JP2012063231A - Protein extraction method, protein detection method, and protein detection apparatus - Google Patents

Protein extraction method, protein detection method, and protein detection apparatus Download PDF

Info

Publication number
JP2012063231A
JP2012063231A JP2010207390A JP2010207390A JP2012063231A JP 2012063231 A JP2012063231 A JP 2012063231A JP 2010207390 A JP2010207390 A JP 2010207390A JP 2010207390 A JP2010207390 A JP 2010207390A JP 2012063231 A JP2012063231 A JP 2012063231A
Authority
JP
Japan
Prior art keywords
protein
solution
fluorescence
concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207390A
Other languages
Japanese (ja)
Inventor
Hideaki Fujita
英明 藤田
Tomonori Kamo
友規 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010207390A priority Critical patent/JP2012063231A/en
Publication of JP2012063231A publication Critical patent/JP2012063231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protein extraction method, a protein detection method, and a protein detection apparatus that can precisely extract and measure protein that remains in a device with high sensitivity.SOLUTION: A method for extracting protein attached to a device uses alkali solution having density equal to or less than 20 mM as extraction liquid. The protein detection method includes the steps of: reacting protein solution with a fluorescence reagent; radiating excitation light onto reacted solution to measure a fluorescence amount; calculating density of the protein solution on the basis of the fluorescence amount measured in the previous step.

Description

本発明は、医療機関などで用いる各種医療器具や、食品製造分野で用いる各種製造器具等に付着する蛋白質を抽出する方法、蛋白質検出方法、及び蛋白質検出装置に関する。   The present invention relates to a method for extracting a protein adhering to various medical instruments used in a medical institution or the like, various manufacturing instruments used in the field of food production, and the like, a protein detection method, and a protein detection apparatus.

病院等の医療機関や検査機関における検査数、治療数の増大に伴い、検査や治療による感染事故が国内外で多数報告されている。これら感染例の多くは、内視鏡、管状カテーテル類、鉗子類、剪刀類などの医療器具の不十分な洗浄消毒によることが原因とされており、検査や治療に伴う感染の完全な防止方法の確立が求められている。また、食品製造分野においても、使用される器具や設備に付着した汚れに起因した、食中毒などの被害の発生を防止するために、食品の加工・製造に用いられる器具や設備における衛生面での管理が強く求められている。   Along with the increase in the number of examinations and treatments in medical institutions and inspection institutions such as hospitals, a large number of infection accidents due to examinations and treatments have been reported both in Japan and overseas. Many of these infection cases are caused by insufficient cleaning and disinfection of medical instruments such as endoscopes, tubular catheters, forceps, and scissors. Establishment is required. Also in the food manufacturing field, in order to prevent the occurrence of damage such as food poisoning caused by dirt attached to the equipment and equipment used, the hygiene aspects of the equipment and equipment used in the processing and production of food There is a strong demand for management.

特に、医療分野においては、手術器具や内視鏡等の医療用器具は、ウォッシャーディスインフェクター等の医療用洗浄機を用いて汚染物を洗浄除去したのちに、滅菌処理を行い、再利用されるが、洗浄工程での洗浄残渣があると、十分な滅菌処理が行えず、感染の危険性が高くなる。このため、洗浄機での洗浄後に洗浄残渣である残留蛋白質を測定し、医療用洗浄機の性能確認を行うことで、洗浄工程の管理が行われている。従来、この残留蛋白質の検出方法としては、特許文献1に示すように、アルカリ水溶液に洗浄後の器具を浸漬させ、器具に付着した残留蛋白質を溶出させたものに対し、クーマシーブリリアントブルーG−250や、アミドブラック10B等を用いて蛋白質を染色し、目視や吸光度計により色差を測定する方法が知られている。   In particular, in the medical field, medical instruments such as surgical instruments and endoscopes are sterilized after being cleaned and removed using a medical washer such as a washer disinfector, and reused. However, if there is a cleaning residue in the cleaning process, sufficient sterilization cannot be performed and the risk of infection increases. For this reason, the cleaning process is managed by measuring the residual protein, which is a cleaning residue after the cleaning by the cleaning machine, and confirming the performance of the medical cleaning machine. Conventionally, as a method for detecting this residual protein, as shown in Patent Document 1, a coomassie brilliant blue G- is used in the case where the washed protein is immersed in an alkaline aqueous solution and the residual protein adhering to the device is eluted. A method is known in which a protein is stained with 250, amide black 10B, or the like, and the color difference is measured visually or with an absorptiometer.

しかしながら、特許文献1に示された方法では、蛋白質量の定量評価が可能であるが、検出感度はせいぜい1μg/ml程度であり、十分な検出感度、例えば、1μg/ml以下の蛋白質濃度を測定することが困難であった。また、アミドブラック10Bを用いた染色では、目視での判定となり、定量評価が行えない。このため、院内感染リスクを極力低減させるために、洗浄機の性能向上へのニーズが高まっているにもかかわらず、高感度の検査が行えないという問題がある。   However, the method disclosed in Patent Document 1 can quantitatively evaluate the amount of protein, but the detection sensitivity is at most about 1 μg / ml, and sufficient detection sensitivity, for example, a protein concentration of 1 μg / ml or less is measured. It was difficult to do. Moreover, in the dyeing | staining using amide black 10B, it becomes visual determination and cannot perform quantitative evaluation. For this reason, in order to reduce the risk of nosocomial infection as much as possible, there is a problem that high-sensitivity inspection cannot be performed even though there is an increasing need for improving the performance of the washing machine.

