JP6506229B2 - Radiant panel - Google Patents

Radiant panel Download PDF

Info

Publication number
JP6506229B2
JP6506229B2 JP2016178027A JP2016178027A JP6506229B2 JP 6506229 B2 JP6506229 B2 JP 6506229B2 JP 2016178027 A JP2016178027 A JP 2016178027A JP 2016178027 A JP2016178027 A JP 2016178027A JP 6506229 B2 JP6506229 B2 JP 6506229B2
Authority
JP
Japan
Prior art keywords
heat transfer
radiation
heat
transfer tube
radiation member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016178027A
Other languages
Japanese (ja)
Other versions
JP2018044696A (en
Inventor
文平 馬郡
文平 馬郡
有 森下
有 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Factor M
Original Assignee
Factor M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Factor M filed Critical Factor M
Priority to JP2016178027A priority Critical patent/JP6506229B2/en
Publication of JP2018044696A publication Critical patent/JP2018044696A/en
Application granted granted Critical
Publication of JP6506229B2 publication Critical patent/JP6506229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、放射により冷暖房を行う放射パネル及びそれを用いた放射冷暖房システムに関し、特に冷房時の結露抑制と清掃性に優れた放射パネル及びそれを用いた放射冷暖房システムに関する。   The present invention relates to a radiation panel that performs cooling and heating by radiation and a radiation heating and cooling system using the same, and more particularly to a radiation panel that is excellent in condensation suppression and cleaning during cooling and a radiation heating and cooling system using the radiation panel.

熱放射による冷暖房システムは、各種建築物において広く使用されているが、夏場の冷房では放射パネルに結露が生じやすいため、カビの発生や機器故障の原因、もしくは放射能力を低下させるといった結果になりやすく問題となっていた。   Heating and cooling systems using heat radiation are widely used in various buildings, but because condensation tends to occur on the radiation panel during cooling in summer, this results in the generation of mold and equipment failure, or the reduction of radiation capacity. It was an easy problem.

放射パネルは、放射面の面積を大きくした方が単位面積あたりの冷暖房負荷が軽減されるため放射能力が上がる。また、放射温度が室温に近くなるためマイルドな冷暖房環境となる。冷房時には、パネル近傍の気温が露点以下になりにくいため結露を抑制しやすくなる。一般的な放射パネルは、温度変化に耐えうる接合の信頼性確保や良好な熱伝導性確保の必要性から、専門工場内において伝熱管等の部品の接合に、バーナーを用いたろう付け等により組み立てられている。そのため、単純に表面積を大きくするとパネルが大型化してしまい、かなりの重量物になってしまう。建築物内に搬入することも設置することも困難になる。もしくは、大型にしない場合は、パネルの枚数が増え、実際の空間に設置できないことになる。このため、放射面を凹凸のある複雑な形状にして表面積を確保する試みも行われているが、凹凸部分の清掃性が悪く、運用時にはホコリやゴミが貯まりやすい。さらに部分的にでも結露が発生した場合にはホコリ等が水を含んで著しく汚くなり、冷房効率が低下すると共にかえってカビが発生しやすくなるという問題点があった。   As the radiation panel has a larger radiation surface area, the radiation capacity increases because the cooling and heating load per unit area is reduced. In addition, the radiation temperature approaches room temperature, resulting in a mild heating and cooling environment. At the time of cooling, the temperature near the panel is less likely to fall below the dew point, which makes it easier to suppress condensation. A general radiation panel is assembled by brazing using a burner or the like to join parts such as heat transfer tubes in a specialized factory, because it is necessary to ensure the reliability of bonding that can withstand temperature changes and to ensure good thermal conductivity. It is done. Therefore, simply increasing the surface area increases the size of the panel, resulting in a considerable weight. It will be difficult to carry in and install in a building. Or, if it is not made large, the number of panels increases and it can not be installed in the actual space. For this reason, although attempts have been made to secure the surface area by making the radiation surface into a complicated shape having asperities, the cleaning property of the asperities is poor, and dust and dirt are easily accumulated during operation. Furthermore, even if condensation occurs partially, the dust and the like becomes extremely dirty including water, and the cooling efficiency is lowered and mold is easily generated.

また、放射面積を大きくする以外で結露発生を防止又は低減化する手段としては、例えば、結露が生じては特に困る面の材料構成や塗装を工夫することにより結露を防止しようとするもの(例えば、特許文献1〜3参照)や、熱交換器を介して調整された空気をパネル表面に送風することにより結露を防止しようとするもの(例えば、特許文献4〜5参照)等が提案されている。   Also, as means for preventing or reducing the occurrence of dew condensation other than increasing the radiation area, for example, one that tries to prevent dew condensation by devising the material configuration and coating of the surface that is particularly difficult when dew condensation occurs (for example, Patent documents 1 to 3) and those which try to prevent condensation by blowing air adjusted through a heat exchanger to the panel surface (for example, see patent documents 4 to 5), etc. There is.

しかし、前者では、対策を施した表面では冷暖房の効率が著しく低下するし、対策を施していない他の表面では依然として結露が生じる。また、後者ではシステムが複雑になって設備コストとランニングコストが大きくなるし、実用上では送風ムラが生じやすく、放射パネル全面に対して均一に結露を抑制するのは困難である。そこで、放射パネルの表面と裏面とを貫通し、温湿度を調整した調和空気を吹き出すための吹き出し口を放射パネルの全面に設けるとする提案(例えば、特許文献6参照)もあるが、システム停止時に吹き出し口にホコリやゴミが詰まりやすく、かつ吹き出し口の清掃もしにくいため、システム稼働時には、送風が部分的に停止して結露が発生したりカビが発生するトラブルになりやすい問題点がある。   However, in the former, the efficiency of heating and cooling is significantly reduced on the surface subjected to the countermeasure, and condensation still occurs on the other surfaces not subjected to the countermeasure. Further, in the latter case, the system becomes complicated and the equipment cost and running cost increase, and in practice, it is easy to cause uneven air flow, and it is difficult to uniformly suppress condensation over the entire surface of the radiation panel. Therefore, there is also a proposal to provide a blowout for blowing out conditioned air whose temperature and humidity have been adjusted by penetrating the front and back of the radiation panel (see, for example, Patent Document 6). At the same time, since the blowout port is easily clogged with dust and dirt and it is difficult to clean the blowout port, air flow is partially stopped during system operation, causing problems such as dew condensation and mold generation.

特開2012−87975号公報JP 2012-87975 A 特開2008−209048号公報JP, 2008-209048, A 特開平10−8972号公報JP 10-8972 A 特開2013−139949号公報JP, 2013-139949, A 特開2008−14555号公報JP 2008-14555 A 特開2015−105787号公報Unexamined-Japanese-Patent No. 2015-105787

本発明は、放射面の清掃性が優れて、汚れによる性能劣化が生じにくく、かつ結露を抑制できる放射パネル及びそれを用いた放射冷暖房システムを提供することを課題とする。さらには、現場への搬入性や設置性が良好で大型にしやすい放射パネル及びそれを用いた放射冷暖房システムを提供することを課題とする。   An object of the present invention is to provide a radiation panel which is excellent in the cleanability of the radiation surface, hardly causes performance deterioration due to dirt, and can suppress condensation, and a radiation heating and cooling system using the same. Furthermore, it is an object of the present invention to provide a radiation panel which is easy to be large-sized because it has good portability to the site and ease of installation, and a radiation heating and cooling system using the same.

