Example 2, the powder particles PT are easily compressed largely by the shear force generated by the stirring blade at the time of mixing, and the powder particles PT are easily aggregated. For this reason, it is thought that bulk density became high in the granular material PT after mixing. On the other hand, in Examples 1 to 4, large mechanical stress due to the stirring blade or the like is not applied to the powder particles PT at the time of mixing. For this reason, it is considered that the powder particles PT are difficult to be compressed at the time of mixing, and the powder particles PT do not easily aggregate.
Further, as can be seen from Table 1, in Example 1, the mixing degree of the powder particles PT is “OK”, and in Comparative Example 2 and Examples 2 to 4 other than that, the mixing degree of the powder particles PT is "It was good. From this result, it can be seen that, even when the granular material PT is mixed using the above-mentioned mixing apparatus 1, the granular material PT can be mixed uniformly.

以上で説明したように、粉粒体の混合装置1によれば、複数のホッパー21(21a,21b,21c,21d,21d)から漏斗10の斜面11mにそれぞれ排出された粉粒体PT(PT1,PT2,PT3,PT4,PT5)は、斜面11m上を滑り落ちて中心の排出口11hから排出される際には、混合された状態となる。この混合装置1では、攪拌羽根などの機械的応力によって粉粒体PTが圧縮・凝集することがない。このため、混合時に粉粒体PTが圧縮・凝集するのを抑制した、混合した粉粒体PTを得ることができる。   As described above, according to the mixing apparatus 1 for powder and granular material, the powder and particulate material PT (PT1) discharged from the plurality of hoppers 21 (21a, 21b, 21c, 21d, 21d) to the slope 11m of the funnel 10 respectively. , PT2, PT3, PT4, and PT5 are mixed when sliding down on the slope 11m and being discharged from the central outlet 11h. In the mixing device 1, the powder particles PT are not compressed or aggregated by mechanical stress of a stirring blade or the like. For this reason, it is possible to obtain a mixed powder PT which suppresses compression and aggregation of the powder PT during mixing.

更に本実施形態では、複数のホッパー21a,21b,21c,21d,21eが漏斗10の軸線AX周りに等距離かつ等角度でそれぞれ配置されているので、各々のホッパー21a,21b,21c,21d,21eから排出された粉粒体PT1,PT2,PT3,PT4,PT5は、漏斗10の斜面11mの同じ高さの部位に落下する。このため、各々のホッパー21a,21b,21c,21d,21eから排出された粉粒体PT1,PT2,PT3,PT4,PT5を、より均一に混合できる。
また本実施形態では、漏斗10を固定し、回転機構30はホッパー群20を回転させるので、漏斗10とホッパー群20を共に回転させる場合に比べて、回転機構30を簡単な構成とすることができる。
Furthermore, in the present embodiment, since the plurality of hoppers 21a, 21b, 21c, 21d and 21e are disposed equidistantly and equiangularly around the axis AX of the funnel 10, each hopper 21a, 21b, 21c, 21d, The powder particles PT1, PT2, PT3, PT4, and PT5 discharged from 21e fall on the same height of the slope 11m of the funnel 10. For this reason, the powder particles PT1, PT2, PT3, PT4, PT5 discharged from the hoppers 21a, 21b, 21c, 21d, 21e can be mixed more uniformly.
Further, in the present embodiment, since the funnel 10 is fixed and the rotation mechanism 30 rotates the hopper group 20, the rotation mechanism 30 can be simplified in configuration as compared with the case where the funnel 10 and the hopper group 20 are rotated together. it can.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、漏斗10を固定する一方、ホッパー群20を軸線AX周りに回転させることで、漏斗10に対しホッパー群20を相対的に回転させたが、これに限られない。ホッパー群20を固定し、漏斗10をその軸線AX周りに回転させる構成としてもよい。また、漏斗10及びホッパー群20を別々に回転させ、漏斗10及びホッパー群20の回転速度を異ならせて同方向に回転させたり、或いは、漏斗10とホッパー群20を逆方向に回転させる構成としてもよい。
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be appropriately modified and applied without departing from the scope of the invention.
For example, in the embodiment, while the funnel 10 is fixed, while rotating the hopper group 20 around the axis AX, the hopper group 20 is rotated relative to the funnel 10, but is not limited thereto. The hopper group 20 may be fixed and the funnel 10 may be rotated about its axis AX. Further, the funnel 10 and the hopper group 20 are separately rotated, and the rotational speeds of the funnel 10 and the hopper group 20 are made different and rotated in the same direction, or the funnel 10 and the hopper group 20 are rotated in the opposite direction. It is also good.