一方、蛋白質を高感度で検出する方法として、蛍光試薬を用いて蛋白質と反応させ、蛍光量を測定することにより、検出する方法(以下、蛍光法と記載する。)が一般に知られている。例えば、非特許文献1に記載されているように、蛍光法では10ng/ml〜100ng/mlの微量の蛋白質検出が可能となる。   On the other hand, as a method for detecting proteins with high sensitivity, a method of detecting by reacting with a protein using a fluorescent reagent and measuring the amount of fluorescence (hereinafter referred to as a fluorescence method) is generally known. For example, as described in Non-Patent Document 1, the fluorescence method can detect a trace amount of protein of 10 ng / ml to 100 ng / ml.

特開2006−145271号公報JP 2006-145271 A

Biotechniques,Vol.34,No.4(2003) 850−861Biotechniques, Vol. 34, no. 4 (2003) 850-861

しかしながら、一般的な蛍光法において、蛋白質溶液に溶け込んだ蛋白質を高感度に検出できるという点ではすぐれているが、前記非特許文献には、蛋白質溶液をどのように作製するか、あるいはどのように蛋白質を抽出液中に抽出するかについては、記載されていない。このため、洗浄後の器具から抽出した蛋白質溶液を用いて、器具に付着した残留蛋白質量を測定するといった特殊な用途においては、蛋白質の抽出に用いられたアルカリ水溶液に含まれる水酸化ナトリウムなどの測定妨害物質が存在し、残留蛋白質の量を正しく測定することが困難であるといった課題について、何ら解決方法を提供するものではない。すなわち、該文献に示された蛍光法をそのまま適用したとしても、蛍光試薬はアルカリ水溶液と反応することから、正確に蛋白質量を測定することが困難となる。また、アルカリ性が強い水溶液では蛋白質が変性し、高感度に蛋白質を検出する上で問題であった。   However, although it is excellent in that a protein dissolved in a protein solution can be detected with high sensitivity in a general fluorescence method, the above-mentioned non-patent literature describes how to prepare a protein solution or how to It is not described whether the protein is extracted into the extract. For this reason, in special applications such as measuring the amount of residual protein adhering to the instrument using the protein solution extracted from the instrument after washing, such as sodium hydroxide contained in the alkaline aqueous solution used for protein extraction It does not provide any solution for the problem that there is a measurement interfering substance and it is difficult to correctly measure the amount of residual protein. That is, even if the fluorescence method disclosed in this document is applied as it is, the fluorescent reagent reacts with an alkaline aqueous solution, so that it is difficult to accurately measure the protein mass. In addition, in an aqueous solution having strong alkalinity, the protein is denatured, which is a problem in detecting the protein with high sensitivity.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、器具に残留した蛋白質を正確に抽出する蛋白質抽出方法、及び抽出された蛋白質を高感度で測定可能な蛋白質検出方法、及び蛋白質検出装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to provide a protein extraction method for accurately extracting the protein remaining in the instrument, and a protein detection method capable of measuring the extracted protein with high sensitivity. And providing a protein detection apparatus.

本発明に係る蛋白質抽出方法は、洗浄後の器具に付着した蛋白質を抽出する方法であって、濃度が20mM以下のアルカリ溶液を抽出液として用いることを特徴とする。   The protein extraction method according to the present invention is a method for extracting a protein adhering to an instrument after washing, and is characterized by using an alkaline solution having a concentration of 20 mM or less as an extract.

また、前記アルカリ溶液の濃度は、10mM以下であれば、さらに望ましい。   The concentration of the alkaline solution is more preferably 10 mM or less.

また、本発明に係る蛋白質検出方法は、前記器具は洗浄後のものであることを特徴とする。   The protein detection method according to the present invention is characterized in that the instrument is after washing.

また、本発明に係る蛋白質検出方法は、上記のいずれかに記載の蛋白質抽出方法を用いて得られた蛋白質溶液を用いて、蛋白質を検出することを特徴とする。   The protein detection method according to the present invention is characterized in that a protein is detected using a protein solution obtained by using any of the protein extraction methods described above.

また、本発明に係る蛋白質検出方法は、前記蛋白質溶液と蛍光試薬とを反応させる反応工程と、反応させた溶液に励起光を照射して蛍光量を測定する蛍光測定工程と、前記蛍光測定工程にて測定された蛍光量に基づいて、前記蛋白質溶液の濃度を算出する定量工程を含むことを特徴とする。   The protein detection method according to the present invention includes a reaction step of reacting the protein solution with a fluorescent reagent, a fluorescence measurement step of measuring the amount of fluorescence by irradiating the reacted solution with excitation light, and the fluorescence measurement step. And a quantitative step of calculating the concentration of the protein solution based on the fluorescence amount measured in (1).

また、本発明に係る蛋白質検出方法は、前記蛍光試薬は、ナノオレンジであることを特徴とする。   The protein detection method according to the present invention is characterized in that the fluorescent reagent is nano orange.

