JP6505953B2 - 通信システム、通信装置、方法、及びプログラム - Google Patents

通信システム、通信装置、方法、及びプログラム Download PDF

Info

Publication number
JP6505953B2
JP6505953B2 JP2018526275A JP2018526275A JP6505953B2 JP 6505953 B2 JP6505953 B2 JP 6505953B2 JP 2018526275 A JP2018526275 A JP 2018526275A JP 2018526275 A JP2018526275 A JP 2018526275A JP 6505953 B2 JP6505953 B2 JP 6505953B2
Authority
JP
Japan
Prior art keywords
signal
frequency band
data
audio frequency
audio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018526275A
Other languages
English (en)
Other versions
JPWO2018139490A1 (ja
Inventor
研一 池田
研一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Solution Technology Inc
Original Assignee
Smart Solution Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Solution Technology Inc filed Critical Smart Solution Technology Inc
Publication of JPWO2018139490A1 publication Critical patent/JPWO2018139490A1/ja
Application granted granted Critical
Publication of JP6505953B2 publication Critical patent/JP6505953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)

Description

本発明は、通信システム、通信装置、方法、及びプログラムに関する。
携帯電話等の端末において、誘導式RFID(Radio Frequency Identifier)を使用して近接通信を行う技術が知られている。しかし、通信端末が必ずしもRF(Radio Frequency)タグを内蔵しているとは限らず、RFタグを必要としない近接通信についての様々な技術が考案されている。例えば、送信側が情報を乗せた音を出力し、受信側が受け取った音から信号を取り出すことで情報を受信する、即ち、音を伝送媒体として情報を送受信する方法がある。
特許文献1には、百貨店、スーパー、商店街、映画館、遊園地等の商業施設、娯楽施設等に設置される発信装置が、ホームページのURL(Uniform Resource Locator)等の文字情報を、音圧振動の情報(信号音)に変換し、スピーカを介して発信することが記載されている。当該施設を訪れた客は、自分の携帯電話の所定のアプリケーションを実行することで、マイクを介して受信した信号音に基づいて、発信された情報をディスプレイに表示させる。
特開2007−13274号公報
特許文献1のように、音声を伝送媒体として使用した通信では、環境による周波数フェージングに加え、スピーカやマイクの周波数特性の影響も受ける。また、音波の伝搬速度は電波の伝播速度の約90万分の1と遅いことから、音声を伝送媒体として使用した通信は、反射波、遅延波の影響を受けやすい。さらに、通常の生活空間において様々な音が発生している状況では、受信側のマイクには信号音以外の音も入ってくる。この場合、信号音以外の音がノイズとなってしまい、正確な情報を復元することが困難になる。
このような理由から、通信速度を速くした場合、安定した通信を確保することが難しく、音声を伝送媒体とした通信においては通信速度の高速化には限界があった。このため、送受信するデータ量が少なくて済む用途、例えば、特許文献1のような施設のホームページのURLの告知、友人間の携帯電話の電話帳データの交換に用いられることが多かった。
本発明は、上記実情に鑑みてなされたものであり、音声を伝送媒体とした高速近接通信において、安定した通信を可能とすることを目的とする。
上記目的を達成するため、本発明の第1の観点に係る通信システムは、
第1の通信端末と第2の通信端末とを含む通信システムであって、
前記第1の通信端末は、
送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換する変換部と、
前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として発する発音部と、
を備え、
前記第2の通信端末は、
音声を集音する集音部と、
前記集音部が集音した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を前記所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えられた前記第1の音声周波数帯域の信号、及び前記集音部が集音した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する変換部と、
を備える。
前記第2の通信端末の前記変換部は、
前記第1の音声周波数帯域の信号と前記第2の音声周波数帯域の信号との加重平均を求め、求めた前記加重平均の信号を受信データに変換してもよい。
前記第2の通信端末の前記変換部は、
前記第1の音声周波数帯域の信号の信頼性に基づいて、前記第1の音声周波数帯域の信号に重み付けをし、前記第2の音声周波数帯域の信号の信頼性に基づいて、前記第2の音声周波数帯域の信号に重み付けをし、重み付けをした前記第1の音声周波数帯域の信号と重み付けをした前記第2の音声周波数帯域の信号の平均を求め、求めた平均の信号を受信データに変換し、信頼性が高い方が重みが大きくてもよい。
信頼性は、例えば、受信信号強度、SN比、エラーチェックによるエラーの有無、復調の可否等により特定される。重みは、0を含んでもよい。
上記目的を達成するため、本発明の第2の観点に係る通信装置は、
送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換する変換部と、
前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として発する発音部と
備える。
上記目的を達成するため、本発明の第3の観点に係る通信装置は、
第1の音声周波数帯域の信号及び第2の音声周波数帯域の信号を音声として発する送信装置からの音声を受信する受信部と、
前記受信部が受信した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えられた前記第1の音声周波数帯域の信号、及び前記受信部が受信した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する変換部と、
を備える。
上記目的を達成するため、本発明の第4の観点に係る方法は、
第1の通信端末と第2の通信端末とが通信する方法であって、
前記第1の通信端末が、
送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換し、
前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として発し、
前記第2の通信端末が、
集音した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を前記所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えた前記第1の音声周波数帯域の信号、及び集音した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する。
上記目的を達成するため、本発明の第5の観点に係るプログラムは、
コンピュータに、
送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換する処理と、
前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として出力する処理と、
受信した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を前記所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えられた前記第1の音声周波数帯域の信号、及び受信した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する処理と、
を実行させる。
本発明によれば、音声を伝送媒体とした高速近接通信において、安定した通信を可能にすることができる。
