JP6506685B2 - UE、UEの通信方法、ProSeサーバ、及びProSeサーバの通信方法 - Google Patents

UE、UEの通信方法、ProSeサーバ、及びProSeサーバの通信方法 Download PDF

Info

Publication number
JP6506685B2
JP6506685B2 JP2015506835A JP2015506835A JP6506685B2 JP 6506685 B2 JP6506685 B2 JP 6506685B2 JP 2015506835 A JP2015506835 A JP 2015506835A JP 2015506835 A JP2015506835 A JP 2015506835A JP 6506685 B2 JP6506685 B2 JP 6506685B2
Authority
JP
Japan
Prior art keywords
communication path
communication
information
wlan
lte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015506835A
Other languages
English (en)
Other versions
JPWO2014148570A1 (ja
Inventor
政幸 榎本
政幸 榎本
真史 新本
真史 新本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2014148570A1 publication Critical patent/JPWO2014148570A1/ja
Application granted granted Critical
Publication of JP6506685B2 publication Critical patent/JP6506685B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Description

本発明は、UE等に関する。
本願は、2013年3月21日に、日本に出願された特願2013−058056号に基づき優先権を主張し、その内容をここに援用する。
移動通信システムの標準化団体3GPP(The 3rd Generation Partnership Project)では、次世代の移動体通信システムとして以下の非特許文献1に記載のEPS(Evolved Packet System)の仕様化作業を進めており、EPSに接続されるアクセスシステムとしてLTE(Long Term Evolution)だけでなく、無線LAN(Wireless LAN、WLAN)について検討がなされている。
さらに、3GPPでは、非特許文献2に記載されるように、ユーザ端末(User Equipment、UE)に対して近隣の他ユーザ端末の存在を通知する近隣サービス(Proximity Service、ProSe)について検討が行われている。さらにProSeでは、UEは、近隣UEと基地局を介さずに直接データの送受信を行うことができる。
ProSeでは、UE間において直接データの送受信を行うため、移動通信ネットワークや無線LANネットワークを介さず、データのトラフィックをオフロードできることから、LTEへのトラフィックの集中を回避することも可能である。
ProSeでは、UE間の直接通信路として2つの方式を利用することが検討されている。一つは、LTEアクセス技術を用いたUE間の直接通信路を確立する方法(以下 LTE Direct)であり、もうひとつは、無線LAN(Wireless LAN)アクセス技術を用いて直接通信路を確立する方法である。
LTE Directでは、UEは各移動通信事業者におけるLTEシステムにおいて割り当てられた商用周波数を利用し、LTEの通信方式を利用してUE間において直接データの送受信を行う。
WLAN Directでは、WLANにおいて割り当てられた非商用周波数を利用して、UE間において直接データの送受信を行う。
また、ProSeでは、UEは、LTE Directまたは、WLAN Directによりデータの送受信を行うために、通信対象UEを探索し、近隣に通信対象UEの存在を検知する必要性がサービス要求条件として挙げられている。
さらに、UE間直接通信は移動通信事業者によってサービスを提供するために、UE間の直接通信路確立にあたっては、移動通信事業者による承認が必要と規定されている。
このようにProSeでは、あるUEに対する近隣UEの存在を通知するサービスと、UE間の直接通信路による通信を提供するサービスと、を提供することを目的としている。
3GPP TS23.401 Technical Specification Group Services and System Aspects, General Packet Radio Service(GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network(E-UTRAN) access 3GPP TR22.803 Technical Specification Group Services and System Aspects, Feasibility study for Proximity Services(ProSe)
しかしながら、現在、近隣端末の通知方法と、UE間の直接通信路確立方法とは具体的な実現手段ないために、通信元となるUEが通信対象となるUEを探索するにあたって、通信対象UEが近くにいるかどうかに関係なく、無作為に探索を開始してしまい、通信対象UEが近くにいない場合には、通信対象UEを探索することができず、通信元UEは消費電力を浪費させてしまう。
また、UEがProSeによるデータの送受信を開始する場合、通信対象UEが通信元UEの近隣にいる場合であっても、通信元UEがLTE Directによるデータの送受信を要求し、通信対象UEがLTE Directによるデータの送受信を行うことができない場合、不必要な探索を開始してしまうことになり、通信元UEは消費電力を浪費させてしまう。
さらに、UEがProSeによるデータの送受信を開始する場合、通信対象UEが通信元UEの近隣にいる場合であっても、通信元UEがWLAN Directによるデータの送受信を要求し、通信対象UEがWLAN Directによるデータの送受信を行うことができない場合、不必要な探索を開始してしまうことになり、通信元UEは消費電力を浪費させてしまう。
さらに、移動通信事業者がUEの直接通信路の確立に対して許可、不許可を与える手段がないために、移動通信事業によりユーザへ近隣通信サービスを提供することができなかった。
本発明は、このような事業を鑑みてなされたもので、ProSeにおけるデータの送受信を行う場合において、通信元UEが通信対象となるUEを効率的に探索、通知し、移動通信事業者がUEに対してUE間直接通信を提供することを目的とした移動通信システム等を提供することである。
本発明の一態様に係るUE(User Equipment)は、前記UEの位置情報を、近隣UEを検出可能なサーバ装置に登録する手続きを開始する制御部と、前記サーバ装置から近隣通知メッセージを受信する受信部と、を有し、前記近隣通知メッセージには、前記UEの近隣に位置する前記近隣UEに基づく情報と、アプリケーションを識別する情報とが含まれる、ことを特徴とする。
本発明の他の一態様に係るサーバ装置は、UE(User Equipment)の近隣に位置する近隣UEを検出可能なサーバ装置であって、前記UEの位置情報と前記近隣UEの位置情報とを登録する制御部と、近隣通知メッセージを送信する送信部と、を有し、前記近隣通知メッセージには、前記近隣UEに基づく情報と、アプリケーションを識別する情報とが含まれる、ことを特徴とする。
本発明の他の一態様に係るUE(User Equipment)の通信方法は、前記UEの位置情報を、近隣UEを検出可能なサーバ装置に登録する手続きを開始し、前記サーバ装置から近隣通知メッセージを受信する、ことを有し、前記近隣通知メッセージは、前記UEの近隣に位置する前記近隣UEに基づく情報と、アプリケーションを識別する情報とが含まれる、ことを特徴とする。
本発明の一態様に係るUE(User Equipment)の近隣に位置する近隣UEを検出可能なサーバ装置の通信方法は、前記UEの位置情報と近隣UEの位置情報を登録し、近隣通知メッセージを送信する、ことを有し、前記近隣通知メッセージは、前記近隣UEに基づく情報と、アプリケーションを識別する情報とが含まれる、ことを特徴とする。
本発明の態様によれば、通信元UEは、ProSeにおけるデータの送受信を行う場合において、通信対象UEを不必要に探索することなく、通信対象UEを探索することにより、通信元UEの消費電力を非効率に消費することを防止することができる。
また、通信対象UEを探索する条件を通信元UEに与えることで、通信対象UEを探索することができ、ProSeにおけるデータの送受信を開始することを実現することができる。
また、移動通信事業者によりUE間直接通信路の確立を許可または不許可と判断することにより、UEに対してUE間直接通信を提供することができる。
第1実施形態における移動通信システム1の概要を説明するための図である。 IP移動通信ネットワークの構成を説明するための図である。 第1実施形態におけるUEの機能構成を説明するための図である。 UEの記憶部において管理される機能構成の例を示すための図である。 ProSe Serverの機能構成を説明するための図である。 Serverコンタクトリストおよび、アプリケーション種別毎の通信路の例を示すための図である。 位置情報管理表および、近隣評価ポリシーの例を示すための図である。 MMEの機能構成を説明するための図である。 通信路確立に対する許可情報を説明するための図である。 第1実施形態における位置通知手続きを説明するための図である。 ProSe Serverにおける位置情報の更新の様子を示すための図である。 第1実施例における近隣検出不要手続きを説明するための図である。 近隣検出不要手続きに基づくServerコンタクトリストの更新の様子を示すための図である。 第1実施形態における近隣検出手続きを説明するための図である。 第1実施形態における近隣検出処理を説明するための図である。 第1実施例における近隣検出の一例を示すための図である。 第1実施例におけるPDN接続要求に基づく通信路確立手続きを説明するための図である。 第1実施例におけるサービス要求に基づく通信路確立手続きを説明するための図である。 第1実施例における直接通信を中止する切断手続きを説明するための図である。 UEで管理するUEコンタクトリストの一例を示すための図である。 ProSe Serverで管理するServerコンタクトリストの一例を示すための図である。 UEで管理するLTE(D)利用可否管理テーブルおよび、WLAN(D)利用可否管理テーブルを示す図である。 ProSe ServerにおけるLTE(D)の利用可否および、WLAN(D)の利用可否を含むServerコンタクトリストを示す図である。 ServerコンタクトリストにおけるLTE(D)の利用可否および、WLAN(D)の利用可否の更新の様子を示すための図である。 UEにおけるUEアクションポリシーの例を示す図である。 ProSe Serverにおける近隣評価ポリシーの例を示す図である。 近隣評価の例を示すための図である。 ProSe ServerがIP移動通信ネットワーク内に配置される場合の例を示すための図である。
以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、本実施形態では、一例として、本発明を適用した場合の移動通信システムの実施形態について、図を用いて詳細に説明する。
以下、LTE directをLTE(D)と表記し、WLAN directはWLAN(D)と表記する。ここで、LTE(D)とはLTE通信方式を用いてUE間で直接通信路の確立することであり、WLAN(D)とはWLAN通信方式を用いてUE間の直接通信路を確立することを指している。
[1.第1実施形態]
まず、本発明を適用した第1実施形態について、図面を参照して説明する。
[1.1 移動通信システムの概要]
図1は、本実施形態における移動通信システム1の概略を説明するための図である。本図に示すように、移動通信システム1は、UE(移動局装置)10と、UE(移動局装置)10aと、PDN(Packet Data Network)20とがIP移動通信ネットワーク5を介して接続されて構成されている。
また、PDN20には、ProSe Server90が配置されている。ProSe Server90は、PDN20であればいずれに配置しても良い。なお、ProSe Server90は、UE10および、UE10aは、ProSe Server90とセキュアな通信を確保し、制御情報やデータの送受信を行うことができる。
UE10と、UE10aは、近隣にいる関係であり、ProSeによるデータの送受信を開始するための近隣探索において、互いに発見可能な場所に位置している。
IP移動通信ネットワーク5は、例えば、移動通信事業者が運用する無線アクセスネットワークとコアネットワークによって構成されるネットワークでもよいし、固定通信事業者が運用するブロードバンドネットワークであっても良い。移動通信事業者が運用するIP移動通信ネットワークは後で詳細に説明する。
また、ブロードバンドネットワークは、ADSL(Asymmetric Digital Subscriber Line)等により接続し、光ファイバー等のデジタル回線による高速通信を提供する、通信事業者が運用するIP通信ネットワークのことである。さらに、これらに限らずWiMAX(Worldwide Interoperability for Microwave Access)等で無線アクセスするネットワークであっても良い。
UE10は、LTEやWLAN等のアクセスシステムを用いて接続する通信端末であり、3GPP LTEの通信インタフェースやWLANの通信インタフェース等を搭載して接続することにより、IPアクセスネットワークへ接続することが可能である。具体的な例としては、携帯電話端末やスマートフォンであり、その他通信機能を備えたタブレット型コンピュータやパソコン、家電などである。
PDN20は、パケットでデータのやり取りを行うネットワークサービスを提供するネットワークのことであり、例えば、インターネットやIMSなどである。
PDN20は、IPアクセスネットワークへ有線回線等を利用して接続される。例えば、ADSL(Asymmetric Digital Subscriber Line)や光ファイバー等によって構築される。ただし、これに限らずLTE(Long Term Evolution)や、WLAN(Wireless LAN)、WiMAX(Worldwide Interoperability for Microwave Access)等の無線アクセスネットワークであっても良い。
[1.1.1 IP移動通信ネットワークの構成例]
図2に示すように、移動通信システム1は、UE10と、IP移動通信ネットワーク5と、PDN20(Packet Data Network)とから構成される。なお、UE10aは、UE10とは異なるUEであり、構成はUE10と同様であるため説明を省略する。
また、IP移動通信ネットワーク5には、UE10やUE10a以外にも複数のUEが接続することができるが図面の簡略化のため記載を省略する。さらに、IP移動通信ネットワーク5はコアネットワーク7と各無線アクセスネットワークで構成される。コアネットワーク7の詳細な構成について図2(a)に示している。
なお、PDN20は、図1を用いて説明したパケットでデータのやり取り行うネットワークサービスを提供するネットワークのことであり、例えば、インターネットやIMSなどである。
コアネットワーク7は、PGW(アクセス制御装置)30(Packet Data Network Gateway)と、SGW35(Serving Gateway)と、MME40(Mobile Management Entity)と、HSS50(Home Subscriber Server)と、AAA55(Authentication, Authorization, Accounting)と、PCRF60(Policy and charging rules function)と、ePDG65(enhanced Packet Data Gateway)と、を含んで構成される。
無線アクセスネットワークは、複数の異なるアクセスネットワークで構成されてよい。それぞれのアクセスネットワークはコアネットワーク7に接続されている。さらに、UE10は無線アクセスネットワークに無線接続することができる。
無線アクセスネットワークには、LTEアクセスシステムで接続できるLTEアクセスネットワーク(LTE AN80)や、WLANアクセスシステムで接続できるアクセスネットワークを構成することができる。
さらに、WLANアクセスシステムで接続可能なアクセスネットワークは、ePDG65をコアネットワーク7への接続装置として接続するWLANアクセスネットワークb(WLAN ANb75)と、PGW30とPCRF60とAAA55とに接続するWLANアクセスネットワークa(WLAN ANa70)とが構成可能である。
なお、各装置はEPSを利用した移動通信システムにおける従来の装置と同様に構成されるため、詳細な説明は省略するが、簡単に機能を説明すると、PGW30はPDN20とSGW35とePDG65と、WLAN ANaと、PCRF60と、AAA55とに接続されており、PDN20とコアネットワーク7のゲートウェイ装置としてユーザデータ配送を行う。
SGW35は、PGW30と、MME40とLTE AN80とに接続されており、コアネットワーク7とLTE AN80とのゲートウェイ装置としてユーザデータの配送を行う。
MME40は、SGW35とLTE AN80に接続されており、LTE AN80を経由したUE10のアクセス制御を行うアクセス制御装置である。
HSS50は、SGW35とAAA55とに接続されており、加入者情報の管理を行う。また、AAA55は、PGW30と、HSS50と、PCRF60と、WLAN ANa70とに接続されており、WLAN ANa70を経由して接続するUE10のアクセス制御を行う。PCRF60は、PGW30と、WLAN ANa70と、AAA55とに接続されており、データ配送に対するQoS管理を行う。
ePDG65は、PGW30と、WLAN ANb75とに接続されており、コアネットワーク7と、WLAN ANb75とのゲートウェイ装置としてユーザデータの配送を行う。
また、図2(b)に示すように、各無線アクセスネットワークには、UE10が実際に接続される装置(例えば、基地局装置やアクセスポイント装置)等が含まれている。接続に用いられる装置は、無線アクセスネットワークに適応した種々の装置が考えられるが、本実施形態においては、LTE AN80はeNB45を含んで構成される。eNB45はLTEアクセスシステムでUE10が接続する無線基地局であり、LTE AN80には1又は複数の無線基地局が含まれて構成されてよい。
さらに、WLAN ANa70はWLAN APa72と、GW74(Gateway)とが含まれて構成される。WLAN AP72はWLANアクセスシステムでUE10が接続する無線基地局であり、WLAN AN70には1又は複数の無線基地局が含まれて構成されてよい。
GW74はコアネットワーク7とWLAN ANa70のゲートウェイ装置である。また、WLAN APa72とGW74とは、単一の装置で構成されてもよい。
このように、WLAN ANa70に含まれるゲートウェイは複数のコアネットワーク7内装置に接続することができる。コアネットワーク7を運用する事業者とWLAN ANa70を運用する事業者が異なる場合等では、事業者間に運用上の契約や規約等により、信頼関係が結ばれている場合にこのような構成で運用することができる。言い換えると、WLAN APa72はコアネットワーク7を運用する事業者に対して信頼性のあるアクセスネットワークである。
また、WLAN ANb75はWLAN APb76を含んで構成される。WLAN AP76はWLANアクセスシステムでUE10が接続する無線基地局であり、WLAN AN75には1又は複数の無線基地局が含まれて構成されてよい。