また、本発明に係る蛋白質検出方法は、洗浄後の器具に付着した蛋白質を、蛍光法を用いて検出することにより、前記洗浄の精度を測定することを特徴とする。   In addition, the protein detection method according to the present invention is characterized in that the accuracy of the washing is measured by detecting the protein adhering to the washed instrument using a fluorescence method.

本発明に係る蛋白質検出装置は、上記のいずれかに記載の蛋白質検出方法を用いて、前記器具に付着した蛋白質量を測定することを特徴とする。   The protein detection apparatus according to the present invention is characterized by measuring the amount of protein adhering to the instrument using any one of the protein detection methods described above.

本発明によれば、洗浄後の器具に残留した蛋白質を正確に抽出する蛋白質抽出方法、及び抽出された蛋白質を高感度で測定可能な蛋白質検出方法及び装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the protein extraction method which extracts accurately the protein which remained in the apparatus after washing | cleaning, and the protein detection method and apparatus which can measure the extracted protein with high sensitivity are realizable.

本発明の蛋白質検出工程を示すフロー図である。It is a flowchart which shows the protein detection process of this invention. 水酸化ナトリウム濃度と蛍光量の関係を示すグラフである。It is a graph which shows the relationship between a sodium hydroxide density | concentration and fluorescence amount. 本発明の蛍光法での検量線の一例を示すグラフである。It is a graph which shows an example of the calibration curve in the fluorescence method of this invention. 本発明の蛋白質検出装置の概略構成を示す図である。It is a figure which shows schematic structure of the protein detection apparatus of this invention.

以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   Embodiments of the present invention will be described below. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.

本発明の蛋白質検出方法を、蛋白質検出工程を示すフロー図として、図1に示す。工程には、洗浄後の器具から残留蛋白質を抽出する抽出工程101、抽出した蛋白質溶液を蛍光試薬と混合する反応工程102、蛍光量を測定する蛍光測定工程103、蛍光量を蛋白質濃度に換算する定量工程104などの工程を含む。以下、各工程について詳細に説明する。   The protein detection method of the present invention is shown in FIG. 1 as a flowchart showing the protein detection step. The process includes an extraction process 101 for extracting residual protein from the cleaned instrument, a reaction process 102 for mixing the extracted protein solution with a fluorescent reagent, a fluorescence measurement process 103 for measuring the fluorescence level, and converting the fluorescence level into a protein concentration. This includes steps such as the quantification step 104. Hereinafter, each step will be described in detail.

(抽出工程)
蛋白質の抽出工程101においては、抽出液として、アルカリ溶液を用いる。アルカリ溶液としては、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、リン酸ナトリウム等の水溶液が用いられる。抽出液としてアルカリ溶液を使用する場合、アルカリ濃度が高いと抽出液に蛋白質以外の物質が多く含まれることになり、この蛋白質以外の物質が蛍光試薬と反応し、蛍光を発したり、蛋白質と蛍光試薬との反応を阻害する可能性がある。一方、アルカリ濃度が極端に低いと、器具に付着した残留蛋白質を十分に抽出できない可能性があるので、これらを考慮して、適切な濃度に調整することが求められる。そこで、次のような測定を行い、蛋白質抽出に適切なアルカリ溶液の濃度を調査した。
(Extraction process)
In the protein extraction step 101, an alkaline solution is used as the extract. As the alkaline solution, an aqueous solution of sodium hydroxide, potassium hydroxide, potassium carbonate, sodium phosphate or the like is used. When an alkaline solution is used as the extract, if the alkali concentration is high, the extract contains a large amount of substances other than protein. Substances other than this protein react with the fluorescent reagent and emit fluorescence, or the protein and fluorescence. There is a possibility of inhibiting the reaction with the reagent. On the other hand, if the alkali concentration is extremely low, there is a possibility that the residual protein adhering to the instrument cannot be sufficiently extracted. Therefore, it is required to adjust to an appropriate concentration in consideration of these. Therefore, the following measurement was performed to investigate the concentration of an alkaline solution suitable for protein extraction.

まず、蛋白質の含まれていない、濃度の異なる水酸化ナトリウム水溶液を作製し、次にそれぞれナノオレンジ(CSLベーリング株式会社製)を反応させ、蛍光量を測定した。蛍光の測定は、蛍光プレートリーダー(パーキンエルマー社製 ARVO MX 142)を使用し、励起波長は470nm、蛍光波長は570nmを使用した。プレートはコーニング社製96wellプレート(型番3632)を使用した。   First, sodium hydroxide aqueous solutions having different concentrations and containing no protein were prepared, and then nano oranges (manufactured by CSL Behring Co., Ltd.) were reacted with each other to measure the amount of fluorescence. The fluorescence was measured using a fluorescence plate reader (ARVO MX 142, manufactured by Perkin Elmer), with an excitation wavelength of 470 nm and a fluorescence wavelength of 570 nm. The plate used was a 96 well plate (model number 3632) manufactured by Corning.