本発明の実施の形態1に係る通信システムの構成を示す図である。 (a)は、携帯通信端末のハードウェア構成を示すブロック図である。(b)は、送信順序定義情報のデータの一例を示す図である。(c)は、重み付け定義情報のデータの一例を示す図である。 (a)は、送信部が有する回路の一例を示す図である。(b)は、受信部が有する回路の一例を示す図である。 送信データのパケットのフォーマットの一例を示す図であり、(a)は、ヘッダ部を示し、(b)は、データ部を示す図である。 決済端末のハードウェア構成を示すブロック図である。 決済サーバのハードウェア構成を示すブロック図である。 音声信号の送信方法を説明するための図である。 (a)〜(d)は、ローバンドとハイバンドで受信したシンボルデータの加重平均を求める手法を説明するための図である。 携帯通信端末の音声出力画面の一例を示す図である。 (a)は、携帯通信端末の決済処理の流れを示すフローチャートである。(b)は、決済端末の決済処理の流れを示すフローチャートである。(c)は、決済サーバの決済処理の流れを示すフローチャートである。 (a)は、手の動きにより位相がずれた音声信号のコンスタレーションを、(b)は、位相のずれが小さい音声信号のコンスタレーションを示す図である。 (a)は、インパルスノイズが重畳した受信信号の例を示し、(b)は、インパルスノイズをマスクした受信信号の例を示す図である。 (a)は、送信データの例を示し、各番号はシンボルの番号の例、(b)は、インターリーブを行わない場合の送信データとインパルスノイズの例、(c)は、(b)の送信データから再構成されたパケットのデータ構成の例、(d)は、インターリーブを行った場合の送信データとインパルスノイズの例、(e)は、(d)の送信データから再構成されたパケットのデータ構成の例を示す図である。 (a)は、信号帯域用のバンドパスフィルタの通過帯域の例、(b)、(c)は、リファレンス信号用のバンドパスフィルタの通過帯域の例を示す図である。 信号帯域と、2つのリファレンス帯域の信号強度を判別する一般的な受信回路のブロック図である。 改良された受信回路のブロック図である。 (a)は、図16に示す受信回路の信号帯域用のバンドパスフィルタの通過帯域の例、(b)は、図16に示す受信回路の搬送波ミキシング回路の出力信号のスペクトル図、(c)、(d)は、図16に示す受信回路のリファレンス信号用のLPFとHPFの通過特性の例を示す図である。 (a)〜(f)は、インパルスノイズとマスク処理の有無を説明する図である。
(実施の形態1)
以下、本発明の実施の形態に係る通信システムを、図面を参照しながら説明する。ここでは、商品を購入する顧客が、電子マネーによる決済を行うことができる電子マネー決済システムを例に通信システムを説明する。
図1に、本発明の実施の形態に係る通信システム1000の構成を示す。通信システム1000は、ユーザ(顧客)が所持するスマートフォン等の携帯通信端末100(第1の通信端末)と、店舗1に設置された決済端末200(第2の通信端末)と、決済端末200とネットワーク2を介して通信可能に接続された決済サーバ300と、を含む。携帯通信端末100と、決済端末200とは、音声を伝送媒体として、即ち、送信する情報を所定の音声に重畳した信号(音声信号)を送受信する。このようにして、携帯通信端末100と決済端末200とは相互に通信する。音声を伝送媒体とした通信の詳細は後述する。
まず、商品の購入の際の決済の流れの概要を説明する。ここでは、プリペイド型の電子マネーを想定しており、ユーザ(顧客)は、例えば、電子マネー事業者が運営するオンライン上のシステムを経由して、クレジットカード等を使用して所望の金額をチャージ(入金)しておく。ユーザ(顧客)はチャージされている残高を上限として、電子マネーの加入店において商品等の購入の決済に、電子マネーを使用することができる。電子マネーによる決済の際には、携帯通信端末100がユーザ(顧客)を識別する情報を決済端末200に送信する。
商品購入の際に、ユーザ(顧客)が所持する携帯通信端末100は、ユーザの操作に応答して、音声を使用した通信により、ユーザID(Identification)を決済端末200に送信する。決済端末200は、携帯通信端末100からユーザIDを受信すると、ネットワーク2を介してユーザIDと決済金額を決済サーバ300に送信する。決済サーバ300は、ユーザIDに基づいて、ユーザが電子マネーの正当な利用者であるか否かを判別し(認証し)、ユーザの認証が成功すると、ユーザがチャージ済みの電子マネーの残高から決済金額を引き落とす処理(決済)を行う。その後、決済サーバ300は、認証と決済の結果を、決済端末200に通知する。
続いて、各装置の構成を説明する。まず、携帯通信端末100の構成を説明する。実施の形態1においては携帯通信端末100としてスマートフォンを想定する。図2(a)は、携帯通信端末100のハードウェア構成を示すブロック図である。携帯通信端末100は、スマートフォンが従来備えている携帯電話としての機能、インターネットアクセスに関する機能等を備えているものとし、これらの機能についての説明を省略する。
携帯通信端末100は、操作部110と、表示部120と、集音部130と、発音部140と、記憶部150と、送受信部160、制御部170と、を備える。各部はバス190で相互に接続されている。
操作部110は、ユーザの操作を受け付け、受け付けた操作に対応する操作信号を制御部170に供給する。操作部110は、例えば、音量ボタン、タッチパネルを含む。
表示部120は、制御部170から供給される各種画像データや各種画面データ等に基づいて各種画像や各種画面等を表示する。表示部120は、例えば、表示パネルと表示パネル駆動回路によって構成される。表示パネル駆動回路は、制御部170から供給される画像データに従って表示パネルを駆動し、表示パネルに画像を表示させる。表示パネルは、例えば、液晶パネル、有機EL(Electro Luminescence)パネルによって実現される。
なお、操作部110と表示部120とは、タッチパネルによって構成されてもよい。タッチパネルは、所定の操作を受け付ける操作画面を表示すると共に、操作画面においてユーザが接触操作を行った位置に対応する操作信号を制御部170に供給する。
集音部130は、マイク131を含み、制御部170の制御に従って、空気の振動(音)を電気信号に変え、これをA/D(アナログ/デジタル)変換して、デジタル化された音声のデータを受信部162に供給する。
発音部140は、送信部161から供給された送信対象のデジタルデータでキャリア信号を変調し、得られたデジタル信号をD/A変換して、スピーカ141に供給する。これにより、送信対象のデジタルデータが空気振動(音)に変換され、出力される。
記憶部150は、RAM(Random Access Memory)、ROM(Read Only Memory)、及び、ハードディスク装置等を備え、各種の情報、固定データ、アプリケーション、画面データ、端末ID、及び、制御部170が実行するためのプログラム等を記憶する。固定データは、例えば、携帯通信端末100を所持するユーザのユーザID151を含む。また、記憶部150は、制御部170が処理を実行するためのワークメモリとして機能する。
また、記憶部150は、制御部170が実行する決済に係る処理を実行するための決済処理プログラム152を記憶する。さらに、記憶部150は、シンボルの送信順序を定義した送信順序定義情報153を記憶する(図2(b))。シンボルの送信順序については後述する。さらに、記憶部150は、受信信号の復調の処理の際に使用する重み付け定義情報154を記憶する(図2(c))。重み付け定義情報154は、後述する復調処理の際に使用される、受信信号強度と重み付けの係数とが対応付けられた情報を含む。
送受信部160は、送信部161と受信部162を含み、制御部170の制御に従って、携帯通信端末100が、送受信する信号の信号処理を実行する。詳しくは後述するが、送受信部160は、制御部170と協働して、送信データを送信用の信号に変換し、受信した信号を受信データに変換する変換部として機能する。携帯通信端末100は、送信する情報を所定の音声に重畳した信号(音声信号)を送受信するが、送受信の際の信号の変調・復調等の処理については、有線、無線通信と同様の処理を行う。送受信部160は、例えば、CPU(Central Processing Unit)によって実現されてもよいし、あるいは、DSP(Digital Signal Processor)等のプロセッサによって実現されてもよい。
本実施の形態においては、キャリアとして、非可聴帯域の正弦波の音声信号を使用する。従って、携帯通信端末100と決済端末200とが出力する信号は、人間にはほぼ聞こえない。これは、可聴帯域の音声信号が送受信されると、当該音声信号はユーザにとって雑音と感じられることが想定され、ユーザに不快感をおこさせないためである。
送信部161は、制御部170から供給されたデータでキャリアを変調し、変調した信号を発音部140に出力する。従って、送信する情報を所定の音声に重畳した信号(音声信号)がスピーカ141から出力される。
受信部162は、集音部130のマイク131から供給された音声信号から、受信した信号を復調し、受信データを制御部170に出力する。
ここで、携帯通信端末100の音声を伝送媒体とした通信において採用する通信方式を説明する。携帯通信端末100は、直行周波数分割多重変調(Orthogonal Frequency-Division Multiplexing:OFDM)を採用する。OFDMは、マルチキャリア伝送の一方式であり、所定の周波数の範囲内において、複数の搬送波を、隣接の搬送波と干渉しないように密に並べ、限られた周波数の範囲を効率的よく利用する。OFDMを使用することで、占有周波数帯域をそれほど肥大化させることなく、マルチキャリア化することが可能である。OFDMの変調のためIFFT(Inverse Fast Fourier Transform:逆フーリエ変換)が、復調のためFFT(Fast Fourier Transform:フーリエ変換)が使用されることが一般的である。このIFFTとFFTは1シンボル区間ごとに行う。
OFDMはマルチキャリア伝送の方式であるため、各搬送波(サブキャリア)の変調方式(一次変調方式)として任意のものを選択することができる。ここでは、差動四位相偏移変調(Differential Quadrature Phase Shift Keying:DQPSK)を使用して、各搬送波(サブキャリア)を変調する。DQPSKでは、4段階に位相をずらした4つの波を使用し、それぞれに別の値を割り当てる。このため、DQPSKでは、1サブキャリアの1シンボル区間で4値(2ビット)の情報を表すことができる。DQPSKは直前のシンボルとの差分を利用して情報を伝送するため、一番最初に基準となる位相のシンボルを送出する。
上記構成を実現するため、送信部161、受信部162は、以下のような回路を有する。まず、図3(a)に、送信部161が有する回路の構成の一例を示す。送信部161は、マッピング回路1611、サブキャリア変調回路1612、IFFT回路1613、周波数変換回路1614を含む。