このように、WLAN ANb75はコアネットワーク7に含まれる装置であるePDG65をゲートウェイとしてコアネットワーク7に接続される。ePDG65は安全性を確保するためのセキュリティ機能を持つ。
コアネットワーク7を運用する事業者とWLAN ANa70を運用する事業者が異なる場合等では、事業者間に運用上の契約や規約等により、信頼関係が結ばれていない場合にこのような構成で運用する。
言い換えると、WLAN APaはコアネットワーク7を運用する事業者に対して信頼性のないアクセスネットワークであり、コアネットワーク7に含まれるePDG65において安全性を提供している。
なお、本明細書において、UE10が各無線アクセスネットワークに接続されるとは、各無線アクセスネットワークに含まれる基地局装置やアクセスポイント等に接続されることをいい、送受信されるデータや信号等も、基地局装置やアクセスポイントを経由している。
例えば、LTE AN80にUE10が接続されるとは、UE10がeNB45を介して接続されることをいい、WLAN ANa70に接続されるとは、WLAN APa72及び/又はGW74を介して接続されることをいう。また、UE10がWLAN ANb75に接続されるとは、UE10がWLAN APb76に接続されることを言う。
[1.2 装置構成]
続いて、各装置構成について図を用いて簡単に説明する。
[1.2.1 UEの構成]
図3は、本実施形態におけるUE10の機能構成を示す。UE10は、制御部100に、LTEインタフェース部110とWLANインタフェース部120と、記憶部140とがバスを介して接続されている。
制御部100は、UE10を制御するための機能部である。制御部100は、記憶部140に記憶されている各種プログラムを読みだして実行することにより各種処理を実現する。
LTEインタフェース部110は、LTEアクセス方式により無線通信によるデータの送受信を実行する機能部である。LTEインタフェース部110には、外部アンテナ112が接続されている。
UE10は、LTEインタフェース部を介してLTE基地局に接続してIPアクセスネットワーク5に接続して通信を行うこともできるし、LTE基地局を介さずに他のUEへ直接通信路を確立して通信を行うこともできる。
WLANインタフェース部120は、無線LAN(Wireless LAN)アクセス方式により無線通信によるデータ送受信を実行する機能部である。WLANインタフェース部120には、外部アンテナ122が接続されている。
UE10は、WLANインタフェース部を介してWLAN基地局に接続してIPアクセスネットワーク5に接続して通信を行うこともできるし、WLAN基地局を介さずに他のUEへ直接通信路を確立して通信を行うこともできる。
記憶部140は、UE10の各種動作に必要なプログラム、データ等を記憶する機能部である。記憶部140は、例えば、半導体メモリや、HDD(Hard Disk Drive)等により構成されている。さらに、記憶部140には、APPリスト142が記憶されている。
APPリスト142には、UE10が利用可能なアプリケーションを記憶している。図4(a)は、APPリスト142の一例を示した図である。図4(a)では、APPリスト142は、UE10が利用可能なアプリケーションがAPP1〜APP3として示されている。
なお、アプリケーションは、VoIPまたはビデオストリーミングまたはビデオファイルまたはテキストなどのデータ種別によって異なるアプリケーションと識別されて管理してもよい。
もしくは、IMSなどのミドルウェアを用いた通信を単一のアプリケーションとして識別して管理してもよい。
もしくは、SkypeやLINEといった個別のアプリケーションをアプリケーション名やアプリケーションIDによって識別して管理しても良い。
もしくはこれらの組み合わせによってアプリケーションを異なるもとのして識別して管理してもよい。
ここで、UE10が利用可能なアプリケーションは、製造段階において、インストールされていても良いし、ユーザ操作によりインストールされていても良い。
さらに、UE10はそれぞれのアプリケーションに対して利用可能な通信路の情報を、アプリケーションに対応づけて管理する。例えば、図4(a)で示すように、アプリケーション(APP1〜APP3)に対してカテゴリー(Cat.1〜Cat.3)が関連付けられている。さらに、各カテゴリーはアプリケーションが利用可能な通信路と対応づけられている。
図4(a)の例では、Cat.1は、LTE(D)の直接通信を利用可能なことを示し、Cat.2は、WLAN(D)の直接通信を利用可能なことを示し、Cat.3は、LTE(D)の直接通信および、WLAN(D)の直接通信を利用可能なことを示している。なお、Cat.3の場合には、UE10は、LTE(D)または、WLAN(D)のいずれかを選択して利用することができる。
図4(b)は、APP毎のUEコンタクトリスト144を示した図である。図4(b)では、APP1のコンタクトリストと、APP2のコンタクトリストと、APP3のコンタクトリストとが管理されている。APP毎のUEコンタクトリスト144は、ProSeによる直接通信が可能なUEが管理されている。もしくは各APPを用いて通信可能なUEを管理してもよい。
また、UE毎に近隣探索を行うことができないことを示した近隣探索不要チェックボックスをUEコンタクトリスト144のUEに対応づけて管理しても良い。
近隣探索不要のチェックボックスにチェックが入力されている場合には、チェックに対応づけられるUEコンタクトリスト144のUEは、UE10を近隣検出できないことを示す。つまり、UE10はUEコンタクトリスト144の各UEそれぞれに対して、近隣検出をさせるか否かを管理することができる。近隣探索不要のチェックボックスはユーザが設定するなどして更新することができる。
また、本例では近隣探索不要か否かをUE10のAPP毎に対応づける例を示したが、近隣探索不要か否かをUEコンタクトリスト144と対応づけて管理してもよい。その際にはコンタクトリストの全てのUEに対して近隣検索不要か否かを一括して設定することができる。
また、近隣探索不要か否かは全てのアプリケーションのUEコンタクトリスト144に対して対応づけて管理してもよい。その際には全てのコンタクトリストの全てのUEに対して近隣検索不要か否かを一括して設定することができる。
つまり、近隣探索不要のチェックボックスを基に、UE10は、UEコンタクトリスト144のUEが近隣のUEを検出する際に、UE10自身を検出対象から除くことができる。
なお、図4(b)に示すように、アプリケーション毎に、ProSeによる直接通信が可能なUEが管理され、それぞれのコンタクトリストで管理されたUE毎に近隣探索不要であることを管理することができる。
なお、図4(b)に示すUE10a〜UE10nは、UE10とは異なるUEであり、それらの構成はUE10と同様であるため詳細説明を省略する。
[1.2.2 ProSe Serverの構成]
図5にProSe Server90の機能構成を示す。ProSe Server90は、制御部900に、IP移動通信ネットワークインタフェース部910と、記憶部940とがバスを介して接続されている。
制御部900は、UE10を制御するための機能部である。制御部900は、記憶部940に記憶されている各種プログラムを読みだして実行することにより各種処理を実現する。
IP移動通信ネットワークインタフェース部910は、ProSe Server90がIP移動通信ネットワーク5に接続するための機能部である。
記憶部940は、UE10の各種動作に必要なプログラム、データ等を記録する機能部である。記憶部940は、例えば、半導体メモリや、HDD(Hard Disk Drive)等により構成される。
さらに、記憶部940には、Serverコンタクトリスト942と、通信路管理表944と、位置情報管理表945と、近隣評価ポリシー948とを記憶する。
なお、Serverコンタクトリスト942、アプリケーション種別毎の通信路944、位置情報管理表946は、外部装置により記憶されていても良い。例えば、HSS50にこれらを記憶し、必要に応じてHSS50への問い合わせを行い参照や更新を行うってもよい。
図6(a)に、Serverコンタクトリスト942の例では、あるUEの利用可能なアプリケーション毎にServerコンタクトリスト942を管理する例を示す。図6(a)では、UE10のAPP1からAPP3におけるコンタクトリストを示している。
なお、アプリケーションは、VoIPまたはビデオストリーミングまたはビデオファイルまたはテキストなどのデータ種別によって異なるアプリケーションと識別されて管理してもよい。
もしくは、IMSなどのミドルウェアを用いた通信を単一のアプリケーションとして識別して管理してもよい。もしくは、SkypeやLINEといった個別のアプリケーションをアプリケーション名やアプリケーションIDによって識別して管理しても良い。もしくはこれらの組み合わせによってアプリケーションを異なるものとして識別して管理してもよい。
また、図6(a)のコンタクトリストにおいて、UE10がProSeによる直接通信を可能とするUEのリスト(UE10a〜UE10n)と、近隣探索不要チェックボックスが対応づけられて管理されてもよい。
近隣探索不要のチェックボックスにチェックが入力されている場合には、UE10は近隣検索不要と管理されたUEを近隣検出できないことを示す。つまり、ProSe Server90は、Serverコンタクトリスト942の各UEを近隣検出する対象とするか否かをUE10のアプリケーション毎に管理することができる。近隣探索不要のチェックボックスはユーザが設定するなどして更新することができる。
また、本例では近隣探索不要か否かをServerコンタクトリスト942のUE毎に対応づける例を示したが、Serverコンタクトリスト942に対応づけて管理してもよい。その際にはServerコンタクトリスト942の全てのUEに対して近隣検索不要か否かを一括して設定することができる。
また、近隣探索不要か否かは全てのアプリケーションに対して対応づけて管理してもよい。その際にはUE10のすべてのServerコンタクトリスト942の全UEに対して近隣検索不要か否かを一括して設定することができる。
上記では、UE10のアプリケーション毎のコンタクトリストを例に説明したが、UE10とは異なるUE(例えば(UE10a〜UE10n)のそれぞれに対しても、ProSe Server90は同様にProse Serverコンタクトリスト942を記憶する。
図6(b)に、アプリケーション種別毎の通信路管理表944の例を示す。アプリケーション種別毎の通信路管理表944では、アプリケーションと、アプリケーションで利用可能な通信路とを対応づけて管理する。
なお、アプリケーションは、VoIPまたはビデオストリーミングまたはビデオファイルまたはテキストなどのデータ種別によって異なるアプリケーションと識別されて管理してもよい。もしくは、IMSなどのミドルウェアを用いた通信を単一のアプリケーションとして識別して管理してもよい。
アプリケーションで利用可能な通信路としては、LTE(D)またはWLAN(D)またはその方法など、アプリケーション毎に利用可能な通信路を対応づけて管理する。
図6(b)の例では、アプリケーション、サービス毎に移動通信事業者が許可するProSeによるデータの送受信を行うカテゴリー(Cat.1〜Cat.3)を管理している。Cat.1は、LTE(D)の直接通信を利用可能なことを示し、Cat.2は、WLAN(D)の直接通信を利用可能なことを示し、Cat.3は、LTE(D)の直接通信および、WLAN(D)の直接通信を利用可能なことを示している。なお、Cat.3の場合には、UE10は、LTE(D)または、WLAN(D)のいずれかを選択して利用することができる。
例えば、APP1は、Cat.1と関連付けられているため、LTE(D)による直接通信がサポートされる。また、APP2は、Cat.2と関連付けられているため、WLAN(D)による直接通信がサポートされる。さらに、APP3は、Cat.3と関連付けられているため、LTE(D)および、WLAN(D)による直接通信がサポートされる。なお、Cat.3のように、LTE(D)および、WLAN(D)を利用可能な場合、UE10がLTE(D)または、WLAN(D)を選択することができる。
図7(a)に、位置情報管理表946の例を示す。図7(a)の位置情報管理表では、ProSeによる直接通信を可能なUEの位置情報をUE毎に記憶している。ProSe Server90は、UEから通知された位置情報を利用して、位置情報管理表946で管理する。
図7(a)では、UE10は位置Aおよび、位置aに配置され、UE10aは位置Aおよび、位置bに配置されている。また、UE10bは、位置Bに配置され、UE10cは位置Cに配置され、UE10zzは、位置xに配置されている。
なお、UE毎に管理する位置情報は、図7(a)に示すように、1つであっても複数であっても良い。例えば、UE10における位置Aおよび位置aは、UE10の接続するLTE基地局の識別情報と、WLAN基地局の識別情報であってよい。その他にも、GPSによって算出された位置情報や、地域を識別する情報などであってよい。さらに、WLANでの接続に用いられるSSID、BSSID、Realmなどを用いても良いし、その他の情報を用いても良い。
また、図7(a)では、サービス、アプリケーションに関係なく、UE毎の位置を管理しているが、サービス、アプリケーション毎にUE毎の位置を管理しても良い。サービス毎にUE毎の位置を管理する場合、コンタクトリストに含めて管理されても良い。
図7(b)に、近隣評価ポリシー948の例を示す。近隣評価ポリシー948は、位置情報管理表946をもとにUE10とUE10とは異なる他のUEが近隣に位置するかを評価するためのルールを含めている。ProSe Server90は、近隣評価ポリシー948に基づいて、通信元UEと通信対象UE間において、直接通信の通信路(LTE(D)および/または、WLAN(D))が利用可能か否かを評価してもよい。
図7(b)では、近隣評価ポリシー948によるポリシーの内容および、判断結果の一例を示す。ポリシーの内容は、AP名(Access Point、AP)、SSID(Service Set IDentifier、SSID)、Realm(施設情報、レルム)、eNB ID(移動通信事業者の基地局情報)を利用した判断方法を管理している。
ここで、AP、SSID、Realmは、WLANに接続する場合においてUEが取得可能な識別子であって、WLAN AP a72または、WLAN APb76のいずれかで取得し、ProSe Server90に通知することができ、ProSe Server90はUEの位置情報の通知を基に位置を管理する。
なお、UE10は、WLAN AP a72または、WLAN APb76に接続した場合、AP、SSID、Realmの全てを取得することができる場合もあれば、AP、SSID、Realmのいずれかだけ取得することができる場合もある。
つまり、UE10は、ProSe Server90に、AP、SSID、Realmの全てを通知する場合もあれば、AP、SSID、Realmのいずれかだけ通知する場合もある。
なお、UE10は、WLAN(WLAN AP a72または、WLAN APb76)からAP、SSID、Realmを取得した場合であっても、ProSe Server90に、AP、SSID、Realmのいずれかまたは、いくつかを通知しない場合があっても良い。
また、eNB IDは、UE10がeNB45に接続した場合に取得可能な識別子である。UE10は、eNB45からeNB IDを新たに取得した場合、ProSe Server90に通知する。なお、UE10は、eNB IDを新たに取得した場合であっても、ProSe Server90に通知しない場合があってもよい。
各ポリシーの内容について説明する。まず、AP名は、各WLANを識別するための識別名である。同じAPに接続するUEは、単一のWLANのエリアに在圏することになり、非常に高い確率で近隣であるため、WLAN(D)可能と判断している。
SSIDは、WLANを識別するための識別子である。単一のWLANにのみ1つのSSIDを設定することができ、複数のWLANに1つのSSIDを設定できる。
複数のWLANに1つのSSIDを設定する場合、1つのWLANではカバーできないオフィスが想定されるため、同じSSIDに位置するUE間は、同じAPに位置するUE間ほど近隣の可能性が高くないが、とても高い確率で近隣であるため、WLAN(D)可能と評価している。
Realmは、WLANにおいて、施設情報を示す名前である。Realmは、施設情報を示す名前であるため、同じRealmをもつWLANに接続しているUEは、そのRealmの施設に在圏することになるため、同じRealmに位置するUE間は、同じAPやSSIDに位置するUE間ほど近隣の可能性が高くないが、高い確率で近隣であるため、WLAN(D)可能と評価している。
eNB45は、移動通信事業者が管理するLTE基地局のことである。UE10は、LTE基地局にデータの送受信等のためにeNB45に接続した場合、eNB IDを検知することができる。LTE基地局に在圏するUE10は、半径が500mの円のエリア内に位置する。2つのUEが同じeNBに在圏しているため、LTE(D)可能と評価している。
なお、上記のいずれにも当てはまらない場合、評価なしとしてnoneとしている。このとき、利用可能な直接通信路は存在せず、ProSe Server90は、不必要な近隣探索を行わないように、UE10に通知することができる。
[1.2.3 MMEの構成]
図8にMME40の機能構成を示す。MME40は、制御部400に、IP移動通信ネットワークインタフェース部410と、記憶部440とがバスを介して接続されている。
制御部400は、UE10を制御するための機能部である。制御部400は、記憶部440に記憶されている各種プログラムを読みだして実行することにより各種処理を実現する。
IP移動通信ネットワークインタフェース部410は、MME40がIP移動通信ネットワーク5に接続するための機能部である。
記憶部440は、UE10の各種動作に必要なプログラム、データ等を記録する機能部である。記憶部440は、例えば、半導体メモリや、HDD(Hard Disk Drive)等により構成される。
さらに、記憶部440には、通信路確立に対する許可情報442が管理されている。なお、通信路確立に対する許可情報442は、外部装置により記憶されていても良く、例えば、HSS50を利用することができる。
図9に、通信路確立に対する許可情報442の一例を示す。図9では、APNに対して、許可される通信路が対応づけられて管理されている。ここで、APNとは、UE10が、IP移動通信ネットワーク5に接続し、データの送受信を行うための接続先情報である。
ここで、UE10は、データの送受信に先だって、APNを含めて通知し、MME40から許可されることにより、APNに関連付けられる接続先を含む通信路を利用することができる。
なお、APNの設定は、UE10の製造段階にあらかじめ行われている場合もあれば、SIMカードを別途UEに装着する際には、別途設定する必要がある場合もある。また、APNは、通信路毎に管理することができ、通信路毎に許可を行うことができる。
例えば、直接通信路におけるLTE(D)の通信路に対するAPNや、直接通信路におけるWLAN(D)の通信路の確立に対する許可情報に対応づけられたAPNや、PGW30経由で通信を行うマクロ経由の通信路の確立に対する許可情報に対応づけられたAPNといったように、通信路確立や提供するサービスに対して複数のAPNを管理することができる。
ここで、マクロ経由の通信とは、UE10がeNB45などLTE通信方式に利用してマクロセルを構成するなどした基地局を経由した通信路を用いてデータ送受信を行うことである。その際、UE10はPGW30との間にeNB45およびSGW35を介したPDNコネクションの確立を要求し、確立されたPDNコネクションを用いて通信してもよい。
また、UE10は、eNB45との間に無線ベアラと、SGW35とPGW45との間にEPSベアラとを確立することを要求し、確立されたベアラを用いて通信してもよい。
また、基地局はLTE通信方式に利用してマクロセルを構成するマクロ基地局に限らず、マクロセルに比して小さいセルを構成する家庭基地局やフェムト基地局であっても良い。