図2は、上記の方法にて測定された、水酸化ナトリウム水溶液の濃度と蛍光量の関係を示すグラフである。その結果、蛋白質を含まないにも関わらず、濃度が20mM(以下、mol/lをMとあらわす。)を超えた場合に、急激に蛍光量が増大しており、蛋白質の測定に影響があることが判明した。このことから、抽出液としては濃度20mM以下の溶液を使用することが望ましい。さらに望ましくは、濃度10mM以下の溶液を使用することが好ましい。なお、今回は、水酸化ナトリウム水溶液を用いてその濃度と蛍光量を示したが、水酸化ナトリウム以外に、上述した水酸化カリウム等のアルカリ溶液においても、濃度が20mM以下の溶液であれば、蛍光試薬の影響をほとんど受けないため、蛋白質の抽出溶液として用いることができる。   FIG. 2 is a graph showing the relationship between the concentration of an aqueous sodium hydroxide solution and the amount of fluorescence measured by the above method. As a result, when the concentration exceeds 20 mM (hereinafter, mol / l is expressed as M) even though the protein is not contained, the amount of fluorescence increases rapidly, which affects the protein measurement. It has been found. For this reason, it is desirable to use a solution having a concentration of 20 mM or less as the extract. More desirably, a solution having a concentration of 10 mM or less is preferably used. In addition, this time, the concentration and the amount of fluorescence were shown using a sodium hydroxide aqueous solution. In addition to sodium hydroxide, in the alkaline solution such as potassium hydroxide described above, if the concentration is 20 mM or less, Since it is hardly affected by the fluorescent reagent, it can be used as a protein extraction solution.

さらに、詳細に調べるため、抽出液としてのアルカリ溶液の濃度について実験を行った。抽出液と抽出温度としては、下記に示す条件A〜Cでの時間経過による評価を実施した。また、評価対象サンプルとしては、下記のサンプル1〜3を使用し、抽出前後の質量変化から抽出の可否を判断した。抽出液の量は10mlとし、ポリエチレン製の袋に器具と抽出液を入れることで、器具を抽出液に浸漬させた。加温にはウォーターバスThomastat T−22S(TOHMAS KAGAKU社製)を使用した。なお、条件Cの純水としては蒸留水、RO水、脱イオン水等を使用することができるが、本実験においては、ミリQ水(ミリポア社製の超純水装置で作られた超純水)を使用した。
〔条件〕
条件A:濃度5mMの水酸化ナトリウム溶液に50℃でサンプルを浸漬
条件B:濃度200mMの水酸化ナトリウム溶液に50℃でサンプルを浸漬
条件C:純水に50℃でサンプルを浸漬
〔サンプル〕
1:ステンレス板に羊血(日本生物材料センター製ヘパリン添加羊血に、和光純薬製1%硫酸プロタミン水溶液を10:1の比率で混合)を60μl塗布し、24時間自然乾燥させたもの
2:洗浄評価用インジケータ(Pereg社製、商品名:TOSI:ステンレス基材に擬似汚染物を塗布したもの)
3:サンプル2の洗浄評価用インジケータを130℃で30分間加熱したもの
Furthermore, in order to investigate in detail, it experimented about the density | concentration of the alkaline solution as an extract. As the extraction liquid and the extraction temperature, evaluation was performed over time under the conditions A to C shown below. Moreover, the following samples 1 to 3 were used as samples to be evaluated, and whether or not extraction was possible was determined from mass changes before and after extraction. The amount of the extract was 10 ml, and the device was immersed in the extract by putting the device and the extract in a polyethylene bag. A water bath, Thomasstat T-22S (manufactured by TOHMAS KAGAKA) was used for heating. In addition, although distilled water, RO water, deionized water, etc. can be used as the pure water of the condition C, in this experiment, milli Q water (ultra pure water made by the ultra pure water device manufactured by Millipore) Water).
〔conditions〕
Condition A: A sample is immersed in a sodium hydroxide solution at a concentration of 5 mM at 50 ° C. Condition B: A sample is immersed in a sodium hydroxide solution at a concentration of 200 mM at 50 ° C. Condition C: The sample is immersed in pure water at 50 ° C. [Sample]
1: 60 μl of ovine blood (mixed with heparin-supplemented amniotic blood manufactured by Japan Biological Materials Center and 1% protamine sulfate aqueous solution manufactured by Wako Pure Chemicals at a ratio of 10: 1) applied to a stainless steel plate and naturally dried for 24 hours : Indicator for cleaning evaluation (manufactured by Pereg, trade name: TOSI: stainless steel base material coated with pseudo-contamination)
3: Sample 2 cleaning evaluation indicator heated at 130 ° C. for 30 minutes