制御部170は、送信するデータ系列を処理して所定のサイズ(2ビット)のデータに分割し、分割した各データをマッピング回路1611に供給する。マッピング回路1611は、分割した各データを各サブキャリアと各シンボル区間にマッピングする。上述のように、サブキャリアはDQPSKで変調されるため、1つのサブキャリアの1シンボル区間には、2ビットが割り当てられる。マッピング回路1611は、後述するインターリーブ処理も実行する。その後、サブキャリア変調回路1612で、サブキャリアはDQPSKにより変調され、IFFT回路1613で逆離散フーリエ変換されて時間信号に変換されることで、周波数変換回路1614で対象の音声周波帯にコンバートされ、発音部140に出力される。
図3(b)に、受信部162が有する回路の構成の一例を示す。受信部162は、周波数変換回路1621、FFT回路1622、復調回路1623、デマッピング回路1624を含む。マイク131により集音された音声は、周波数変換回路1621で所定の周波数帯にコンバートされ、FFT回路1622で離散フーリエ変換された周波数領域のデータに戻される。その後、復調回路1623で、サブキャリア信号をDQPSKに対応する復調方式で復調し、デマッピング回路1624で、各サブキャリアと各シンボル区間に割り振られた所定のビット単位のデータを復元し、制御部170に出力する。デマッピング回路1624は、後述するデインターリーブ処理も実行する。
再び、図2(a)を参照する。制御部170は、例えば、CPUを備え、携帯通信端末100の各部の制御を行う。制御部170は、記憶部150に記憶されている決済処理プログラム152を実行することにより、音声信号の通信を使用した決済に係る処理を実行する。
制御部170は、決済に係る処理において、送信部161を制御して、記憶部150に格納されているユーザID151を含む送信データを生成し、送信部161、発音部140を制御して、送信データを音声信号に変換して、音声をスピーカ141から出力する。制御部170が送信部161に供給する送信データのパケットのフォーマットの一例を図4に示す。
送信データは、ヘッダ部とデータ部とからなる。図4(a)に示すように、ヘッダ部は32bitのビット列とCRCから構成される。modeは、送信データが、制御用のデータであるか否かを示す。versionは、バージョン情報を示す。serviceは、サービス用に予約された領域である。reservedは、特別の用途のために予約された領域である。lengthは、データペイロードのバイト長を示す。CRCは、ヘッダ部(modeからlength)のデータの誤り検出のために付加されている。ここでは、CRC16を使用する。受信側では、CRC16によりヘッダ部の誤り検出を行う。
図4(b)に示すように、データ部は、0〜255バイトの可変長の文字列とCRCから構成される。Dataは、ペイロードを示す。なお、Dataはバイト単位(8bit単位)のデータからなる。ユーザIDを送信する際には、DataにユーザIDを示す情報が埋め込まれる。CRCは、Data(ペイロード)部分の誤り検出のために付加されている。ここでは、CRC32を使用する。受信側では、CRC32によりData部分の誤り検出を行う。
続いて、決済端末200の構成を説明する。決済端末200は、店舗1のレジの横に設置されており、携帯通信端末100と音声信号による通信を行う。例えば、決済端末200は、ユーザが電子マネーでの支払いを希望した場合に、携帯通信端末100からユーザIDを示す音声信号を受信する。決済端末200は、携帯通信端末100から受信したユーザIDと、店員の操作により入力された決済金額と、を決済サーバ300に送信することで、決済サーバ300に認証と決済の処理の実行を依頼する。決済端末200は、決済サーバ300からの認証と決済の処理の結果を受信すると、受信した結果をユーザに視認可能な態様で通知する。
図5は、決済端末200のハードウェア構成を示すブロック図である。決済端末200は、操作部210と、表示部220と、集音部230と、発音部240と、記憶部250と、送受信部260、制御部270、通信部280と、を備える。各部はバス290で相互に接続されている。
操作部210は、例えば、店員の操作を受け付け、受け付けた操作に対応する操作信号を制御部270に供給する。操作部210は、例えば、音量ボタン、タッチパネルを含む。タッチパネルは、例えば、図1に示すように、決済端末200の前面に設けられていてもよい。また、操作部210は、例えば、USB(Universal Serial Bus)ケーブルにより決済端末200本体に接続された外付けのテンキー(図1においては図示なし)を含んでいてもよい。
図5を参照する。表示部220は、制御部270から供給される各種画像データや各種画面データ等に基づいて各種画像や各種画面等を表示する。表示部220は、例えば、表示パネルと表示パネル駆動回路等によって構成される。表示パネル駆動回路は、制御部270から供給される画像データに従って表示パネルを駆動し、表示パネルに画像を表示させる。表示パネルは、液晶パネル、有機ELパネルによって実現される。表示パネルは、例えば、図1に示すように、決済端末200の前面に設けられたタッチパネルによって実現されてもよい。
図5を参照する。集音部230は、マイク231を含み、制御部270の制御に従って、空気の振動(音)を電気信号に変え、これをA/D(アナログ/デジタル)変換して、デジタル化された音声のデータを受信部262に供給する。マイク231は、例えば、図1に示すように、決済端末200の前面に設けられていてもよい。
図5を参照する。発音部240は、制御部270の制御に従って、送信部261から供給された送信対象のデジタルデータをD/A変換し、得られたアナログ信号でスピーカ241に供給する。これにより、送信対象のデジタルデータが空気振動(音)に変換され、出力される。スピーカ241は、例えば、決済端末200の背面に設けられる。
記憶部250は、制御部270が動作するためのメインメモリ及びワークメモリとして機能する。記憶部250は、例えば、ハードディスク、フラッシュメモリ、RAM、ROM等のメモリ装置を含む。記憶部250は、各種の情報、固定データ、アプリケーション、画面データ、及び、制御部270によって実行される動作プログラム等を記憶する。また、記憶部250は、決済端末200と携帯通信端末100との間で送受信されるデータ、決済端末200と決済サーバ300との間で送受信されるデータを一時的に記憶する。
また、記憶部250は、制御部270が実行する決済に係る処理を実行するための決済処理プログラム251を記憶する。さらに、記憶部250は、携帯通信端末100と同様に、シンボルの送信順序を定義した送信順序定義情報252を記憶する。
送受信部260は、送信部261と受信部262とを含み、制御部270の制御に従って、送受信する信号の信号処理を実行する。詳しくは後述するが、送受信部260は、制御部270と協働して、送信データを送信用の信号に変換し、受信した信号を受信データに変換する変換部として機能する。送受信部260は、例えば、CPUによって実現されてもよいし、あるいは、DSP等のプロセッサによって実現されてもよい。
送信部261は、制御部270から供給された送信データでキャリアを変調し、変調した信号を発音部240に出力する。従って、送信する情報に所定の音声を重畳した信号(音声信号)がスピーカ241から出力される。
受信部262は、マイク231から供給された電気信号から、受信した信号を復調し、復調した信号を制御部270に出力する。決済端末200の音声を伝送媒体とした通信の方式は、携帯通信端末100と同様である。決済端末200は、音声信号を使用した通信においては、直行周波数分割多重変調を採用する。送信部261、受信部262は、図3(a)、(b)に示した携帯通信端末100の送信部161、受信部162と同様の構成を有する。
制御部270は、例えば、CPU等を備え、決済端末200の各部の制御を行う。制御部270は、記憶部250に記憶されている決済処理プログラム251を実行することにより、音声信号の通信を使用した決済に係る処理を実行する。
通信部280は、インターネット等の通信ネットワークに接続することが可能なインターフェースである。通信部280は、ネットワーク2を介して、後述の決済サーバ300の通信部310と通信する。
続いて、決済サーバ300の構成を説明する。決済サーバ300は、店舗1とは異なる場所に設置された装置、例えば、汎用コンピュータである。決済サーバ300は、決済端末200からネットワーク2を介して、ユーザIDと決済金額を受信すると、認証を含む決済の処理を実行し、処理の結果を決済端末200に送信する。
図6は、決済サーバ300のハードウェア構成を示すブロック図である。決済サーバ300は、通信部310と、記憶部320と、制御部330、を備える。各部はバス390で相互に接続されている。決済サーバ300は、コンピュータが従来備えている機能を備えているものとし、従来の機能については説明を省略する。
通信部310は、インターネット等の通信ネットワークに接続することが可能なインターフェースである。通信部310は、ネットワーク2を介して、前述の決済端末200の通信部280と通信する。
記憶部320は、制御部330が動作するためのメインメモリ及びワークメモリとして機能する。記憶部320は、例えば、ハードディスク、フラッシュメモリ、RAM、ROM等のメモリ装置を含む。記憶部320は、各種の情報、固定データ、アプリケーション、画面データ、及び、制御部330によって実行される動作プログラム等を記憶する。
また、記憶部320は、制御部330が実行する決済に係る処理を実行するための決済処理プログラム321を記憶する。さらに、記憶部320は、決済の処理のため、通信システム1000を利用するユーザの情報(ユーザID、ユーザがチャージ済みの残高の金額等)を格納するユーザテーブル322を有する。なお、ユーザテーブル322には、最新のアカウントの情報が格納されている必要があるため、電子マネー事業者が運営する電子マネー決済システムが管理するデータと連携されている。
制御部330は、例えば、CPU等を備え、決済サーバ300の各部の制御を行う。制御部330は、記憶部320に記憶されている決済処理プログラム321を実行することにより、決済に係る処理を実行する。