図9の例では、APN1では、LTE(D)が許可されており、APN2では、WLAN(D)が許可されており、APN3では、LTE(D)および、WLAN(D)が許可されている。さらに、APN1、APN2,APN3とはLTE基地局またはWLAN基地局を介してコアネットワークへ接続してUE10とPGW30との間のPDNコネクションを通信路として確立することは許可されていない。
ここで、APNに対する許可情報はこれに限って許可されるものでなく、他のAPN1〜APN3とは異なるAPNで、異なる通信路が許可されてもよい。また、APNに対してLTE(D)による直接通信路の確立が許されないと管理されてもよい。同様に、APNに対してWLAN(D)による直接通信路の確立が許されないと管理されてもよい。
MME40は、UE10から通知されるAPNに基づいて、通信路の確立の許可、不許可を決定してもよい。例えば、UE10がLTE(D)の確立が許可されているAPN1を通知してLTE(D)の通信路確立を要求してきた場合、UE10から通知されたAPNと、通信路確立に対する許可情報442をもとにLTE(D)の通信路確立の許可、不許可を判断することができる。
このように、MME40はUEの通信路確立やサービス提供に関して、許可または不許可を判定し、通信路確立やサービス確立を制御する制御装置である。
[1.3 処理の説明]
続いて、上述した移動通信システムにおける具体的な処理の実施例について説明する。本実施例は、UE10による位置登録手続きおよび、データの送受信を開始するための近隣探索手続きおよび、データの送受信を開始する手続きからなる。
なお、以下の説明では、LTE通信方式を用いてUE間の直接通信路を確立するLTE DirectをLTE(D)と表記し、WLAN通信方式を用いてUE間の直接通信路を確立するWLAN DirectをWLAN(D)と表記する。また、UE10やUE10aにおけるLTE(D)の機能やWLAN(D)の機能は有効になっている。
[1.3.1 UE位置通知手続き]
UE10による位置登録手続きの例を図10を用いて説明する。UE10は自身の位置情報を検出し、ProSe Server90に対して位置の通知を行う。位置情報の通知を行うトリガは、新たな位置情報を検出した場合や取得した場合でもよいし、アプリケーションの起動やUEの起動などをトリガにしても良い。
以下では、UE10が移動に伴い新たな位置情報を取得した場合を例に説明する。ここで、UE10において説明を行うが、UE10aにおいても同様の手続きを利用可能である。
まず、UE10は、移動することにより新しい位置情報を取得する(S1002)。ここで、新しい接続情報は例えば、WLAN基地局を識別する情報であり、アクセスポイント(AP)名であっても良い。
なお、APは、WLAN AP a72または、WLAN APb76のいずれに接続した場合であってもよい。また、UE10は、移動しなくても、UE10の電源を新たに入れた場合であっても良く、WLANの機能をONにした場合に新しいAPに接続しても良い。
なお、新しい接続情報は、新しいAP名を取得したことを検知することだけでなく、WLAN(WLAN AP a72または、WLAN APb76)からSSIDやRealmを取得したことを検知したことであっても良い。また、eNB45から取得したeNB IDやMME40から取得したTAIを取得したことを検知したことであっても良い。このとき、複数の新しい接続情報を取得しても良い。
また、UE10がGPSの情報を取得した場合において、ProSe Server90へ通知しても良い。なお、UE10がGPSの情報を取得した場合、必ずしもProSe Server90へ通知する必要はなく、一定の期間毎に通知しても良い。
接続情報を通知することを決定したUE10は、ProSe Server90を探索し、ProSe Server90とセキュアな通信を確保する(S1004)。UE10は、ProSe Server90へ接続するための情報をあらかじめ保持している。なお、UE10は、ProSe Server90へeNB45を経由しても、WLAN(WLAN AP a72または、WLAN APb76)を経由しても良い。
ここでセキュアな通信を確保するとは、例えばProse Server90や他のコアネットワーク内の装置による接続認証をへて通信を行うことや、IPSec等を用いたセキュリティ性の高い通信路を確立し、そうした通信路を介して通信を行うなどであってよい。さらに、その他のセキュリティ性を高める方法であってもよい。
続いて、ProSe Server90とセキュアな通信を確保したUE10は、UE10の位置情報を通知する(S1006)。ここで、UE10が通知する位置情報は、WLAN(WLAN AP a72または、WLAN APb76)から取得したAP名であってもよく、SSIDであっても、Realm名であっても良い。また、eNB45から取得したeNB IDであっても、MME40から取得したTAIであっても良い。また、GPSを用いて取得した位置の情報を通知しても良い。なお、複数の新しい接続情報を取得した場合、複数の位置情報を通知しても良い。
UE10の位置情報の通知を受信したProSe Server90は、UE10からUE10の位置情報を受信し、UEの位置情報の更新を行う(S1008)。このとき、ProSe Server90は、UE10から複数の位置情報(AP、SSID、Realm、eNB ID、TAI、GPSのうちの組み合わせであればいかなる組み合わせでもよい)を受信した場合、UE90の複数の位置情報を更新しても良い。
なお、本実施例では、ProSe Server90内で位置情報を更新しているが、ProSe Server90とは異なる装置で管理されていれば、その装置で更新しても良く、例えば、移動通信事業者が管理するHSS50であっても良い。
図11に位置情報管理表946の更新前と更新後の例を示す。ここでは、UE10が位置情報としてAP mを通知している。AP mとは、WLAN基地局の識別情報であるAP名などであってよい。
なお、位置AP nは、AP名がAP nであることを示し、位置eNB pは、eNB IDがeNB pであることを示している。eNB pとは、LTE基地局の識別情報であるeNB IDなどであってよい。また、位置SSID mは、SSIDがSSID mであることを示している。さらに、位置Realm nは、Realm名がRealm nであることを示している。
位置情報管理表946の更新前では、UE10は、位置AP nと位置eNB pに在圏していると管理されている。ProSe Server90がUE10から位置情報に基づいて、UE10における位置AP nがAP mに変更される。
なお、ProSe Server90がUE10から位置情報を受信しない場合には、近隣にはProSeによるデータの送受信を行うことができるUEはいないと判断してもよい。ここで、Proseによるデータの送受信とは、LTE(D)もしくはWLAN(D)に基づいたUE間直接通信路でデータ送受信を行うことである。
[1.3.2 近隣探索不要手続き]
続いて、近隣探索不要手続きについて説明する。近隣探索不要手続きは、あるUEが、他のUEから近隣にいるかを検出させないようにするために行う。ここで、UE10とは異なるUE10cが、UE10の近隣いることをUE10に検出させないようにする手続きを例に説明する。
図12を利用して、近隣探索不要手続きについて説明する。まず、UE10cは、近隣探索不要を検出する(S1202)。ここで、近隣探索不要は、例えば、ユーザの端末操作により特定のUEに対して検出をさせないように設定するなどし、その設定をもとに検出されてよい。
近隣探索不要を検出したUE10は、ProSe Server90とセキュアな通信を確保する(S1204)。既にセキュアな通信手段が確保できている場合には、改めてここで、UE10は、ProSe Server90の位置を示す情報はあらかじめ確保しており、ProSe Server90を検出することができる。
ここでセキュアな通信を確保するとは、例えばProSe Server90や他のコアネットワーク内の装置による接続認証をへて通信を行うことや、IPSec等を用いたセキュリティ性の高い通信路を確立し、そうした通信路を介して通信を行うなどであってよい。さらに、その他のセキュリティ性を高める方法であってもよい。
続いて、UE10cは、ProSe Server90に、近隣探索不要通知を送信する(S1206)。UE10cは、近隣探索不要通知を送信することにより、ProSe Server90に対して、UE10cとは異なる他のUEがProSe Serverに対して近隣にいるUEの検出を要求した場合、近隣検出対象からUE10cを除くことを要求する。言い換えると、近隣検出をされることを拒否する。
ここで、UE10cは、近隣探索不要であることを示す情報と、特定のアプリケーションと、特定のUEを識別する情報とを含めて通知を送信してもよい。
ここでは、UE10cは、近隣探索不要であることを示す情報と、APP1と、UE10とを含めて通知を送信する例を説明する。
ProSe Server90は近隣探索不要通知をUE10cから受信し、通知された情報に基づいて近隣探索不要通知処理を行う(S1208)。ProSe Server90は、近隣探索不要通知処理において、他のUEにUE10cを探索させないように、コンタクトリストを更新する。
図13に、近隣探索不要通知処理の更新の一例を示す。なお、ここでは、近隣探索不要であることを示す情報と、APP1と、UE10とをUE10cの通知により受信した例を説明する。
ProSe Server90は、受信した情報に基づいてUE10のAPP1に対応づけられたServerコンタクトリスト942を特定する。さらに、図13に示すように、UE10cにおける近隣探索不要のチェックボックスに、チェックが含まれていない更新前の状態から、UE10cにおける近隣探索不要のチェックボックスにチェックするなどの更新を行う。
これにより、UE10がProse Server90に対してAPP1で通信を行える近隣の端末がいるか否かの検出を要求してきた場合、ProSe Server90は、対象からUE10cを除いて近隣にいる端末を検出する。つまり、UE10cがUE10の近隣に位置していたとしても、ProSe Server90において近隣検出されない。
また、UE10cは、近隣検索不要通知を送信することにより、ProSe Server90に対して、UE10cとは異なる他のUEがProSe Server90に対して近隣にいるUEの検出を要求した場合、UE10cを近隣検出対象とするようを要求してもよい。言い換えると、近隣検出をされることを拒否した状態を解除し、許可する状態に遷移するよう要求する。
ここで、UE10cは、近隣探索を許容することを示す情報と、特定のアプリケーションと、特定のUEを識別する情報とを含めて通知を送信してもよい。
ProSe server90は、UE10cからの通知を受信し、近隣探索不要を設定した手順と同様にServerコンタクトリスト942を特定し、受信した情報にもとづいてチェックボックスのチェックをはずし、近隣探索される対象とするよう更新する。
このように、UE10c以外のUEにおいても、UE10cと同様に近隣検索の対象とならないことを要求することができる。したがって、近隣にいるUEの探索を要求するUE10は、近隣探索されることを望まないUEのなかから、近隣にいるUEに関する情報を通知することを要求する。
ProSe Server90においても、あるUEからの近隣にいるUEに関する情報を要求された場合、近隣探索をされることを望まないUEのなかから近隣にいるUEを検出し、近隣にいるUEに関する情報を提供する。
ここでは、UE10cは、近隣探索不要であることを示す情報と、APP1と、UE10を識別する情報とを含めて通知を送信する例を説明したが、UE10cは近隣探索不要であることを示す情報と、APP1とを含めて通知を送信してもよい。
この場合には、特定のUEに対して近隣探索を拒否するのではなく、全てのUEにおけるAPP1に対応づけられたServerコンタクトリスト942に対してUE10cが近隣探索されないよう設定する。
具体的には、ProSe Server90は、すべてのUEにおけるAPP1に対応づけられたServerコンタクトリスト90について、UE10cがリストされているかを検出し、UE10cに対応づけられたチェックボックスを有効にすることで近隣探索されないよう更新する。
また、UE10cは、近隣探索不要であることを示す情報と、UE10を識別する情報とを含めて通知を送信してもよい。
この場合には、UE10に対応づけられた全てのアプリケーションに対するServerコンタクトリスト942に対してUE10cが近隣探索されないよう設定する。
具体的には、UE10のSererコンタクトリスト942の全てについて、UE10cがリストされているかを検出し、UE10cに対応づけられたチェックボックスを有効にすることで近隣検索されないよう更新する。
[1.3.3 近隣検出手続き]
ProSe Server90がデータの送受信を開始するための近隣評価手続きについて説明する。図14を用いて、データの送受信を開始することを決定し、近隣評価手続きを説明する。
なお、ProSe Sever90は、近隣評価手続きをUEの位置情報の通知に基づいて開始しても良いし、近隣探索不要の通知に基づいて開始しても良い。また、それ以外にも任意のタイミングで開始してもよい。なお、近隣検出を行った結果(S1412におけるコンタクトリストの通知)をUE10に対して通知しているが、UE10aであっても同様に利用可能である。
まず、図14に示すようにProSe Server90は、近隣評価手続きにおいてまず近隣評価処理を行う(S1410)。なお、近隣評価処理では、UE位置登録手続きにおいて、位置情報を送信したUE10とUE10におけるコンタクトリスト942内のUEとが近隣に位置するか否かを評価する。さらに、LTE(D)またはWLAN(D)に基づいて直接通信を行えることを評価してもよい。
図15に、近隣評価処理の手続きの例を示す。この例では、UE10が位置登録を行い、ProSe Server90は位置登録手続きの完了に引き続いて、UE10に対して近隣評価処理を行う例を説明する。
まず、UE10が利用可能な直接通信路を検出する(S1502)。ここで、UE10が利用可能な直接通信路検出するために、ProSe Server90は、アプリケーション種別毎の通信路管理表944に基づいて検出してもよい。ProSe Server90は、アプリケーション種別毎の通信路管理表944に基づいてUE10が利用可能な直接通信路を検出してもよい。Serverコンタクトリスト942において管理されるUE10のコンタクトリスト全てのアプリケーションを検出しても良いし、UE10が検索を要求するAPPをProse Server90に通知し、APP1に対して利用可能な直接通信路を検出してもよい。
これにより、ProSe server90は、UE10が利用可能な直接通信路として、APP1に対してはLTE(D)に基づく通信路が利用可能であることを検出することができる。また、APP2に対してはWLAN(D)に基づく通信路が利用可能であることを検出することができる。また、APP3に対しては、LTE(D)に基づく通信路もしくはWLAN(D)に基づく通信路が利用可能であることを検出することができる。
続いて、S1502で検出したUE10が利用可能な直接通信路に基づいて、UE10の近隣のUEを検出する(S1504)。ここで、UEが通信可能な通信相手のUEを検出するために、ProSe Server90は、UE10におけるServerコンタクトリスト942、位置情報管理表946、近隣評価ポリシー948を利用して検出してもよい。
例えば、UE10と、UE10のAPP1のServerコンタクトリスト942に保持されるUEの位置情報と、UE10の位置情報とをそれぞれのUEに対応づけられた位置情報管理表942から抽出し、抽出した2つの位置情報を比較することで近隣に在圏するかを判断してもよい。
位置情報を基にした判断方法は、例えば図7(b)に示すように、2つのUEが同一WLAN基地局に在圏していることで、WLAN(D)に基づいて通信を行うことができる程度に近隣に在圏することと判定しても良いし、同一SSIDのWLAN基地局に在圏していることでWLAN(D)に基づいて通信を行うことができる程度に近隣に在圏することと判定しても良いし、同一RelmのWLAN基地局に在圏していることでWLAN(D)に基づいて通信を行うことができる程度に近隣に在圏することと判定しても良いし、同一LTE基地局(eNB)に在圏していることでLTE(D)に基づいて通信を行うことができる程度に近隣であると判定しても良い。さらにこれらに当てはまらない場合はWLAN(D)に基づいた通信もLTE(D)に基づいた通信も行えない程度に距離が離れていると判定してもよい(none)。
ここでは、判断方法の例として、AP名やSSID、RealmやeNBの情報を利用して判断した例を説明したが、これに限らず、GPSの情報などを利用して近隣にいるかを検出し、LTE(D)に基づいて通信を行うことができるかや、WLAN(D)に基づいて通信を行うことができるかなどを判断してもよい。
ProSeServer90におけるUE10の近隣UEの検出(S1504)の具体例を説明する。UE10がAPP1で通信を行うことのできる近隣UEの検出を要求してきた場合、ProSe ServerはUE10の要求に基づいて、UE10が利用可能な直接通信路を検出する(S1502)。検出手段は既に説明したとおりであり、それに基づいてAPP1ではLTE(D)に基づいて通信を行うことができると検出する。
さらに、Serverコンタクトリスト942、位置情報管理表946、近隣評価ポリシー948に基づいて、検出した利用可能な通信路(LTE(D))に基づいた通信ができる程度に近隣にいるUEを抽出する。具体的には同一LTE基地局(eNB)を位置情報としているUEを検出するなどしてもよい。
また、Serverコンタクトリスト942に近隣探索不要とProSe Serverに通知したUEに対しては近隣にいるか否かの検出を行わない。例えば図13のAPP1におけるコンタクトリストの更新後のような状態では、UE10cは近隣探索不要のチェックボックスが有効になっている。そのため、UE10cはUE10の近隣にいるか否かを検出しない。
この際、APP1で利用可能な通信路がLTE(D)に基づいた通信であるため、WLAN(D)に基づいた通信ができる程度に近隣にUEがいるか否かの判定を行う必要は無い。
こうしてProSe Server90は、UE10がAPP1において利用可能な通信路がLTE(D)に基づいた通信であることと、LTE(D)に基づいた通信を行える程度に近隣にいるUEを検出できる。なお、検出するUEは複数台あってよい。
次に、UE10がAPP2で通信を行うことのできる近隣UEの検出を要求してきた場合のProSeServer90におけるUE10の近隣UEの検出(S1504)の具体例を説明する。ProSe ServerはUE10の要求に基づいて、UEが利用可能な直接通信路を検出する(S1502)。検出手段は既に説明したとおりであり、それに基づいてAPP2ではWLAN(D)に基づいて通信を行うことができると検出する。
さらに、Serverコンタクトリスト942、位置情報管理表946、近隣評価ポリシー948に基づいて、検出した利用可能な通信路(WLAN(D))に基づいた通信ができる程度に近隣にいるUEを抽出する。具体的には同一WLAN基地局を位置情報としているUEを検出するなどしてもよい。
また、Serverコンタクトリスト942に近隣探索不要とProSe Server90に通知したUEに対しては近隣いるか否かの検出を行わない。
この際、APP2で利用可能な通信路がWLAN(D)に基づいた通信であるため、LTE(D)に基づいた通信ができる程度に近隣にUEがいるか否かの判定を行う必要は無い。
こうしてProSe Server90は、UE10がAPP2において利用可能な通信路がWLAN(D)に基づいた通信であることと、WLAN(D)に基づいた通信を行える程度に近隣にいるUEを検出できる。なお、検出するUEは複数台あってよい。