表1に各条件での抽出結果を示す。表中の○印は、ほぼ全抽出が可能、△印は残留10%未満、×印は90%以上が残留を示している。
《条件Aでの結果》
サンプル1においては、短時間でも蛋白質をほぼ全抽出することができた。また、サンプル2、サンプル3においても、基材部に白い残渣がやや残留するものの、擬似汚染物の大半が抽出された。残渣は擬似汚染物中のフィブリンであり、擬似汚染物中に含まれるアルブミン等の水溶性の蛋白質は除去されていることから、抽出液のアルカリ性が弱いため水不溶性の物質が溶解せずに残留したと考えられる。
《条件Bでの結果》
浸漬時間を30分にすると、抽出が可能な結果が得られた。浸漬時間が10分未満では、蛋白質はほとんどが器具に残留したままであった。さらに、サンプル1において抽出した蛋白質溶液は、赤色から緑色に変色し、また、白い懸濁が見られた。おそらく、抽出液の濃度200mMではアルカリ性が強く、抽出した蛋白質が変性している可能性があると考えられ、溶液から蛋白質を定量する精度が低下する。また、サンプル2において、基材から汚染物が剥離するが、汚染物は膜として抽出液中を浮遊していた。これは、汚染物の表面が変性し、抽出液に溶解しにくくなっていると考えられ、溶液の蛋白質濃度を測定することが困難であった。
《条件Cでの結果》
浸漬時間を30分にしても、サンプル1〜3において、基材部に白い残渣が多量に残留した。条件Aと比較すると残留する残渣が多く、一部赤色の残渣が含まれており、蛋白質が十分に抽出されていないと考えられる。
Table 1 shows the extraction results under each condition. The circles in the table indicate that almost all extraction is possible, the triangles indicate less than 10% residual, and the crosses indicate 90% or more residuals.
<< Results under Condition A >>
In sample 1, almost all proteins could be extracted even in a short time. In Samples 2 and 3, most of the pseudo-contaminated matter was extracted although white residue was slightly left on the base material. The residue is fibrin in the pseudo-contaminant, and since water-soluble proteins such as albumin contained in the pseudo-contaminant have been removed, the water-insoluble substance remains without being dissolved due to the weak alkalinity of the extract. It is thought that.
<< Result under Condition B >>
When the immersion time was 30 minutes, extraction was possible. When the immersion time was less than 10 minutes, most of the protein remained in the instrument. Furthermore, the protein solution extracted in Sample 1 was changed from red to green, and a white suspension was observed. Probably, when the concentration of the extract is 200 mM, the alkalinity is strong and the extracted protein may be denatured, and the accuracy of quantifying the protein from the solution decreases. In sample 2, the contaminants peeled off from the substrate, but the contaminants were floating in the extract as a membrane. This is thought to be because the surface of the contaminant is denatured and is difficult to dissolve in the extract, and it is difficult to measure the protein concentration of the solution.
<< Result under Condition C >>
Even when the immersion time was 30 minutes, in Samples 1 to 3, a large amount of white residue remained on the base material. Compared with condition A, there are many residuals and some red residues are included, and it is considered that the protein is not sufficiently extracted.

以上の実験結果、および図2に示された結果から、抽出液のアルカリ濃度として、20mMより濃度が高いと、蛋白質抽出に時間がかかる上、アルカリ性が強い抽出液であるため、蛋白質が変性するといった問題が発生しやすくなり、好ましくないことがわかった。特に、後述する蛍光法により蛋白質を検出する場合は、蛍光試薬がアルカリ水溶液と反応することより、正確に蛋白質量を測定することができず、好ましくない。このような結果から、抽出液として20mM以下の水酸化ナトリウム水溶液を使用することが好ましい。   From the above experimental results and the results shown in FIG. 2, when the alkali concentration of the extract is higher than 20 mM, it takes time to extract the protein, and the extract is highly alkaline, so the protein is denatured. It has been found that such a problem tends to occur and is not preferable. In particular, when a protein is detected by a fluorescence method to be described later, the amount of protein cannot be measured accurately because the fluorescent reagent reacts with an alkaline aqueous solution, which is not preferable. From these results, it is preferable to use a 20 mM or less aqueous sodium hydroxide solution as the extract.

このようにして、20mM以下のアルカリ濃度の抽出液で抽出された蛋白質溶液は、抽出液に溶け込んだ蛋白質が変性しにくく、また抽出液に溶け込んだアルカリ溶質の影響もほとんど無いため、その蛋白質濃度を極めて正確に測定することができる。また、本洗浄が、アルカリ洗剤を用いない洗浄方法、例えば水洗い、超音波洗浄、オゾン水での洗浄などであった場合には、アルカリに溶けやすい残留蛋白質を抽出するという観点では、特に有効であると考えられる。   Thus, a protein solution extracted with an extract having an alkali concentration of 20 mM or less is not easily denatured by a protein dissolved in the extract and is hardly affected by the alkali solute dissolved in the extract. Can be measured very accurately. In addition, when this washing is a washing method that does not use an alkaline detergent, such as washing with water, ultrasonic washing, or washing with ozone water, it is particularly effective in terms of extracting residual proteins that are easily soluble in alkali. It is believed that there is.

次に上記の方法で得られた蛋白質溶液から、蛋白質を検出する方法について、以下に説明する。なお、本実施形態では、蛍光法を用いた検出方法を例に挙げて説明する。蛍光法は、蛋白質を高感度で検出する方法として、特に有効であるため、洗浄済みの器具に付着した残留蛋白質のような微量の蛋白質の検出に好適であるが、検出方法はこれに限られるものではない。   Next, a method for detecting a protein from the protein solution obtained by the above method will be described below. In the present embodiment, a detection method using a fluorescence method will be described as an example. Since the fluorescence method is particularly effective as a method for detecting proteins with high sensitivity, it is suitable for the detection of a minute amount of protein such as residual protein adhering to a cleaned instrument, but the detection method is limited to this. It is not a thing.

(反応工程)
次に、上記の抽出工程101にて抽出した蛋白質溶液を蛍光試薬と混合し、反応させる反応工程102について説明する。蛍光試薬としては、特定の蛋白質に反応するものではなく、総蛋白質を検出できるものが好ましく、例えば、ナノオレンジやCBQCA(invitrogen株式会社製)等が検出感度が高いため、好ましい。
(Reaction process)
Next, the reaction process 102 in which the protein solution extracted in the extraction process 101 is mixed with a fluorescent reagent and reacted is described. As the fluorescent reagent, a reagent that does not react with a specific protein but can detect the total protein is preferable. For example, nano orange or CBQCA (manufactured by Invitrogen) is preferable because of high detection sensitivity.