次に、本実施の形態に特徴的な構成を説明する。通信エラー低減のため、携帯通信端末100、決済端末200は、以下のような構成を備える。以下、携帯通信端末100を例に説明するが、決済端末200も同様の構成を有する。
まず、携帯通信端末100は、音声を媒体とした通信のため、17.9kHz〜19.9kHz、15.9kHz〜17.9kHzの2つの帯域を使用する。上記の帯域は、スマートフォン等に標準的に搭載されているスピーカの周波数特性を考慮したものである。
携帯通信端末100(制御部170)は、送信時には、15.9kHz〜17.9kHz(以下、ローバンドという場合がある)、17.9kHz〜19.9kHz(以下、ハイバンドという場合がある)の2つの帯域において、それぞれ同じデータを送信する。つまり、15.9kHz〜17.9kHzの信号、17.9kHz〜19.9kHzの信号、をそれぞれ送信するデータで変調する。上記の2つの帯域は、スマートフォン等に標準的に搭載されているスピーカの周波数特性を考慮したものである。ここでは、キャリアの数(チャネル数)は128とする。使用する帯域の両端に割り当てられるチャネルは、フィルタ等の特性変化を受けやすいため使用せず、実質的には126チャネルがデータ送信のため使用可能なチャネル数である。
具体的には、図3に示す周波数変換回路1614は、IFFT回路1613の出力を、ローバンドとハイバンドとにコンバートし、ローバンドにおいて63チャネル(126チャネルの半分)、ハイバンドにおいて63チャネル(126チャネルの半分)、を使用して、それぞれの領域で同一のデータを送信する。換言すると、図3に示す周波数変換回路1614は、IFFT回路1613が出力する−2kHz〜+2kHzのベースバンド信号に周波数変換を行い、15.9kHz〜19.9kHzに変換する。従って、発音部140のスピーカ141からは、15.9kHz〜17.9kHzの帯域の音声信号、17.9kHz〜19.9kHzの帯域の音声信号が出力される。
上述のように、携帯通信端末100は、2つの帯域を使用して同じデータを2重に送信するが、さらに、次のような手法を採用してデータを送信する。図7に周波数領域、時間領域におけるデータ送信のイメージを示す。
ここでは、理解を容易にするため、送信データが、700ビット(データのペイロードだけでなく、CRCと畳み込み符号化の冗長ビットも含む)であるとする。上述の例では、各サブチャネルに2ビットを割り当て、さらに、各バンドに63チャネル存在するので、1シンボルは126(=63×2)ビットとなる。
従って、携帯通信端末100は、送信データの先頭126ビットを第1シンボルD1とし、次の126ビットを第2シンボルとし、最後の70ビットを第6シンボルD6とする。携帯通信端末100は、使用する帯域によりシンボルD1〜D6の送信順序を変える。具体的には、図2(b)に示すような送信順序定義情報153に定義されている情報に基づいて、送信する一連のシンボルを2分割(D1〜D3、D4〜D6)にし、ローバンドにおいては、2分割した後半のグループ(D4〜D6)を先に送信し、その後分割した前半のグループ(D1〜D3)を送信する。一方、ハイバンドにおいては、順序を変えることなく送信する。
この構成によれば、受信側は、通信状態が正常ならば、通信の前半で、ハイバンドでグループ(D1〜D3)を、ローバンドでグループ(D4〜D6)を受信した時点で、全データを受信できたことになり、後半の受信・復調などが不用となる。また、通信の前半で、例えば、バースト性のノイズにより、両方の帯域における伝送が不能となった場合でも、例えば、後半に、ハイバンドで受信したグループ(D4〜D6)と、ローバンドにおいて受信したグループ(D1〜D3)と、から正しく受信データを復元することができる。さらに、通信の前半と後半を通して、ローバンドとハイバンドのどちらか一方の帯域における伝送が不能となった場合でも、正常に伝送できるどちらか一方のバンドのみで正しく受信データを復元することができる。なお、上記の処理は、制御部170の制御に従って、受信部162が実行してもよい。
ここでは、携帯通信端末100を例に説明したが、決済端末200も上記と同様の構成を有している。
携帯通信端末100(制御部170)は、ローバンド、ハイバンドにおいて、即ち二重に同一の情報を受信するが、信号の復調の際において、通信の信頼性が高い方の帯域において受信した音声信号に比重を置いて復調処理を実行する。
具体的には、携帯通信端末100は、ローバンド、ハイバンドにおいて受信した音声信号について、サブキャリアとそれぞれの1シンボル区間毎に受信信号強度を求める。同一のデータに対応するそれぞれのサブキャリアの1シンボル区間について、ローバンドの音声信号の受信信号強度と重み付け定義情報154に格納された情報とに基づいて、ローバンドの音声信号に重み付けをし、ハイバンドの音声信号の信号強度と重み付け定義情報154に格納された情報とに基づいて、ハイバンドの音声信号に重み付けをし、重み付けをしたローバンドの音声信号と、重み付けをしたハイバンドの音声信号と、の平均(加重平均)を求める。
具体的に説明すると、制御部170は、FFT後の受信データ列において、ローバンドとハイバンドでそれぞれ送信された同一のデータに対応するそれぞれのサブキャリアの1シンボル区間について、受信信号強度に基づく重みを重み付け定義情報154から求め、IQ空間での重心を次式から求める。(下記のシンボルは、同一のデータに対応する、それぞれのサブキャリアの1シンボル区間を示す。)
Ig=(mL・IL+mH・IH)/(mL+mH)
Qg=(mL・QL+mH・QH)/(mL+mH)
Ig、Qg:加重平均後のシンボルのIQ空間でのI値とQ値
IL、QL:ローバンドで送信されたシンボルのIQ空間でのI値とQ値
IH、QH:ハイバンドで送信されたシンボルのIQ空間でのI値とQ値
mL:ローバンドの受信信号強度から図2(c)に示す重み付け定義情報154を参照して得られる重み付け係数
mH:ハイバンドの受信信号強度から図2(c)に示す重み付け定義情報154を参照して得られる重み付け係数
図7に示すデータ送信図を参照して具体的に説明する。ここでは、理解を容易にするため、シンボルD6の同一のデータに対応するそれぞれのサブキャリアに注目する。
第3タイムスロットでローバンドで受信されたシンボルD6の特定のサブキャリアの受信信号強度が10dB、生成されたシンボルのI値がI6L、Q値がQ6L、第6タイムスロットでハイバンドで受信されたシンボルD6の前述と同一のデータに対応するサブキャリアの受信信号強度が30dB、受信パケットから生成された同一シンボルのI値がI6H、Q値がQ6H、と仮定する。
重みを重み付け定義情報154(図2(c))によれば、受信信号強度10dBでの重み付けはW1、30dBでの重み係数はW2である。従って、加重平均により求められるI6g値と、Q6g値は、次式で表される。
I6g=(W1・I6L+W2・I6H)/(W1+W2)
Q6g=(W1・Q6L+W2・Q6H)/(W1+W2)
このような構成を採用することによる効果を説明する。ここでは、それぞれのタイムスロットで受信された、ローバンドに含まれるチャネル(以下、ch)15とハイバンドに含まれるch114が同一のデータであるとして、図8(a)に例示するように、ch15の受信状態が悪く、一方、ch114の受信状態が比較的良好な状態を想定する。この場合、図8(b)に示すように、ch15の実際のコンスタレーションは、理想的なコンスタレーションの位置から大きくずれてしまう。一方、図8(c)に示すように、ch114の実際のコンスタレーションは、理想的なコンスタレーションの位置に比較的近い位置となる。
上述の加重平均を取ることにより、図8(d)に示すように、加重平均後のコンスタレーションが理想的なコンスタレーションに近い位置となり、以後の処理で、受信信号のより適切な再生が可能となる。
なお、加重平均の処理は、制御部170の制御に従って、受信部162が実行してもよい。
その後、制御部170は、受信部162を制御して、加重平均により得られたシンボルのコンスタレーションの位置を用いて、サブキャリアの復調、デマッピング等の後続する処理を実行する。
例えば、全体を使用しての加重平均、ローバンドだけ使用、ハイバンドだけ使用、前半だけ使用、後半だけ使用、といった何通りかで解析を試行し、CRCチェックを行って、再生データの正当性(信頼性)を確認するようにすることができる。
また、受信信号強度を信頼性として重み係数を決定する例を示したが、受信信号エネルギー、S/N比、chごとのコンスタレーションの分散、インパルスノイズ判定値などを信頼性とし、信頼性に基づいて重み係数を設定してもよい。
ここでは、携帯通信端末100を例に説明したが、決済端末200も同様の構成を有している。
このような構成を有することで、一方の帯域において受信強度の低下によりデータの一部又は全てを正確に受信できなかった場合であっても、他方の帯域の音声信号を使用して、受信したデータを復元することができる。
次に、図9を参照しながら、携帯通信端末100、決済端末200、決済サーバ300、が協働して行う決済に係る一連の処理を説明する。
ここでは、店舗1内にいるユーザが、携帯通信端末100を手に持った状態で、決済端末200の前に立っており、商品を購入するため電子マネーによる決済を希望している場合を想定する。なお、以下の例においては、説明の簡略化のため、ユーザの周辺は静かであり、携帯通信端末100と決済端末200とは相互に良好な状態で音声信号を送受信できるものとする。
ユーザは、決済のため、携帯通信端末100の表示部120に表示されているアイコンを操作して、決済処理プログラム152の起動を指示する。制御部170は、ユーザのアイコンの操作に応答して、記憶部150の決済処理プログラム152を実行する。
決済端末200は電源が投入されると、制御部270は、記憶部250の決済処理プログラム251を起動し、マイク231からの音声信号の入力を待ち受ける。ここでは、店員の操作により決済端末200にはあらかじめ電源が投入され、決済処理プログラム251が起動されていることを想定する。