次に、UE10がAPP3で通信を行うことのできる近隣UEの検出を要求してきた場合のProseServer90におけるUE10の近隣UEの検出(S1504)の具体例を説明する。ProSe Server90はUE10の要求に基づいて、UEが利用可能な直接通信路を検出する(S1502)。検出手段は既に説明したとおりであり、それに基づいてAPP3ではLTE(D)に基づいて通信が行うことができることと、WLAN(D)に基づいて通信を行うことができると検出する。
さらに、Serverコンタクトリスト942、位置情報管理表946、近隣評価ポリシー948に基づいて、検出した利用可能な通信路に基づいた通信ができる程度に近隣にいるUEを抽出する。
LTE(D)に基づいて通信がおこなえ、かつWLAN(D)に基づいて通信がおこなえるなど、利用可能な通信路が複数ある場合には、Serverコンタクトリスト942の各UEに対して、LTE(D)に基づいて通信が行える程度に近隣に在圏するか、またはWLAN(D)に基づいて通信が行える程度に近隣に在圏するか、またはその両方の通信が行える程度に近隣に在圏するか、またはその両方で通信を行うことができないほど距離が遠いのかを判定する。判定手段は既に説明したようにUEの位置情報に基づいて検出してもよい。
また、Serverコンタクトリスト942に近隣探索不要とProSe Server90に通知したUEに対しては近隣いるか否かの検出を行わない。例えば図13のAPP1におけるコンタクトリストの更新後のような状態では、UE10cは近隣探索不要のチェックボックスが有効になっている。そのため、UE10cはUE10の近隣にいるか否かを検出しない。
こうしてProSe Server90は、UE10がAPP3によって通信を行う近隣UEと、近隣UEそれぞれに対して利用可能な通信路を検出することができる。なお、検出するUEは複数台あってよい。さらに、位置情報に基づいて検出された利用可能な通信路は近隣にいるUE毎に違ってよい。
例えば、図16(c)に示すようにUE10bに対してはLTE(D)に基づいた通信のみが利用可能であったり、UE10dに対してはWLAN(D)に基づいた通信のみが利用可能であったり、UE10aに対してはその両方が利用可能であってよい。
図14に戻って、S1410でUE10におけるServerコンタクトリスト942内の評価を完了したProSe Server90は、近隣にいるUEと利用可能な通信路に関する情報とをUE10に通知する(S1412)。例えば、図16に示すように、近隣にいるUEに関する情報と、近隣にいるUEに対応づけられた利用可能な通信路とをUE10に送信する。
また、図16(a)、図16(b)、図16(c)に示すように、UE10への通知情報はアプリケーション毎に通知してもよい。ここで図16の例では、図16(a)はAPP1に対する通知情報であり、図16(b)はAPP2に対する通知情報であり、図16(c)はAPP3に対する通知情報である。
以上の手続きにより、UE10は、Serverコンタクトリスト942から直接通信(LTE(D)または、WLAN(D))を利用可能なUEを検出し、近隣探索を行うことを判断することができる。
またProSe Server90における近隣検出は、UE10の近隣端末の検出要求に基づいて行い、検出結果をUE10aと取得することができる。UE10の近隣端末の検出要求手段としては、位置情報の登録要求を行うことで近隣端末の検出要求を行うこともできるし、ProSe Server90に近隣端末の検出要求を示すメッセージを送信するなどの位置情報の登録要求以外の手段を用いても良い。
このように、直接通信できる程度に近隣にUEがいることを検出して、直接通信路の確立手続きを行うため、UEと直接通信できないにも関わらず、不必要に行われていた直接通信路の確立手続きを行わないなどにより、不要な手続き、端末探索処理、端末探索に関わるリソースなどを抑制することができる。
[1.3.4 通信路確立手続き]
[1.3.4.1 通信路確立手続き1]
続いて、直接通信可能なUEと近隣探索を行い、直接通信によりデータの送受信を開始するまでの手続きについて説明する。以下では、UE10が既に説明したようにAPP1を用いて通信を行うことができる近隣に位置するUEを検出している。さらに、利用可能な直接通信路に関する情報を取得している。
本例では、UE10がProSe Server90からの通知に基づいて、近隣に位置するUEとしてUE10aを検出し、利用可能な通信路がLTE(D)に基づいた通信路であると検出している状態からの手続きを図17を用いて説明する。
UE10はProSeによるデータ送受信をUE10cと開始すると判断する。この判断は、ProSe Server90によって通知された近隣UEの情報に基づいて、UE10のユーザが近隣にいる端末のうちUE10aを選択して通信を開始することを判断するなどにより行ってよい。
UE10はUE10aとLTE(D)に基づいた通信路を確立するまえに、通信対象のUEの探索を開始してもよい(S1703a)。UEの探索とは、実際にLTE(D)に基づいた通信路をUE10aと確立できるかを確認する。
これは、ProSe Server90が、UE10がUE10aに対してLTE(D)に基づいた通信路を確立できる程度に近隣にいると通知したとしても、実際に確立できるかが確約できないことから、UEの探索を実行するなどしてよい。
具体的には、LTE無線アクセス方式で用いられる周波数などに基づいたブロードキャスト情報を近隣エリアに送信して近隣端末の検索を行い、近隣端末は近隣端末の検索に対して応答を行う。UE10が受信した近隣端末からの応答のうち、UE10aから応答されていることを検出するなどにより、近隣にいることを検出してよい。
また、UE10は通信事業者による承認に基づいてUE10aとLTE(D)に基づいた通信路を確立する。通信事業者による承認を要求する方法としては、UEの要求するPDN接続(UE Requested PDN Connectivity)手続きに基づいて、PDN接続要求(PDN Connectivity Request)をMME40に送信してもよい(S1704)。ここで、UE10はPDN接続要求にAPNを含めて送信する。なお、PDN接続要求とは、PDNコネクションを確立するために、UE10がMME40へ送信する要求のことである。
UE10は、利用可能な直接通信路に対応づけられたAPNを保持しておき、APP1の利用可能な直接通信路がLTE(D)であり、UE10がLTE(D)の直接通信路の確立に対する承認を要求する場合には、LTE(D)に対応づけられたAPNを選択する。
直接通信路に対応づけられて管理されるAPNは複数管理されてよい。たとえばLTE(D)に対応づけられてAPN1や、WLAN(D)が対応づけられたAPN2や、LTE(D)とWLAN(D)など複数の直接通信路に対応づけられたAPN3など異なるAPNを複数管理してもよい。
これは、APNは直接通信路の確立に対する許可情報を対応づけて管理することを意味しており、例えばAPN1ではLTE(D)が許可され、APN2ではWLAN(D)が許可され、APN3ではLTE(D)およびWLAN(D)が許可されていると管理している。
さらに、直接通信路の確立が許可されないAPN4など、直接通信路の確立が許可されるAPN以外のAPNを保持しても良い。
UE10は複数のAPNのうち、LTE(D)の直接通信路の確立に関する許可をMME40に要求する為に、LTE(D)が許可されたAPNを選択し、PDN接続要求に含める。
上述した例ではUE10はAPN1かAPN3かを選択可能であるが、APP1に対してはAPN1を用いるなどアプリケーションに対してAPNを対応づけて管理しておくことにより、その対応情報にもとづいて選択してもよいし、任意に選択してもよい。
さらに、通信対象UEの探索において、UE10aのIPアドレスが解決されてもよい。IPアドレスの解決には、UE10がUE10aからの応答が行われる際に、同時にUE10aのIPアドレスが含まれても良い。
UE10はMME40へPDN接続要求を送信する際(S1704)、Serverコンタクトリスト942において通知されたUE10aにおける利用可能な通信路に対応するAPNを含める。ここでは、LTE(D)における直接通信であるため、APN1を含める。
なお、アプリケーションの種類によっては、WLAN(D)を確立しても良い。また、LTE(D)および、WLAN(D)の両方を確立できる場合には、UE10が任意に決定しても良いし、ネットワーク側からの通知により決定しても良い。
次に、MME40はUE10が送信してPDN接続要求を受信し、PDNコネクションに含まれるAPNを確認する。APNの確認は、通信路確立に対する許可情報442に基づいて受信したAPNがLTE(D)の許可されたAPNであることを判定する。これにより、MME40はUE10がLTE(D)に基づいた直接通信路の確立に関する許可を要求していることを検出する。
MME40は、UE毎に利用可能なAPNを管理しておき、UE10が通知したAPNをUE10が利用可能かどうかを判定する。利用可能であればAPNに対応づけられた直接通信路の確立に対応づけられた通信路の確立を許可し、利用可能でなければ不許可とする。
上述した手順により、MME40はUE10に対してLTE(D)に基づく直接通信路の確立を許可と判定することができる。
MME40は許可と判定した場合には、MME40はeNB45にベアラ設定要求/PDN接続許可通知を送信し(S1714)、これに基づいてeNB45はRRC接続再設定通知をUE10に送信する(S1716)。これらにより、MME40においてUE10に対してLTE(D)に基づく直接通信路の確立が許可と判定されたことを通知する。
ここで、ベアラ設定要求/PDN接続許可通知およびRRC接続再設定通知には、ProSe Indicatorなど、従来のUEとPGWとの間のPDNコネクションの確立を許可したのではなく、直接通信路の確立が許可されたことを明示的に示すフラグを含めても良い。
また、MME40は、APNに基づいてSGW35、PGW30で実行されるセッションの生成を実行させないよう判定してもよい。また、Prose Indicatorなどから直接通信路を確立するための要求であることを検出し、SGW35、PGW30で実行されるセッションの生成手続きを実行させないよう判定してもよい。
セッションの生成を実行させないよう判定した場合には、MME40がSGW35に対して送信するセッション生成要求(S1706),SGW35がPGW30に送信するセッション生成要求(S1708)、さらにはそれらの応答であるPGW30がSGW35に送信するセッション生成応答(S1710)、SGW35がMME40に送信するセッション生成応答(S1712)の送受信を実行しなくてもよい。
このようにMME40は、許可を与えるAPNに応じてコアネットワーク内部のセッション生成つまりはPDNコネクションなどの通信路の確立を行わないか否かを選択してもよい。
また、eNB45は、ProSe Indicatorが含まれていることにより、UE10との間のデータ送受信のための無線通信路を確立するか否かを判定しても良い。
例えば、UE10が確立を要求しているのはUE間の直接通信路であることを検出し、これに基づいてeNB45とUE10間の無線リソースの割り当てなどを含む無線通信路の確立を行わなくてもよい。
また、UE10が確立を要求しているのはUE間の直接通信路ではないことを検出し、これに基づいてeNB45とUE10間のデータ送受信のための無線リソースの割り当てなどを含む無線通信路の確立を行ってもよい。
次に、UE10はeNB45からRRC接続再設定通知を受信し、LTE(D)に基づく通信路の確立が許可されたことを検出する。検出においては、通知にProSe Indicatorが含まれていることで検出してもよい。
さらに、MME40はIPアドレスやベアラIDや直接通信に利用する周波数に関する情報などの、UE10が直接通信路を確立するために利用する情報を、ベアラ設定要求/PDN接続許可通知およびRRC接続再設定通知に含めてもUE10に通知しても良い。
また、上記では、PDN接続要求を送信する前に通信対象UEの探索の開始(S1703a)を行う例を説明したが、RRC接続再設定通知を受信した後に開始しても良い(S1703b)。
PDN接続要求PDN接続要求 UE10は、RRC接続再設定通知を受信し、MME40によって許可される場合にはUE10aとの直接通信路を確立する(S1717)。許可されていない場合には直接通信路の確立は行わなくてよい。
UE10は、MME40によって許可された直接通信路と、APPに対応づけられた通信路とに基づいて直接通信路を確立するかどうかを判定する。もしくはMME40によって許可された直接通信路と、APPに対応づけられた通信路の情報のいずれかに基づいて直接通信路を確立するかどうかを判定してもよい。
例えば、APP1に対応づけられた直接通信路がLTE(D)であり、MMEに許可されたAPNがLTE(D)とWLAN(D)の両方の確立が許可されている場合には、UE10は、LTE(D)がAPP1に対応づけられていることと、APNによってLTE(D)が許可されていることから、LTE(D)による直接通信路を確立することを決定する。
UE10はUE10aとのLTE(D)に基づいた直接通信路を確立手続きでは、RRC接続再設定通知などで取得した直接通信路の確立に関する情報に含まれる周波数を用いて確立してもよいし、予め利用する周波数を割り当てるなどして行っても良い。
また、ここで、RRC接続再設定通知などで取得した直接通信路の確立に関する情報に含まれるIPアドレスやベアラIDをUE10aに対して通知し、それらを直接通信路に対応づけて管理し、直接通信を行うにあたって利用しても良い。
また、UE10aとの直接通信路の確立にあたってUE10とUE10aのいずれかがIPアドレスやベアラIDの割り当てを行い、他方に通知することで取得し、それらを直接通信路に対応づけて管理し、直接通信を行うにあたって利用しても良い。
以上により、UE10とUE10aは直接通信路を確立して通信を開始することができる。APP1の通信に対してLTE(D)に基づく通信路を確立した場合には、UE10は、APP1の通信データの送信に対して直接通信路を選択して送信する。
より具体的には、APN1のユーザデータ送信にあたっては、対応づけられたIPアドレスを選択して通信を行っても良い。また、対応づけられたベアラIDを選択して通信路を特定して通信を行っても良い。
また、APP1とはことなるその他のアプリケーションの送信に対しては、PGWとの間にコネクションを確立するなどし、直接通信路とは異なるこれらの通信路を選択して通信を行う。
また、UE10aとLTE(D)による通信路確立が完了したUE10は、RRC再設定完了通知をeNB45へ送信してもよい(S1718)。さらに、eNB45は、UE10とUE10aがLTE(D)による直接通信路を確立したことを確認して、ベアラ設定応答をMME40へ送信してもよい(S1720)。
このように、RRC再設定完了通知とベアラ設定応答の送信によって、UE10が直接通信路の確立を完了したことをMME40に通知してもよい。
また、RRC再設定完了通知とベアラ設定応答の送信をしなくてもよい。たとえば、UE10は、従来のPGW30とUE10間のPDNコネクションを確立した場合には送信を行うが、直接通信路を確立した場合には送信しないなどを判定してもよい。
また、UE10aとLTE(D)による通信路確立が完了したUE10は、ダイレクトトランスファーメッセージをeNB45へ送信してもよい(S1722)。さらに、eNB45は、ダイレクトトランスファーメッセージの受信に基づいて、PDN接続完了通知をMME40へ送信してもよい(S1724)。
このように、ダイレクトトランスファーメッセージとPDN接続完了通知の送信によって、UE10が直接通信路の確立を完了したことをMME40に通知してもよい。
また、RRC再設定完了通知とベアラ設定応答の送信をしなくてもよい。たとえば、UE10は、従来のPGW30とUE10間のPDNコネクションを確立した場合には送信を行うが、直接通信路を確立した場合には送信しないなどを判定してもよい。
さらに、従来のPGW30とUE10間のPDNコネクションを確立した場合には、MME40はベアラ設定応答もしくはPDN接続完了通知を受信した後、SGW35とPGW30との間で手続きを行い、ベアラ設定の更新を行う。
具体的にはMME40はSGW35にベアラ変更要求を送信し(S1726)、SGW35は受信に基づいてPGW30にベアラ変更要求を送信する(S1728)。さらに、応答としてPGW30はベアラ変更応答をSGW35に送信し(S1730),SGW35は受信に基づいてベアラ変更応答をMME40に送信する(S1732)。こうした手続きにより各装置においてベアラ情報の更新を行う。
ここで、従来のPGW30とUE10間のPDNコネクションを確立した場合には送信を行うが、直接通信路を確立した場合には送信しないなどを判定して、MME40はベアラ変更要求を送信しなくてもよい。このように、MME40,SGW35,PGW30は、直接通信路を確立した場合には、ベアラ情報の更新処理を行わなくても良い。
以上の手続きにより、UE10は、UE10aを探索することができる。また、UE10は、UE10aを探索することにより、UE10aとLTE(D)における直接通信を開始することができる。
また、ここでUE10によるPDN接続要求の送信は、UE10がUE10aと通信を開始する際に行う例を説明したが、これに関わらず予め行われていても良い。
例えば、UE10は端末の起動時やアプリケーションの起動時等に予めLTE(D)の通信路確立に対してPDN接続要求を送信するなどに基づいて許可を得ておき、UE10がUE10aと通信を開始することを決定した際には、すぐさま直接通信路の確立(S1717)を行っても良い。
また、上述した例では、APP1による通信を行うためにLTE(D)に基づく通信路を確立して通信を開始する例を中心に説明したが、UE10は図4(a)に示すようにAPP2による通信も、APP3による通信も、上述した方法を適用してすることができる。
例えば、APP2の通信を行う場合、UE10はPDN接続要求に含めるAPNの選択は、WLAN(D)が許可されたAPNを選択して含めることにより、WLAN(D)による通信路の確立に対して許可を要求する。
さらに、UE10はWLAN(D)による通信路確立が許可されたか否かを受信し、許可されている場合には、WLAN(D)の直接通信路を確立する。
MME40は、WLAN(D)に基づく通信路の確立を許可する場合には、
UE10とUE10aが直接通信を行うためのSSIDなどの情報を含めても良い。
また、APP3の通信を行う場合には、LTE(D)およびWLAN(D)が許可されたAPNを含めてPDN接続要求を送信してもよいし、LTE(D)の利用することを決定したのちにLTE(D)のみが許可されたAPNを選択してPDN接続要求を送信してもよい。またはWLAN(D)の利用することを決定したのちにWLAN(D)のみが許可されたAPNを選択してPDN接続要求を送信してもよい。
このように、UE10はアプリケーションに対応づけられた直接通信路の確立に対して、移動通信事業者に対して許可を求めたのちに確立手続きを実行する。許可の要求に対しては、直接通信路に対応づけられた情報を基に許可を依頼する。
これにより、例えばLTE(D)に対応づけられた複数のアプリケーションが有る場合、個別のアプリケーションに対して許可要求を送信しなくてもよい。
例えば、APP1の通信開始に際してLTE(D)を用いて通信を行うことが許可されている場合、APP1とは異なるアプリケーションをLTE(D)により通信を行う場合には、すでに許可されていると判定して直接通信路を確立してもよい。
また、APP3により通信を行うために、UE10がLTE(D)とWLAN(D)とが許可されたAPNを含めてPDN接続要求を送信し、LTE(D)とWLAN(D)との両方の通信路の確立が許可された場合、UEはLTE(D)によって直接通信路を確立するか、WLAN(D)によって直接通信路を確立するかを任意に選択して確立しても良い。
また、通信相手となるUE10aにおいても、直接通信路の確立にあたって通信事業者の許可を得るためにこれまで説明したPDN接続要求に基づく許可手続きを行っていてもよい。