本発明は、外界と熱放射により熱交換しうる放射部材と、伝熱媒体が内部を流動して前記放射部材と熱交換可能な伝熱管とを備えた放射パネルであって、前記伝熱管は、前記内部の表面に前記伝熱媒体の流動方向に略平行に複数のヒダを備えた長尺の金属押出成形物であり、前記放射部材は、前記外界との界面が平滑な曲面又は平滑な平面である放射フィンと、少なくとも1本の前記伝熱管を熱伝導可能にかつ前記長尺方向に貫通して収納しうる収納部とを備えた長尺の金属押出成形物であり、前記伝熱管を前記放射部材の前記収納部に収納した単位パネルを複数備え、かつ前記複数の単位パネルに収納された前記伝熱管相互の接続が、カシメを用いた乾式接合である放射パネルである。   The present invention is a radiation panel comprising: a radiation member capable of exchanging heat with the outside by heat radiation; and a heat transfer tube capable of exchanging heat with the radiation member, the heat transfer medium flowing through the inside, the heat transfer tube comprising A long metal extrusion having a plurality of folds substantially parallel to the flow direction of the heat transfer medium on the inner surface, and the radiation member has a smooth curved surface or smooth interface with the external world. A long metal extrusion molded article comprising: a radiation fin which is a flat; and a storage portion which can heat and conduct at least one of the heat transfer tubes in the longitudinal direction and which can be stored. A plurality of unit panels stored in the storage portion of the radiation member, and the heat transfer tubes connected to each other stored in the plurality of unit panels are dry bonding using caulking.

ここで、前記伝熱管と前記収納部との熱伝導可能な接触が、重力か又は前記放射部材の金属弾性かによる機械的接触であることは好ましい。また、前記金属が、アルミニウム又はアルミニウム合金であることは好ましい。また、前記伝熱部の長尺方向に対する垂直断面の最薄部分の厚みが、前記カシメの圧力に耐えうる厚み以上であることは好ましい。また、前記厚みが、2mmを超えることは好ましい。また、前記伝熱管相互の接続が、カシメ接続可能な端部を備えた流路管を介するものであることは好ましい。また、上記の放射パネルのいずれかの前記伝熱管を、前記伝熱媒体が流動可能に熱源に接続した放射冷暖房システムとすることは好ましい。   Here, it is preferable that the heat transferable contact between the heat transfer tube and the storage part is mechanical contact due to gravity or metal elasticity of the radiation member. Moreover, it is preferable that the said metal is aluminum or aluminum alloy. Moreover, it is preferable that the thickness of the thinnest part of the perpendicular | vertical cross section with respect to the elongate direction of the said heat-transfer part is more than the thickness which can endure the pressure of the said crimping. Moreover, it is preferable that the said thickness exceeds 2 mm. Further, it is preferable that the heat transfer tubes are connected to each other via a flow passage pipe having an end portion that can be crimped and connected. Preferably, the heat transfer tube of any of the radiation panels described above is a radiant cooling and heating system in which the heat transfer medium is fluidly connected to a heat source.

また、発明の第2は、外界と熱放射により熱交換する放射部材と、伝熱媒体が内部を流動して前記放射部材と熱交換可能な伝熱管とを備えた放射パネルの製造方法であって、前記伝熱管は、前記内部の表面に前記伝熱媒体の流動方向に略平行に複数のヒダを備えて長尺に金属押出成形し、前記放射部材は、前記外界との界面が平滑な曲面又は平滑な平面である放射フィンと、少なくとも1本の前記伝熱管を熱伝導可能にかつ前記長尺方向に貫通して収納しうる収納部とを備えて長尺に金属押出成形し、前記伝熱管を前記放射部材の前記収納部に貫通して収納した単位パネルを複数用い、かつ前記複数の単位パネルに収納された前記伝熱管相互の接続を、カシメを用いた乾式接合により行う放射パネルの製造方法である。   A second aspect of the invention is a method of manufacturing a radiation panel including a radiation member which exchanges heat with the outside by heat radiation, and a heat transfer tube in which a heat transfer medium flows through the inside so that the radiation member can exchange heat with the radiation member. The heat transfer tube is provided with a plurality of fins on the inner surface substantially parallel to the flow direction of the heat transfer medium, and the metal member is extrusion-molded into a long length, and the radiation member has a smooth interface with the outside Metal extrusion molding in the form of a long strip comprising: a radiation fin which is a curved surface or a smooth flat surface; and a storage portion which can thermally transfer at least one of the heat transfer tubes and penetrate through in the longitudinal direction. A radiation panel using a plurality of unit panels in which a heat transfer tube is stored in the storage portion of the radiation member in a penetrating manner and connecting the heat transfer tubes stored in the plurality of unit panels by dry bonding using caulking Manufacturing method.

本発明の放射パネルは、製造が容易で大型にしやすく、大型にした場合の搬入性や取り扱い性が良いので建築物内に設置しやすい。大型にしやすいので単位面積あたりの熱負荷を小さくしやすく、運転時には結露が生じにくいマイルドな運転が可能になる。パネル表面の清掃性が良くてホコリやゴミがたまりにくく、結露が生じにくいことと合わせてカビの発生も大幅に抑制される。また、放射パネルの全体が機械的な接触や乾式接続だけで構成されているため、放射パネルの組み立てや設置にバーナー等の火気が必要なく、設置現場でパネルを組み立てることができるし、設置の際に伝熱管の長さ等を現場で調整することも容易である。また、伝熱管の接合の信頼性等を確保しつつ現場で短時間で組み立てることが可能であり、運転時には媒体の漏れ等によるトラブルが生じにくい。さらに、建築物内に大型の放射パネルを設置するにあたり、放射パネルの単位パネルの長さや設置間隔や数を任意に設計でき、室内の容積や床面積や壁面積や冷暖房負荷が異なる様々な空間に対し、放射面積を任意に設計できるうえ、設置位置の自由度も大きく、室内の形状やサイズに合わせて適宜設計することができる。この放射パネルを用いた冷暖房システムは、構成が比較的単純で、熱交換器、除湿器、外調機のような高価な設備類が必要ないため、低コストで設置と運用を行うことが可能になる。   The radiation panel of the present invention is easy to manufacture and large in size, and is easy to install in a building because it is easy to carry and handle in the case of large size. Since it is easy to make large, it is easy to reduce the heat load per unit area, and it becomes possible to perform a mild operation in which condensation does not easily occur during operation. The cleanability of the panel surface is good, dust and dirt are less likely to be accumulated, and the occurrence of mold is also greatly suppressed along with the fact that condensation is less likely to occur. In addition, since the whole of the radiation panel is configured only by mechanical contact or dry connection, there is no need for a flame such as a burner for assembling or installing the radiation panel, and the panel can be assembled at the installation site. It is also easy to adjust the length and the like of the heat transfer tube on site. In addition, it is possible to assemble in a short time while securing reliability of joining of heat transfer tubes, and troubles due to medium leakage and the like are less likely to occur during operation. Furthermore, when installing a large radiation panel in a building, the length, installation interval, and number of unit panels of the radiation panel can be designed arbitrarily, and various spaces with different indoor volumes, floor areas, wall areas, and heating and cooling loads. On the other hand, the radiation area can be designed arbitrarily, the degree of freedom of the installation position is also large, and it can be designed appropriately according to the shape and size of the room. The heating and cooling system using this radiation panel is relatively simple in construction and does not require expensive equipment such as heat exchangers, dehumidifiers and external air conditioners, so installation and operation can be performed at low cost. become.

図1は、伝熱管10の例の斜視図である。FIG. 1 is a perspective view of an example of a heat transfer tube 10. 図2は、伝熱管10のA−A'断面図である。FIG. 2 is a cross-sectional view of the heat transfer tube 10 taken along line AA ′. 図3は、放射部材20の例の斜視図である。FIG. 3 is a perspective view of an example of the radiation member 20. 図4は、放射部材20の収納部21に伝熱管10が収納された状態を示した斜視図である。FIG. 4 is a perspective view showing the heat transfer tube 10 stored in the storage portion 21 of the radiation member 20. As shown in FIG. 図5は、放射部材の他の例である放射部材30に伝熱管10が収納された状態を示した斜視図である。FIG. 5 is a perspective view showing the heat transfer tube 10 housed in a radiation member 30 which is another example of the radiation member. 図6は、放射部材のさらに他の例である放射部材40に伝熱管10が収納された状態を示した斜視図である。FIG. 6 is a perspective view showing the heat transfer tube 10 housed in a radiation member 40 which is another example of the radiation member. 図7は、放射パネル組み立て前の各部材の取り付け位置の関係を模式的に示した図である。FIG. 7 is a view schematically showing the relationship of the attachment position of each member before the radiation panel is assembled. 図8は、放射パネルの組み立て後の例を模式的に示した図である。FIG. 8 is a view schematically showing an example after assembly of the radiation panel.