例えば、ナノオレンジを使用する場合、抽出工程101で抽出した蛋白質溶液にナノオレンジを混合し、93℃で10分間加熱し、室温にて冷却を行うことで反応工程102が終了する。反応条件については、使用する蛍光試薬に適した条件を適宜選択すればよい。   For example, when nano orange is used, nano orange is mixed with the protein solution extracted in the extraction step 101, heated at 93 ° C. for 10 minutes, and cooled at room temperature to complete the reaction step 102. About reaction conditions, what is necessary is just to select suitably the conditions suitable for the fluorescent reagent to be used.

(蛍光測定工程)
続いて、蛍光測定工程103について説明する。本工程では、抽出した蛋白質溶液と蛍光試薬とを混合し、反応させた混合液に、励起光を照射し、混合液から発せられる蛍光量を測定する。測定は上記抽出工程にて説明した手順と同様であり、一般的なプレートリーダーや蛍光顕微鏡、蛍光分光計等を使用することができる。励起光や蛍光の波長は、使用する蛍光試薬に適したものを選択して用いる。例えば、ナノオレンジを使用する場合、励起波長としては470nm近傍、蛍光波長としては570nm近傍であり、これに適したフィルタ等により分光を行う。
(Fluorescence measurement process)
Next, the fluorescence measurement process 103 will be described. In this step, the extracted protein solution and the fluorescent reagent are mixed, and the reaction mixture is irradiated with excitation light, and the amount of fluorescence emitted from the mixture is measured. The measurement is the same as the procedure described in the extraction step, and a general plate reader, fluorescence microscope, fluorescence spectrometer, or the like can be used. As the wavelength of excitation light or fluorescence, a wavelength suitable for the fluorescent reagent to be used is selected and used. For example, when nano orange is used, the excitation wavelength is around 470 nm and the fluorescence wavelength is around 570 nm, and spectroscopy is performed using a filter suitable for this.

(定量工程)
最後に、蛍光量を溶液の蛋白質濃度に換算する定量工程104について説明する。ここでは、上記蛍光測定工程103にて測定された蛍光量に基づいて、蛋白質溶液の濃度を算出する。具体的には、予め既知の濃度の蛋白質溶液にて検量線を作成しておき、検出された蛍光量をこの検量線を用いて溶液の蛋白質濃度を算出する。検量線の作成にはBSA(牛血清アルブミン)等の蛋白質を使用することができる。
(Quantitative process)
Finally, the quantitative process 104 for converting the fluorescence amount into the protein concentration of the solution will be described. Here, the concentration of the protein solution is calculated based on the amount of fluorescence measured in the fluorescence measurement step 103. Specifically, a calibration curve is prepared in advance with a protein solution with a known concentration, and the protein concentration of the solution is calculated using the detected fluorescence amount with this calibration curve. A protein such as BSA (bovine serum albumin) can be used to prepare a calibration curve.

図3に、蛍光試薬としてナノオレンジを使用した場合の、BSA濃度と蛍光量の関係を示す。BSAの溶媒としては、抽出液と同一のものを使用する。図3は溶媒として濃度5mMの水酸化ナトリウムを使用した場合のグラフである。約0.1μg/ml以下のBSA濃度まで検出が可能であった。器具に残留した蛋白質量は、検出した蛋白質濃度に抽出液量を積算することで算出することができる。例えば、検出蛋白質濃度が0.1μg/ml、抽出液量が10mlの場合、残留蛋白質量は1μg/器具となる。従来の吸光度を用いた検出方法では、検出感度は10μg/器具程度であり、蛍光法を用いることで高感度に検出が可能となる。   FIG. 3 shows the relationship between the BSA concentration and the fluorescence amount when nano orange is used as the fluorescent reagent. As the BSA solvent, the same one as the extract is used. FIG. 3 is a graph when sodium hydroxide having a concentration of 5 mM is used as a solvent. Detection was possible up to a BSA concentration of about 0.1 μg / ml or less. The amount of protein remaining in the instrument can be calculated by adding the amount of the extract to the detected protein concentration. For example, when the detected protein concentration is 0.1 μg / ml and the amount of the extract is 10 ml, the residual protein mass is 1 μg / instrument. In the detection method using the conventional absorbance, the detection sensitivity is about 10 μg / instrument, and the detection can be performed with high sensitivity by using the fluorescence method.

また、更なる高感度化を図る場合、抽出工程101で抽出した蛋白質溶液を濃縮することが好ましい。例えば、抽出液量が10mlの場合、1mlまで濃縮することで実質の測定感度が10倍向上することになる。濃縮方法としては、限外濾過法が簡易であり、蛋白質の分子量と水酸化ナトリウムの分子量の差を利用して、フィルタを選択することにより、適切に濃縮することができる。   In order to further increase the sensitivity, the protein solution extracted in the extraction step 101 is preferably concentrated. For example, when the amount of the extract is 10 ml, the actual measurement sensitivity is improved 10 times by concentrating to 1 ml. As a concentration method, an ultrafiltration method is simple, and it can be appropriately concentrated by selecting a filter using the difference between the molecular weight of protein and the molecular weight of sodium hydroxide.