もしくは、UE10から直接通信路の確立を求められた際にPDN接続要求に基づく許可手続きを行うってもよい。つまり、UE10とUE10aとの直接通信路の確立にあたっては、通信相手となるUE10aの許可手続きの完了も直接通信路確立を行うための一条件としてもよい。
このように、UE10はアプリケーションのデータ送受信を行う際、アプリケーションに対応づけられた直接通信路を選択して通信を行う。
また、APN1などの直接通信路の確立が許可されたAPNを用いて直接通信路を確立している状態で、直接通信路の確立が許可されないAPN4などを用いてPGW30との間に通信路を確立してもよい。
この場合、UE10はアプリケーションと通信路を対応づけて管理しておき、送受信データからアプリケーションを特定し、特定したアプリケーションに対応づけられた通信路を選択してデータを送受信してもよい。
これにより、UE10は、直接通信を行うアプリケーションのデータ送受信は直接通信路を選択して送受信を行い、コアネットワークを介して通信を行うアプリケーションのデータ送受信はPGW30へ接続される通信路を選択して送受信することができる。
また、UE10は、確立した直接通信路に対するベアラIDと、PGW30との間に確立した通信路に対するベアラIDとを保持し、通信路をベアラIDと対応づけて管理してもよい。
さらに、通信路とアプリケーションとの対応づけと、通信路とベアラIDとの対応づけから、アプリケーションとベアラIDを対応づけて管理してもよい。
さらに、UE10は、アプリケーションとベアラIDとの対応から、送受信データからアプリケーションを特定し、特定したアプリケーションに対応づけられたベアラIDを選択してデータを送受信してもよい。
これにより、UE10は、直接通信を行うアプリケーションのデータ送受信は直接通信路に対応づけられたベアラIDを選択して送受信を行い、コアネットワークを介して通信を行うアプリケーションのデータ送受信はPGW30へ接続される通信路に対応づけられたベアラIDを選択して送受信することができる。
また、UE10は、確立した直接通信路を用いて通信を行うためのPDNコネクションを確立し、PGW30との間に確立した通信路を用いて通信を行うためのPDNコネクションを確立し、通信路とPDNコネクションとを対応づけて管理してもよい。
さらに、通信路とアプリケーションとの対応づけと、通信路とPDNコネクションとの対応づけから、アプリケーションとPDNコネクションを対応づけて管理してもよい。
さらに、UE10は、アプリケーションとPDNコネクションとの対応から、送受信データからアプリケーションを特定し、特定したアプリケーションに対応づけられたベアラIDを選択してデータを送受信してもよい。
これにより、UE10は、直接通信を行うアプリケーションのデータ送受信は直接通信路に対応づけられたPDNコネクションを選択して送受信を行い、コアネットワークを介して通信を行うアプリケーションのデータ送受信はPGW30へ接続される通信路に対応づけられたPDNコネクションを選択して送受信することができる。
ここで、データ送受信をする際に送受信するデータがどのアプリケーションに対応するかなどのアプリケーションの特定手段は、送信元アドレス、送信先アドレス、プロトコル番号、送信元ポート番号、送信先ポート番号などのIP5タプルの情報に基づいてアプリケーションを特定してもよい。また、アプリケーションIDなどの識別情報に基づいてアプリケーションを特定してもよい。
[1.3.4.2 通信路確立手続き2]
直接通信可能なUEと近隣探索を行い、直接通信によりデータの送受信を開始する手続きとして1.3.4.1の通信路確立手続き1で説明した方法とは異なる方法について説明する。
1.3.4.1の通信路各手続き1では、UEの直接通信路の確立に対して事業者の許可を求める手続きがUEの要求するPDN接続(UE Requested PDN Connectivity)手続きに基づいて行われていたのに対し、本例では、サービス要求(Service Request)手続きに基づいて行われる点が異なる。
図18を用いて、直接通信による通信路確立手続き2を示す。本例においてもUE10が既に説明したようにAPP1を用いて通信を行うことができる近隣に位置するUEを検出している。さらに、利用可能な直接通信路に関する情報を取得している。
本例では、UE10がProSe Server90からの通知に基づいて、近隣に位置するUEとしてUE10aを検出し、利用可能な通信路がLTE(D)に基づいた通信路であると検出している状態からの手続きを説明する。
まず、UE10はProSeによるデータ送受信をUE10cと開始すると判断する(S1802)。具体的な判断方法は図17を用いて説明した通信路確立手続き1におけるUE10がProSeによるデータ送受信をUE10cと開始すると判断する方法(S1702)と同様であるため説明を省略する。
UE10はUE10aとLTE(D)に基づいた通信路を確立する前に、通信対象のUEの探索を開始してもよい(S1803a)。具体的な方法は図17を用いて説明した通信路確立手続き1における通信対象UEの検索の開始方法(S1702)と同様であるため説明を省略する。
また、UE10は通信事業者による承認に基づいてUE10aとLTE(D)に基づいた通信路を確立する。通信事業者による承認を要求する方法としては、UEのサービス要求(Service Request)手続きに基づいて、サービス要求をeNB45に送信してもよい(S1804)。ここで、UE10はサービス要求にAPNを含めて送信する。
なお、ここで説明する手続きは、UE10とUE10aが接続待ち受け状態(idle)から接続状態(Connected)へ遷移させるためにサービス要求を送信してもよい。
サービス要求を送信するUE10は、利用可能な直接通信路に対応づけられたAPNを保持しておき、APP1の利用可能な直接通信路がLTE(D)であり、UE10がLTE(D)の直接通信路の確立に対する承認を要求する場合には、LTE(D)に対応づけられたAPNを選択する。
直接通信路に対応づけられて管理されるAPNは複数管理されてよい。たとえばLTE(D)に対応づけられたAPN1や、WLAN(D)が対応づけられたAPN2や、LTE(D)とWLAN(D)など複数の直接通信路に対応づけられたAPN3など異なるAPNを複数管理してもよい。
これは、APNは直接通信路の確立に対する許可情報を対応づけて管理することを意味しており、例えばAPN1ではLTE(D)が許可され、APN2ではWLAN(D)が許可され、APN3ではLTE(D)およびWLAN(D)が許可されていると管理している。
さらに、直接通信路の確立が許可されないAPN4など、直接通信路の確立が許可されるAPN以外のAPNを保持しても良い。
UE10は複数のAPNのうち、LTE(D)の直接通信路の確立に関する許可をMME40に要求する為に、LTE(D)が許可されたAPNを選択し、PDN接続要求に含める。
上述した例ではUE10はAPN1かAPN3かを選択可能であるが、APP1に対してはAPN1を用いるなどアプリケーションに対してAPNを対応づけて管理しておくことにより、その対応情報にもとづいて選択してもよいし、任意に選択してもよい。
さらに、通信対象UEの探索において、UE10aのIPアドレスが解決されてもよい。IPアドレスの解決には、UE10がUE10aからの応答が行われる際に、同時にUE10aのIPアドレスが含まれても良い。
UE10はeNB45へサービス要求を送信する際(S1804)、Serverコンタクトリスト942において通知されたUE10aにおける利用可能な通信路に対応するAPNを含める。ここでは、LTE(D)における直接通信であるため、APN1を含める。
なお、アプリケーションの種類によっては、WLAN(D)を確立しても良い。また、LTE(D)および、WLAN(D)の両方を確立できる場合には、UE10が任意に決定しても良いし、ネットワーク側からの通知により決定しても良い。
eNB45はUE10からサービス要求を受信し、含まれるAPNを含めてサービス要求をMME40に送信する(S1806)。したがって、UE10はサービス要求を、eNB45を介してMME40に送信することになる。
次に、MME40はeNB45が送信したサービス要求を受信し、含まれるAPNを確認する。APNの確認は、通信路確立に対する許可情報442に基づいて受信したAPNがLTE(D)の許可されたAPNであることを判定する。これにより、MME40はUE10がLTE(D)に基づいた直接通信路の確立に関する許可を要求していることを検出する。
MME40は、UE毎に利用可能なAPNを管理しておき、UE10が通知したAPNをUE10が利用可能かどうかを判定する。利用可能であればAPNに対応づけられた直接通信路の確立に対応づけられた通信路の確立を許可し、利用可能でなければ不許可とする。
上述した手順により、MME40はUE10に対してLTE(D)に基づく直接通信路の確立を許可と判定することができる。
MME40は許可と判定した場合には、MME40はeNB45にコンテキスト設定要求を送信し(S1808)、これに基づいてeNB45は無線ベアラ確立要求をUE10に送信する(S1810)。これらにより、MME40においてUE10に対してLTE(D)に基づく直接通信路の確立が許可と判定されたことを通知する。
ここで、コンテキスト設定要求および無線ベアラ確立要求には、ProSe Indicatorなど、従来のUEとPGWとの間のPDNコネクションの確立を許可したのではなく、直接通信路の確立が許可されたことを明示的に示すフラグを含めても良い。
eNB45は、ProSe Indicatorが含まれていることにより、UE10との間のデータ送受信のための無線通信路を確立するか否かを判定しても良い。
例えば、UE10が確立を要求しているのはUE間の直接通信路であることを検出し、これに基づいてeNB45とUE10間の無線リソースの割り当てなどを含むデータ送受信のための無線通信路の確立を行わなくてもよい。
また、UE10が確立を要求しているのはUE間の直接通信路ではないことを検出し、これに基づいてeNB45とUE10間の無線リソースの割り当てなどを含む無線通信路の確立を行ってもよい。
次に、UE10はeNB45から無線ベアラ確立要求を受信し、LTE(D)に基づく通信路の確立が許可されたことを検出する。検出においては、通知にProSe Indicatorが含まれていることで検出してもよい。
さらに、MME40はUE10が直接通信路を用いて通信を行うために用いるIPアドレスやベアラIDや直接通信に利用する週歩数に関する情報などを、コンテキスト設定要求および無線ベアラ確立要求に含めてもUE10に通知しても良い。
また、上記では、サービス要求を送信する前に通信対象UEの探索の開始(S1703a)を行う例を説明したが、無線ベアラ確立要求を受信した後に開始しても良い(S1803b)。
UE10は、無線ベアラ確立要求を受信し、MME40によって許可されている場合にはUE10aとの直接通信路を確立する(S1812)。許可されていない場合には直接通信路の確立は行わなくてよい。
UE10は、MME40によって許可された直接通信路と、APPに対応づけられた通信路とに基づいて直接通信路を確立するかどうかを判定する。もしくはMME40によって許可された直接通信路と、APPに対応づけられた通信路の情報のいずれかに基づいて直接通信路を確立するかどうかを判定してもよい。
例えば、APP1に対応づけられた直接通信路がLTE(D)であり、MMEに許可されたAPNがLTE(D)とWLAN(D)の両方の確立が許可されている場合には、UE10は、LTE(D)がAPP1に対応づけられていることと、APNによってLTE(D)が許可されていることから、LTE(D)による直接通信路を確立することを決定する。
UE10はUE10aとのLTE(D)に基づいた直接通信路を確立手続きでは、RRC接続再設定通知などで取得した周波数を用いて確立してもよいし、予め利用する周波数を割り当てるなどして行っても良い。
また、ここで、RRC接続再設定通知などで取得したIPアドレスやベアラIDをUE10aに対して通知し、それらを直接通信路に対応づけて管理し、直接通信を行うにあたって利用しても良い。
また、UE10aとの直接通信路の確立にあたってUE10とUE10aのいずれかがIPアドレスやベアラIDの割り当てを行い、他方に通知することで取得し、それらを直接通信路に対応づけて管理し、直接通信を行うにあたって利用しても良い。
以上により、UE10とUE10aは直接通信路を確立して通信を開始することができる。APP1の通信に対してLTE(D)に基づく通信路を確立した場合には、UE10は、APP1の通信データの送信に対して直接通信路を選択して送信する。
より具体的には、APN1のユーザデータ送信にあたっては、対応づけられたIPアドレスを選択して通信を行っても良い。また、対応づけられたベアラIDを選択して通信路を特定して通信を行っても良い。
また、APP1とはことなるその他のアプリケーションの送信に対しては、PGWとの間にコネクションを確立するなどし、直接通信路とは異なるこれらの通信路を選択して通信を行う。
また、UE10aとLTE(D)による通信路確立が完了したUE10は、コンテキスト初期化完了通知をMME40へ送信してもよい(S1814)。
コンテキスト初期化完了通知の送信によって、UE10が直接通信路の確立を完了したことをMME40に通知してもよい。
また、UE10はコンテキスト初期化完了通知を送信をしなくてもよい。たとえば、UE10は、従来のPGWとUE間のPDNコネクションを確立した場合には送信を行うが、直接通信路を確立した場合には送信しないなどを判定してもよい。
さらに、従来のPGW30とUE10間のPDNコネクションを確立した場合には、MME40はコンテキスト初期化完了通知を受信後、SGW35とPGW30との間で手続きを行い、ベアラ設定の更新を行う。
具体的にはMME40はSGW35にベアラ変更要求を送信し(S1816)、SGW35は受信に基づいてPGW30にベアラ変更要求を送信する(S1820)。さらに、応答としてPGW30はベアラ変更応答をSGW35に送信し(S1822),SGW35は受信に基づいてベアラ変更応答をMME40に送信する(S1824)。こうした手続きにより各装置においてベアラ情報の更新を行う。
ここで、従来のPGW30とUE10間のPDNコネクションを確立した場合には送信を行うが、直接通信路を確立した場合には送信しないなどを判定して、MME40はベアラ変更要求を送信しなくてもよい。このように、MME40,SGW35,PGW30は、直接通信路を確立した場合には、ベアラ情報の更新処理を行わなくても良い。
以上の手続きにより、UE10は、UE10aを探索することができる。また、UE10は、UE10aを探索することにより、UE10aとLTE(D)における直接通信を開始することができる。
また、ここでUE10によるサービス要求の送信は、UE10がUE10aと通信を開始する際に行う例を説明したが、これに関わらず予め行われていても良い。
例えば、UE10は端末の起動時やアプリケーションの起動時等に予めLTE(D)の通信路確立に対してサービス要求を送信するなどに基づいて許可を得ておき、UE10がUE10aと通信を開始することを決定した際には、すぐさま直接通信路の確立(S1812)を行っても良い。
また、上述した例では、APP1による通信を行うためにLTE(D)に基づく通信路を確立して通信を開始する例を中心に説明したが、UE10は図4(a)に示すようにAPP2による通信も、APP3による通信も、上述した方法を適用してすることができる。
例えば、APP2の通信を行う場合、UE10はPDN接続要求に含めるAPNの選択は、WLAN(D)が許可されたAPNを選択して含めることにより、WLAN(D)による通信路の確立に対して許可を要求する。
さらに、UE10はWLAN(D)による通信路確立が許可されたか否かを受信し、許可されている場合には、WLAN(D)の直接通信路を確立する。
MME40は、WLAN(D)に基づく通信路の確立を許可する場合には、
UE10とUE10aが直接通信を行うためのSSIDなどの情報を含めても良い。
また、APP3の通信を行う場合には、LTE(D)およびWLAN(D)が許可されたAPNを含めてPDN接続要求を送信してもよいし、LTE(D)の利用することを決定したのちにLTE(D)のみが許可されたAPNを選択してPDN接続要求を送信してもよい。またはWLAN(D)の利用することを決定したのちにWLAN(D)のみが許可されたAPNを選択してPDN接続要求を送信してもよい。
このように、UE10はアプリケーションに対応づけられた直接通信路の確立に対して、移動通信事業者に対して許可を求めたのちに確立手続きを実行する。許可の要求に対しては、直接通信路に対応づけられた情報を基に許可を依頼する。
これにより、例えばLTE(D)に対応づけられた複数のアプリケーションが有る場合、個別のアプリケーションに対して許可要求を送信しなくてもよい。
例えば、APP1の通信開始に際してLTE(D)を用いて通信を行うことが許可されている場合、APP1とは異なるアプリケーションをLTE(D)により通信を行う場合には、すでに許可されていると判定して直接通信路を確立してもよい。
また、APP3により通信を行うために、UE10がLTE(D)とWLAN(D)とが許可されたAPNを含めてサービス要求を送信し、LTE(D)とWLAN(D)との両方の通信路の確立が許可された場合、UEはLTE(D)によって直接通信路を確立するか、WLAN(D)によって直接通信路を確立するかを任意に選択して確立しても良い。
また、通信相手となるUE10aにおいても、直接通信路の確立にあたって通信事業者の許可を得るためにこれまで説明したサービス要求に基づく許可手続きを行っていてもよい。
もしくは、UE10から直接通信路の確立を求められた際にサービス要求に基づく許可手続きを行うってもよい。つまり、UE10とUE10aとの直接通信路の確立にあたっては、通信相手となるUE10aの許可手続きの完了も直接通信路確立を行うための一条件としてもよい。
このように、UE10はアプリケーションのデータ送受信を行う際、アプリケーションに対応づけられた直接通信路を選択して通信を行う。
また、APN1などの直接通信路の確立が許可されたAPNを用いて直接通信路を確立している状態で、直接通信路の確立が許可されないAPN4などを用いてPGW30との間に通信路を確立してもよい。
この場合、UE10はアプリケーションと通信路を対応づけて管理しておき、送受信データからアプリケーションを特定し、特定したアプリケーションに対応づけられた通信路を選択してデータを送受信してもよい。
これにより、UE10は、直接通信を行うアプリケーションのデータ送受信は直接通信路を選択して送受信を行い、コアネットワークを介して通信を行うアプリケーションのデータ送受信はPGW30へ接続される通信路を選択して送受信することができる。
また、UE10は、確立した直接通信路に対するベアラIDと、PGW30との間に確立した通信路に対するベアラIDとを保持し、通信路をベアラIDと対応づけて管理してもよい。さらに、通信路とアプリケーションとの対応づけと、通信路とベアラIDとの対応づけから、アプリケーションとベアラIDを対応づけて管理してもよい。
さらに、UE10は、アプリケーションとベアラIDとの対応から、送受信データからアプリケーションを特定し、特定したアプリケーションに対応づけられたベアラIDを選択してデータを送受信してもよい。
これにより、UE10は、直接通信を行うアプリケーションのデータ送受信は直接通信路に対応づけられたベアラIDを選択して送受信を行い、コアネットワークを介して通信を行うアプリケーションのデータ送受信はPGW30へ接続される通信路に対応づけられたベアラIDを選択して送受信することができる。
また、UE10は、確立した直接通信路を用いて通信を行うためのPDNコネクションを確立し、PGW30との間に確立した通信路を用いて通信を行うためのPDNコネクションを確立し、通信路とPDNコネクションとを対応づけて管理してもよい。さらに、通信路とアプリケーションとの対応づけと、通信路とPDNコネクションとの対応づけから、アプリケーションとPDNコネクションを対応づけて管理してもよい。
さらに、UE10は、アプリケーションとPDNコネクションとの対応から、送受信データからアプリケーションを特定し、特定したアプリケーションに対応づけられたベアラIDを選択してデータを送受信してもよい。