本発明について、以下、図面も用いて具体的に説明する。本発明の放射パネルは、外界と熱放射により熱交換しうる放射部材と、伝熱媒体が内部を流動して放射部材と熱交換可能な伝熱管とを備える。   The present invention will be specifically described below with reference to the drawings. The radiation panel of the present invention comprises a radiation member capable of exchanging heat with the outside by heat radiation, and a heat transfer tube capable of heat exchange between the radiation member and the heat transfer medium flowing therethrough.

外界とは、放射パネルの周辺環境を言い、放射冷暖房システムによる冷暖房の対象となる範囲を言う。特に望ましい外界は建築物の室内環境である。建築物内に設置する放射パネルに適しているからである。建築物とは、戸建て住宅、マンション、事務所、病院、ホテル、工場等のいずれでも良い。特に、内部空間の大きさが限定されていてクレーン等が使用しにくい建築物であって、建築物の使用時に内部で冷暖房を必要とする建築物であることは望ましい。また、建築物は新築であっても既築であってもよい。特に、既築の建築物にあとから放射冷暖房システムを設置する場合に適しているが、新築の建築物であっても、建築工程上はドア等が取り付けられてから冷暖房システムを設置する場合が大半なので、既築の建築物と同様に適している。   The outside world refers to the surrounding environment of the radiation panel, and the range covered by heating and cooling by the radiation heating and cooling system. The particularly desirable outside world is the indoor environment of a building. It is because it is suitable for the radiation panel installed in a building. The building may be a detached house, an apartment, an office, a hospital, a hotel, a factory, or the like. In particular, it is desirable that the size of the internal space is limited and it is a building that is difficult for cranes and the like to use, and that a building that requires heating and cooling inside when it is used is desirable. Also, the building may be new or existing. In particular, although it is suitable when installing a radiant heating and cooling system in an existing building later, even in the case of a new building, there is a case where the heating and heating system is installed after a door etc. is attached in the building process. As it is mostly, it is as good as the existing buildings.

放射パネルは、熱源との間で伝熱媒体を循環せしめるための長尺の伝熱管を備える。伝熱管は、内部に伝熱媒体が流動しうる中空流路を長尺方向に沿って有しており、伝熱媒体との間で熱交換を行い、さらに伝熱管が接している放射部材と熱交換を行う機能を有する。すなわち、伝熱管の長尺方向は伝熱媒体の流動方向と一致する。   The radiation panel comprises a long heat transfer tube for circulating the heat transfer medium to and from the heat source. The heat transfer tube has a hollow flow passage along which the heat transfer medium can flow inside along the long direction, performs heat exchange with the heat transfer medium, and further the radiation member with which the heat transfer tube is in contact It has the function of heat exchange. That is, the longitudinal direction of the heat transfer tube coincides with the flow direction of the heat transfer medium.

熱交換性を高く確保するためと後述するカシメ圧に耐えるため、伝熱管は熱伝導性に優れた金属製である。金属としては、熱伝導性が良く成形性が良いものであってかつできるだけ軽量で低コストのものが好ましく、銅製またはアルミニウム製またはアルミニウム合金製が好ましく、特にアルミニウム製又はアルミニウム合金製であることが好ましい。   The heat transfer tube is made of metal having excellent thermal conductivity in order to ensure high heat exchangeability and to withstand the crimping pressure described later. As the metal, a metal having good thermal conductivity, good formability and light weight and low cost as much as possible is preferable, copper, aluminum or aluminum alloy is preferable, and in particular, aluminum or aluminum alloy preferable.

伝熱管内部の中空流路の表面には、伝熱媒体の流動方向に略平行方向に沿って複数のヒダが設けられている。伝熱媒体と伝熱管との間の熱交換効率を高めつつ、カシメ圧に耐えるためである。略平行方向とは、ヒダの山の方向が流動方向に一致して平行に設けられていても良いし、銃身の内部に切られた螺旋ミゾのように、螺旋状に少しずつ回転していても良い意味である。前者では、伝熱管の作製が容易で伝熱媒体の流動抵抗が小さいメリットがあり、後者では、流動に伴い伝熱媒体に若干の撹拌が生じるため、熱伝導効率が向上するメリットがある。いずれにするかは、コストと求める性能との対比で適宜決定すればよい。   A plurality of fins are provided on the surface of the hollow flow passage inside the heat transfer tube, along a direction substantially parallel to the flow direction of the heat transfer medium. This is to withstand the crimping pressure while improving the heat exchange efficiency between the heat transfer medium and the heat transfer tube. With the substantially parallel direction, the direction of the mountain of the fold may be provided in parallel with the flow direction, or may be gradually rotated in a spiral like a spiral groove cut inside the barrel. Is also good meaning. The former has an advantage that the heat transfer tube can be easily manufactured and the flow resistance of the heat transfer medium is small, and the latter has an advantage that the heat conduction efficiency is improved since the heat transfer medium is slightly agitated as it flows. Which method to use may be determined as appropriate based on the cost and the required performance.

ヒダの数に関しても、多ければ表面積が増えて熱交換効率が向上するが、少ない方が作製が容易で伝熱媒体の流動抵抗が小さくなり低コストである。ヒダの数や大きさは、これらを勘案しながら適宜決定すればよいが、後述するカシメ圧に対する抵抗となる観点からは、例えば、住宅等の典型的な部屋の冷暖房の場合には、ヒダの数は少なくとも3枚であることが好ましく、さらに好ましくは6枚以上10枚以下である。ヒダの大きさ(高さと厚み)に関しても同様である。   With regard to the number of folds, the surface area increases and the heat exchange efficiency improves as the number is larger, but the smaller the number, the easier the preparation and the smaller the flow resistance of the heat transfer medium, and the lower the cost. The number and size of the folds may be appropriately determined in consideration of these, but from the viewpoint of resistance against the caulking pressure described later, for example, in the case of heating and cooling of a typical room such as a house, the folds The number is preferably at least three, and more preferably six or more and ten or less. The same applies to the size (height and thickness) of the folds.

伝熱管の長尺方向断面におけるヒダの配置は、伝熱管の中心軸に対して点対称となるように配置するのが好ましい。このように配置することでカシメ圧に対する抵抗力が増し、伝熱媒体の温度変化に耐えて漏れのない信頼性の高い接続を得ることが可能になる。   The arrangement of the folds in the longitudinal direction cross section of the heat transfer tube is preferably arranged so as to be point-symmetrical with respect to the central axis of the heat transfer tube. This arrangement increases the resistance to the crimping pressure, and makes it possible to withstand a temperature change of the heat transfer medium and to obtain a reliable connection with no leak.

伝熱管の長尺方向に垂直断面の外形は特に限定されないが、カシメによる接続を行うにあたり、カシメ圧が均一にかかって伝熱媒体の漏れが生じない信頼性の高い接続を低コストで実現するためには、外形が円形であることが望ましい。外形が円形である場合の外径は、冷暖房に必要な熱容量やポンプ動力から適宜設計すればよいが、例えば、住宅等の典型的な部屋の冷暖房の場合には、15mm以上30mm以下とするのが好ましく、20mm以上25mm以下とするのがより好ましく、21mm以上23mm以下とすることがもっとも好ましい。   The outer shape of the cross section perpendicular to the longitudinal direction of the heat transfer tube is not particularly limited, but when connecting by caulking, a highly reliable connection that does not cause leakage of the heat transfer medium due to uniform caulking pressure is realized at low cost For this reason, it is desirable that the outer shape is circular. The outer diameter in the case where the outer shape is circular may be appropriately designed from the heat capacity and the pump power necessary for air conditioning and heating, but for example, in the case of air conditioning of a typical room such as a house, it is 15 mm or more and 30 mm or less Is more preferably 20 mm or more and 25 mm or less, and most preferably 21 mm or more and 23 mm or less.