携帯通信端末100の制御部170は、決済処理プログラム152を起動すると、表示部120に決済用の音声出力画面を表示する。図9に示すように、決済用の音声出力画面では、ユーザに携帯通信端末100を決済端末200に近づけた状態で「音声出力」ボタンをタップすることを指示するメッセージと、「音声出力」ボタンが表示されている。
図10(a)を参照する。操作部110が、「音声出力」ボタンのタップを検出すると、すなわち、ユーザから音声信号の出力が指示されたと判別すると(ステップS101;Yes)、制御部170は、送信データを生成する(ステップS102)。具体的には、制御部170は、記憶部150のユーザID151のデータを読み出し、ヘッダ等を追加して送信データを生成する。このとき、制御部170は、上述のように、ローバンド用の送信データの前半部分と後半部分とを入れ替え、ローバンド、ハイバンドそれぞれの帯域において送信データを送信部161に供給する。制御部170は、送信部161を制御して、各種信号処理を施して、送信データを変調する(ステップS103)。制御部170は、発音部140を制御して、変調データをスピーカ141から音声として出力する(ステップS104)。
このとき、スピーカ141からは、15.9kHz〜17.9kHzの帯域の音声信号と、17.9kHz〜19.9kHzの帯域の音声信号とが出力される。その後、制御部170は、ステップS105で、決済端末200からの音声信号を待ち受ける。
続いて、図10(b)を参照して、音声信号を受信した決済端末200が行う処理を説明する。決済端末200の制御部270は、決済処理プログラム251を起動すると、マイク231からの音声の入力を待ち受けている。制御部270は、マイク231が音声を集音したと判別すると、すなわち、マイク231から音声が入力されたと判別すると(ステップS201;Yes)、ステップS202へ進む。一方、制御部270は、マイク231から音声が入力されていないと判別すると(ステップS201;No)、例えば、所定の期間待ってから、再びステップS201に戻る。
制御部270は、マイク231から入力された音声信号を復調する(ステップS202)。まず、制御部270は、ローバンドにおいて受信した音声信号の前半部分と後半部分とを入れ替える。
その後、制御部270は、ローバンド、ハイバンドにおいて受信した音声信号について、それぞれ受信信号強度を求める。制御部270は、ローバンドの音声信号の受信信号強度と重み付け定義情報253に格納された情報とに基づいて、ローバンドの音声信号に重み付けをし、ハイバンドの音声信号の受信信号強度と重み付け定義情報253に格納された情報とに基づいて、ハイバンドの音声信号に重み付けをし、重み付けをしたローバンドの音声信号と、重み付けをしたハイバンドの音声信号と、の平均(加重平均)を求める。
制御部270は、求めたローバンドとハイバンドの加重平均の音声信号を受信部262に供給する。受信部262は、制御部270の制御に従って、供給されたローバンドとハイバンドの加重平均の音声信号に各種信号処理を施し、音声信号を情報信号に復元し、制御部270に出力する。
制御部270は、受信部262から供給された情報信号(即ち、携帯通信端末100から送信されたデータ)に含まれるユーザIDと決済金額とを、ネットワーク2を介して、決済サーバ300に送信する(ステップS203)。なお、このとき、制御部270は、決済の要求を示すリクエスト信号と共に、ユーザID、決済金額の情報を決済サーバ300に送信してもよい。その後、制御部270は、決済サーバ300からのデータ受信を待ち受ける(ステップS204)。
続いて、図10(c)を参照して、決済端末200からデータを受信した決済サーバ300の処理を説明する。決済サーバ300の制御部330は、決済端末200からデータを受信すると(ステップS301;Yes)、ユーザIDに基づいて認証処理を行う(ステップS302)。具体的には、制御部330は、記憶部320に格納されたユーザテーブル322に受信したユーザIDが存在するか否かを判別し、ユーザIDが示すユーザが有効なユーザであると判別すると、すなわち、認証が成功すると(ステップS303;Yes)、ステップS304に進む。一方、認証が失敗すると(ステップS303;No)、制御部330はステップS306に進み、決済端末200に認証の結果を通知する(ステップS306)。ここでは、認証が失敗した旨を示すデータ、例えば、「認証:失敗、決済:NULL」といったデータ、が決済端末200に送信される。
認証成功後、制御部330は決済処理を行う(ステップS304)。具体的には、制御部330は、電子マネー事業者が運営する電子マネー決済システムにユーザID、決済金額の情報を通知し、決済の実行を依頼する旨のリクエストを送信する。決済が成功すると(ステップS305;Yes)、即ち、電子マネー決済システムから決済の実行が正常に完了した旨の通知を受信すると、制御部330は、現在のチャージ金額から決済金額を引いた残額で、ユーザテーブル322のチャージ金額を更新する。その後、制御部330は、結果を決済端末200に通知する(ステップS306)。ここでは、決済が成功した旨を示すデータ、例えば、「認証:成功、決済:成功」といったデータ、が決済端末200に送信される。
一方、例えば、当該ユーザのアカウントの現在のチャージ金額が決済金額を下回る場合、決済を行うことができず、決済が失敗する(ステップS305;No)。この場合、電子マネー決済システムから決済サーバ300に対して決済が失敗した旨の通知がなされる。これに応答して、制御部330は、決済が失敗した旨を示すデータ、例えば「認証:成功、決済:失敗」を決済端末200に通知する(ステップS306)。
再び、図10(b)を参照して、決済サーバ300からデータを受信した決済端末200の処理を説明する。
決済端末200の制御部270は、ステップS204で、決済サーバ300からのデータ受信を待ち受けているが、決済サーバ300からデータを受信すると(ステップS204;Yes)、受信したデータから、携帯通信端末100に対する送信データを生成する(ステップS205)。
具体的には、制御部270は、決済サーバ300から受信したデータから、認証の結果と決済の結果を示すデータを読み出し、ヘッダ等を追加して送信データを生成する。このとき、制御部270は、上述のように、ローバンド用の送信データの前半部分と後半部分とを入れ替え、ローバンド、ハイバンドそれぞれの帯域において送信データを送信部261に供給する。制御部270は、送信部261を制御して、各種信号処理を施して、送信データを変調する(ステップS206)。制御部270は、発音部240を制御して、変調データをスピーカ241から音声として出力する(ステップS207)。
再び、図10(a)を参照して、決済端末200から音声信号を受信した携帯通信端末100が行う処理を説明する。携帯通信端末100の制御部170は、ステップS105で、マイク131からの音声の入力を待ち受けているが、マイク131から音声が入力された、すなわち、マイク131が音声を集音したと判別すると(ステップS105;Yes)、ステップS106へ進む。一方、制御部170は、マイク131から音声が入力されていないと判別すると(ステップS105;No)、例えば、所定の期間待ってから、再びステップS105に戻る。
制御部170は、受信部162を制御して、マイク131から入力された音声信号を復調する(ステップS106)。まず、制御部170は、ローバンドにおいて受信した音声信号の前半部分と後半部分とを入れ替える。
その後、制御部170は、ローバンド、ハイバンドにおいて受信した音声信号について、それぞれ受信信号強度を求める。制御部170は、ローバンドの音声信号の受信信号強度と図2(c)に示すような重み付け定義情報154に格納された情報とに基づいて、ローバンドの音声信号に重み付けをし、ハイバンドの音声信号の受信信号強度と重み付け定義情報154に格納された情報とに基づいて、ハイバンドの音声信号に重み付けをし、重み付けをしたローバンドの音声信号と、重み付けをしたハイバンドの音声信号と、の平均(加重平均)を求める。
制御部170は、求めたローバンドとハイバンドの加重平均の音声信号を受信部162に供給する。受信部162は、制御部170の制御に従って、供給されたローバンドとハイバンドの加重平均の音声信号に各種信号処理を施し、音声信号を情報信号に復元し、制御部170に出力する。
その後、制御部170は、受信部162から供給された情報信号に基づいて、処理の結果を表示部120に表示する。例えば、決済端末200から携帯通信端末100に「認証:成功、決済:成功」といったデータが送信された場合には、制御部170は、表示部120に「決済が完了しました。」というメッセージを表示してもよい。あるいは、決済端末200から携帯通信端末100に「認証:失敗、決済:NULL」または「認証:成功、決済:失敗」といったデータが送信された場合には、「決済を行うことができませんでした。詳しくは、電子マネーのサポートセンターにお問い合わせください。」といったメッセージを表示してもよい。
以上が、携帯通信端末100、決済端末200、決済サーバ300が協働して行う決済に係る処理の流れである。
本実施の形態では、携帯通信端末100、決済端末200のいずれも、音声信号の周波数帯域を2つの周波数帯域(上記の例では、15.9kHz〜17.9kHzの帯域と、17.9kHz〜19.9kHzの帯域)においてそれぞれ同じデータを送信する。
このような構成により、例えば、一方の帯域でノイズの影響によりデータ伝送が不能になった場合であっても、受信側は他方の帯域において受信した音声信号を復調し、受信データを正常に取得できる。
このように、通信の信頼性を向上させることができるため、通信速度を高速化した場合であっても、通信エラーの発生を低減させることができる。
また、スマートフォン等が従来備えている、スピーカ、マイクを利用して通信を行うため、ハードウェアを新たに追加する必要がなく、所定のアプリケーションのインストールだけで、他の機器との通信が可能となる。
以上の説明では、ローバンドで受信した信号から得られたシンボルとハイバンドで受信した信号から得られたシンボルのIQ領域での位置(コンスタレーション)を、受信信号強度に基づく重み付けで加重平均したが、この発明はこれに限定されない。
例えば、受信信号強度に代えて、受信信号の信号エネルギーに基づいて、重み付け係数を定めてもよい。