これにより、UE10は、直接通信を行うアプリケーションのデータ送受信は直接通信路に対応づけられたPDNコネクションを選択して送受信を行い、コアネットワークを介して通信を行うアプリケーションのデータ送受信はPGW30へ接続される通信路に対応づけられたPDNコネクションを選択して送受信することができる。
ここで、データ送受信をする際に送受信するデータがどのアプリケーションに対応するかなどのアプリケーションの特定手段は、送信元アドレス、送信先アドレス、プロトコル番号、送信元ポート番号、送信先ポート番号などのIP5タプルの情報に基づいてアプリケーションを特定してもよい。また、アプリケーションIDなどの識別情報に基づいてアプリケーションを特定してもよい。
[1.3.5 切断手続き]
本節では、UE10がUE10aと直接通信路を介して通信中に、UE10aとProSeによるデータの送受信の中止する方法について説明する。ここで、UE10とUE10aは、接続(Connected)状態から接続待機(idle)状態へ遷移するのではなく、接続(Connected)状態からUE10aとの切断(disconnected)状態へ遷移する。
図19を利用してUE10aとProSeによるデータの送受信の中止する方法について説明する。なお、以下の説明では、UE10が直接通信を中止することを検出し、直接通信を中止する手続きを開始するが、UE10aにおいても同様に可能である。
まず、UE10は、UE10aと直接通信を中止することを検出する(S1902)。ここで、直接通信を中止することを検出する方法は種々の方法が考えられるが、例えば、直接通信相手とのデータの送受信が完了した場合やUE10とUE10a間の距離が大きくなり、直接通信を維持できなくなった場合などに実行しても良い。
続いて、UE10aと直接通信を中止することを検出したUE10は、MME40へPDN切断要求を送信する(S1904)。なお、このとき、ProSe Indicatorを含めて通知してもよい。
また、MME40は、APNに基づいてSGW35、PGW30で実行されるセッションの削除手続きを実行させないよう判定してもよい。また、ProSe Indicatorなどから直接通信路を確立するための要求であることを検出し、SGW35、PGW30で実行されるセッションの削除を実行させないよう判定してもよい。
セッションの削除を実行させないよう判定した場合には、MME40がSGW35に対して送信するセッション削除要求(S1906),SGW35がPGW30に送信するセッション削除要求(S1908)、さらにはそれらの応答であるPGW30がSGW35に送信するセッション削除応答(S1910)、SGW35がMME40に送信するセッション削除応答(S1912)の送受信を実行しなくてもよい。
このようにMME40は、許可を与えるAPNに応じてコアネットワーク内部のセッション削除つまりはPDNコネクションなどの通信路の削除を行わないか否かを選択してもよい。
次に、MME40は、eNB45へベアラ無効化要求を送信する(S1914)。このとき、ベアラ無効化要求には直接通信に関連付けられるベアラを示すベアラIDを含めても良い。また、ProSe Indicatorなど、従来のUEとPGWとの間のPDNコネクションの確立を許可したのではなく、直接通信路の確立が許可されたことを明示的に示すフラグを含めても良い。
また、eNB45は、ProSe Indicatorが含まれていることにより、UE10との間の無線通信路の削除やリソースの解放を行うか否かを判定しても良い。
例えば、UE10が削除を要求しているのはUE間の直接通信路であることを検出し、これに基づいてeNB45とUE10間の無線リソースの解放などを含む無線通信路の削除を行わなくてもよい。また、UE10が削除を要求しているのはUE間の直接通信路ではないことを検出し、これに基づいてeNB45とUE10間の無線リソースの解放などを含む無線通信路の削除を行ってもよい。
続いて、eNB45は、UE10へRRC接続再設定通知をUE10へ送信する(S1916)。このとき、RRC接続再設定通知には直接通信に関連付けられるベアラを示すベアラIDを含めても良い。また、Prose Indicatorなど、従来のUEとPGWとの間のPDNコネクションの確立を許可したのではなく、直接通信路の削除を行うことを明示的に示すフラグを含めても良い。
次に、UE10は、UE10aと無線ベアラを解放する(S1918)。このとき、UE10は、直接通信と関連付けられるベアラIDや直接通信路の削除を行うことを明示的に示すフラグとに基づいて解放を行うかいなかを選択して実行しても良い。
UE10aと無線ベアラを解放したUE10は、MME40へRRC接続再設定完了通知を送信する(S1920)。eNB45はベアラ無効化応答を送信する(S1922)。
次に、UE10はダイレクトトランスファーメッセージをeNB45に送信する(S1924)。eNB45はダイレクトトランスファーメッセージの受信に基づいてEPSベアラコンテキスト無効か応答をMME40に送信する(S1926)。
UE10によるRRC接続再設定完了通知の送信は、直接通信路の削除を行うか否かに基づいて送信するか否かを選択してもよい。同様にUE10によるダイレクトトランスファーメッセージの送信は、直接通信路の削除を行うか否かに基づいて送信するか否かを選択してもよい。
例えば、UE10は、従来のPGWとUE間のPDNコネクションを削除する場合には送信を行うが、直接通信路を削除する場合には送信しないなどを判定してもよい。
以上の手続きにより、UEは、通信中の通信対象UEと直接通信を中止することができる。
以上、本実施形態では、通信元となるUEが通信対象となるUEを探索するにあたって、通信対象UEが近くにいるか検知し、通信対象UEの探索を開始し、通信元UEは消費電力を浪費することを抑制できる。
また、UEがProSeによるデータの送受信を開始する場合、通信対象UEが通信元UEの近隣にいる場合であっても、通信元UEがLTE Directによるデータの送受信を要求し、通信対象UEがLTE Directによるデータの送受信を行うことができない場合、不必要な探索を開始することを防止し、通信元UEは消費電力を抑制できる。
さらに、UEがProSeによるデータの送受信を開始する場合、通信対象UEが通信元UEの近隣にいる場合であっても、通信元UEがWLAN Directによるデータの送受信を要求し、通信対象UEがWLAN Directによるデータの送受信を行うことができない場合、不必要な探索を開始することを防止し、通信元UEは消費電力を抑制できる。
また、通信対象となるUEが近隣にいる場合、ProSeによる通信を開始し、通信対象となるUEが近隣にいない場合、マクロ経由で通信を開始する場合であっても、通信元UEが通信対象となるUEを無作為に探索することを防止し、通信対象となるUEが近隣にいないことを検知するまでに時間をかけてしまうことを抑制し、マクロ経由の通信を開始するまでに遅延を引き起こしにくくすることができる。
さらに、UEは、近隣を探索するための条件を設定し、通信対象となるUEを探索することができ、ProSeを開始することができる。
[1.4 変形例]
[1.4.1 変形例1]
第一実施形態におけるUEでは、アプリケーション毎にUEコンタクトリスト144を管理していたが、アプリケーション毎にUEコンタクトリスト144を管理せず、UE毎に1つのUEコンタクトリスト144を管理しても良い。
図20にUE毎に管理するUEコンタクトリスト144の例を示す。図20に示すように、UE10は、1つのUEのコンタクトリスト144を管理している。なお、第一実施形態と同様に、近隣探索不要チェックボックスにより、近隣探索を行わないようにすることができる。
また、UE10は1つのUEコンタクトリスト144を保持するため、ProSe Server90においても、UE毎にServerコンタクトリスト942を管理する。
図21にProSe Serverが管理するServerコンタクトリスト942の例を示す。図21に示すように、ProSe Server90は、UE毎に1つのServerコンタクトリスト942を管理している。
なお、上記以外の移動通信システムやIP移動通信ネットワークは同様の構成である。また、UEは、UEコンタクトリスト144以外は同様の構成であり、ProSe Server90は、Serverコンタクトリスト以外は同様の構成である。
また、UE位置情報通知手続きや近隣検出不要通知手続き、近隣検出手続き、通信路確立手続き、切断手続きは同様に利用可能であるため説明を省略する。
これにより、UE10が複数のアプリケーションを利用可能な場合においても、アプリケーション毎に異なるコンタクトリストを持つ必要がなく、複数のアプリケーションで同様のコンタクトリストを共有することができる。
[1.4.2 変形例2]
第一の実施形態におけるUE10では、LTE(D)の機能やWLAN(D)の機能のいずれも必ず有効(ON)にしているとして説明してきたが、LTE(D)の機能のON/OFFやWLAN(D)の機能のON/OFFを考慮しても良い。
また、UEにおいて、LTE(D)の機能のON/OFFやWLAN(D)の機能のON/OFFを考慮することにより、ProSe Server90において、LTE(D)のON/OFFやWLAN(D)のON/OFFの状態を含めることができる。
図22(a)に、UE10において、LTE(D)のON/OFF状態を管理するLTE(D)のON/OFFの例を示す。図22では、LTE(D)のON/OFF状態がONになっている。
図22(b)に、UE10において、WLAN(D)のON/OFF状態を管理するWLAN(D)のON/OFFの例を示す。図22では、WLAN(D)のON/OFF状態がONになっている。
図23は、ProSe Server90におけるServerコンタクトリスト942において、LTE(D)および、WLAN(D)のON/OFF状態を管理したコンタクトリストの例を示す。なお、UE10では、LTE(D)および、WLAN(D)がONになっているため、UE10におけるコンタクトリストにおいて、LTE(D)および、WLAN(D)のON/OFF状態が管理されている。
ここで、UE10において、LTE(D)の状態がOFFになっていれば、Serverコンタクトリスト942内のUE10のコンタクトリストにおいて、LTE(D)の状態は全てOFFになっていても良く、LTE(D)の状態が管理されなくても良い。
また、UE10において、WLAN(D)の状態がOFFになっていれば、Serverコンタクトリスト942内のUE10のコンタクトリストにおいて、WLAN(D)の状態は全てOFFになっていても良く、WLAN(D)の状態が管理されなくても良い。また、UE10bでは、LTE(D)の状態がONになっており、WLAN(D)の状態がOFFになっていることを示している。
図24は、[1.3.1 UE位置通知手続き]におけるS1008のUE位置情報の更新の一例を示している。ここで、UE10bがLTE(D)のOFFの状態を通知している場合の更新例である。更新前から更新後において、UE10bのLTE(D)がONからOFFに変更されている。
ここで、LTE(D)のON/OFFのみを変更したが、UEからWLAN(D)のON/OFFが通知された場合には、WLAN(D)のON/OFFを変更しても良いし、LTE(D)のON/OFFおよび、WLAN(D)のON/OFFが通知された場合には、LTE(D)のON/OFFおよび、WLAN(D)のON/OFFを変更しても良い。
また、[1.3.1 UE位置通知手続き]におけるS1008のUE位置情報の更新ではなく、[1.3.2 近隣探索不要手続き]におけるS1208の近隣探索不要通知処理を利用して、LTE(D)および/または、WLAN(D)のON/OFFを更新しても良い。
なお、上記以外の移動通信システムやIP移動通信ネットワークは同様の構成である。また、UEは、LTE(D)のON/OFFやWLAN(D)のON/OFF以外は同様の構成であり、ProSe Server90は、Serverコンタクトリスト以外は同様の構成である。
ProSe Server90は、近隣UEを検出する際に利用できる通信路を併せて検出するが、LTE(D)のOFFやWLAN(D)のOFFなど、UEにおいて直接通信路確立機能を無効化した状態を受信して管理している場合には、これらの通信路は利用不可と判定する。
また、その他のUE位置情報通知手続きや近隣検出不要通知手続き、近隣検出手続き、通信路確立手続き、切断手続きの詳細は同様に適用できるため説明を省略する。
[1.4.3 変形例3]
第一実施形態では、ProSe Server90は、S1412におけるコンタクトリストの通知において、LTE(D)および、WLAN(D)が利用可能であることを示していたが、ProSe Server90が近隣度のレベルをUE10に通知し、UE10は、近隣度のレベルに応じて直接通信を行うことを決定しても良い。第一実施形態との違いは、UE間の位置関係を数値化して通知することと、位置情報の粒度を細かく通知できることにある。
図25にUE10が管理するUEアクションポリシーの例を示す。図25に示すように、近隣度1〜3の場合、WLAN(D)を行い、近隣度4の場合、LTE(D)を行い、近隣度5の場合、直接通信を行うことができない。
なお、近隣度は1つだけが通知されるのでなく、複数の近隣度が通知される可能性があり、近隣度1と近隣度4が通知された場合には、WLAN(D)および、LTE(D)を任意に選択することが可能である。
図26に、ProSe Server90が管理する近隣評価ポリシー948の例を示す。ProSe Server90は、位置情報管理表946に基づいて、Serverコンタクトリスト942内のUEを評価する。
図26では、UE間の位置関係において、同じAP名が管理されていれば、近隣度1と評価し、同じSSIDが管理されていれば、近隣度2と評価し、同じRealmが管理されていれば、近隣度3と評価し、同じeNB IDが管理されていれば、近隣度4と評価し、上記のいずれにも当てはまらない場合、近隣度5と評価する。
図27に、[1.3.3 近隣検出手続き]におけるS1410の近隣評価結果の例を示す。UE10は、UE10aと同じAPに接続していると管理され、同じeNBに接続していると管理されているため、近隣度1と近隣度4が評価されている。
また、UE10とUE10bは、同じeNBに接続していると管理されているため、近隣度4と評価されている。また、UEzzは、近隣評価ポリシー948に該当する位置情報が管理されていないため、近隣度5と評価されている。
なお、上記以外の移動通信システムやIP移動通信ネットワークは同様の構成である。また、UEは、UEアクションポリシー以外は同様の構成であり、ProSe Server90は、近隣評価ポリシー948以外は同様の構成である。
また、UE位置情報通知手続きや近隣検出不要通知手続き、近隣検出手続き、通信路確立手続き、切断手続きは同様に利用可能であるため説明を省略する。
[1.4.4 変形例4]
第一の実施形態では、UE10は、直接通信路を確立するために、移動通信事業者の装置であるMME40やeNB45を介していたが、UE10は、ProSe Server90からのコンタクトリスト通知において、許可された直接通信路により、直接通信路を確立しても良い。
なお、上記以外の移動通信システムやIP移動通信ネットワークは同様の構成である。また、UE位置情報通知手続きや近隣検出不要通知手続き、近隣検出手続きは同様に利用可能であるため説明を省略する。
[1.4.5 変形例5]
移動通信システムは、図1で示した構成を利用するのではなく、図28で示した構成を利用してもよい。図1では、ProSe Server90は、PDN20上に配置していたが、図28におけるProSe Server3390で示すように、IP移動通信ネットワーク5上に配置しても良い。
なお、ProSe Server3390は、UE10および、UE10aとセキュアな通信路を確保して通信を行うことが可能である。また、ProSe Server3390は、MME40とセキュアな通信路を確保して通信を行うことが可能である。
なお、上記以外の移動通信システムやIP移動通信ネットワークは同様の構成である。また、UE位置情報通知手続きや近隣検出不要通知手続き、近隣検出手続き、通信路確立手続き、切断手続きは同様に利用可能であるため説明を省略する。
[1.4.6 変形例6]
また、第1の実施形態では、UE10が移動通信事業者に直接通信路の確立の許可を要求する際、APNを含めて送信し、移動通信事業者ではAPNに基づいて許可、不許可を判定していたが、判定する手段はこれにかぎらず別の方法を用いても良い。
例えば、MME40は、UE10が保持するAPPリスト142と同等のアプリケーションのリストを管理しておき、アプリケーションと確立可能な直接通信路を対応づけて管理しておき、これに基づいて許可、不許可を判定してもよい。
その場合、UE10は、PDN接続要求の送信(S1704)やサービス要求の送信(S1804)において、アプリケーションに関する情報を含めて送信してもよい。
さらに、MME40はPDN接続要求やサービス要求を受信した際、含まれるアプリケーションと、アプリケーションに対応づけられた直接通信路の情報とに基づいて許可、不許可を判定してもよい。これにより、MME40はUE10の利用するアプリケーション毎に、利用可能な直接通信路の選択および直接通信路の確立許可、不許可をUE10に通知することができるようになる。
上記以外の各装置構成や手続きは第1実施形態で説明したものが適用可能であるため詳細説明は省略する。
以上、第1実施形態およびそれに関わる複数の変形例を説明してきたが、各変形例はそれぞれ独立して第1実施形態に適用されても良いし、2つ以上が組み合わされて適用されても良い。
[1.4.7.変形例7]
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
また、各実施形態において各装置で動作するプログラムは、上述した実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的に一時記憶装置(例えば、RAM)に蓄積され、その後、各種ROMやHDDの記憶装置に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
ここで、プログラムを格納する記録媒体としては、半導体媒体(例えば、ROMや、不揮発性のメモリカード等)、光記録媒体・光磁気記録媒体(例えば、DVD(Digital Versatile Disc)、MO(Magneto Optical Disc)、MD(Mini Disc)、CD(Compact Disc)、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。
また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
また、市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれるのは勿論である。
また、上述した実施形態における各装置の一部又は全部を典型的には集積回路であるLSI(Large Scale Integration)として実現してもよい。各装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。
また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能であることは勿論である。
また、上述した実施形態においては、無線アクセスネットワークの例としてLTEと、WLAN(例えば、IEEE802.11a/b/n等)とについて説明したが、WLANの代わりにWiMAXによって接続されても良い。
本発明は、携帯電話、パーソナル・コンピュータ、タブレット型コンピュータなどに適用できる。
1 移動通信システム
5 IP移動通信ネットワーク
10 UE
20 PDN
30 PGW
35 SGW
40 MME
45 eNB
50 HSS
55 AAA
60 PCRF
65 ePDG
70 WLAN ANa
72 WLAN APa
74 GW
75 WLAN ANb
76 WLAN APb
80 LTE AN
90 ProSe Server