同様に、伝熱管の最薄部分の厚みは、放射パネル全体の重量を軽くしつつコストを抑える観点からできるだけ薄い方が好ましいが、一方で、カシメ圧に耐えて断面形状が変形しない厚み以上であることが好ましい。変形が生じるとカシメ圧が均一にならず、伝熱媒体の温度変化に伴う媒体の漏れが生じやすくなるからである。例えば、断面が円形で外径が21-23mmの室内冷暖房用の伝熱管の最薄部分の厚みは、2mmを超えることが好ましく、より好ましくは2.5mm以上であり、さらに2.8mm以上とすることが好ましい。厚みの上限は、伝熱媒体の流動を確保しつつ伝熱管の重量をできるだけ軽くする観点から適宜定めればよい。   Similarly, the thickness of the thinnest portion of the heat transfer tube is preferably as thin as possible from the viewpoint of reducing the weight of the entire radiation panel and suppressing the cost, but on the other hand Is preferred. If deformation occurs, the crimping pressure will not be uniform, and the medium will easily leak due to the temperature change of the heat transfer medium. For example, the thickness of the thinnest portion of a heat transfer tube for indoor heating and cooling having a circular cross section and an outer diameter of 21-23 mm is preferably more than 2 mm, more preferably 2.5 mm or more, and further preferably 2.8 mm or more It is preferable to do. The upper limit of the thickness may be appropriately determined from the viewpoint of reducing the weight of the heat transfer tube while securing the flow of the heat transfer medium.

伝熱管は、金型を用いた押出成形法により製造する押出成形物である。押出成型法は、低コストで様々な断面形状を有する長尺物の作製に適した方法であり、押出成形法としては通常の方法を用いれば良く特に限定されない。   The heat transfer tube is an extruded product produced by an extrusion method using a mold. The extrusion molding method is a method suitable for producing a long product having various cross-sectional shapes at low cost, and the extrusion molding method is not particularly limited as long as a usual method is used.

伝熱管の端部は、図1に記載のように切断したままの形状でよく、他の管と接続するために特殊な形状に加工する必要はない。これにより、放射パネルを設置現場で設置するに当たり、設計寸法より長めの伝熱管をあらかじめ用意することで、設置現場の各種サイズや形状の変動に合わせて伝熱管の長さを容易に調整することが可能になる。なお、伝熱管を切断した場合は、伝熱管の腐食等を防止するため、切断面に絶縁スプレーの吹きつけや塗布法等を用いて絶縁加工することが望ましい。   The end of the heat transfer tube may be in the as-cut shape as described in FIG. 1 and does not need to be processed into a special shape for connection with other tubes. Thus, when the radiation panel is installed at the installation site, the length of the heat transfer tube can be easily adjusted according to the variation of various sizes and shapes of the installation site by preparing in advance a heat transfer pipe longer than the designed size. Becomes possible. When the heat transfer tube is cut, it is desirable to insulate the cut surface using an insulating spray or a coating method to prevent corrosion of the heat transfer tube.

ここで、図1と図2を用いて伝熱管についてより具体的に説明する。図1は、伝熱管の一例を示した斜視図である。伝熱管10は、図面に向かって上下方向に長い長尺物であり、図ではわかりやすくするため上下方向の長さを比較的短くして模式的に描いている。伝熱管10の内部には、長尺方向に沿って伝熱媒体流路11が貫通して設けられている。この伝熱管10のA−A'断面を図2に示す。伝熱管10では、8枚のヒダが流路内面に突き出すように設けられて、内表面の面積を増加させている。これにより伝熱媒体と伝熱管との間の伝熱管単位長さあたり熱交換効率が向上するとともに、カシメ圧に耐えることが可能になる。   Here, the heat transfer tube will be more specifically described using FIGS. 1 and 2. FIG. 1 is a perspective view showing an example of a heat transfer tube. The heat transfer tube 10 is a long object which is long in the vertical direction toward the drawing, and in order to make it easy to understand in the drawing, the length in the vertical direction is relatively shortened and schematically drawn. Inside the heat transfer tube 10, a heat transfer medium flow passage 11 is provided to penetrate along the longitudinal direction. The AA 'cross section of this heat transfer tube 10 is shown in FIG. In the heat transfer tube 10, eight fins are provided so as to protrude on the inner surface of the flow passage to increase the area of the inner surface. As a result, the heat exchange efficiency per heat transfer pipe unit length between the heat transfer medium and the heat transfer pipe is improved, and it is possible to withstand the caulking pressure.

伝熱管10のA−A'断面における最薄部厚みは、図の最薄部厚み13として示されている。この厚みが足りないとカシメ圧に耐えられずに変形を生じやすくなり、漏れが生じやすくなって接続の信頼性が損なわれる可能性がでてくる。   The thinnest part thickness in the AA ′ cross section of the heat transfer tube 10 is shown as the thinnest part thickness 13 in the figure. If the thickness is insufficient, the pressure can not be resisted by the caulking pressure and deformation is likely to occur, so that leakage may easily occur and the reliability of the connection may be impaired.

次に、放射パネルは、前記の伝熱管に加えて、長尺の放射部材を備えており、放射部材は、外界と熱放射により熱交換する放射フィンと、伝熱管を長尺方向に収納して伝熱管と熱交換する収納部とを備える。   Next, the radiation panel is provided with a long radiation member in addition to the above-mentioned heat transfer tube, and the radiation member houses a radiation fin which exchanges heat with the outside by heat radiation, and the heat transfer tube in the long direction And a heat-transfer pipe and a storage unit for heat exchange.

放射フィンは、外界との界面である放射面が、平滑な曲面又は平滑な平面である。ここにいう平滑とは、細かい凹凸が無いこと又は細かい凹凸が有っても凹凸に角となる部分や深い凹部がなく、ゴミやホコリが引っかかり難いなだらかな平面又は曲面であることを意味する。このような放射フィンにより、ホコリやゴミが放射面に付きにくく、かつ清掃性が良い。放射面を平滑にすることにより、単位縦横長さの放射面あたりの放射面積を大きくできないため、結露を生じにくくするには放射パネルのサイズを大きくする必要が生じるものの、結露が生じにくく、カビも発生しにくくなる大きなメリットがある。   In the radiation fin, a radiation surface which is an interface with the external world is a smooth curved surface or a smooth plane. The term "smooth" as used herein means a smooth flat surface or a curved surface in which there are no fine concave or convex portions, and even if there are fine concave or convex portions, there are no corners or deep concaves that make dust and dirt difficult to catch. Such radiation fins make it difficult for dust and dirt to come in contact with the radiation surface, and have good cleaning performance. By smoothing the radiation surface, the radiation area per unit vertical and horizontal length radiation surface can not be increased. Therefore, although it is necessary to increase the size of the radiation panel to make condensation difficult to occur, condensation does not easily occur. There is also a big merit that becomes difficult to occur.

放射フィンの長尺方向の長さは、放射パネルとして必要な面積から適宜定めればよいが、例えば、室内の壁面に放射パネルを設置する場合は、天井から床面に達する長さが上限となるため、必要な放射面積を確保するためには複数の放射部材を組み合わせて用いる。天井面や床面に設置する場合も同様である。   The length in the longitudinal direction of the radiation fin may be appropriately determined from the area required for the radiation panel, but, for example, when the radiation panel is installed on the indoor wall surface, the length from the ceiling to the floor surface is the upper limit Therefore, in order to secure the required radiation area, a plurality of radiation members are used in combination. The same applies to installation on ceilings and floors.

収納部は、伝熱管を長尺方向に収納すると共に、伝熱管と熱交換し、さらに放射フィンに伝熱する機能を有する。収納部は、一つの放射部材に対して少なくとも一本の伝熱管が収納されていればよいから、少なくとも一つあれば良いが、一つの放射部材に複数の収納部を設けて、複数の伝熱管を収納できるようにしても良い。   The storage section has a function of storing the heat transfer tube in the long direction, exchanging heat with the heat transfer tube, and further transferring the heat to the radiation fin. As for the storage part, at least one heat transfer tube may be stored in one radiation member, so it is sufficient if there is at least one storage part, but a plurality of storage parts are provided in one radiation member, The heat pipe may be accommodated.

収納部の長尺方向の長さは、収納される伝熱管より短くする。収納部の長尺方向の長さは、伝熱管が収納部を長尺方向に貫通して、収納部の両端部から伝熱管の両端部が出る長さとし、収納部の両端部から出た伝熱管の両端部には後述のカシメ接続管を接続する。   The length in the longitudinal direction of the storage portion is made shorter than the heat transfer tube to be stored. The length of the storage section in the longitudinal direction is a length such that the heat transfer pipe penetrates the storage section in the longitudinal direction, and the both ends of the heat transfer pipe come out from both ends of the storage section. The below-mentioned crimp connection pipe is connected to the both ends of a heat pipe.