また、実施形態では、漏斗10の斜面11mを凹凸のない斜面としたが、これに限られない。例えば、漏斗10の斜面11mに、軸線AXを中心としたスパイラル状に凹溝を設けることもできる。このような凹溝を設けると、より効果的に粉粒体PTを混合できる。
また、実施形態では、粉粒体PTとして、リチウムイオン二次電池の正極活物質層の製造に用いる活物質造粒体を例示したが、これに限られない。例えば、他の種類の電池の正極活物質層の製造に用いる活物質造粒体や、電池の負極の負極活物質層の製造に用いる活物質造粒体に適用してもよいし、電池以外に用いる粉粒体に適用することもできる。
Further, in the embodiment, although the slope 11m of the funnel 10 is a slope without unevenness, it is not limited thereto. For example, a concave groove may be provided on the slope 11m of the funnel 10 in a spiral shape around the axis AX. When such a recessed groove is provided, the powder particles PT can be mixed more effectively.
Further, in the embodiment, the active material granulated body used in the production of the positive electrode active material layer of the lithium ion secondary battery is exemplified as the particulate material PT, but the present invention is not limited thereto. For example, the present invention may be applied to active material granules used for producing positive electrode active material layers of other types of batteries, and active material granules used for producing negative electrode active material layers of battery negative electrodes, or other than batteries It can also be applied to granular materials used in

1 粉粒体の混合装置
10 漏斗
11 斜面部
11h 排出口
11m 斜面
20 ホッパー群
21,21a,21b,21c,21d,21e ホッパー
30 回転機構
40 容器
PT,PT1,PT2,PT3,PT4,PT5 粉粒体(活物質造粒体)
AX 軸線
AS 上方
AT 下方
DESCRIPTION OF SYMBOLS 1 Mixing apparatus of granular material 10 Funnel 11 Slope part 11 h Discharge port 11 m Slope 20 Hopper group 21, 21a, 21b, 21c, 21d Hopper 30 Rotation mechanism 40 Container PT, PT1, PT2, PT3, PT4, PT5 Powder grain Body (active material granules)
AX Axis AS Above AT Below

Claims (1)

粉粒体を混合する粉粒体の混合装置であって、
逆円錐台状の斜面をなし、中心に排出口を含む斜面部を有する漏斗と、
上記漏斗の上方に配置され、上記粉粒体を貯留し、上記漏斗の上記斜面に向けて上記粉粒体をそれぞれ排出する複数のホッパーからなるホッパー群と、
上記漏斗に対し上記ホッパー群を、上記漏斗の軸線周りに相対的に回転させる回転機構と、を備える
粉粒体の混合装置。
It is a mixing apparatus of powdery particles which mix powdery particles,
A funnel having an inverted frusto-conical slope and having a slope including an outlet at the center,
A hopper group comprising a plurality of hoppers disposed above the funnel for storing the particles and discharging the particles toward the slopes of the funnel;
And a rotating mechanism for relatively rotating the hopper group relative to the funnel about the axis of the funnel.
JP2015235136A 2015-12-01 2015-12-01 Granule mixing device Active JP6508018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235136A JP6508018B2 (en) 2015-12-01 2015-12-01 Granule mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235136A JP6508018B2 (en) 2015-12-01 2015-12-01 Granule mixing device

Publications (2)

Publication Number Publication Date
JP2017100078A JP2017100078A (en) 2017-06-08
JP6508018B2 true JP6508018B2 (en) 2019-05-08

Family

ID=59015282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235136A Active JP6508018B2 (en) 2015-12-01 2015-12-01 Granule mixing device

Country Status (1)

Country Link
JP (1) JP6508018B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738613A (en) * 2019-01-15 2019-05-10 中国矿业大学(北京) A kind of automatically generating device and its test method of different ratio sand-pebble layer
CN115782028B (en) * 2022-11-21 2023-06-06 浙江创富新材料有限公司 Banburying device with high mixing efficiency and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514537B2 (en) * 1972-02-21 1976-02-12
JPS5033158B2 (en) * 1972-05-01 1975-10-28
JPS5850532B2 (en) * 1980-02-04 1983-11-11 山本機械株式会社 Powder mixing equipment
US4453832A (en) * 1981-10-26 1984-06-12 Schumacher Heinz O Apparatus for trouble-free and continuous charging of extractors with extraction feedstock to be treated and with extractant or solvent

Also Published As

Publication number Publication date
JP2017100078A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CN1084056C (en) Method of producing cathode mixture for batteries
CN102067363B (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
Bockholt et al. Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes
CN1249833C (en) Positive electrode active material and nonaqueous electrolyte bettery
JP6508018B2 (en) Granule mixing device
US20170282134A1 (en) Apparatus for making battery slurry
JP2007280723A (en) Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
CN101208819A (en) Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
US20150171421A1 (en) Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
US8998482B2 (en) Agitation apparatus
US20170288204A1 (en) Method for making battery slurry
JP2016103433A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP5813910B2 (en) Method for producing positive electrode for lithium secondary battery and lithium secondary battery
JP2015032554A (en) Method of manufacturing negative electrode of lithium ion secondary battery
JP2009289601A (en) Electrode plate, secondary battery, and method of manufacturing electrode plate
Hoffmann et al. Influence of the Mixing and Dispersing Process on the Slurry Properties and the Microstructure and Performance of Ultrathick Cathodes for Lithium‐Ion Batteries
JP2010044871A (en) Method of manufacturing slurry for electrode mixture
JP2020136093A (en) Positive electrode mixture for nonaqueous electrolyte secondary battery, positive electrode, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP2018041619A (en) Method for manufacturing electrode
JP5062534B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
KR20210006368A (en) Battery paste mixer and how to make battery paste
JP6790882B2 (en) Manufacturing method of positive electrode for lithium ion secondary battery
CN107195972B (en) The manufacturing method of lithium ion secondary battery
JP6744569B2 (en) Method for producing slurry for negative electrode of non-aqueous electrolyte secondary battery and slurry for negative electrode of non-aqueous electrolyte secondary battery
JPH04264359A (en) Manufacture of battery positive electrode compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6508018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151