Claims (18)

  1. 送受信部と、制御部とを有するUE(User Equipment)であって、
    前記送受信部は、
    前記UEの位置情報を、前記UEと他のUEとが近隣に位置することを検出する機能を有するProSe(Proximity Services)サーバに送信し、
    前記ProSeサーバから、1以上のアプリケーションの中のあるアプリケーションに関連する制御情報を受信し、
    前記制御部は、前記制御情報に基づいて、前記他のUEが前記UEに近接していることを検出し、
    前記送受信部は、前記他のUEを検出するための手続きにおいて、前記1以上のアプリケーションにそれぞれ対応する制御情報を複数受信することが可能である、
    ことを特徴とするUE。
  2. 前記制御情報は、前記他のUEと、無線LANを利用して直接通信するための第1の情報を含むことを特徴とする請求項1に記載のUE。
  3. 前記UEの位置情報は、前記ProSeサーバとは異なる装置により管理されていることを特徴とする請求項1又は2に記載のUE。
  4. UE(User Equipment)の通信方法であって、
    前記UEの位置情報を、前記UEと他のUEとが近隣に位置することを検出する機能を有するProSe(Proximity Services)サーバに送信する送信ステップと、
    前記ProSeサーバから、1以上のアプリケーションの中のあるアプリケーションに関連する制御情報を受信する受信ステップと、
    前記制御情報に基づいて、前記他のUEが前記UEに近接していることを検出する検出ステップと、を含み、
    前記受信ステップは、前記他のUEを検出するための手続きにおいて、前記1以上のアプリケーションにそれぞれ対応する制御情報を複数受信することが可能である、
    ことを特徴とするUEの通信方法。
  5. 前記制御情報は、前記他のUEと、無線LANを利用して直接通信するための第1の情報を含むことを特徴とする請求項に記載のUEの通信方法
  6. 前記UEの位置情報は、前記ProSeサーバとは異なる装置により管理されていることを特徴とする請求項4又は5に記載のUEの通信方法
  7. 前記制御情報は、前記他のUEに関する識別情報を含むことを特徴とする請求項1に記載のUE。
  8. 前記制御情報は、前記他のUEに関する識別情報を含むことを特徴とする請求項4に記載のUEの通信方法。
  9. 前記制御情報に前記第1の情報が含まれている場合、前記UEは、前記第1の情報を使用して、前記他のUEと無線LANを利用して直接通信を行うことを特徴とする請求項2に記載のUE。
  10. 前記制御情報に前記第1の情報が含まれている場合、前記UEは、前記第1の情報を使用して、前記他のUEと無線LANを利用して直接通信を行うことを特徴とする請求項5に記載のUEの通信方法。
  11. 送受信部を有するProSe(Proximity Services)サーバであって、
    前記送受信部は、
    UE(User Equipment)の位置情報と、他のUEの位置情報とを受信し、
    前記UEに対して、1以上のアプリケーションの中のあるアプリケーションに関連する制御情報を送信し、
    前記制御情報は、前記UEに、前記他のUEが前記UEに近接していることを検出させるために使用され、
    前記送受信部は、前記UEが前記他のUEを検出するための手続きにおいて、前記1以上のアプリケーションにそれぞれ対応する制御情報を複数送信することが可能であり、
    前記ProSeサーバは、前記UEと他のUEとが近隣に位置することを検出する機能を有する、
    ことを特徴とするProSeサーバ。
  12. 前記制御情報は、前記他のUEと、無線LANを利用して直接通信するための第1の情報を含むことを特徴とする請求項11に記載のProSeサーバ。
  13. 前記制御情報は、前記他のUEに関する識別情報を含むことを特徴とする請求項11に記載のProSeサーバ。
  14. 前記送受信部は、前記UEに前記他のUEと無線LANを利用して直接通信を行わせる場合、前記制御情報に前記第1の情報を含めて、送信することを特徴とする請求項12に記載のProSeサーバ。
  15. ProSe(Proximity Services)サーバの通信方法であって、
    UE(User Equipment)の位置情報と、他のUEの位置情報とを受信する受信ステップと、
    前記UEに対して、1以上のアプリケーションの中のあるアプリケーションに関連する制御情報を送信する送信ステップと、を含み、
    前記制御情報は、前記UEに、前記他のUEが前記UEに近接していることを検出させるために使用され、
    前記送信ステップは、前記UEが前記他のUEを検出するための手続きにおいて、前記1以上のアプリケーションにそれぞれ対応する制御情報を複数送信することが可能であり、
    前記ProSeサーバは、前記UEと他のUEとが近隣に位置することを検出する機能を有する、
    ことを特徴とするProSeサーバ。
  16. 前記制御情報は、前記他のUEと、無線LANを利用して直接通信するための第1の情報を含むことを特徴とする請求項15に記載のProSeサーバの通信方法。
  17. 前記制御情報は、前記他のUEに関する識別情報を含むことを特徴とする請求項15に記載のProSeサーバの通信方法。
  18. 前記送信ステップは、前記UEに前記他のUEと無線LANを利用して直接通信を行わせる場合、前記制御情報に前記第1の情報を含めて、送信することを特徴とする請求項16に記載のProSeサーバの通信方法。
JP2015506835A 2013-03-21 2014-03-19 UE、UEの通信方法、ProSeサーバ、及びProSeサーバの通信方法 Expired - Fee Related JP6506685B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013058056 2013-03-21
JP2013058056 2013-03-21
PCT/JP2014/057590 WO2014148570A1 (ja) 2013-03-21 2014-03-19 通信端末、基地局装置および制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019068590A Division JP6728436B2 (ja) 2013-03-21 2019-03-29 UE、UEの通信方法、ProSeサーバ及びProSeサーバの通信方法