熱交換性を高く確保するため、放射部材は熱伝導性に優れた金属製である。金属としては、熱伝導性が良く成形性が良いものであってかつできるだけ軽量で低コストのものが好ましく、銅製またはアルミニウム製またはアルミニウム合金製が好ましく、特にアルミニウム製又はアルミニウム合金製であることが好ましい。放射部材と伝熱管は、異種金属による電位差を生じない組み合わせであればよく、同じ金属材料によって構成されることが望ましい。   In order to ensure high heat exchange, the radiating member is made of metal having excellent thermal conductivity. As the metal, a metal having good thermal conductivity, good formability and light weight and low cost as much as possible is preferable, copper, aluminum or aluminum alloy is preferable, and in particular, aluminum or aluminum alloy preferable. The radiation member and the heat transfer tube may be a combination that does not cause a potential difference due to dissimilar metals, and it is desirable that they be composed of the same metal material.

放射部材は、伝熱管と同様に、金型を用いた押出成形法により製造する押出成形物である。これにより、放射フィンと収納部が一体に成形される。押出成形法としては通常の方法を用いれば良く、特に限定されない。   The radiation member, like the heat transfer tube, is an extrusion-molded product produced by an extrusion molding method using a mold. Thus, the radiation fin and the housing portion are integrally formed. The extrusion molding method may be a conventional method and is not particularly limited.

ここで、図3を用いて放射部材の例を具体的に説明する。図3は、放射部材の一例を示した斜視図である。放射部材20は、図面に向かって上下方向に長い長尺物であり、図ではわかりやすくするため長尺方向の長さを短くして模式的に描いている。放射部材20は、4枚の放射フィン22と二つの収納部21から構成されており、断面がほぼクサビ形の変形管である。二つの収納部21は、互いに対向して一つの伝熱管収納空間を構成している。放射部材の断面形状は、必要に応じて様々な変形が可能であり、後述の図4、図5でも他の例を説明する。   Here, an example of the radiation member will be specifically described with reference to FIG. FIG. 3 is a perspective view showing an example of the radiation member. The radiation member 20 is a long object which is long in the vertical direction in the drawing, and in order to make it easy to understand in the drawing, the length in the longitudinal direction is shortened and schematically drawn. The radiation member 20 is composed of four radiation fins 22 and two storage portions 21 and is a deformed tube having a substantially wedge-shaped cross section. The two storage portions 21 face each other to constitute one heat transfer tube storage space. The cross-sectional shape of the radiation member can be variously modified as needed, and other examples will be described with reference to FIGS. 4 and 5 described later.

次に、単位パネルについて説明する。単位パネルは、一つの放射部材の収納部に少なくとも1本の伝熱管を長尺方向に挿入、収納して構成される。放射部材への伝熱管の収納は、収納部に対して伝熱管を重力又は放射部材の金属弾性による機械的な接触により実質的に固定する。ここで、機械的な接触により実質的に固定するとは、ろう付け等の接着やボルト止めのような固定手段を用いる必要がないことを意味する。例えば、収納部の伝熱管収納空間が、伝熱管のサイズより大きい場合は、収納部に単純に伝熱管を挿入し、重力に従って静置すればよい。このような収納形式は、放射パネルが天井又は床面を構成する場合に適しており、放射パネルの設置作業が簡単になる。収納部の伝熱管収納空間が、伝熱管のサイズとほぼ同じ場合は、そのまま伝熱管を収納空間に押し込んで、収納部の金属弾性により固定すればよい。伝熱管収納空間が、伝熱管のサイズよりやや小さい場合であっても、収納部をやや押し広げるようにして伝熱管を押し込み、やはり収納部の金属弾性により伝熱管を固定すればよい。このような収納形式は、放射パネルが天井、床面、壁面のいずれであっても適するが、特に壁面に用いることが適している。   Next, the unit panel will be described. The unit panel is configured by inserting and storing at least one heat transfer tube in the longitudinal direction in the storage portion of one radiation member. Storage of the heat transfer tube in the radiation member substantially fixes the heat transfer tube to the storage portion by gravity or mechanical contact by metal elasticity of the radiation member. Here, substantially fixing by mechanical contact means that it is not necessary to use fixing means such as adhesion such as brazing and bolting. For example, when the heat transfer pipe storage space of the storage part is larger than the size of the heat transfer pipe, the heat transfer pipe may be simply inserted into the storage part and left to stand according to gravity. Such a storage type is suitable when the radiation panel constitutes a ceiling or a floor surface, and the installation work of the radiation panel is simplified. When the heat transfer pipe storage space of the storage part is substantially the same as the size of the heat transfer pipe, the heat transfer pipe may be directly pushed into the storage space and fixed by the metal elasticity of the storage part. Even if the heat transfer tube storage space is slightly smaller than the size of the heat transfer tube, the heat transfer tube may be pushed in so as to slightly expand the storage portion, and the heat transfer tube may be fixed also by the metal elasticity of the storage portion. Such a storage type is suitable whether the radiation panel is a ceiling, a floor or a wall, but it is particularly suitable to be used for a wall.

いずれの場合も、伝熱管と放射部材との熱伝導可能な接続が、従来のろう付け等のごとき固定形式と比較して著しく簡単であり、組み立て作業や設置作業が大幅に簡単になる。しかも、これらのような形式で、意外にも伝熱管と放射部材との間で必要十分な熱伝導が生じることが判明した。   In any case, the heat conductive connection between the heat transfer tube and the radiation member is extremely simple as compared with the fixed type such as the conventional brazing, and the assembly operation and the installation operation are greatly simplified. In addition, it has been unexpectedly found that the required and sufficient heat conduction occurs between the heat transfer tube and the radiation member in such a manner.

単位パネルのサイズや形状は、設置する空間の天井高さや広さ、室内の意匠等に合わせて適宜選択すればよい。   The size and shape of the unit panel may be appropriately selected in accordance with the ceiling height and width of the space to be installed, the design of the room, and the like.

このような単位パネルの例を図4〜6を用いて説明する。図4は、図3の放射部材20の収納部21に伝熱管10を収納した単位パネル1を示した斜視図である。なお、伝熱管10及び放射部材20は、図面に向かって上下方向に長い長尺物であり、図4ではわかりやすくするため単位パネル1の上端部分だけを模式的に描いている。以下の図5〜6についても同様である。単位パネル1は、二つの収納部21に挟まれて伝熱管10よりやや小さめの伝熱管収納空間に、伝熱管10が押し込まれて収納され、放射部材20の金属弾性により実質的に固定されている例である。図4の単位パネル例は、天井ルーバーのように天井面へ設置したり、平面である壁面に設置したり、オブジェやパーテションのように壁から分離して設置したりする場合に適した例である。   An example of such a unit panel will be described with reference to FIGS. FIG. 4 is a perspective view showing the unit panel 1 in which the heat transfer tube 10 is stored in the storage portion 21 of the radiation member 20 of FIG. The heat transfer tube 10 and the radiation member 20 are long members extending in the vertical direction in the drawing, and only the upper end portion of the unit panel 1 is schematically depicted in FIG. The same applies to FIGS. 5 to 6 below. The heat transfer pipe 10 is pushed in and stored in the heat transfer pipe storage space slightly smaller than the heat transfer pipe 10 by being sandwiched between the two storage parts 21, and the unit panel 1 is substantially fixed by the metal elasticity of the radiation member 20 Example. The example of the unit panel shown in FIG. 4 is an example suitable for installing on a ceiling like a ceiling louver, installing on a flat wall, or installing separately from a wall like an object or partition. is there.

図5は、円筒形の収納部32を中心に、断面1/4円の4枚の放射フィン31が、断面が⊃○⊂型になるように付加された形状を有する放射部材30と、収納部32に収納された伝熱管10とからなる単位パネル2の上端部を示した斜視図である。単位パネル2は、収納部32の内径が伝熱管10の外径とほぼ同じであり、放射部材の金属弾性により伝熱管が実質的に固定されている例である。図5の単位パネル例は、平面である壁面に設置したり、オブジェやパーテションのように壁から分離して設置したりする場合に適した例である。   FIG. 5 shows a radiation member 30 having a shape in which four radiation fins 31 having a cross section of 1⁄4 circle are added centering on a cylindrical storage portion 32 so that the cross section becomes a ⊃ × ⊂ shape; FIG. 6 is a perspective view showing an upper end portion of a unit panel 2 formed of a heat transfer tube 10 stored in a portion 32. The unit panel 2 is an example in which the inner diameter of the housing portion 32 is substantially the same as the outer diameter of the heat transfer tube 10, and the heat transfer tube is substantially fixed by the metal elasticity of the radiation member. The unit panel example shown in FIG. 5 is an example suitable for installation on a flat wall surface or installation separately from a wall like an object or partition.

図6は、円筒形の収納部42を中心に、平面型の放射フィン41と支持脚43とが対向して付加された放射部材40の上端部を示した斜視図である。単位パネル3は、収納部42の内径が伝熱管10の外径とほぼ同じであり、放射部材の金属弾性により伝熱管が実質的に固定されている例である。放射部材40は、天井、床面、壁面等の平面を構成する用途で用いるのに適した形態である。   FIG. 6 is a perspective view showing the upper end portion of the radiation member 40 to which the flat radiation fin 41 and the support leg 43 are added facing each other with the cylindrical storage portion 42 at the center. The unit panel 3 is an example in which the inner diameter of the housing portion 42 is substantially the same as the outer diameter of the heat transfer tube 10, and the heat transfer tube is substantially fixed by the metal elasticity of the radiation member. The radiation member 40 is a form suitable for use in applications that constitute a flat surface such as a ceiling, a floor surface, and a wall surface.

図4〜6に例示されたごとき単位パネルを複数組み合わせて、放射パネルを構成する。単位パネルを複数組み合わせることにより、結露を生じにくい放射パネルに必要とされる放射面積を確保することができる。単位パネルの組み合わせは、同種類の単位パネルだけを組み合わせても良いし、放射パネルを設置する場所の形状や意匠に合わせて、異なる種類の単位パネルを組み合わせても良い。複数の単位パネルのサイズや配置に関しても同様であり、設置場所の状況に合わせて、サイズを自由に設計できるし、配置も設置場所の形状やサイズに合わせて自由に設計できる。その際、単位パネルを並列に並べても良いし、直列に並べても良い。単位パネルを用いて天井面や床面や壁面を構成する場合は、並列に配置して平面を構成するのが良い。   A plurality of unit panels as illustrated in FIGS. 4 to 6 are combined to constitute a radiation panel. By combining a plurality of unit panels, it is possible to secure the radiation area required for the radiation panel which is less likely to cause condensation. The combination of unit panels may be a combination of unit panels of the same type alone, or may be a combination of unit panels of different types according to the shape and design of the place where the radiation panel is installed. The same applies to the size and arrangement of a plurality of unit panels, and the size can be freely designed according to the situation of the installation place, and the arrangement can be freely designed according to the shape and size of the installation place. At that time, the unit panels may be arranged in parallel or in series. When using a unit panel to form a ceiling surface, a floor surface, or a wall surface, it is preferable to arrange in parallel to form a flat surface.

放射パネルを完成するには、設置場所に配置された複数の単位パネルの各放射部材の両端部から出た伝熱管の両端部を、カシメを用いた乾式接続により後述の流路管やカシメ接続管を介して相互に接続すればよい。ここにいうカシメを用いた乾式接続とは、接続対象である伝熱管もしくは伝熱管の接続部品の一部の塑性変形による接続を言い、例えば、接続部品として管端部の全周に渡ると共に内径が管の外径よりやや大きい金属環に、管の端部を挿入し金属環を専用の油圧工具で圧縮し塑性変形させて管表面に圧着した接続や、同様な形状の金属環の内側表面に、管の挿入方向の抵抗は小さいが逆方向の抵抗が大きくなるエッジ(釣り針でいう返しに相当する。)を全周に設けたものに、管の端部を押し込むことで生じるカシメ圧で管の表面をわずかに塑性変形させた接続等があげられる。このような金属環を両端に備えた後述のカシメ接続管等を用いるなどして二本の管を機械的に接続する。なお、前者はプレス式と呼ばれコストが低いものの、いったん接続すると接続を解除するには管を切断する必要がある一方、後者はワンタッチ式と呼ばれ、専用工具を用いることにより、管を切断することなく接続を解除できる場合があり、パネルの修理や配置換えが容易である。前者の金属環を用いた接続管の例としては、商品名モルコジョイント(商標)(株式会社ベンカン製)があげられ、後者の金属環を用いた接続管の例としては、商品名EGジョイント(商標)(株式会社ベンカン製)があげられる。   In order to complete the radiation panel, both ends of the heat transfer tube which came out from the both ends of each radiation member of a plurality of unit panels arranged in the installation place are connected by flow connection using a dry connection using caulking. It may be connected to each other via a tube. The dry connection using caulking as used herein refers to connection by plastic deformation of a part of a heat transfer pipe or a connection part of a heat transfer pipe to be connected, and, for example, the connection part covers the entire circumference of a pipe end and has an inner diameter Insert the end of the pipe into a metal ring slightly larger than the outer diameter of the pipe, compress the metal ring with a dedicated hydraulic tool and plastically deform the metal ring and crimp it to the pipe surface, or the inner surface of a similarly shaped metal ring The resistance in the insertion direction of the pipe is small, but the resistance in the reverse direction is large (equivalent to the hook in the hook) provided on the entire circumference by caulking pressure generated by pushing the end of the pipe The connection etc. which made the surface of the pipe plastically deformed slightly are raised. The two pipes are mechanically connected, for example, by using a caulking connection pipe or the like described later provided with such metal rings at both ends. Although the former is called a press type and the cost is low, it is necessary to cut the pipe to release the connection once it is connected, while the latter is called a one-touch type, and the pipe is cut by using a dedicated tool It may be possible to release the connection without doing so, and it is easy to repair or change the panel. As an example of the connecting pipe using the former metal ring, trade name Morco Joint (trademark) (manufactured by Bencan Co., Ltd.) is exemplified, and as an example of the connecting pipe using the latter metal ring, trade name EG joint ( Trademark (made by Bencan Co., Ltd.) is mentioned.

伝熱管を乾式接続することで従来のろう付けのような湿式接続のためのバーナー等の火気が不要になり、放射パネルの設置現場での組み立て作業や管の接続作業が容易になる。さらに、各種の乾式接続の中でも特にカシメ接続による管の接続は、接続のために伝熱管の端部を特殊形状にする必要がなく、設置現場での伝熱管の長さ調整を行うことが可能であるうえ、比較的低コストで単純な接続方法でありながら、伝熱媒体の温度変化に伴う膨潤・収縮に耐えて、媒体の漏れが生じにくく高い信頼性を得られることが判明した。カシメによる乾式接続は、接続の全部をカシメで行うのが望ましいが、接続部分の過半数の主要部分についてカシメを用いて行い、残余の特殊形状の端部や外部の熱源と接続する端部等を、ネジ、フランジ等の他の乾式接続によって行っても良い。   The dry connection of the heat transfer tube eliminates the need for a burner such as a conventional wet connection for the wet connection, and facilitates the assembly work and the tube connection work at the installation site of the radiation panel. Furthermore, among the various types of dry connection, particularly when connecting pipes by caulking, it is not necessary to make the end of the heat transfer pipe a special shape for connection, and it is possible to adjust the length of the heat transfer pipe at the installation site In addition, it has been found that it is possible to resist the swelling / shrinkage due to the temperature change of the heat transfer medium, and to obtain high reliability with less leakage of the medium, while using a relatively low cost and simple connection method. The dry connection by caulking is preferably performed by caulking the whole connection, but caulking is performed for the major part of the majority of the connection portion, and the remaining special shaped end, the end connected to an external heat source, etc. Other dry connections such as screws, flanges, etc. may be used.