また、位相変調を採用しているため、コンスタレーションではなく、位相角を重み付けして加重平均するように構成してもよい。
その他、信号のどの物理量を信頼性とし、どのような信号(情報)を信用して、加重平均するかは、適宜変更可能である。
(実施の形態2)
実施の形態1では、受信信号強度が大きい(信号エネルギーが大きい)方の信号をより信用する形態で、受信した音声信号を再生した。
このような構成だけでは、大きなノイズが重畳した信号、あるいは、破壊された信号の再生を適切に行うことはできない。例えば、大きなインパルスノイズが重畳した信号を適切に再生することは困難である。
以下、インパルスノイズが重畳した場合でも、適切に信号が再生できる構成を備える実施の形態2を説明する。
この実施の形態では、制御部170は、他の信号処理を行う前に、受信したいわゆる生データにインパルスノイズが含まれているか否かを、その受信信号強度から検出する。
制御部170は、A/D変換後の受信信号を記憶部150に一旦記憶し、これを解析する。制御部170は、図12(a)に示すようにインパルスノイズを検出した場合、インパルスノイズの存在する時間帯を特定する。制御部170は、インパルスノイズが存在する時間帯の信号をマスキングし、図12(b)に示すように、インパルスノイズを除去し、インパルスノイズを除去した信号に他の信号処理を行う。マスクする時間は、1シンボルの送信時間よりも小さいことが望ましい。この構成によれば、受信信号の一部はマスクされるが、図12(b)に示すように、信号の残存部分を使用して、復調が可能となり、受信信号を有効に活用し、その後の処理での信頼性が向上する。
また、畳み込み符号などのエラー訂正符号を使用した場合、インパルスノイズには、データインタリーブが有効である。
この場合、データインタリーブを、ローバンドとハイバンドそれぞれで行うことが望ましい。
この点を、図13を参照して説明する。
理解を容易にするため、1送信パケットを72ビットとする。また、ローバンドとハイバンドのチャネル(サブキャリア)数を6とする。さらに、パケットを構成する72ビットを2ビット単位でまとめ、図13(a)に示すように1〜36の番号で示すこととする。
通常(データインタリーブを行わない場合)は、図13(b)に示すように、72ビットを2ビット単位で順番に6チャネルと6シンボル区間に割り当てる。この場合、図13(b)に示すようにインパルスノイズが発生すると、図13(c)に示すように、受信側で再構成したパケットは、データが連続してエラーとなってしまう。このため、畳み込み符号などのエラー訂正符号(CRCはエラー検出のみ可能)を使用しても、データを復元できないおそれが高くなる。
これに対し、データインタリーブを行う場合、図13(d)に示すように、72ビットを2ビット単位で不連続にチャネルとシンボル区間に割り当てる。この場合、図13(d)に示すようにインパルスノイズが発生すると、図13(e)に示すように、受信側で再構成したパケットでは、エラーが拡散される。このため、畳み込み符号などのエラー訂正符号により、元のデータを復元できる確率が高くなる。
図4を参照して説明した、送信パケットのヘッダ部が(48+6)×2=108 bit、データ部が(1232+6)×2=2476 bitの例を参照して、より具体的に説明する。この例では、ヘッダ部は108bit/126を切り上げて1シンボル、データ部は2476/126=19.7を切り上げて20シンボルが送信に必要となる。ヘッダ部は1シンボルで済むが、重要な箇所なので、同じデータを2カ所に入れて2重化して、2シンボル使用することとする。なお、63チャネルのうち、使用しない9チャネルに他のデータを挿入してもよい。
ヘッダ部の2シンボルをH1、H2、データ部の20シンボルをD1、D2、D3、…D19、D20とする。H1、H2の2シンボル×63chと、D1、D2、D3、…D19、D20の20シンボル×63chで、それぞれインターリーブを行う。より詳細には、H1とH2でインターリーブし、D1、D2、D3、…D19、D20でインターリーブする。
一連のヘッダ部の2シンボルとデータ部の20シンボルを、それぞれ、前半と後半に分け、送信順序定義情報153に従って、ローバンドとハイバンドに振り分ける。
すると、ローバンドの送信順序は、H0、H2、H1、D11、D12、D13、…D18、D19、D20、D1、D2、D3、…D8、D9、D10、一方、ハイバンドの送信順序は、H0、H1、H2、D1、D2、D3、…D8、D9、D10、D11、D12、D13、…D18、D19、D20となる。
なお、ヘッダ部はデータ部より前に送出する。ヘッダ部にはデータの長さが含まれているからである。これにより、ヘッダ部を受信すると、データ部を受け取らなくても、ヘッダ部のデインターリーブ、誤り訂正、誤り検出を行うことができる。
なお、最初にH0というシンボルを送出する。これは、DQPSKが、直前の搬送波との差分を利用して情報を伝送するため、最初に基準となる位相の信号を送出する必要があるためである。
この種のノイズキャンセル処理を実行する上で、どのようにインパルスノイズを検出するかは大きな課題である。
インパルスノイズを検出するために、図14に示すように、信号帯域(通信に使用する周波数帯域)の両側近傍に参照用のリファレンス帯域を設定し、リファレンス帯域の音量を測定して、ノイズの検出を行うことが考えられる。
各リファレンス帯域は、例えば、信号帯域の1/2程度の帯域幅に設定される。信号音帯域を上述したように15.9〜19.9kHzの4kHzとすると、例えば、低周波側のリファレンス帯域は13.9〜15.9kHzの2kHz、高周波側のリファレンス帯域は19.9〜21.9kHzの2kHzに設定される。
この場合、通常の受信回路では、図15に模式的に示すように、信号帯域の受信信号を通過する帯域通過フィルタ(Band-Pass Filter:BPF)31と、2つのリファレンス帯域の信号を抽出するためのBPF32、33を配置し、各BPF31〜33を通過した信号から受信信号パワーを求める回路が必要となる。BPF31〜33の周波数特性は図14(a)、(b)、(c)に示すように、急峻性が求められる。
ただし、通過帯域の急峻性を有するフィルタの構成は複雑であり、データ処理負担が大きい。例えば、信号帯域用のBPF31〜33をFIR(Finite Impulse Response)フィルタで構成する場合には、音声信号のサンプリング周波数を48kHzとすると、一例ではあるが、それぞれ、501段×48Kのデータ処理が必要となる。すると、フィルタリングに要する総演算量は、501段×48K×3=72,144,000回/secとなる。
この課題を解決するためには、図16に示す回路構成が有効である。
この信号処理回路は、制御部170の演算処理機能により実現されるもので、BPF41と、2倍UPサンプリング回路42と、搬送波ミキシング回路43と、リサンプル用ローパスフィルタ(Low-Pass Filter:LPF)44と、1/12リサンプリング回路45と、LPF46と、1/2リサンプリング回路47と、パワー計算部48と、ハイパスフィルタ(High-Pass Filter:HPF)49と、パワー計算部50と、から構成される。
BPF41は、マイク131から供給される音声信号のうち、その通過周波数帯域の信号成分を通過させる。BPF41は、図17(a)に示すように、信号帯域とリファレンス帯域とを含む通過帯域幅を有する。また、リファレンス帯域の境界はブロードに決定しても実害が少ないため、カットオフ周波数に急峻性の小さいBPFを使用することができる。
2倍UPサンプリング回路42は、BPF41を通過した信号を、2倍のサンプリング周波数(入力音声のサンプリング周波数が48kHzとすれば、96kHz)でサンプリングする。
搬送波ミキシング回路43は、アップサンプリングされた入力信号に、例えば、17.9kHzの直交する二位相の搬送波(複素搬送波)をミキシングするダイレクトコンバージョンにより周波数変換する。これにより、図17(b)に示すように、13.9〜21.9kHzの周波数が−4kHz〜4kHzの周波数に変換される。なお、複素搬送波を使用したため、波形は複素数となり、周波数は正負の成分を持つ。
リサンプル用LPF44は、リサンプリングによる折り返しノイズを除去するため高周波成分をカットする。
1/12リサンプリング回路45は、入力信号を1/12リサンプリングし、信号をダウンコンバージョンする。入力信号のサンプリング周波数が96kHzとすれば、サンプリング周波数は8kHzとなる。
図17(c)に示すように、LPF46は、−2kHz〜+2kHzの低周波数の信号成分のみを通過させる。
1/2リサンプリング回路47は、入力信号を1/2リサンプリングし、ベースバンド信号を再生し出力する。サンプリング周波数は、入力信号のサンプリング周波数が96kHzとすれば、サンプリング周波数は4kHzとなる。
パワー計算部48は、LPF46の出力信号の信号パワーを求める。
HPF49は、図17(d)に示すように、−2kHz〜+2kHzの信号帯域の信号成分をカットし、その両側に位置するリファレンス帯域の周波数成分(±2kHzよりも高周波数の成分)を通過させる。
パワー計算部50は、HPF49の出力信号の信号パワーを求める。求めた信号パワーは、2つのリファレンス帯域の音量を示す。
この構成によれば、信号音声帯域の信号をその2倍の帯域幅で且つ0Hzを中心とする帯域の信号に変換するので、その後の処理が容易である。
この構成によれば、BPF41の通過帯域特性に急峻性が必要とされないため、その処理量が抑えられる。例えば、BPF41をFIRフィルタで構成する場合、51段×48Kの演算量で済む。また、LPF46とHPF49の通過帯域特性には、急峻性が要求されるが、サンプリング周波数が低周波化(8kHz)されているため、101段×8kで済み、演算量が大幅に低減される。
なお、信号帯域の音量だけでインパルスノイズを判定できれば、リファレンス帯域用の信号処理は不用とすることができる。しかし、通信に使用する音声信号の音量は急激に且つ大幅に変化する場合があり、この変化をインパルスノイズと誤判定するおそれがある。これに対し、この構成では、信号に影響されないリファレンス帯域を使用して正確にインパルスノイズを検出し、かつ、その演算量を抑えることができる。