Publications (2)

Publication Number Publication Date
JPWO2014148570A1 JPWO2014148570A1 (ja) 2017-02-16
JP6506685B2 true JP6506685B2 (ja) 2019-04-24

Family

ID=51580242

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015506835A Expired - Fee Related JP6506685B2 (ja) 2013-03-21 2014-03-19 UE、UEの通信方法、ProSeサーバ、及びProSeサーバの通信方法
JP2019068590A Active JP6728436B2 (ja) 2013-03-21 2019-03-29 UE、UEの通信方法、ProSeサーバ及びProSeサーバの通信方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019068590A Active JP6728436B2 (ja) 2013-03-21 2019-03-29 UE、UEの通信方法、ProSeサーバ及びProSeサーバの通信方法

Country Status (4)

Country Link
US (3) US20160277889A1 (ja)
EP (1) EP2978246B1 (ja)
JP (2) JP6506685B2 (ja)
WO (1) WO2014148570A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160044725A1 (en) * 2013-03-28 2016-02-11 Sharp Kabushiki Kaisha Terminal device, base station device, and control device
CN105432137B (zh) * 2013-08-07 2019-06-28 Lg电子株式会社 在无线通信系统中执行设备对设备发现的方法和设备
US11700652B2 (en) * 2014-12-19 2023-07-11 Nokia Solutions And Networks Oy Proximity services device-to-device communication services control
US20170026444A1 (en) * 2015-07-24 2017-01-26 Airwatch Llc Policy driven media consumption framework
US9913281B1 (en) * 2016-02-18 2018-03-06 Sprint Communications Company L.P. Dynamic customization of mobile communication device access point name (APN) selection
US11038638B2 (en) * 2018-10-24 2021-06-15 Lg Electronics Inc. Dual connectivity support for V2X communication
CN112286874B (zh) * 2021-01-04 2021-07-02 北京东方通软件有限公司 一种基于时间的文件管理方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7266395B2 (en) 2003-10-30 2007-09-04 Research In Motion Limited System and method of wireless proximity awareness
US8959187B2 (en) * 2004-02-23 2015-02-17 Apple Inc. Method and system for proximity-based information retrieval and exchange in ad hoc networks
US8150416B2 (en) * 2005-08-08 2012-04-03 Jambo Networks, Inc. System and method for providing communication services to mobile device users incorporating proximity determination
US7957357B2 (en) * 2006-12-22 2011-06-07 Research In Motion Limited Method and system for presenting lists of wireless local area network Profile information
US8259692B2 (en) * 2008-07-11 2012-09-04 Nokia Corporation Method providing positioning and navigation inside large buildings
US8204477B2 (en) * 2008-11-06 2012-06-19 Motorola Mobility, Inc. Systems and method for triggering proximity detection
US9900779B2 (en) * 2008-12-30 2018-02-20 Qualcomm Incorporated Centralized control of peer-to-peer communication
WO2011038760A1 (en) * 2009-09-30 2011-04-07 Telecom Italia S.P.A. Method and system for notifying proximity of mobile communication terminals users
US9516686B2 (en) * 2010-03-17 2016-12-06 Qualcomm Incorporated Method and apparatus for establishing and maintaining peer-to-peer (P2P) communication on unlicensed spectrum
US9351143B2 (en) * 2010-06-01 2016-05-24 Qualcomm Incorporated Multi-homed peer-to-peer network
US10250678B2 (en) * 2010-07-07 2019-04-02 Qualcomm Incorporated Hybrid modes for peer discovery
JP2012147155A (ja) * 2011-01-11 2012-08-02 Nec Corp P2p通信に関する情報提供方法、p2p通信に関する情報提供システム、移動端末、及びプログラム
US9826404B2 (en) * 2011-01-11 2017-11-21 Qualcomm Incorporated System and method for peer-to-peer authorization via non-access stratum procedures
JP5573732B2 (ja) * 2011-03-10 2014-08-20 富士通株式会社 位置算出方法、無線通信システム及び情報処理装置
KR101824248B1 (ko) * 2011-04-19 2018-01-31 삼성전자주식회사 휴대단말기에서 위치 정보를 공유하여 사용하는 방법 및 시스템
US8606300B2 (en) 2012-01-19 2013-12-10 Blackberry Limited Efficiency of electronic message communications between mobile communication devices
US20130210393A1 (en) * 2012-02-10 2013-08-15 Peter Matthew Hillier System Having Location Based Proximity Features and Methods Thereof
US9380411B2 (en) * 2012-06-21 2016-06-28 Broadcom Corporation Proximity detection
US8849203B2 (en) * 2012-06-27 2014-09-30 Alcatel Lucent Discovering proximity devices in broadband networks
US8819277B2 (en) 2012-07-17 2014-08-26 Google Inc. System and method for delivering alerts
US9036603B2 (en) * 2012-08-03 2015-05-19 Intel Corporation Network assistance for device-to-device discovery
US9026051B2 (en) * 2012-09-28 2015-05-05 Intel Corporation Wireless wide area network (WWAN) managed device to device communication using narrowband Wi-Fi in a licensed band
US9247508B2 (en) * 2012-09-28 2016-01-26 Sharp Kabushiki Kaisha Transmission power control for signals used by user equipment terminals for device-to-device services
US8917708B2 (en) * 2012-09-28 2014-12-23 Intel Corporation Discovery and operation of hybrid wireless wide area and wireless local area networks
US9066323B2 (en) * 2012-11-15 2015-06-23 Hewlett-Packard Development Company, L.P. Ad Hoc network connection
US8989698B2 (en) 2012-12-04 2015-03-24 At&T Intellectual Property I, L.P. Supplemental rescue resources
US9615214B2 (en) * 2012-12-07 2017-04-04 Nokia Technologies Oy Handling positioning messages
US9584988B2 (en) * 2013-03-07 2017-02-28 Intel Deutschland Gmbh Communication terminal, communication device, method for processing a paging message and method for controlling a communication terminal

Also Published As

Publication number Publication date
JP6728436B2 (ja) 2020-07-22
JP2019106734A (ja) 2019-06-27
JPWO2014148570A1 (ja) 2017-02-16
WO2014148570A1 (ja) 2014-09-25
EP2978246A1 (en) 2016-01-27
US10779116B2 (en) 2020-09-15
EP2978246B1 (en) 2019-07-03
US20200413219A1 (en) 2020-12-31
US20160277889A1 (en) 2016-09-22
EP2978246A4 (en) 2016-08-24
US20180020327A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6728436B2 (ja) UE、UEの通信方法、ProSeサーバ及びProSeサーバの通信方法
US20220369215A1 (en) Relay selection in cellular sliced networks
JP6356118B2 (ja) Ue、制御装置及び通信方法
WO2014148257A1 (ja) 端末装置、基地局装置および制御装置
JP6483617B2 (ja) 端末装置、リレー端末装置および通信制御方法
WO2014163054A1 (ja) 端末装置、基地局装置および制御装置
EP3001709B1 (en) Communication terminal and server apparatus
JP2020505867A (ja) セッション管理方法及びシステム並びに端末
CN104770051A (zh) 用于实现WLAN接近服务(WLAN ProSe)的方法
WO2015105183A1 (ja) 通信制御方法、位置管理装置、基地局装置、端末装置および通信システム
WO2015018304A1 (zh) 一种配置承载的方法和设备
WO2014156663A1 (ja) 端末装置、基地局装置および制御装置
KR20140058366A (ko) 단말 간 디스커버리 방법 및 장치
CN110830994A (zh) 会话迁移的方法和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees