JP6507445B2 - Method for detecting and quantifying proteins - Google Patents

Method for detecting and quantifying proteins Download PDF

Info

Publication number
JP6507445B2
JP6507445B2 JP2015066795A JP2015066795A JP6507445B2 JP 6507445 B2 JP6507445 B2 JP 6507445B2 JP 2015066795 A JP2015066795 A JP 2015066795A JP 2015066795 A JP2015066795 A JP 2015066795A JP 6507445 B2 JP6507445 B2 JP 6507445B2
Authority
JP
Japan
Prior art keywords
protein
extract
solution
surfactant
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015066795A
Other languages
Japanese (ja)
Other versions
JP2016186458A (en
Inventor
光正 渡辺
光正 渡辺
政智 末吉
政智 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicca Chemical Co Ltd
Original Assignee
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicca Chemical Co Ltd filed Critical Nicca Chemical Co Ltd
Priority to JP2015066795A priority Critical patent/JP6507445B2/en
Publication of JP2016186458A publication Critical patent/JP2016186458A/en
Application granted granted Critical
Publication of JP6507445B2 publication Critical patent/JP6507445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蛋白質の検出定量方法に関する。   The present invention relates to a method for detecting and quantifying proteins.

近年、院内感染の問題が大きくなってきており、感染リスクを低減させることが医療機関においての必須課題となっている。
一般的に医療器具は高価であるため、可能な限り洗浄リサイクルが行われる。感染因子となる細菌やウイルスが存在している可能性のある血液、体液、組織片等の蛋白質汚れが付着した医療器具は、通常、感染リスクを低減させるため、洗浄(第1工程)と消毒(第2工程)の2工程を経て洗浄リサイクルが行われる。
In recent years, the problem of nosocomial infection has been increasing, and reducing the risk of infection has become an essential issue in medical institutions.
Since medical instruments are generally expensive, cleaning and recycling is performed as much as possible. Medical devices to which protein stains such as blood, body fluids, tissue fragments, etc., in which bacteria or viruses that may be infectious agents may be present, are usually washed (step 1) and disinfected to reduce the risk of infection. Cleaning and recycling are performed through the two steps of (second step).

洗浄(第1工程)の方法には、浸漬洗浄、用手洗浄、及び超音波洗浄機やウォッシャーディスインフェクター等による機械洗浄などがある。また、内視鏡スコープのような医療器具の構造に応じた内視鏡専用洗浄機等も使用されている。
しかし、上記のような洗浄を行っても、医療器具に血液や体液、あるいは組織片等の蛋白質汚れが残存している場合がある。その場合、消毒(第2工程)の効果が十分に発揮されず感染の可能性が高くなる。このため洗浄後の医療器具の清浄度を確認する必要がある。
Examples of the method of cleaning (first step) include immersion cleaning, manual cleaning, and machine cleaning using an ultrasonic cleaner, washer disinfector, or the like. In addition, endoscope-specific cleaning machines and the like according to the structure of a medical instrument such as an endoscope are also used.
However, even after the above cleaning, there may be cases where protein stains such as blood, body fluid, or tissue fragments remain in the medical device. In that case, the effect of the disinfection (the second step) is not sufficiently exerted and the possibility of infection is increased. For this reason, it is necessary to confirm the cleanliness of the medical device after cleaning.

洗浄後の医療器具の清浄度を確認する方法として、例えば特許文献1には、アルカリ性溶液に医療器具を浸漬して、蛋白質を抽出する工程と、この蛋白質抽出工程で得られた抽出液と、蛋白質染色剤とを接触させる工程とを有する蛋白質の検出方法が開示されている。この検出方法では、アルカリ性溶液として水酸化ナトリウム及び/又は水酸化カリウムの溶液を用い、アルカリ性水溶液の濃度が0.05〜2Nであり、蛋白質抽出工程が25〜90℃において行われ、蛋白質染色剤としてクーマシーブリリアントブルーG−250を用いている。   As a method of confirming the cleanliness of the medical device after washing, for example, in Patent Document 1, there is a step of immersing the medical device in an alkaline solution to extract a protein, and an extract obtained in the protein extraction step; There is disclosed a method of detecting a protein comprising the steps of contacting with a protein stain. In this detection method, a solution of sodium hydroxide and / or potassium hydroxide is used as the alkaline solution, the concentration of the alkaline aqueous solution is 0.05 to 2 N, and the protein extraction step is performed at 25 to 90 ° C. As coomassie brilliant blue G-250 is used.

特許文献2には、医療器具を純水、あるいは濃度が20mM以下のアルカリ性溶液である抽出液に浸漬させるとともに、超音波を照射して蛋白質を抽出する工程と、超音波照射によって得た蛋白質抽出液と蛍光試薬とを反応させる反応工程と、反応させた溶液に励起光を照射して蛍光量を測定する蛍光測定工程と、前記蛍光測定工程にて測定された蛍光量に基づいて、前記蛋白質抽出液の濃度を算出する定量工程とを有する蛋白質の検出方法が開示されている。   In Patent Document 2, a medical device is immersed in an extract solution which is pure water or an alkaline solution having a concentration of 20 mM or less, and a process of extracting a protein by irradiating an ultrasonic wave and extracting a protein obtained by the ultrasonic wave irradiation The step of reacting the liquid and the fluorescent reagent, the step of measuring the amount of fluorescence by irradiating the reacted solution with excitation light, and the step of measuring the amount of fluorescence, and based on the amount of fluorescence measured in the step of measuring fluorescence, There is disclosed a method of detecting a protein, comprising the steps of: determining a concentration of the extract solution.

特開2006−145271号公報Unexamined-Japanese-Patent No. 2006-145271 特開2012−63298号公報JP 2012-63298 A

しかしながら、特許文献1に記載の方法の場合、アルカリ性溶液は蛋白質汚れの抽出力が弱く、またアルカリ性溶液は残留蛋白質の変性を引き起こし医療器具への強固な付着を促進するため、蛋白質汚れを更に抽出しにくくしたり、医療器具を腐食したりするなどの問題があった。また物理的刺激を与えない浸漬方法では抽出力が弱いという問題があった。更に蛋白質染色剤のクーマシーブリリアントブルーG−250は蛋白質の種類によって着色に差が生じるため、蛋白質汚れ中の蛋白質の種類や割合が異なると着色程度が異なり、蛋白質量を正確に測定できないという問題があった。またクーマシーブリリアントブルーG−250の着色は界面活性剤の影響を受けやすく、抽出液中に界面活性剤が含まれると正確な検出量が測定できない。そのため、蛋白質の抽出に有効な界面活性剤を抽出液に配合しにくいという問題があった。   However, in the case of the method described in Patent Document 1, the alkaline solution has a weak ability to extract protein stains, and the alkaline solution causes the remaining protein to be denatured to promote firm adhesion to a medical device, thereby further extracting the protein stains. Problems such as making it difficult to do so or corroding medical devices. Moreover, in the immersion method which does not give a physical stimulus, there existed a problem that extraction power was weak. Furthermore, since the color of coomassie brilliant blue G-250, which is a protein stain, varies depending on the type of protein, the degree of coloration varies depending on the type or ratio of protein in the protein stain, and the protein mass can not be measured accurately. was there. In addition, the color of coomassie brilliant blue G-250 is easily affected by the surfactant, and if the extract solution contains the surfactant, an accurate detection amount can not be measured. Therefore, there is a problem that it is difficult to incorporate a surfactant effective for protein extraction into the extract.

特許文献2に記載の方法の場合、純水あるいはアルカリ性溶液は浸透作用性や分散作用性が弱く、またアルカリ性溶液は残留蛋白質の変性を引き起こし医療器具への強固な付着を促進するため、蛋白質汚れを更に抽出しにくいという問題があった。またアルカリ性溶液は器具を腐食するという問題もあった。更に特許文献2に記載された蛍光試薬を使った検出方法は、定量範囲が極端に狭いことから抽出液の蛋白質量を定量範囲内に入るよう希釈等の煩雑な操作が必要になるという問題があった。更にアルカリ性物質を含め蛋白質以外の物質が前記蛍光試薬と反応することがあり、正確に蛋白質量を測定できないという問題があった。   In the case of the method described in Patent Document 2, pure water or an alkaline solution is weak in osmotic action or dispersive action, and an alkaline solution causes denaturation of residual protein to promote firm adhesion to a medical device, and thus protein stains. There is a problem that it is difficult to extract the There is also a problem that the alkaline solution corrodes the device. Further, the detection method using the fluorescent reagent described in Patent Document 2 has a problem that complicated operation such as dilution is required so that the protein mass of the extract solution falls within the quantitative range because the quantitative range is extremely narrow. there were. Furthermore, substances other than proteins, including alkaline substances, may react with the above-mentioned fluorescent reagent, resulting in the problem that the amount of protein can not be measured accurately.