以上示したように、適切な濃度のアルカリ溶液を抽出液として用いることにより、器具からの蛋白質抽出工程で、蛋白質をほぼ残留なく抽出することができ、さらに蛋白質の変性や、蛋白質検出時の溶質による測定妨害のない蛋白質溶液を得ることができる。また、これにより抽出された蛋白質を蛍光法を用いて検出することにより高感度に残留蛋白質量を定量することが可能となる。   As shown above, by using an alkaline solution of an appropriate concentration as the extract, protein can be extracted from the instrument with almost no residue in the protein extraction process, and further, protein denaturation and solute during protein detection It is possible to obtain a protein solution that does not interfere with measurement. Moreover, it becomes possible to quantify the amount of residual protein with high sensitivity by detecting the extracted protein using a fluorescence method.

以下に、本発明の検出方法を用いた蛋白質検出装置1について説明する。本発明の蛋白質検出装置1は、器具からの蛋白質抽出部11、蛍光試薬混合部12、および蛍光測定部13を有し、各部において上述した各工程が行われる。   Below, the protein detection apparatus 1 using the detection method of this invention is demonstrated. The protein detection apparatus 1 of the present invention includes a protein extraction unit 11 from a tool, a fluorescent reagent mixing unit 12, and a fluorescence measurement unit 13, and the above-described steps are performed in each unit.

図4は、蛋白質検出装置1の概略図である。検査対象の器具2に付着した残留蛋白質は、まず、蛋白質抽出部11において抽出される。器具2は、浴槽4で抽出液3に浸漬され、蛋白質が抽出される。蛋白質抽出が終了すると第1の弁5が開放し、流路6を通って蛋白質溶液が試薬混合部に搬送される。次に試薬混合部12において、試薬容器7中の試薬が第2の弁8で適量に調整されて蛋白質溶液と混合される。次に第3の弁9により混合液が蛍光測定部13に搬送され、蛍光測定光学系10により蛍光量が測定され、解析部(図示せず)により蛋白質濃度が算出される。また、測定後の溶液は排出部(図示せず)から排出される。   FIG. 4 is a schematic diagram of the protein detection apparatus 1. Residual protein adhering to the device 2 to be inspected is first extracted by the protein extraction unit 11. The instrument 2 is immersed in the extract 3 in the bathtub 4 and protein is extracted. When the protein extraction is completed, the first valve 5 is opened, and the protein solution is conveyed to the reagent mixing section through the flow path 6. Next, in the reagent mixing unit 12, the reagent in the reagent container 7 is adjusted to an appropriate amount by the second valve 8 and mixed with the protein solution. Next, the mixed solution is conveyed to the fluorescence measurement unit 13 by the third valve 9, the fluorescence amount is measured by the fluorescence measurement optical system 10, and the protein concentration is calculated by the analysis unit (not shown). Further, the solution after the measurement is discharged from a discharge unit (not shown).

このように、各工程を一体とした蛋白質検出装置1により、簡易に蛋白質の検出が可能となるとともに、小型化が可能となるので、医療機関や食品製造ライン等において、任意の場所での測定が可能となる。   As described above, the protein detection apparatus 1 in which each process is integrated makes it possible to easily detect a protein and to reduce the size, so that measurement can be performed at any place in a medical institution or a food production line. Is possible.

上記の実施形態は医療用器具に関する記述であるが、これに限定されるものではなく、例えば、食品製造ラインで使用する器具等、蛋白質が付着した器具に広く応用することが可能である。また、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   Although the above embodiment is a description related to a medical instrument, the present invention is not limited to this, and can be widely applied to instruments attached with proteins such as an instrument used in a food production line. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the embodiments can be obtained by appropriately combining technical means disclosed in different embodiments. The form is also included in the technical scope of the present invention.

本発明に係る蛋白質の抽出方法、検出方法、検出装置は、例えば医療器具の洗浄精度評価や、医療用洗浄機の性能評価、食品工場の製造ラインの汚染物検出に好適に利用できる。   The protein extraction method, detection method, and detection apparatus according to the present invention can be suitably used for, for example, evaluating the cleaning accuracy of medical instruments, evaluating the performance of medical cleaning machines, and detecting contaminants in production lines of food factories.

1 蛋白質検出装置
2 器具
3 抽出液
4 浴槽
5 第1の弁
6 流路
7 試薬容器
8 第2の弁
9 第3の弁
10 蛍光測定光学系
11 蛋白質抽出部
12 試薬混合部
13 蛍光測定部
DESCRIPTION OF SYMBOLS 1 Protein detection apparatus 2 Instrument 3 Extract liquid 4 Bath 5 1st valve 6 Flow path 7 Reagent container 8 2nd valve 9 3rd valve 10 Fluorescence measurement optical system 11 Protein extraction part 12 Reagent mixing part 13 Fluorescence measurement part

Claims (8)

器具に付着した蛋白質を抽出する方法であって、
濃度が20mM以下のアルカリ溶液を抽出液として用いることを特徴とする蛋白質抽出方法。
A method for extracting protein adhering to a device,
A protein extraction method characterized by using an alkaline solution having a concentration of 20 mM or less as an extract.
前記アルカリ溶液の濃度が10mM以下であることを特徴とする蛋白質抽出方法。   A protein extraction method, wherein the concentration of the alkaline solution is 10 mM or less. 前記器具は洗浄後のものであることを特徴とする請求項1または請求項2に記載の蛋白質抽出方法。   The protein extraction method according to claim 1 or 2, wherein the instrument is after washing. 請求項1から請求項3のいずれかに記載の蛋白質抽出方法を用いて得られた蛋白質溶液を用いて、蛋白質を検出することを特徴とする蛋白質検出方法。   A protein detection method comprising: detecting a protein using a protein solution obtained by using the protein extraction method according to any one of claims 1 to 3. 前記蛋白質検出方法は、前記蛋白質溶液と蛍光試薬とを反応させる反応工程と、
反応させた溶液に励起光を照射して蛍光量を測定する蛍光測定工程と、
前記蛍光測定工程にて測定された蛍光量に基づいて、前記蛋白質溶液の濃度を算出する定量工程を含むことを特徴とする請求項4に記載の蛋白質検出方法。
The protein detection method comprises a reaction step of reacting the protein solution with a fluorescent reagent;
A fluorescence measurement step of irradiating the reacted solution with excitation light to measure the amount of fluorescence;
The protein detection method according to claim 4, further comprising a quantification step of calculating the concentration of the protein solution based on the fluorescence amount measured in the fluorescence measurement step.
前記蛍光試薬は、ナノオレンジであることを特徴とする請求項5に記載の蛋白質検出方法。   The protein detection method according to claim 5, wherein the fluorescent reagent is nano orange. 洗浄後の器具に付着した蛋白質を、蛍光法を用いて検出することにより、前記洗浄の精度を測定することを特徴とする蛋白質検出方法。   A method for detecting a protein comprising measuring the accuracy of the washing by detecting a protein adhering to the instrument after washing using a fluorescence method. 請求項4から請求項7のいずれかに記載の蛋白質検出方法を用いて、前記器具に付着した蛋白質量を測定することを特徴とする蛋白質検出装置。   A protein detection apparatus that measures the amount of protein adhering to the instrument using the protein detection method according to any one of claims 4 to 7.
JP2010207390A 2010-09-16 2010-09-16 Protein extraction method, protein detection method, and protein detection apparatus Pending JP2012063231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207390A JP2012063231A (en) 2010-09-16 2010-09-16 Protein extraction method, protein detection method, and protein detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207390A JP2012063231A (en) 2010-09-16 2010-09-16 Protein extraction method, protein detection method, and protein detection apparatus

Publications (1)

Publication Number Publication Date
JP2012063231A true JP2012063231A (en) 2012-03-29

Family

ID=46059095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207390A Pending JP2012063231A (en) 2010-09-16 2010-09-16 Protein extraction method, protein detection method, and protein detection apparatus

Country Status (1)

Country Link
JP (1) JP2012063231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036311A1 (en) * 2013-09-13 2015-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for determining the cleaning performance of formulations
CN104568938A (en) * 2015-01-15 2015-04-29 福建出入境检验检疫局检验检疫技术中心 Fast detection method for residual dicofol in tea leaves

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036311A1 (en) * 2013-09-13 2015-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for determining the cleaning performance of formulations
CN104568938A (en) * 2015-01-15 2015-04-29 福建出入境检验检疫局检验检疫技术中心 Fast detection method for residual dicofol in tea leaves

Similar Documents

Publication Publication Date Title
US7563329B2 (en) Monitoring of cleaning process
KR101050651B1 (en) Calculation of platelets
AU2006201279A1 (en) Monitoring of cleaning process
EP3852943B1 (en) Composition for cleaning
JP2012063231A (en) Protein extraction method, protein detection method, and protein detection apparatus
JP5543310B2 (en) Immunochromatographic inspection method and apparatus
JP2006509514A (en) Method and apparatus for identifying bacteria
JP4918552B2 (en) Detecting residues on parts
WO2015036311A1 (en) Method for determining the cleaning performance of formulations
JP2012173033A (en) Protein detection method and protein extraction method
Alfa et al. Cleaning efficacy of medical device washers in North American healthcare facilities
JP5543888B2 (en) Immunochromatographic inspection method and apparatus
US20160327490A1 (en) Detection method
JP2012063298A (en) Protein extraction method, protein detection method, and protein detection apparatus
JP3165668B2 (en) Detection method and detection kit for protein adhering matter
Kremer et al. Assessing detergent residuals for reusable device cleaning validations
JP4615966B2 (en) Protein detection method
Fengler et al. Are processed surgical instruments free of protein
US11596705B2 (en) Kit for detecting residual contaminations on medical devices
Debaje et al. Regulatory Aspects of Cleaning and Cleaning Validation in Active Pharmaceutical Ingredients
Heathcote et al. Measuring of ATP bioluminescence as a means of assessing washer disinfector performance and potentially as a means of validating the decontamination process
Fadhilah et al. THE EFFECT OF TEST TUBE STERILIZATION FROM SERUM LIPEMIC AGAINST LEVELS OF TRIGLYCERIDE GPO-PAP METHOD
McCormick et al. A designed experiment for evaluation of the OPA method for cleaning studies of medical devices
JP6507445B2 (en) Method for detecting and quantifying proteins
ES2397333B1 (en) BIOFILMS MARKER COMPOSITION AND METHOD OF DETECTION OF THE SAME IN SURFACES.

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130131