次に、パワー計算部48、50の計算により、インパルスノイズを検出する手法を説明する。
まず、前提として全てのインパルスノイズをマスクする必要はなく、信号音のレベルと同等かそれ以上となって、データを破壊するときだけ、マスクすればよい。
そこで、本実施の形態では、パワー計算部48で求められた信号音量が、直近の過去nシンボルの期間における平均信号音量のm倍(第1の閾値TH1)より大きく、且つ、パワー計算部50で求められたリファレンス音量が、過去pシンボル期間における平均信号音量+平均リファレンス音量(第2の閾値TH2)より大きくなった場合に、制御部170は、インパルスノイズが発生したと判別する。
なお、n、m、pの値は任意でよく、例えば、n=p=2.0〜7.0、m=2.0に設定される。
このように設定することにより、例えば、図18(a)に示すように、信号音帯域の音量が第1の閾値TH1より大きく、且つ、リファレンス帯域の音量が第2の閾値TH2より大きい場合には、インパルスノイズが発生したと判別される。これにより、インパルスノイズに相当する信号がマスクされる。
一方、例えば、図18(b)に示すように、信号音帯域の音量が第1の閾値TH1以下、又は、リファレンス帯域の音量が第2の閾値TH2以下の場合には、インパルスノイズが発生したと判別されない。従って、信号音帯域の信号はマスクされない。
リファレンス帯域に定常ノイズが存在し、そこに、インパルス状のノイズが発生した場合でも、図18(c)に示すように、信号音帯域の音量が第1の閾値TH1より大きく、且つ、リファレンス帯域の音量が第2の閾値TH2より大きい場合には、インパルスノイズが発生したと判別され、マスクされる。一方、図18(d)に示すように、信号音帯域の音量が第1の閾値TH1以下、又は、リファレンス帯域の音量が第2の閾値TH2以下の場合には、インパルスノイズが発生したと判別されない。従って、マスクされない。
また、図18(e)に示すように、信号音の音量が時間と共に変化した場合を想定する。この場合、第1の閾値TH1と第2の閾値TH2が時間と共に変化する。この場合も、信号音帯域の音量が第1の閾値TH1より大きく、且つ、リファレンス帯域の音量が第2の閾値TH2より大きい場合には、インパルスノイズが発生したと判別される。従って、マスクされる。一方、信号音帯域の音量が第1の閾値TH1以下、又は、リファレンス帯域の音量が第2の閾値TH2以下の場合には、インパルスノイズが発生したと判別されない。従ってマスクされない。図18(e)のケースでは、リファレンス帯域の音量が第2の閾値を超えないため、インパルスノイズは無いと判別される。
なお、図18(f)に示すように、リファレンス帯域の音量が時間と共に変化しても、第1の閾値TH1と第2の閾値TH2は変化しない。図18(f)の例では、信号音帯域の音量が第1の閾値TH1より小さいため、リファレンス帯域の音量が第2の閾値TH2より大きくなっても、インパルスノイズが発生したと判別されない。この構成によれば、有害なインパルスノイズのみをマスクすることが可能となる。
(変形例)
実施の形態では、ローバンドの受信信号とハイバンドの受信信号の加重平均を取ったものを復調したが、フェージング対策として、信頼度の高い受信信号のみを使用して、データを復号するようにしてもよい。
この場合、制御部270は、ハイバンドにおいて受信された音声信号とローバンドにおいて受信された音声信号のそれぞれの信頼度をRSI(受信信号強度:Received Signal Intensity)等から求め、信頼度の高い方のバンドにおいて受信された音声信号のみを使用して信号を復号する。信頼性の高いほうのデータのみ使用することにより、信頼性の低い部分を底上げし、全体としての信頼性を高めることができる。信頼度の高い受信信号のみを使用して、データを復号する処理は、例えば、全受信期間において行ってもよく、あるいは、一方のバンドのRSIが一時的に低下した場合のみに行うようにしてもよい。
また、上述の実施の形態1では、音声信号を受信した側は、ローバンドにおいて受信した信号の前半部分と後半部分、ハイバンドにおいて受信した信号の前半部分と後半部分、をそれぞれ復調した。あるいは、受信側は、ローバンドにおいて先に受信した後半部分とハイバンドにおいて先に受信した前半部分とを、まず復調してもよい。この時点で、データを正確に受信できたか否かを判別し、正確に受信できたと判別した場合(例えば、受信信号強度が所定の値以上であり、データの欠落がない等)、ローバンドにおいて後に受信した前半部分と、ハイバンドにおいて後に受信した後半部分と、の復調処理を行わないようにしてもよい。この場合、受信側は不要な処理を行う必要がなく、通信処理の効率化を図ることができる。また、音声通信の受信のみを行う端末の場合、ローバンドとハイバンドの前半部分の受信信号のみを使用した解析でデータが復号できた場合は、後半部分の音声の受信を待たずに、より早く受信処理を終了する事ができる。例えば、受信終了後、ユーザに成功したことを示す表示をする場合、ユーザにとっては、より短時間に結果が確認できることになるため、ユーザエクリペリエンスを向上させる事ができる。音声の受信後にサーバなどとの時間を要する処理を経て、音声の送信を行う場合にも、後半部分の音声の受信を待たずに時間を要する処理へ移ることができ、処理時間を短縮することができる。
さらに、各帯域において同じ情報を2度送信してもよい。この場合、例えば、1度目のデータを送信した後、所定の時間を空けて、2度目のデータを送信してもよい。
また、あるいは、受信側は、1度目のデータを復調し、1度目の送信データを正確に受信できたと判別した場合あるいは信号の前半部分だけでデータを受信できた場合、その旨を送信側に通知し、この場合、送信側は2度目のデータや、後半のデータの送信を行わないようにしてもよい。この場合、送信側は同じデータを2度送信する必要がない。よって、データを2度送信するときに比べ、実効的な通信速度を2倍とすることができる。あるいは、受信側は、復調処理を行う前に、1度目のデータの受信時の受信信号強度が所定の値以上である場合、データを正しく受信できたと判別し、その旨を送信側に通知してもよい。あるいは、データを正しく受信できたと判別した場合には、その旨を送信側に通知することなく、2度目に受信したデータについては復調処理等を行わないようにしてもよい。
携帯通信端末100はユーザにより保持されているため、ユーザの手の動きにより携帯通信端末100を一定の位置に静止した状態とすることは難しい。このため、ユーザの手の動き(端末同士の位置が徐々に変化すること)により、信号の位相のずれが発生し、位相のずれがある程度大きくなると、通信エラーが発生する。
図11(a)、(b)に、携帯通信端末100から出力された音について、信号の様子をコンスタレーションとして示したものである。コンスタレーションは、信号の振幅と位相とを極座標形式で表したものである。ここでは、原点からの距離が振幅を表し、X軸からの角度が位相を表す。図11(a)は、手の動き(端末同士の位置が徐々に変化すること)により位相がずれた信号の様子を示し、図11(b)は、位相のずれが小さい信号の様子を示す。
本実施の形態では、サブキャリアをDQPSKにより変調するため、理想的なコンスタレ−ションは、図11(b)に示すように、描かれる四角形の上下の辺がX軸と平行であることが望ましい。しかし、ユーザの手の動きにより、描かれる四角形は、図11(a)に示すように、原点を中心として回転したものとなる。
このため、携帯通信端末100、決済端末200のいずれも、理想的なコンスタレーションに近づくように、受信した信号を補正してもよい。例えば、図11(a)の四角形を、原点を中心に回転させるように、受信した音声信号の位相をずらし、図11(b)のように描かれる四角形の上下の辺がX軸と平行な状態に近づけることで、補正することができる。
さらに、認証情報の送受信のセキュリティを高めるため、携帯通信端末100は、ユーザIDを暗号化した情報を、音声信号として決済端末200に送信してもよい。また、決済端末200が携帯通信端末100に送信する情報も暗号化されたものであってもよい。さらに、決済端末200と決済サーバ300とは、相互に暗号化した情報を送受信してもよい。
また、携帯通信端末100は、ユーザIDとともに、ワンタイムパスワードを送信してもよい。例えば、時刻同期式の場合、携帯通信端末100は、時刻に基づいて所定のアルゴリズムによりワンタイムパスワードを生成する。ワンタイムパスワードを受信した決済端末200は、時刻に基づいて所定のアルゴリズムにより生成したパスワードと、受信したワンタイムパスワードとが一致するか否かを判別する。
上記の例では、携帯通信端末100としてスマートフォンの例を説明したが、これに限らず、スピーカ、マイクを備える他の機器に対しても、上記の技術は応用可能である。例えば、MP3プレーヤといった携帯音楽機器、IC(Integrated Circuit)レコーダ、腕時計といったウェアラブル端末である。ただし、いずれも、スピーカとマイクを備えている必要がある。また、音声を出力するため、スピーカ以外の音響拡声装置を使用してもよく、音声を入力するためマイク以外の集音装置を使用してもよい。
また、上記実施の形態においては、キャリアとして使用する音声を、非可聴の帯域の音声とする例を説明したが、可聴帯域の音声をキャリアとして使用してもよい。
なお、通信に音を利用する際には、以下のような問題点がある。無線信号の伝播速度に比べ、音の伝搬速度は遅く、(理論上は、無線信号の伝搬速度に比べ1/880,000くらいに低下する)、帯域が狭いため、決められた時間で充分な量のデータを送受信することが難しい。
具体的には、誘導式RFIDでは、タグを内蔵した携帯端末等が数秒間、リーダライタに近接又は接触されることでデータの送受信が行われるが、通信に音を利用する場合、同程度の時間では十分な量のデータを送受信できず、実際にサービスの運用時に時間がかかりすぎるといった問題が想定される。
本発明の通信端末による音声信号を使用した通信により送受信可能なデータ量を説明する。前述のように携帯通信端末100、決済端末200ともに、OFDMを採用するが、ここでは、キャリアの数(チャネル数)を128とする。上述のように、帯域の両端に割り当てられる2チャネルは使用しないため、実質的には126チャネルがデータ送信のため使用可能なチャネル数である。