本発明は上記事情に鑑みてなされたもので、検査対象物に付着している蛋白質を十分に抽出し、抽出した蛋白質を簡便に、かつ正確に検出定量する方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method of sufficiently extracting a protein attached to a test object and detecting the extracted protein conveniently and accurately. .

本発明は以下の態様を有する。
[1] 検査対象物に付着した蛋白質を検出定量する方法であって、前記検査対象物に界面活性剤を含む抽出液を接触させるとともに、物理的刺激操作を施して蛋白質抽出液を得る蛋白質抽出工程と、前記蛋白質抽出液をビシンコニン酸及び銅(II)を含む蛋白質検出液に接触させ、得られた接触液の吸光度を測定する蛋白質検出定量工程と、を有する、蛋白質の検出定量方法。
[2] 前記物理的刺激操作が超音波照射である、[1]に記載の蛋白質の検出定量方法。
[3] 前記検査対象物が使用後に洗浄を行った器具である、[1]又は[2]に記載の蛋白質の検出定量方法。
[4] 前記界面活性剤がアニオン界面活性剤、ノニオン界面活性剤、及び両性界面活性剤からなる群より選択される少なくとも一種である、[1]〜[3]のいずれか1つに記載の蛋白質の検出定量方法。
[5] 前記界面活性剤の濃度が前記抽出液100質量%中、0.01〜10質量%である、[1]〜[4]のいずれか1つに記載の蛋白質の検出定量方法。
[6] 前記蛋白質抽出工程において、物理的刺激操作を施す際の抽出液の温度が20〜70℃である、[1]〜[5]のいずれか1つに記載の蛋白質の検出定量方法。
The present invention has the following aspects.
[1] A method for detecting and quantifying a protein attached to an object to be examined, which comprises contacting an extract containing a surfactant with the object to be examined and performing a physical stimulation operation to obtain a protein extract A method for detecting and quantifying a protein, comprising the steps of: contacting the protein extract with a protein detection solution containing bicinchoninic acid and copper (II); and detecting and measuring the absorbance of the obtained contact solution.
[2] The method for detecting and quantifying a protein according to [1], wherein the physical stimulation operation is ultrasonic irradiation.
[3] The method for detecting and quantifying a protein according to [1] or [2], wherein the test object is a device that has been washed after use.
[4] The method according to any one of [1] to [3], wherein the surfactant is at least one selected from the group consisting of anionic surfactants, nonionic surfactants, and amphoteric surfactants. Method for detecting and quantifying proteins.
[5] The method for detecting and quantifying a protein according to any one of [1] to [4], wherein the concentration of the surfactant is 0.01 to 10% by mass in 100% by mass of the extract.
[6] The method for detecting and quantifying a protein according to any one of [1] to [5], wherein in the protein extraction step, the temperature of the extract when performing physical stimulation operation is 20 to 70 ° C.

本発明の蛋白質の検出定量方法によれば、検査対象物に付着している蛋白質を十分に抽出し、抽出した蛋白質を簡便に、かつ正確に検出定量できる。   According to the method for detecting and quantifying a protein of the present invention, the protein attached to the test object can be sufficiently extracted, and the extracted protein can be detected and quantified easily and accurately.

スライドグラス表面に擬似蛋白質汚染液を塗布した状態を示す平面図である。It is a top view which shows the state which apply | coated the pseudo | simulation protein contamination liquid on the slide glass surface. 実施例で用いた評価用器具を示す正面図である。It is a front view which shows the instrument for evaluation used in the Example.

以下、本発明を詳細に説明する。
本発明の蛋白質の検出定量方法は、検査対象物に付着した蛋白質を検出定量する方法であって、以下に示す蛋白質抽出工程と、蛋白質検出定量工程とを有する。
Hereinafter, the present invention will be described in detail.
The method for detecting and quantifying a protein according to the present invention is a method for detecting and quantifying a protein attached to a test subject, and has a protein extraction step and a protein detection and determination step described below.

<検査対象物>
検査対象物としては、蛋白質が付着している可能性があるものであれば特に限定されないが、器具、ベッド、机、壁、扉、ドアノブ、窓、床などが挙げられる。
器具としては、例えば、手術、検査、治療等に使用される医療用器具、食品の製造や加工に使用される食品用器具、及び使用後に洗浄を行った前記の器具、あるいは洗浄と消毒を行った前記の器具が挙げられる。これらの中でも、使用後に洗浄を行った器具が再利用可能か否か確認する、あるいは器具の洗浄方法の適正さを確認する、という観点から、使用後に洗浄、あるいは洗浄と消毒を行った器具が好適である。
医療用器具としては、具体的には、鑷子、鉗子、剪刀、吸引管、内視鏡、カテーテル、注射針等が挙げられる。
<Inspection object>
The object to be inspected is not particularly limited as long as it has a possibility that protein may be attached thereto, and examples include an appliance, a bed, a desk, a wall, a door, a door knob, a window, a floor and the like.
As instruments, for example, medical instruments used for surgery, examination, treatment, etc., instruments for food used for manufacturing and processing of food, and instruments as described above which were cleaned after use, or washed and disinfected. And the above-mentioned devices. Among these, from the viewpoint of confirming whether or not the instruments that have been cleaned after use can be reused, or from the viewpoint of confirming the appropriateness of the method of cleaning the instruments, the instruments that have been cleaned, cleaned or disinfected after use It is suitable.
Specific examples of the medical instrument include forceps, forceps, scissors, a suction tube, an endoscope, a catheter, an injection needle and the like.

<蛋白質抽出工程>
蛋白質抽出工程は、検査対象物に界面活性剤を含む抽出液を接触させるとともに、物理的刺激操作を施して蛋白質抽出液を得る工程である。
検査対象物が器具の場合、蛋白質抽出工程は、例えば、器具を抽出用の容器に設置した後、器具の全体、あるいは器具の蛋白質付着部分に対し漏れなく接触できる量の抽出液を加え、それに物理的刺激を与えることで行うことができる。
<Protein extraction process>
The protein extraction step is a step of bringing a test object into contact with an extract containing a surfactant and performing a physical stimulation operation to obtain a protein extract.
When the test object is a device, for example, after the device is placed in a container for extraction, the protein extraction step adds an amount of an extract solution that can contact the entire device or the protein-adhered portion of the device without leakage, It can be done by giving a physical stimulus.

蛋白質抽出工程で使用する抽出用の容器としては特に限定されず、検出対象となる器具の形状、大きさ等に応じて成型された専用の容器を用いてもよいし、器具の形状、大きさ等に関係なく器具の全体、あるいは器具の蛋白質付着部が収納できる、箱状、管状、袋状等の容器を用いてもよい。抽出液の使用量を少なくすることが可能となり、その結果抽出される蛋白質の濃度を濃くすることができ、微量な蛋白質量も検出可能となる観点から、抽出用の容器としては、器具の形状、大きさ等に応じて成型された専用の容器を用いることが好ましい。
抽出用の容器の材質としては特に限定されるものではないが、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、ポリ塩化ビニル、ガラス、金属類等が挙げられる。
The container for extraction used in the protein extraction step is not particularly limited, and a dedicated container molded according to the shape, size, etc. of the device to be detected may be used, or the shape, size of the device A box-like, tubular, bag-like or the like container may be used which can accommodate the entire device or the protein-adhesion portion of the device regardless of the case etc. It is possible to reduce the amount of use of the extract solution, as a result the concentration of the extracted protein can be increased, and from the viewpoint that a trace amount of protein can also be detected, the shape of the device as an extraction container It is preferable to use a dedicated container molded according to the size and the like.
Although it does not specifically limit as a material of the container for extraction, Polyethylene, a polypropylene, polyester, nylon, polyvinyl chloride, glass, metals etc. are mentioned.

検査対象物がベッドや壁など、抽出用の容器に設置することが困難である場合、蛋白質抽出工程は、例えば抽出液を含んだ綿棒あるいは市販のスワブ製品等の拭き取り器具で、物理的刺激として検査対象物表面の拭き取り操作を行い、拭き取りを終えた拭き取り器具を該拭き取り器具全体が接触できる量の抽出液が入った抽出用の容器に設置し、抽出用の容器を揉むなどして行うことができる。   When it is difficult to place the test object in a container for extraction, such as a bed or a wall, the protein extraction step is a physical stimulus such as a swab with a liquid extract or a swab product such as a commercially available swab product. Perform the wiping operation on the surface of the inspection object, install the wiping device that has been wiped out in a container for extraction containing an amount of extractable liquid that the whole wiping device can contact, and wipe the container for extraction etc. Can.

蛋白質抽出工程で使用する抽出液は、界面活性剤を含む。
従来、抽出液としては水やアルカリ性溶液を用いていた。しかし、水やアルカリ性溶液は浸透作用性や分散作用性等が弱く、またアルカリ性溶液は蛋白質の変性を引き起こすため、水やアルカリ性溶液は機械洗浄等を行った後に残留する強固な蛋白質汚れを抽出するには不十分であった。
一方、界面活性剤は、高い湿潤力、分散力、浸透力等を有し、機械洗浄等を行った後に残留する強固な蛋白質汚れを抽出するにも有効である。
The extract used in the protein extraction step contains a surfactant.
Conventionally, water or an alkaline solution was used as an extract. However, water and alkaline solutions have weak permeability and dispersivity, etc., and alkaline solutions cause denaturation of proteins, so water and alkaline solutions extract strong protein stains remaining after machine cleaning etc. Was inadequate for
On the other hand, surfactants have high wetting power, dispersing power, penetrating power and the like, and are effective in extracting strong protein stains remaining after machine cleaning and the like.

界面活性剤としては、特に蛋白質汚れに対して強い洗浄性を有し、検査対象物に対して腐食の影響を与えにくいものであれば特に限定されず、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、両性界面活性剤が挙げられる。これらは1種又は2種以上を使用することができる。これらの中でも、蛋白質の抽出効率が高く、検査対象物を腐食しにくい観点から、アニオン界面活性剤、ノニオン界面活性剤、両性界面活性剤が好ましく、アニオン界面活性剤、ノニオン界面活性剤がより好ましい。   The surfactant is not particularly limited as long as it has strong detergency particularly against protein stains and is hardly affected by corrosion on the test object, and anionic surfactant, cationic surfactant, Nonionic surfactants and amphoteric surfactants can be mentioned. One or more of these can be used. Among these, anionic surfactants, nonionic surfactants, and amphoteric surfactants are preferable, and anionic surfactants and nonionic surfactants are more preferable, from the viewpoint of high protein extraction efficiency and less corrosion of the test object. .

アニオン界面活性剤としては特に限定はなく、例えば、炭素数10〜22の石鹸、炭素数14〜24のアルキルベンゼンスルホン酸塩、炭素数10〜22の高級アルコール硫酸エステル塩、アルキル基の炭素数10〜22でありポリオキシエチレン基のオキシエチレン単位の繰り返し数が1〜10のポリオキシエチレンアルキルエーテル硫酸塩、炭素数10〜22のα−スルホ脂肪酸エステル、炭素数8〜18のα−オレフィンスルホン酸塩、炭素数10〜22のアルカンスルホン酸塩、炭素数10〜22のモノアルキルリン酸エステル塩等が挙げられる。これらの中でも、蛋白質の抽出効率が高く、検査対象物を腐食しにくい観点から、炭素数10〜22の石鹸、炭素数14〜24のアルキルベンゼンスルホン酸塩、炭素数10〜22の高級アルコール硫酸エステル塩、アルキル基の炭素数10〜22でありポリオキシエチレン基のオキシエチレン単位の繰り返し数が1〜10のポリオキシエチレンアルキルエーテル硫酸塩、炭素数8〜18のα−オレフィンスルホン酸塩、炭素数10〜22のアルカンスルホン酸塩が好ましく、炭素数10〜22の高級アルコール硫酸エステル塩、炭素数8〜18のα−オレフィンスルホン酸塩、炭素数10〜22のアルカンスルホン酸塩がより好ましく、炭素数10〜22の高級アルコール硫酸エステル塩が特に好ましい。これらは1種又は2種以上を使用することができる。   The anionic surfactant is not particularly limited, and examples thereof include soaps having 10 to 22 carbon atoms, alkyl benzene sulfonates having 14 to 24 carbon atoms, higher alcohol sulfate esters having 10 to 22 carbon atoms, and 10 carbon atoms of an alkyl group. -22, polyoxyethylene alkyl ether sulfate having 1 to 10 repeating number of oxyethylene units of polyoxyethylene group, 1 to 22 carbon α-sulfo fatty acid ester, 8 to 18 carbon α-olefin sulfone An acid salt, a C10-C22 alkanesulfonic acid salt, a C10-C22 monoalkyl phosphoric acid ester salt etc. are mentioned. Among them, soaps having 10 to 22 carbon atoms, alkyl benzene sulfonates having 14 to 24 carbon atoms, and higher alcohol sulfuric acid esters having 10 to 22 carbon atoms from the viewpoint of high protein extraction efficiency and low corrosion resistance of the test object. A salt, an alkyl group having 10 to 22 carbon atoms, and a polyoxyethylene alkyl ether sulfate having a repeating number of 1 to 10 of a polyoxyethylene oxyethylene unit, an α-olefin sulfonate having 8 to 18 carbon atoms, carbon Alkanesulfonates having a number of 10 to 22 are preferable, and higher alcohol sulfates having 10 to 22 carbon atoms, α-olefin sulfonates having 8 to 18 carbon atoms, and alkanesulfonates having 10 to 22 carbons are more preferable. And higher alcohol sulfuric ester salts having 10 to 22 carbon atoms are particularly preferable. One or more of these can be used.

両性界面活性剤としては特に限定はなく、例えば、アルキルアミノ脂肪酸塩、アルキルベタイン、アルキルアミンオキシド等が挙げられる。これらは1種又は2種以上を使用することができる。   The amphoteric surfactant is not particularly limited, and examples thereof include alkylamino fatty acid salts, alkyl betaines, alkylamine oxides and the like. One or more of these can be used.