ここで流路管とは、U字管やL字管やT字管やクシ形分岐管のごとき流路の向きを変更又は分岐するための様々な形状を有し、内部を伝熱流体が流動可能で、2つ以上の伝熱流体の出入り口を有する比較的短い管である。なお、単位パネルの配置の都合上、流路管を用いずに、伝熱管どうしを後述のカシメ接続管だけで接続することも可能である。   Here, the channel tube has various shapes for changing or branching the direction of the channel, such as a U-shaped tube, an L-shaped tube, a T-shaped tube or a comb-shaped branch tube, and the heat transfer fluid It is a relatively short tube that is flowable and has two or more heat transfer fluid ports. In addition, it is also possible to connect heat-exchanger tubes only by the below-mentioned caulking connection pipe | tube, without using a flow-path pipe | tube for convenience of arrangement | positioning of a unit panel.

カシメを用いた管の接続は、カシメ接続管を用いて行うのが簡単である。カシメ接続管は、例えば、両端がメス型になった金属製の短管であり、メス型の両端部がカシメにより接続可能な金属環になっており、カシメ処理により、内部に媒体の流路を確保しつつ管を乾式接続しうる短管の金属部材である。伝熱管の端部をカシメ接続管の一端に挿入し、さらに、カシメ接続管を介して適切な流路管を他端に挿入し、カシメ処理を行って伝熱媒体が漏れないように伝熱媒体の流路を構成する。   The connection of the pipes by means of caulking is easy to carry out using caulking connection pipes. The caulking connection pipe is, for example, a metal short pipe whose both ends are a female type, and both ends of the female type are metal rings connectable by caulking. It is a metal member of a short pipe which can dry-connect a pipe while securing. Insert the end of the heat transfer pipe into one end of the caulking connection pipe, and then insert the appropriate flow path pipe into the other end through the caulking connection pipe, and perform the caulking process so that the heat transfer medium does not leak Configure the flow path of the medium.

カシメ接続管を用いた場合のカシメ処理は、それらの全部を放射パネルの設置現場で行ってもよいが、流路管とカシメ接続管とをあらかじめ接続しておき、設置現場では、伝熱管とカシメ接続管の接続を行うようにしても良い。これにより、設置現場での伝熱管の長さ調整を可能にしつつ、設置現場でのカシメ処理作業の負荷を減少させることが可能になる。   In the case of using the caulking connection pipe, the whole of the caulking process may be performed at the installation site of the radiation panel, but the flow path pipe and the caulking connection pipe are connected in advance. The caulking connection pipe may be connected. This makes it possible to reduce the load of the crimping process at the installation site while allowing the length adjustment of the heat transfer pipe at the installation site.

また、カシメを用いた管の接続は、前記のカシメ接続管を用いないで行うことも可能である。そのためには、伝熱管と接続するための端部をあらかじめカシメ接続可能な金属環に構成した流路管を用いればよい。このような流路管は、工場で製造される際に、その端部にカシメにより接続可能なメス型端部となるように金属環をあらかじめ設ければよい。このような流路管を用いることで、流路管の製造コストは高くなるものの、流路管とカシメ接続管をカシメ接続する必要が無くなるし、設置現場では、伝熱管の長さ調整を可能にしつつ、伝熱管と流路管のカシメ処理による接続だけを行えばよく、設置現場での放射パネル組み立て作業の負荷が大幅に軽減するメリットがある。   Moreover, it is also possible to perform connection of the pipe using caulking without using the caulking connection pipe. For that purpose, it is sufficient to use a flow path pipe in which an end portion to be connected to the heat transfer pipe is formed in advance in a metal ring which can be crimped and connected. When such a flow path pipe is manufactured at a factory, a metal ring may be provided in advance so as to be a female end which can be connected by caulking to the end. By using such a flow path pipe, although the manufacturing cost of the flow path pipe is increased, the need for caulking and connecting the flow path pipe and the caulking connection pipe is eliminated, and the length of the heat transfer pipe can be adjusted at the installation site However, it is only necessary to connect the heat transfer pipe and the flow path pipe by caulking processing, which has the merit of significantly reducing the load of the radiation panel assembly work at the installation site.

伝熱媒体の流路は、カシメ接続管や各種の流路管を用いることで、伝熱媒体が各単位パネルの全部を直列に流れるように構成しても良いし、全部を並列に流れるように構成しても良いし、一部を直列に一部を並列に流れるように構成しても良く、適宜選択すればよい。   The heat transfer medium may be configured to flow all of the unit panels in series by using a caulking connection pipe or various flow pipes, so that the heat transfer medium flows in parallel. It may be configured to flow in series, and may be configured to flow partially in parallel and partially in parallel, and may be selected as appropriate.

放射パネルを構成する部材の取り付け位置の例を図7を用いて説明する。図7は、4つの単位パネル3を互いに並列に配置して放射パネルを構成する例を模式的に示した図である。放射部材40の両端部から出た伝熱管10の両端部に、各々カシメ接続管53を配置した。カシメ接続管53は両端がメス型になっている。さらにカシメ接続管53の反対側には、U字管51やL字管52で例示される流路管を配置した。これにより放射パネルが完成した場合、伝熱媒体が各単位パネルを直列に流れる流路が構成される。   The example of the attachment position of the member which comprises a radiation | emission panel is demonstrated using FIG. FIG. 7 is a view schematically showing an example in which four unit panels 3 are arranged in parallel to each other to constitute a radiation panel. The caulking connection pipes 53 are disposed at both ends of the heat transfer pipe 10 coming out of both ends of the radiation member 40. Both ends of the caulking connection pipe 53 are female. Furthermore, on the opposite side of the caulking connection pipe 53, a flow path pipe exemplified by the U-shaped pipe 51 and the L-shaped pipe 52 is disposed. Thus, when the radiation panel is completed, a flow path in which the heat transfer medium flows in series in each unit panel is formed.

図8には、図7のように配置された各部材を該当部分に挿入し、各接続部分でカシメ処理60を行って完成した放射パネル1の正面図を模式的に示した。放射パネル1のL字管52の未接続の両端部は、記載されていない熱源4に接続され、伝熱媒体の循環流路を形成する。   FIG. 8 schematically shows a front view of the radiation panel 1 completed by inserting the members arranged as shown in FIG. 7 into the corresponding portions and performing the crimping process 60 at each connection portion. The unconnected both ends of the L-shaped tube 52 of the radiation panel 1 are connected to the heat source 4 not described to form a circulation flow path of the heat transfer medium.

放射パネルは、ユニットにして建築物の壁や天井や床として用いることができるし、既存の壁等に埋め込むこともできるし、また、壁の前に設置することもできるし、天井に設置してルーバー型の放射パネルとして利用することも可能である。放射パネルは、未接続の流路端部を熱源に接続することで放射冷暖房システムが構成でき、伝熱媒体が伝熱管内部を循環流動して放射冷暖房を行うことができる。   The radiation panel can be used as a unit as a wall, ceiling or floor of a building, can be embedded in an existing wall, etc., can be installed in front of a wall, or can be installed in a ceiling It is also possible to use as a louver type radiation panel. The radiation panel can form a radiation cooling and heating system by connecting the unconnected flow path end to a heat source, and the heat transfer medium can circulate and flow inside the heat transfer tube to perform radiation cooling and heating.

建築物内の放射冷暖房に用いることができる。   It can be used for radiant heating and cooling within a building.

Claims (7)

外界と熱放射により熱交換しうる放射部材と、伝熱媒体が内部を流動して前記放射部材と熱交換可能な伝熱管とを備えた放射パネルであって、
前記伝熱管は、前記内部の表面に前記伝熱媒体の流動方向に略平行に複数のヒダを備えた長尺の金属押出成形物であり、
前記放射部材は、前記外界との界面が平滑な曲面又は平滑な平面である放射フィンと、少なくとも1本の前記伝熱管を熱伝導可能にかつ前記長尺方向に貫通して収納しうる収納部とを備えた長尺の金属押出成形物であり、
前記伝熱管を前記放射部材の前記収納部に収納した単位パネルを複数備え、
かつ前記複数の単位パネルに収納された前記伝熱管相互の接続が、カシメを用いた乾式接合であり、前記伝熱管の長尺方向に対する垂直断面の最薄部分の厚み及び前記ヒダが、前記カシメの圧力に耐えるものであることを特徴とする放射パネル。
A radiation panel comprising: a radiation member capable of exchanging heat with the outside world by heat radiation; and a heat transfer tube capable of heat exchange between the radiation member and the radiation member, the heat transfer medium flowing therethrough.
The heat transfer tube is a long metal extrusion having a plurality of folds substantially parallel to the flow direction of the heat transfer medium on the inner surface thereof,
The radiation member may be a radiation fin having a smooth curved surface or flat surface at the interface with the outside, and a storage portion capable of thermally conducting at least one of the heat transfer tubes and storing the heat transfer tube in the longitudinal direction. A long metal extrusion with
A plurality of unit panels in which the heat transfer tube is stored in the storage portion of the radiation member;
Further, the heat transfer pipe interconnections accommodated in the plurality of unit panels are dry bonding using caulking, and the thickness of the thinnest portion of the vertical cross section with respect to the longitudinal direction of the heat transfer pipe and the folds are the caulking A radiation panel characterized in that it withstands the pressure of
前記伝熱管と前記収納部との熱伝導可能な接触が、重力か又は前記放射部材の金属弾性かによる機械的接触であることを特徴とする請求項1に記載の放射パネル。   The radiation panel according to claim 1, wherein the heat transferable contact between the heat transfer tube and the housing portion is mechanical contact by gravity or metal elasticity of the radiation member. 前記金属が、アルミニウム又はアルミニウム合金であることを特徴とする請求項1又は
2に記載の放射パネル。
The radiation panel according to claim 1 or 2, wherein the metal is aluminum or an aluminum alloy.
前記厚みが、2mmを超えることを特徴とする請求項1〜3のいずれかに記載の放射パネル。   The radiation panel according to any one of claims 1 to 3, wherein the thickness exceeds 2 mm. 前記伝熱管相互の接続が、カシメ接続可能な端部を備えた流路管を介するものであることを特徴とする請求項1〜のいずれかに記載の放射パネル。 The radiation panel according to any one of claims 1 to 4 , wherein the heat transfer tubes are connected to each other via flow channels having caulked ends. 請求項1〜5のいずれかに記載の放射パネルの前記伝熱管を、前記伝熱媒体が流動可能な熱源に接続した放射冷暖房システム。   The radiation heat-conditioning system which connected the said heat exchanger tube of the radiation panel in any one of Claims 1-5 to the heat source which the said heat transfer medium can flow. 外界と熱放射により熱交換する放射部材と、伝熱媒体が内部を流動して前記放射部材と熱交換可能な伝熱管とを備えた放射パネルの製造方法であって、
前記伝熱管は、前記内部の表面に前記伝熱媒体の流動方向に略平行に複数のヒダを備えて長尺に金属押出成形し、
前記放射部材は、前記外界との界面が平滑な曲面又は平滑な平面である放射フィンと、少なくとも1本の前記伝熱管を熱伝導可能にかつ前記長尺方向に貫通して収納しうる収納部とを備えて長尺に金属押出成形し、
前記伝熱管を前記放射部材の前記収納部に貫通して収納した単位パネルを複数用い、かつ前記複数の単位パネルに収納された前記伝熱管相互の接続を、カシメを用いた乾式接合により行い、さらに前記伝熱部の長尺方向に対する垂直断面の最薄部分の厚み及び前記ヒダが、前記カシメの圧力に耐えるものであることを特徴とする放射パネルの製造方法。
A method of manufacturing a radiation panel, comprising: a radiation member that exchanges heat with the outside world by heat radiation; and a heat transfer tube in which a heat transfer medium flows through the interior to exchange heat with the radiation member,
The heat transfer tube is provided with a plurality of folds substantially parallel to the flow direction of the heat transfer medium on the inner surface, and the metal is extrusion-molded into a long length,
The radiation member may be a radiation fin having a smooth curved surface or flat surface at the interface with the outside, and a storage portion capable of thermally conducting at least one of the heat transfer tubes and storing the heat transfer tube in the longitudinal direction. And metal extrusion to a long, equipped with
Using a plurality of unit panels in which the heat transfer tubes are stored in the storage portion of the radiation member, and connecting the heat transfer tubes stored in the plurality of unit panels by dry bonding using caulking; Furthermore, the thickness of the thinnest portion of the cross section perpendicular to the longitudinal direction of the heat transfer portion and the folds can withstand the pressure of the caulking.
JP2016178027A 2016-09-12 2016-09-12 Radiant panel Active JP6506229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178027A JP6506229B2 (en) 2016-09-12 2016-09-12 Radiant panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178027A JP6506229B2 (en) 2016-09-12 2016-09-12 Radiant panel

Publications (2)

Publication Number Publication Date
JP2018044696A JP2018044696A (en) 2018-03-22
JP6506229B2 true JP6506229B2 (en) 2019-04-24

Family

ID=61692973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178027A Active JP6506229B2 (en) 2016-09-12 2016-09-12 Radiant panel

Country Status (1)

Country Link
JP (1) JP6506229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107961A (en) * 2019-05-24 2019-08-09 Tcl空调器(中山)有限公司 Double air duct electric heating devices and air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178536A (en) * 1988-12-29 1990-07-11 Showa Alum Corp Building ceiling provided with cooling and heating function by radiation panel
JP2771955B2 (en) * 1994-04-22 1998-07-02 進 小松原 Indoor cooling and heating method and indoor cooling and heating device
JPH08193730A (en) * 1994-11-14 1996-07-30 Koichi Miura Double floor type air-conditioning equipment
JPH1113952A (en) * 1997-06-25 1999-01-22 Hitachi Ltd Air-tight joining method of pipe members each other and containers, and air-conditioner and battery
JP2002130704A (en) * 2000-10-23 2002-05-09 Sanyo Electric Co Ltd Radiator for heating
JP2012141115A (en) * 2011-01-06 2012-07-26 Tabuchi Corp Pipe panel unit structure
JP5967581B2 (en) * 2013-03-19 2016-08-10 株式会社 エコファクトリー Air conditioner
JP5544580B1 (en) * 2013-07-26 2014-07-09 株式会社 エコファクトリー Air conditioner and method of operating air conditioner
JP6095606B2 (en) * 2014-04-28 2017-03-15 進 小松原 Indoor air conditioning method, indoor air conditioning unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107961A (en) * 2019-05-24 2019-08-09 Tcl空调器(中山)有限公司 Double air duct electric heating devices and air conditioner

Also Published As

Publication number Publication date
JP2018044696A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
US10760795B2 (en) Split heating and cooling systems
EP3004748B1 (en) System for thermally conditioning a room inside a building
EP1411314B1 (en) Plate-tube type heat exchanger
RU2714746C2 (en) Building panel intended for production of heating and/or cooling walls of buildings
EP3123093B1 (en) Tubular counter-current air heat exchanger
JPWO2008152786A1 (en) Residential water heater
US8256497B2 (en) Thermal energy exchanger
JP6506229B2 (en) Radiant panel
US9945620B2 (en) Freeze damage resistant window perimeter radiator
EP0461781A1 (en) Heat exchanger
ITTO20100223A1 (en) HEAT EXCHANGER
US20120186792A1 (en) Architecturally And Thermally Improved Freeze Resistant Window Perimeter Radiator
JP7000027B2 (en) Heat exchanger and air conditioner
CN111829062B (en) Air conditioning system with micro-channel heat exchanger and building
JP2001280711A (en) Pipe material for absorbing geothermic heat
JP2008304167A (en) Hot-water supply facility for multiple dwelling house
CN212585063U (en) Air conditioning system with micro-channel heat exchanger and building
CN215337173U (en) Air conditioning system with radiator
CN220669642U (en) Air treatment device
EP0454754B1 (en) Device for the temperating of premises
KR200359844Y1 (en) A pipe for heat transfer
WO2021077895A1 (en) Flat pipe, micro-channel heat exchanger, and air conditioner
WO2009066335A2 (en) Manifold with two-dimensional and three-dimensional configurability, in so far as it is equipped with rotating connections, for ceiling-mounted and/or wall- mounted thermal-conditioning systems
JPH04356689A (en) Heat radiation pipe for natural convection type heat exchanger and fabrication thereof
JP2002243265A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250