ノニオン界面活性剤としては特に限定はなく、例えば、高級アルコールアルキレンオキサイド付加物、アルキルフェノールアルキレンオキサイド付加物、脂肪酸アルキレンオキサイド付加物、多価アルコール脂肪酸エステルアルキレンオキサイド付加物、高級アルキルアミンアルキレンオキサイド付加物、脂肪酸アミドアルキレンオキサイド付加物、ポリオキシプロピレンのアルキレンオキサイド付加物のポリアルキレングリコール型;グリセロール脂肪酸エステル、ペンタエリスリトール脂肪酸エステル、ソルビトール脂肪酸エステル、ショ糖脂肪酸エステルの多価アルコール型等が挙げられる。ここで述べた高級アルコールは通常炭素数8〜22の直鎖又は分岐の不飽和又は飽和の高級アルコールである。また、アルキルフェノールは通常炭素数6〜22の直鎖又は分岐の不飽和又は飽和のアルキルフェノールである。また、脂肪酸は通常炭素数10〜22の不飽和又は飽和の脂肪酸である。また、多価アルコールは通常炭素数3〜12の多価アルコールである。また、高級アルキルアミンは通常炭素数8〜22の直鎖又は分岐の不飽和又は飽和の高級アルキルアミンである。アルキレンオキサイドは、具体的には、エチレンオキサイド、プロピレンオキサイド、1,2−、2,3−、1,3−および1,4−ブチレンオキサイドなどが挙げられ、エチレンオキサイド、プロピレンオキサイドが好ましい。また、アルキレンオキサイドは同一であっても異なっていてもよく、異なっている場合は、ブロック付加でもランダム付加でも交互付加でも構わない。アルキレンオキサイドの付加モル数は1〜80が好ましく、2〜60がより好ましく、5〜40が特に好ましい。これらの中でも、蛋白質の抽出効率が高く、検査対象物を腐食しにくい観点から、高級アルコールアルキレンオキサイド付加物、アルキルフェノールアルキレンオキサイド付加物、脂肪酸アルキレンオキサイド付加物、多価アルコール脂肪酸エステルアルキレンオキサイド付加物、高級アルキルアミンアルキレンオキサイド付加物、脂肪酸アミドアルキレンオキサイド付加物、ポリオキシプロピレンのアルキレンオキサイド付加物のポリアルキレングリコール型;グリセロール脂肪酸エステルが好ましく、高級アルコールアルキレンオキサイド付加物、アルキルフェノールアルキレンオキサイド付加物、脂肪酸アルキレンオキサイド付加物、多価アルコール脂肪酸エステルアルキレンオキサイド付加物、高級アルキルアミンアルキレンオキサイド付加物、脂肪酸アミドアルキレンオキサイド付加物がより好ましい。これらは1種又は2種以上を使用することができる。   The nonionic surfactant is not particularly limited. For example, higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, fatty acid alkylene oxide adducts, polyhydric alcohol fatty acid ester alkylene oxide adducts, higher alkylamine alkylene oxide adducts, Examples thereof include fatty acid amide alkylene oxide adducts, polyalkylene glycol types of alkylene oxide adducts of polyoxypropylene, glycerol fatty acid esters, pentaerythritol fatty acid esters, sorbitol fatty acid esters, polyhydric alcohol types of sucrose fatty acid esters, and the like. The higher alcohol mentioned here is usually a linear or branched unsaturated or saturated higher alcohol having 8 to 22 carbon atoms. The alkylphenol is usually a linear or branched unsaturated or saturated alkylphenol having 6 to 22 carbon atoms. The fatty acid is usually an unsaturated or saturated fatty acid having 10 to 22 carbon atoms. The polyhydric alcohol is usually a polyhydric alcohol having 3 to 12 carbon atoms. The higher alkylamine is usually a linear or branched unsaturated or saturated higher alkylamine having 8 to 22 carbon atoms. Specific examples of the alkylene oxide include ethylene oxide, propylene oxide, 1,2-, 2,3-, 1,3- and 1,4-butylene oxide, and ethylene oxide and propylene oxide are preferable. The alkylene oxides may be the same or different, and when they are different, block addition, random addition or alternation addition may be used. 1-80 are preferable, as for the addition mole number of alkylene oxide, 2-60 are more preferable, and 5-40 are especially preferable. Among these, higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, fatty acid alkylene oxide adducts, polyhydric alcohol fatty acid ester alkylene oxide adducts, from the viewpoint of high protein extraction efficiency and less corrosion of test objects. Higher alkylamine alkylene oxide adducts, fatty acid amide alkylene oxide adducts, polyalkylene glycol type of alkylene oxide adducts of polyoxypropylene; glycerol fatty acid esters are preferred, higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, fatty acid alkylene Oxide adducts, polyhydric alcohol fatty acid ester alkylene oxide adducts, higher alkylamine alkylene oxa De adducts, fatty acid amide alkylene oxide adducts are more preferred. One or more of these can be used.

界面活性剤の濃度は、蛋白質の抽出効率が高まり、経済的でもある観点から、抽出液100質量%中、0.01〜10質量%が好ましく、0.05〜5質量%がより好ましい。   The concentration of the surfactant is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass in 100% by mass of the extract, from the viewpoint of enhancing the extraction efficiency of protein and being economical.

界面活性剤を希釈する溶媒としては、水が好ましく、具体的には、水道水、イオン交換水、蒸留水、RO水等が挙げられる。これらは1種又は2種以上を使用することができる。   As a solvent for diluting the surfactant, water is preferable, and specifically, tap water, ion exchanged water, distilled water, RO water and the like can be mentioned. One or more of these can be used.

抽出液の使用量は、検出対象となる検査対象物の大きさ、表面積、使用状況等に応じて調節すればよく、特に限定されるものではない。   The amount of extraction liquid used may be adjusted according to the size, surface area, use condition, etc. of the test object to be detected, and is not particularly limited.

蛋白質抽出工程での物理的刺激操作としては特に限定されないが、超音波照射、手あるいは機械による振とう、ブラッシング、拭き取り等が挙げられる。これらの中でも、弾性振動波による物理的刺激効果による抽出効率向上の観点から、超音波照射が好ましい。
超音波照射する際の作動周波数は特に限定されるものではないが、蛋白質の抽出効率が高まる観点から、20〜1000kHzが好ましく、20〜100kHzがより好ましい。
超音波照射装置としては特に限定されるものではないが、ホーン型、定在波型等が挙げられる。
The physical stimulation operation in the protein extraction step is not particularly limited, but ultrasonic irradiation, shaking by hand or machine, brushing, wiping, etc. may be mentioned. Among these, ultrasonic irradiation is preferable from the viewpoint of improving the extraction efficiency by the physical stimulation effect by the elastic vibration wave.
The operating frequency at the time of ultrasonic irradiation is not particularly limited, but from the viewpoint of enhancing the extraction efficiency of protein, 20 to 1000 kHz is preferable, and 20 to 100 kHz is more preferable.
The ultrasonic wave irradiation apparatus is not particularly limited, and examples thereof include a horn type and a standing wave type.

物理的刺激操作を施す際の抽出液の温度は、蛋白質の抽出効率が高まる観点から、20〜70℃が好ましく、30〜60℃がより好ましい。
また、物理的刺激操作の時間は特に限定されるものではないが、蛋白質の抽出効率が高まり、経済的でもある観点から、1〜120分間が好ましく、5〜60分間がより好ましい。
The temperature of the extract at the time of performing the physical stimulation operation is preferably 20 to 70 ° C., and more preferably 30 to 60 ° C. from the viewpoint of enhancing the extraction efficiency of protein.
In addition, the time of the physical stimulation operation is not particularly limited, but it is preferably 1 to 120 minutes, and more preferably 5 to 60 minutes, from the viewpoint of enhancing protein extraction efficiency and being economical.

<蛋白質検出定量工程>
蛋白質検出定量工程は、蛋白質抽出工程で得られた蛋白質抽出液をビシンコニン酸及び銅(II)を含む蛋白質検出液に接触させ、得られた接触液の吸光度を測定する工程である。
以下、ビシンコニン酸及び銅(II)を含む蛋白質検出液を用いた蛋白質検出定量法を、「BCA法」という。
<Protein detection and quantification process>
The protein detection and determination step is a step of bringing the protein extract obtained in the protein extraction step into contact with a protein detection solution containing bicinchoninic acid and copper (II), and measuring the absorbance of the obtained contact solution.
Hereinafter, a method for detecting and quantifying proteins using a protein detection solution containing bicinchoninic acid and copper (II) is referred to as "BCA method".

BCA法は、アルカリ環境下で蛋白質が銅(II)を銅(I)に還元し、その銅(I)とビシンコニン酸が最大吸収波長562nmの青紫色に発色する錯体を形成することを利用している。この一連の反応は、蛋白質抽出液と蛋白質検出液とを、例えば30〜70℃で10〜60分間接触することで完結するため非常に簡便である。
また、BCA法は、界面活性剤の種類や濃度、アルカリの種類や濃度、及び蛋白質の種類の影響を受けにくく、正確に蛋白質量を測定できるという利点を有する。
The BCA method utilizes the fact that the protein reduces copper (II) to copper (I) in an alkaline environment, and that copper (I) and bicinchoninic acid form a complex that develops a blue-violet color with a maximum absorption wavelength of 562 nm. ing. This series of reactions is very simple because it is completed by bringing the protein extract and the protein detection solution into contact at, for example, 30 to 70 ° C. for 10 to 60 minutes.
In addition, the BCA method is less susceptible to the type and concentration of surfactant, the type and concentration of alkali, and the type of protein, and has the advantage of being able to accurately measure the amount of protein.

接触液の吸光度の測定には分光光度計を用い、銅(I)とビシンコニン酸が錯体を形成して発色する青紫色の最大吸収波長562nmにて測定する。そして、吸光度の測定結果に基づき、蛋白質量を定量する。
吸光度測定による蛋白質量の定量は、既知の濃度の蛋白質溶液に対する吸光度を用いて予め作成した検量線あるいは相関数式等を用いることにより、蛋白質量を定量するものである。蛋白質抽出液と蛋白質検出液との接触液の吸光度の値を、前記検量線あるいは相関数式に代入して蛋白質量を算出することができる。
前記検量線あるいは相関数式は、洗浄後の検査対象物に残った微量の蛋白質を検出定量することが可能であるように作成することが好ましく、蛋白質濃度が0〜200μg/mLの蛋白質溶液を使用して検量線あるいは相関数式を作成することが好ましい。こうして、検査対象物に付着している蛋白質を簡便に検出定量することができる。
The absorbance of the contact solution is measured using a spectrophotometer at a blue-violet maximum absorption wavelength of 562 nm where copper (I) and bicinchoninic acid form a complex to form a color. Then, based on the measurement result of absorbance, the amount of protein is quantified.
The determination of the amount of protein by the measurement of absorbance is to determine the amount of protein by using a calibration curve or a correlation equation prepared in advance using absorbance with respect to a protein solution having a known concentration. The protein mass can be calculated by substituting the value of the absorbance of the contact solution of the protein extract and the protein detection solution into the calibration curve or the correlation equation.
The calibration curve or correlation equation is preferably prepared so that a trace amount of protein remaining on the test object after washing can be detected and quantified, and a protein solution with a protein concentration of 0 to 200 μg / mL is used It is preferable to create a calibration curve or correlation equation. Thus, the protein attached to the test object can be simply detected and quantified.

なお、蛋白質抽出工程で得られた蛋白質抽出液は、使用する検量線あるいは相関数式の範囲に入るように、予め希釈や濃縮を行って蛋白質濃度を適宜調整してもよい。   The protein extract obtained in the protein extraction step may be diluted or concentrated in advance to adjust the protein concentration appropriately so that it falls within the range of the calibration curve or correlation equation to be used.

また、ビシンコニン酸及び銅(II)を含む蛋白質検出液としては、安定性に優れる観点から、ビシンコニン酸を含むアルカリ性溶液と、銅(II)を含む溶液の2液型の蛋白質検出液を用いることが好ましい。2液型の蛋白質検出液の具体例としては、表1に示すビシンコニン酸を含む試薬A溶液と、表2に示す銅(II)を含む試薬B溶液の2液型が挙げられる。   In addition, as a protein detection solution containing bicinchoninic acid and copper (II), from the viewpoint of excellent stability, use a two-component protein detection solution of an alkaline solution containing bicinchoninic acid and a solution containing copper (II). Is preferred. Specific examples of the two-component protein detection solution include a two-component type of reagent A solution containing bicinchoninic acid shown in Table 1 and a reagent B solution containing copper (II) shown in Table 2.

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

なお、ビシンコニン酸及び銅(II)を含む蛋白質検出液としては、市販のBCA法用蛋白質検出試薬を用いることができる。例えば、試薬A溶液としてはサーモフィッシャーサイエンティフィック株式会社製のPierceプロテオミクス関連製品「BCA Protein Assay Reagent A」等が挙げられ、試薬B溶液としてはサーモフィッシャーサイエンティフィック株式会社製のPierceプロテオミクス関連製品「BCA Protein Assay Reagent B」等が挙げられる。   As a protein detection solution containing bicinchoninic acid and copper (II), a commercially available protein detection reagent for BCA method can be used. For example, the reagent A solution includes Pierce proteomics related product "BCA Protein Assay Reagent A" manufactured by Thermo Fisher Scientific Co., Ltd., etc. As the reagent B solution, Pierce proteomics related product manufactured by Thermo Fisher Scientific Co., Ltd. "BCA Protein Assay Reagent B" etc. are mentioned.

<作用効果>
以上説明した本発明の蛋白質の検出定量方法は、界面活性剤を含む抽出液を用い、物理的刺激操作により検査対象物に付着した蛋白質を抽出し、これをBCA法により検出定量するので、検査対象物に付着している蛋白質を十分に抽出し、抽出した蛋白質を簡便に、かつ正確に検出定量できる。
<Function effect>
The method for detecting and quantifying a protein according to the present invention described above extracts a protein attached to an object to be examined by physical stimulation using a liquid extract containing a surfactant and detects and quantifies this by the BCA method. The protein attached to the object can be sufficiently extracted, and the extracted protein can be detected easily and accurately.

なお、本発明においては、検査対象物に付着した蛋白質を検出定量する場合において、前記抽出液と前記蛋白質検出液とを備えた検出定量キットとして供給することもできる。また、この検出定量キットには、蛋白質の抽出で用いる特定の容器、比色管、吸光度測定用の簡易分光光度計等の検出定量器具が備えられていてもよい。   In the present invention, when detecting and quantifying the protein attached to the test object, it can also be supplied as a detection and quantification kit comprising the extract and the protein detection solution. In addition, this detection and quantification kit may be equipped with a detection and measurement instrument such as a specific container used for protein extraction, a colorimetric tube, a simplified spectrophotometer for absorbance measurement, and the like.

以下に、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited by the following examples.

<評価用器具の作製>
ヘパリン添加羊血液(株式会社日本バイオテスト研究所製)と、イオン交換水にて濃度1質量%に調整した硫酸プロタミン(ナカライテスク株式会社製)溶液とを、ヘパリン添加羊血液:硫酸プロタミン溶液=10:1(体積比)となるように混合し、模擬蛋白質汚染液を調製した。
<Production of evaluation instruments>
Heparinized sheep blood (made by Japan Biotest Laboratories Co., Ltd.) and a protamine sulfate (made by Nacalai Tesque, Inc.) solution adjusted to a concentration of 1 mass% with ion-exchanged water, heparinized sheep blood: protamine sulfate solution = It mixed so that it might be set to 10: 1 (volume ratio), and simulated protein contamination liquid was prepared.

図1に示すように、スライドグラス(縦76mm×横25mm×厚さ1.3mm)11の表面に、一方の端部から5mmの隙間をあけて模擬蛋白質汚染液X50μLを25mm×25mmになるようにして塗布し、室温で24時間乾燥して擬似蛋白質汚染物が固着したスライドグラスを得た。
ついで、図2に示すように、スライドグラス11の模擬蛋白質汚染液Xが塗布された側の表面かつ他方の端部側にステンレス板(縦5mm×横25mm×厚さ1mm)12を置き、その上から擬似蛋白質汚染液を塗布していないスライドグラス13を載せた後、スライドグラス11、13の両端をクリップ14で挟んで固定し、評価用器具10を得た。
なお、BCA法にて測定したところ、擬似蛋白質汚染液50μL中には8350μgの蛋白質が含まれていた。
As shown in FIG. 1, a gap of 5 mm is created from one end on a surface of a slide glass (76 mm long × 25 mm wide × 1.3 mm thick) 11 so that 50 μL of a simulated protein contamination solution becomes 25 mm × 25 mm And dried for 24 hours at room temperature to obtain a slide glass to which the pseudo protein contaminants were fixed.
Next, as shown in FIG. 2, a stainless steel plate (5 mm long × 25 mm wide × 1 mm thick) 12 is placed on the surface of the slide glass 11 on the side coated with the simulated protein contaminated liquid X and the other end side After mounting the slide glass 13 to which the pseudo protein contamination liquid was not applied from above, both ends of the slide glasses 11 and 13 were sandwiched and fixed by the clip 14 to obtain an evaluation tool 10.
In addition, when it measured by BCA method, 8350 micrograms of protein were contained in 50 microliters of pseudo-protein contamination liquids.

<BCA法用の検量線の作成>
牛血清アルブミン溶液(サーモフィッシャーサイエンティフィック株式会社製)をイオン交換水で適宜希釈し各蛋白質濃度(0、0.25、0.5、1、5、50、100、150、200μg/mL)の希釈液を得た。
表1に示す試薬A溶液50mLと、表2に示す試薬B溶液1mLとを混合した蛋白質検出液2mLに、先に調製した各希釈液1mLを添加して攪拌した後、60℃で30分間反応させ、15℃で5分間放置して各接触液を得た。得られた各接触液の562nmにおける吸光度を分光光度計(株式会社パーキンエルマージャパン製、「Lambda650S」)にて測定し、各希釈液中の蛋白質濃度に対する各吸光度をプロットし、BCA法用の検量線を作成した。なお、蛋白質濃度0.25、0.5、1、5、50、100、150、200μg/mLの吸光度は直線状に得られた。
<Creation of calibration curve for BCA method>
A bovine serum albumin solution (manufactured by Thermo Fisher Scientific Co., Ltd.) is appropriately diluted with ion-exchanged water, and each protein concentration (0, 0.25, 0.5, 1, 5, 50, 100, 150, 200 μg / mL) Dilutions of
After adding 1 mL of each diluted solution prepared above to 2 mL of the protein detection solution prepared by mixing 50 mL of the reagent A solution shown in Table 1 and 1 mL of the reagent B solution shown in Table 2, it is reacted at 60 ° C. for 30 minutes And left for 5 minutes at 15 ° C. to obtain each contact solution. The absorbance at 562 nm of each contact solution obtained was measured with a spectrophotometer ("Lambda 650S" manufactured by PerkinElmer Japan Co., Ltd.), and each absorbance was plotted against the protein concentration in each diluted solution to calibrate the BCA method. I made a line. The absorbance at a protein concentration of 0.25, 0.5, 1, 5, 50, 100, 150, 200 μg / mL was obtained linearly.

<CBB法用の検量線の作成>
牛血清アルブミン溶液(サーモフィッシャーサイエンティフィック株式会社製)をイオン交換水で適宜希釈し各蛋白質濃度(0、0.25、0.5、1、2.5、5、25μg/mL)の希釈液を得た。
Coomassie Protein Assay Reagent(CBB試薬(サーモフィッシャーサイエンティフィック株式会社製))3mLに、先に調製した各希釈液1mLを添加して攪拌した後、25℃で20分間放置して各接触液を得た。得られた各接触液の595nmにおける吸光度を分光光度計(株式会社パーキンエルマージャパン製、「Lambda650S」)にて測定し、各希釈液中の蛋白質濃度に対する各吸光度をプロットし、CBB法用の検量線を作成した。なお、蛋白質濃度0、0.25、0.5、1、2.5、5、25μg/mLの吸光度は直線状に得られた。
<Creation of calibration curve for CBB method>
Bovine serum albumin solution (Thermo Fisher Scientific Co., Ltd.) is appropriately diluted with ion-exchanged water to dilute each protein concentration (0, 0.25, 0.5, 1, 2.5, 5, 25 μg / mL) I got a liquid.
1 mL of each dilution prepared above was added to 3 mL of Coomassie Protein Assay Reagent (CBB reagent (manufactured by Thermo Fisher Scientific Co., Ltd.)) and stirred, and then left at 25 ° C. for 20 minutes to obtain each contact solution. The The absorbance at 595 nm of each contact solution obtained was measured with a spectrophotometer ("Lambda 650S" manufactured by PerkinElmer Japan Co., Ltd.), and each absorbance was plotted against the protein concentration in each diluted solution to calibrate the CBB method. I made a line. The absorbance at a protein concentration of 0, 0.25, 0.5, 1, 2.5, 5, 25 μg / mL was obtained linearly.

「実施例1」
イオン交換水にドデシル硫酸ナトリウムを濃度が0.1質量%になるように溶解させ、抽出液を調製した。
別途、表1に示す試薬A溶液50mLと、表2に示す試薬B溶液1mLとを混合し、蛋白質検出液を調製した。
"Example 1"
Sodium dodecyl sulfate was dissolved in ion exchange water to a concentration of 0.1% by mass to prepare an extract.
Separately, 50 mL of the reagent A solution shown in Table 1 and 1 mL of the reagent B solution shown in Table 2 were mixed to prepare a protein detection solution.

200mLビーカーに抽出液を100mL入れ、そこに評価用器具を浸漬させ、超音波洗浄機(アズワン株式会社製、「ASU−10」)にて温度50℃で10分間超音波照射を行い、評価用器具に固着した擬似蛋白質汚染物を抽出して蛋白質抽出液を得た。
得られた蛋白質抽出液1mL(蛋白質抽出液に含まれる蛋白質量が200μg/mL以上の場合はイオン交換水で200μg/mL以下となるよう希釈した。)に蛋白質検出液2mLを加えて攪拌した後、60℃で30分間反応させ、更に15℃で5分間放置して接触液を得た。
得られた接触液の562nmにおける吸光度を分光光度計(株式会社パーキンエルマージャパン製、「Lambda650S」)にて測定し、BCA法用の検量線の数式に代入して抽出蛋白質量を算出した。また、下記式より抽出率を求めた。これらの結果を表3に示す。
抽出率(%)=100−[8350(μg)−抽出蛋白質量(μg)]×100/8350(μg)
Put 100 mL of extract in a 200 mL beaker, immerse the evaluation instrument in it, and apply ultrasonic wave irradiation at a temperature of 50 ° C for 10 minutes with an ultrasonic cleaner ("ASU-10" manufactured by As One Corporation) for evaluation A protein extract was obtained by extracting a pseudoprotein contaminant fixed to the device.
After adding 2 mL of the protein detection solution to 1 mL of the obtained protein extract (diluted with ion exchanged water to be 200 μg / mL or less if the protein content in the protein extract is 200 μg / mL or more) and stirring The mixture was allowed to react at 60 ° C. for 30 minutes and then left at 15 ° C. for 5 minutes to obtain a contact solution.
The absorbance at 562 nm of the obtained contact solution was measured with a spectrophotometer ("Lambda 650S" manufactured by PerkinElmer Japan Co., Ltd.), and substituted into the equation of the calibration curve for the BCA method to calculate the amount of protein extracted. Moreover, the extraction rate was calculated | required from the following formula. The results are shown in Table 3.
Extraction ratio (%) = 100- [8350 (μg) -extracted protein mass (μg)] × 100/8350 (μg)

「実施例2〜12、比較例1〜3」
表3〜5に示す組成の抽出液を用いた以外は、実施例1と同様の処理を行った。結果を表3〜5に示す。
"Examples 2 to 12 and Comparative Examples 1 to 3"
The same treatment as in Example 1 was performed except that the extract having the composition shown in Tables 3 to 5 was used. The results are shown in Tables 3-5.

「比較例4〜8」
表6に示す組成の抽出液を用い、該抽出液100mLが入った200mLビーカーに評価用器具を浸漬し、温度50℃で10分間放置し、評価用器具に固着した擬似蛋白質汚染物を抽出して蛋白質抽出液を得た。
得られた蛋白質抽出液の蛋白質検出は実施例1と同様の処理を行った。結果を表6に示す。
"Comparative Examples 4 to 8"
Using the extract of the composition shown in Table 6, immerse the evaluation device in a 200 mL beaker containing 100 mL of the extract and leave it for 10 minutes at a temperature of 50 ° C. to extract the pseudoprotein contamination fixed on the evaluation device The protein extract was obtained.
The protein detection of the obtained protein extract was performed in the same manner as in Example 1. The results are shown in Table 6.

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

表3〜6中におけるイオン交換水の「残部」とは、抽出液の総量を100質量%とするのに必要とした量のことである。
また、表3〜6中の略号は以下の通りである。
・活性剤1:ポリオキシエチレン(6モル)ポリオキシプロピレン(2.5モル)モノアルキル(C12−13)エーテル
・活性剤2:ポリオキシエチレン(8.5モル)ポリオキシプロピレン(2.5モル)モノアルキル(C12−13)エーテル
・活性剤3:ポリオキシエチレン(14モル)ポリオキシプロピレン(2.5モル)モノアルキル(C12−13)エーテル
・活性剤4:ポリオキシアルキレン(9モル)アルキル(C10−16モル)エーテル
・活性剤5:ポリオキシエチレン(11モル)牛脂硬化アルキルアミン
・活性剤6:ポリオキシエチレン(20モル)ソルビタンモノラウレート
・活性剤7:ポリオキシエチレン(10モル)オクチルフェニルエーテル
・活性剤8:3―[(3―コラミドプロピル)ジメチルアンモニオ]―1―プロパンスルホナート
・活性剤9:ドデシルジメチル(3−スルホプロピル)アンモニウムヒロドキシド分子内塩
The "remainder" of ion exchange water in Tables 3-6 is an amount needed to make the total amount of the extract liquid 100% by mass.
Moreover, the symbol in Tables 3-6 is as follows.
Activator 1: Polyoxyethylene (6 moles) Polyoxypropylene (2.5 moles) Monoalkyl (C12-13) Ether Activator 2: Polyoxyethylene (8.5 moles) Polyoxypropylene (2.5 Mol) monoalkyl (C12-13) ether activator 3: polyoxyethylene (14 mol) polyoxypropylene (2.5 moles) monoalkyl (C12-13) ether activator 4: polyoxyalkylene (9 mol ) Alkyl (C10-16 moles) Ether · Activator 5: Polyoxyethylene (11 moles) Tallow hardened alkylamine · Activator 6: Polyoxyethylene (20 moles) Sorbitan monolaurate Activator 7: Polyoxyethylene ( 10 mol) Octyl phenyl ether, activator 8: 3-[(3-cholamidopropyl) dimethylammo O] -1-propane sulfonate-active agent 9: dodecyl dimethyl (3-sulfopropyl) ammonium Hiro Doki Sid inner salt

表3〜6から明らかなように、界面活性剤を含む抽出液を用い、超音波照射して蛋白質を抽出した各実施例の場合、抽出効率が高く抽出率はすべて98%以上であった。
一方、抽出液としてイオン交換水又は水酸化ナトリウム水溶液を用い、超音波照射して蛋白質を抽出した比較例1〜3の場合、各実施例に比べて蛋白質の抽出率が低く、95%以下であった。
界面活性剤を含む抽出液を用いたものの、超音波照射せずに浸漬だけで蛋白質を抽出した比較例4〜8の場合は、極端に抽出効率が低下し、抽出率は80%未満であった。
これらの結果より、界面活性剤を用いて超音波照射することが蛋白質の抽出に極めて効果的であることが確認できた。
As is clear from Tables 3 to 6, in each of the examples in which proteins were extracted by ultrasonic irradiation using an extract containing a surfactant, the extraction efficiency was high, and the extraction rates were all 98% or more.
On the other hand, in the case of Comparative Examples 1 to 3 in which proteins were extracted by ultrasonication using ion-exchanged water or an aqueous sodium hydroxide solution as the extract, the extraction ratio of protein was lower than that in each example and was 95% or less. there were.
Although the extract containing the surfactant was used, in the case of Comparative Examples 4 to 8 in which the protein was extracted only by immersion without ultrasonic irradiation, the extraction efficiency was extremely reduced and the extraction rate was less than 80%. The
From these results, it could be confirmed that ultrasonic irradiation using a surfactant was extremely effective for protein extraction.

「実施例13〜19」
イオン交換水にドデシル硫酸ナトリウムを濃度が1質量%になるように溶解させ、抽出液を調製した。
得られた抽出液を用い、表7に示す温度で10分間超音波照射を行った以外は、実施例1と同様の処理を行った。結果を表7に示す。また、実施例2の結果も表7に示す。
"Examples 13 to 19"
Sodium dodecyl sulfate was dissolved in ion exchange water to a concentration of 1% by mass to prepare an extract.
The same treatment as in Example 1 was performed using the obtained extract, except that ultrasonic irradiation was performed at the temperature shown in Table 7 for 10 minutes. The results are shown in Table 7. The results of Example 2 are also shown in Table 7.

Figure 0006507445
Figure 0006507445

表7から明らかなように、各実施例では、評価用器具に付着している蛋白質を十分に抽出でき、抽出した蛋白質を簡便かつ正確に検出定量できた。特に、物理的刺激操作を施す際の抽出液の温度が20〜70℃である場合、蛋白質の抽出率が95%以上であり、抽出温度としてより効果的であることが確認できた。   As apparent from Table 7, in each of the examples, the protein attached to the evaluation device could be sufficiently extracted, and the extracted protein could be detected simply and accurately. In particular, when the temperature of the extract solution at the time of performing physical stimulation operation is 20 to 70 ° C., the extraction rate of protein is 95% or more, and it has been confirmed that the extraction temperature is more effective.

「実施例20」
表8に示す組成に従い、疑似蛋白質抽出液(1)〜(9)を調製した。
別途、表1に示す試薬A溶液50mLと、表2に示す試薬B溶液1mLとを混合し、蛋白質検出液を調製した。
各疑似蛋白質抽出液1mLに蛋白質検出液2mLを加えて攪拌した後、60℃で30分間反応させ、更に15℃で5分間放置して接触液を得た。
得られた接触液の562nmにおける吸光度を分光光度計(株式会社パーキンエルマージャパン製、「Lambda650S」)にて測定し、BCA法用の検量線の数式に代入して蛋白質量を算出した。結果を表11に示す。
"Example 20"
According to the composition shown in Table 8, mock protein extracts (1) to (9) were prepared.
Separately, 50 mL of the reagent A solution shown in Table 1 and 1 mL of the reagent B solution shown in Table 2 were mixed to prepare a protein detection solution.
2 mL of the protein detection solution was added to 1 mL of each simulated protein extract and stirred, then reacted at 60 ° C. for 30 minutes, and left at 15 ° C. for 5 minutes to obtain a contact solution.
The absorbance at 562 nm of the obtained contact solution was measured with a spectrophotometer ("Lambda 650S" manufactured by PerkinElmer Japan Co., Ltd.), and substituted into the equation of the calibration curve for the BCA method to calculate the protein mass. The results are shown in Table 11.

「実施例21」
表9に示す組成の疑似蛋白質抽出液(10)〜(18)を用いた以外は、実施例20と同様の処理を行った。結果を表11に示す。
"Example 21"
The same treatment as in Example 20 was performed except that the pseudoprotein extracts (10) to (18) having the compositions shown in Table 9 were used. The results are shown in Table 11.

「実施例22」
表10に示す組成の疑似蛋白質抽出液(19)〜(27)を用いた以外は、実施例20と同様の処理を行った。結果を表11に示す。
"Example 22"
The same treatment as in Example 20 was performed except that the pseudoprotein extracts (19) to (27) having the compositions shown in Table 10 were used. The results are shown in Table 11.

「比較例9」
表8に示す組成に従い、疑似蛋白質抽出液(1)〜(9)を調製した。
各疑似蛋白質抽出液1mLに、蛋白質検出液としてCoomassie Protein Assay Reagent〔CBB試薬(サーモフィッシャーサイエンティフィック株式会社製)〕3mLを加えて攪拌した後、25℃で20分間放置して接触液を得た。
得られた接触液の595nmにおける吸光度を分光光度計(株式会社パーキンエルマージャパン製、「Lambda650S」)にて測定し、CBB法用の検量線の数式に代入して蛋白質量を算出した。結果を表12に示す。
なお、疑似蛋白質抽出液中に含まれるアルカリ化合物、又は界面活性剤の影響を受けて測定値が高く出た場合は、疑似蛋白質抽出液をイオン交換水にて希釈したものを用いて接触液を得て、吸光度を測定した。
"Comparative Example 9"
According to the composition shown in Table 8, mock protein extracts (1) to (9) were prepared.
After adding 3 mL of Coomassie Protein Assay Reagent (CBB reagent (manufactured by Thermo Fisher Scientific Co., Ltd.) as a protein detection solution) to 1 mL of each simulated protein extract and stirring, the mixture is left at 25 ° C. for 20 minutes to obtain a contact solution. The
The absorbance at 595 nm of the obtained contact solution was measured with a spectrophotometer ("Lambda 650S" manufactured by PerkinElmer Japan Co., Ltd.), and substituted into the equation of the calibration curve for the CBB method to calculate the protein mass. The results are shown in Table 12.
If the measured value is high due to the influence of the alkaline compound or surfactant contained in the pseudoprotein extract, use a solution obtained by diluting the pseudoprotein extract with ion-exchanged water. The absorbance was measured.

「比較例10」
表9に示す組成の疑似蛋白質抽出液(10)〜(18)を用いた以外は、比較例9と同様の処理を行った。結果を表12に示す。
"Comparative Example 10"
The same treatment as in Comparative Example 9 was performed except that the pseudoprotein extracts (10) to (18) having the compositions shown in Table 9 were used. The results are shown in Table 12.

「比較例11」
表10に示す組成の疑似蛋白質抽出液(19)〜(27)を用いた以外は、比較例9と同様の処理を行った。結果を表12に示す。
"Comparative example 11"
The same treatment as in Comparative Example 9 was performed except that the pseudoprotein extracts (19) to (27) having the compositions shown in Table 10 were used. The results are shown in Table 12.

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

Figure 0006507445
Figure 0006507445

表8〜10中におけるイオン交換水の「残部」とは、疑似蛋白質抽出液の総量を100質量%とするのに必要とした量のことである。
また、 表8〜12中の略号は以下の通りである。
・活性剤2:ポリオキシエチレン(8.5モル)ポリオキシプロピレン(2.5モル)モノアルキル(C12−13)エーテル
・活性剤5:ポリオキシエチレン(11モル)牛脂硬化アルキルアミン
The "remainder" of ion exchange water in Tables 8 to 10 refers to the amount necessary to make the total amount of the pseudoprotein extract liquid 100% by mass.
Moreover, the abbreviations in Tables 8 to 12 are as follows.
Activator 2: Polyoxyethylene (8.5 moles) polyoxypropylene (2.5 moles) monoalkyl (C12-13) ether Activator 5: Polyoxyethylene (11 moles) tallow hardened alkylamine

表11、12から明らかなように、BCA法による蛋白質の定量はアルカリ、アニオン界面活性剤、ノニオン界面活性剤の影響を受けにくく、蛋白質仕込み量とほぼ同等の蛋白質量が検出されることが確認できた(実施例20〜22)。
一方、CBB法による蛋白質の定量はアルカリ、アニオン界面活性剤、ノニオン界面活性剤の影響を受け、蛋白質仕込み量と異なる蛋白質量が検出された(比較例9〜11)。
これらの結果より、検査対象物の洗浄剤に界面活性剤を使用した場合、すすぎ不足等で界面活性剤が被抽出物に付着している懸念があっても、BCA法を使用すれば、正確な測定が可能であり、また抽出剤として抽出効率が高い界面活性剤を用いることも可能であることが確認できた。対して、CBB法を用いた場合は、すすぎ不足等で界面活性剤が被抽出物に付着している懸念がある場合、正確な測定が困難であり、また抽出剤として抽出効率が高い界面活性剤を用いることも困難である。
As apparent from Tables 11 and 12, it is confirmed that quantification of protein by the BCA method is less susceptible to the effects of alkali, anionic surfactant, and nonionic surfactant, and that a protein mass almost equivalent to the amount of protein added is detected. It was done (Examples 20 to 22).
On the other hand, quantification of protein by the CBB method was influenced by alkali, anionic surfactant and nonionic surfactant, and a protein mass different from the amount of protein added was detected (Comparative Examples 9 to 11).
From these results, when a surfactant is used as a cleaning agent for the inspection object, even if there is a concern that the surfactant is attached to the extract due to insufficient rinsing, using the BCA method is accurate. It has been confirmed that it is possible to use any surfactant which has high extraction efficiency as an extracting agent. On the other hand, when the CBB method is used, if there is a concern that the surfactant adheres to the extract due to insufficient rinsing or the like, accurate measurement is difficult, and the surfactant has high extraction efficiency as an extractant. It is also difficult to use an agent.

本発明の蛋白質の検出定量方法によれば、検査対象物に付着している蛋白質を十分に抽出し、抽出した蛋白質を簡便に、かつ正確に検出定量できる。よって、本発明の蛋白質の検出定量方法は、医療機関等で再利用されている器具等の検査対象物の清浄度評価や、医療用洗浄機等の性能評価に特に好適に利用できる。   According to the method for detecting and quantifying a protein of the present invention, the protein attached to the test object can be sufficiently extracted, and the extracted protein can be detected and quantified easily and accurately. Therefore, the method for detecting and quantifying a protein of the present invention can be particularly suitably used to evaluate the cleanliness of an object to be examined such as an instrument reused in a medical institution or the like, and to evaluate the performance of a medical washing machine or the like.

10 評価用器具
11 スライドグラス
12 ステンレス板
13 スライドグラス
14 クリップ
X 模擬蛋白質汚染液
10 Evaluation Equipment 11 Slide Glass 12 Stainless Plate 13 Slide Glass 14 Clip X Simulated Protein Contamination Solution

Claims (5)

検査対象物に付着した蛋白質を検出定量する方法であって
界面活性剤を含む抽出液に前記検査対象物を浸漬させた状態で前記検査対象物に超音波照射を施して蛋白質抽出液を得る蛋白質抽出工程と、
前記蛋白質抽出液をビシンコニン酸及び銅(II)を含む蛋白質検出液に接触させ、得られた接触液の吸光度を測定する蛋白質検出定量工程と、
を有する、蛋白質の検出定量方法。
A method for detecting and quantifying a protein attached to a test object, comprising :
A protein extraction step of subjecting the test object to ultrasonic irradiation in a state in which the test object is immersed in an extract containing a surfactant, and obtaining a protein extract;
A protein detection and determination step of bringing the protein extract into contact with a protein detection solution containing bicinchoninic acid and copper (II), and measuring the absorbance of the obtained contact solution;
A method for detecting and quantifying proteins, which has
前記検査対象物が使用後に洗浄を行った器具である、請求項に記載の蛋白質の検出定量方法。 The method for detecting and quantifying a protein according to claim 1 , wherein the test object is a device that has been washed after use. 前記界面活性剤がアニオン界面活性剤、ノニオン界面活性剤、及び両性界面活性剤からなる群より選択される少なくとも一種である、請求項1又は2に記載の蛋白質の検出定量方法。 The method for detecting and quantifying a protein according to claim 1 or 2 , wherein the surfactant is at least one selected from the group consisting of an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant. 前記界面活性剤の濃度が前記抽出液100質量%中、0.01〜10質量%である、請求項1〜のいずれか一項に記載の蛋白質の検出定量方法。 The method for detecting and quantifying a protein according to any one of claims 1 to 3 , wherein the concentration of the surfactant is 0.01 to 10% by mass in 100% by mass of the extract. 前記蛋白質抽出工程において、物理的刺激操作を施す際の抽出液の温度が20〜70℃である、請求項1〜のいずれか一項に記載の蛋白質の検出定量方法。 The method for detecting and quantifying a protein according to any one of claims 1 to 4 , wherein in the protein extraction step, the temperature of the extract when performing physical stimulation operation is 20 to 70 ° C.
JP2015066795A 2015-03-27 2015-03-27 Method for detecting and quantifying proteins Active JP6507445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015066795A JP6507445B2 (en) 2015-03-27 2015-03-27 Method for detecting and quantifying proteins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066795A JP6507445B2 (en) 2015-03-27 2015-03-27 Method for detecting and quantifying proteins

Publications (2)

Publication Number Publication Date
JP2016186458A JP2016186458A (en) 2016-10-27
JP6507445B2 true JP6507445B2 (en) 2019-05-08

Family

ID=57202560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066795A Active JP6507445B2 (en) 2015-03-27 2015-03-27 Method for detecting and quantifying proteins

Country Status (1)

Country Link
JP (1) JP6507445B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306534B2 (en) * 1994-07-07 2002-07-24 コニカ株式会社 Protein detection method and protein detection kit
WO2006070699A1 (en) * 2004-12-27 2006-07-06 Olympus Corporation Filth for evaluating washing performance of medical instrument and soiling method for evaluating washing performance
US20060166367A1 (en) * 2005-01-27 2006-07-27 Neogen Corporation Protein assay method and test device
JP5938240B2 (en) * 2012-03-14 2016-06-22 シャープ株式会社 Cleaning device and cleaning method

Also Published As

Publication number Publication date
JP2016186458A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
US8003586B2 (en) Cleaning solution for an automatic biochemical analyzer
WO2012090306A1 (en) Method for cleaning medical appliance
JP5584613B2 (en) Cleaning method for medical equipment
CN103897909A (en) Cleaning solution applied to automatic biochemical analyzer
JP4104704B2 (en) Cleaning agent for automatic analyzer
US20150147802A1 (en) Cleaning agent composition for medical-instrument cleaner
JP6768640B2 (en) Branched biodegradable low foaming nonionic surfactant
JP2022001880A (en) Method and composition for rapid detection of protein soils
EP3043832B1 (en) Aqueous formulation for the cleaning of hard surfaces
EP3852943A1 (en) Composition for cleaning and assessing cleanliness in real-time
JP6507445B2 (en) Method for detecting and quantifying proteins
CA2941801C (en) Hematoxylin precipitate cleaning method and system
JP5230549B2 (en) Cleaning method for medical equipment
JP5783791B2 (en) Staining solution for cleaning evaluation of medical equipment
JP4615966B2 (en) Protein detection method
JP5972780B2 (en) Biofilm removal method
JP2012173033A (en) Protein detection method and protein extraction method
US11596705B2 (en) Kit for detecting residual contaminations on medical devices
JP2012063231A (en) Protein extraction method, protein detection method, and protein detection apparatus
JP2019014823A (en) Treatment agent composition before washing living organism stain-adhered appliance, and treatment method before washing living organism stain-adhered appliance
JPH03131697A (en) Aqueous cleaning liquid and method for cleaning diagnostic analysis system therewith
CN116286205B (en) Tripropylamine buffer solution matched with Luo Cobas e801 chemiluminescent immunoassay analyzer and preparation method thereof
JP2012063298A (en) Protein extraction method, protein detection method, and protein detection apparatus
McCormick et al. A designed experiment for evaluation of the OPA method for cleaning studies of medical devices
JP6368978B2 (en) Cleaning agent for medical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6507445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250