4kHzの帯域で126チャネルを使用することを想定し、変調速度を早く(変調周期を短く)すると反射等の影響を受けやすいことを考慮して、計算等によりキャリアの変調周期を求めたところ、変調周期は、43.25msecとなった。変調周波数は、変調周期の逆数であるため、1/43.25msec=23.121…Hzとなり、およそ23.1Hzである。この値は、1チャネルあたりの変調速度を示す。1秒間に出力可能な音は23.1音(シンボル)である。
通信速度(伝送速度)は、1チャネルあたりの変調速度×チャネル数×1音あたりのビット数から求めることができる。前述のように、OFDMによるマルチチャネル化により126チャネルが実質使用可能である。DQPSK変調により一度に2ビットの情報を表すことができる。よって、通信速度は、1/43.3msec×126チャネル×2bit=5819.86…bpsとなり、およそ5820bpsとなる。
実施の形態で説明したように、4kHzの帯域を2分割した帯域においてそれぞれ同じデータを送信するため、実質的な通信速度は、5820bps÷2=2910bpsとなる。
エラー訂正のため1/2レートの畳み込み符号化を行うと、データ量は約2倍に冗長化され、通信速度は、2910bps÷2=1455bpsとなる。
このように、エラー訂正のため、畳み込み符号化した場合であっても、通信速度は約1455bpsである。つまり、携帯通信端末100は、1秒間に1kbit以上のデータの送信が可能である。近接通信ICチップを備える携帯端末を使用した近接通信では、通常、人が携帯端末をリーダライタに近接させた状態を維持するのに無理のない時間が2秒程度である。よって、上記通信速度では、2秒間では約3kbitのデータを送信することが可能といえる。この通信データ量は、例えば、ユーザの認証に必要な識別情報(ユーザID等)を送受信するのに十分な通信データ量である。
携帯通信端末100、決済端末200及び決済サーバ300が実行する処理は、例えば、上述の物理的な構成を備える装置が、記憶部150、250、320に記憶されたプログラムを実行することによって実現されるが、本発明は、プログラムとして実現されてもよく、そのプログラムが記録された記憶媒体として実現されてもよい。
また、上述の処理動作を実行させるためのプログラムを、フレキシブルディスク、CD−ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical Disk)等のコンピュータにより読み取り可能な記録媒体に格納して配布し、そのプログラムをコンピュータにインストールすることにより、上述の処理動作を実行する装置を構成してもよい。
上記実施の形態は例示であり、本発明はこれらに限定されるものではなく、請求の範囲に記載した発明の趣旨を逸脱しない範囲でさまざまな実施の形態が可能である。各実施の形態や変形例で記載した構成要素は自由に組み合わせることが可能である。また、請求の範囲に記載した発明と均等な発明も本発明に含まれる。
本出願は、2017年1月30日に出願された日本国特許出願2017−014731号に基づくものであり、その明細書、特許請求の範囲、図面及び要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
本発明の通信システム、通信装置、方法、及びプログラムは、スマートフォン等に所定のアプリケーションをインストールするだけで、音声を伝送媒体とした高速近接通信において安定した通信を実現でき、有用である。
1 店舗
2 ネットワーク
31、32、33、41 帯域通過フィルタ(BPF)
42 2倍UPサンプリング回路
43 搬送波ミキシング回路
44 リサンプル用ローパスフィルタ(LPF)
45 1/12リサンプリング回路
47 1/2リサンプリング回路
46 ローパスフィルタ(LPF)
48、50 パワー計算部
49 ハイパスフィルタ(HPF)
100 携帯通信端末
110、210 操作部
120、220 表示部
130、230 集音部
131、231 マイク
140、240 発音部
141、241 スピーカ
150、250、320 記憶部
151 ユーザID
152、251、321 決済処理プログラム
153、252 送信順序定義情報
154、253 重み付け定義情報
160、260 送受信部
161、261 送信部
162、262 受信部
170、270、330 制御部
190、290、390 バス
200 決済端末
280、310 通信部
300 決済サーバ
322 ユーザテーブル
1000 通信システム

Claims (7)

  1. 第1の通信端末と第2の通信端末とを含む通信システムであって、
    前記第1の通信端末は、
    送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換する変換部と、
    前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として発する発音部と、
    を備え、
    前記第2の通信端末は、
    音声を集音する集音部と、
    前記集音部が集音した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を前記所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えられた前記第1の音声周波数帯域の信号、及び前記集音部が集音した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する変換部と、
    を備えた
    信システム。
  2. 前記第2の通信端末の前記変換部は、
    前記第1の音声周波数帯域の信号と前記第2の音声周波数帯域の信号との加重平均を求め、求めた前記加重平均の信号を受信データに変換する、
    請求項1に記載の通信システム。
  3. 前記第2の通信端末の前記変換部は、
    前記第1の音声周波数帯域の信号の信頼性に基づいて、前記第1の音声周波数帯域の信号に重み付けをし、前記第2の音声周波数帯域の信号の信頼性に基づいて、前記第2の音声周波数帯域の信号に重み付けをし、重み付けをした前記第1の音声周波数帯域の信号と重み付けをした前記第2の音声周波数帯域の信号の平均を求め、求めた平均の信号を受信データに変換し、
    信頼性が高い方が重みが大きい、
    請求項1又は2に記載の通信システム。
  4. 送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換する変換部と、
    前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として発する発音部と
    備えた通信装置。
  5. 第1の音声周波数帯域の信号及び第2の音声周波数帯域の信号を音声として発する送信装置からの音声を受信する受信部と、
    前記受信部が受信した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えられた前記第1の音声周波数帯域の信号、及び前記受信部が受信した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する変換部と、
    を備えた通信装置。
  6. 第1の通信端末と第2の通信端末とが通信する方法であって、
    前記第1の通信端末が、
    送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換し、
    前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として発し、
    前記第2の通信端末が、
    集音した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を前記所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えた前記第1の音声周波数帯域の信号、及び集音した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する、
    方法。
  7. コンピュータに、
    送信データを所定の大きさのデータに分割し、分割したデータを所定のルールに基づいて並び替え、並び替えたデータを第1の音声信号に乗せて第1の音声周波数帯域の信号に変換し、前記分割したデータを並び替えずに、第2の音声信号に乗せて第2の音声周波数帯域の信号に変換する処理と、
    前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号をそれぞれ音声として出力する処理と、
    受信した音声から取り出した前記第1の音声周波数帯域の信号を所定の期間毎に分割し、分割した前記第1の音声周波数帯域の信号を前記所定のルールに基づいて並び替え、前記所定のルールに基づいて並び替えられた前記第1の音声周波数帯域の信号、及び受信した音声から取り出した前記第2の音声周波数帯域の信号それぞれの信頼性に基づいて、前記第1の音声周波数帯域の信号及び前記第2の音声周波数帯域の信号を受信データに変換する処理と、
    を実行させるプログラム。
JP2018526275A 2017-01-30 2018-01-24 通信システム、通信装置、方法、及びプログラム Active JP6505953B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017014731 2017-01-30
JP2017014731 2017-01-30
PCT/JP2018/002145 WO2018139490A1 (ja) 2017-01-30 2018-01-24 通信システム、通信装置、方法、及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2018139490A1 JPWO2018139490A1 (ja) 2019-01-31
JP6505953B2 true JP6505953B2 (ja) 2019-04-24

Family

ID=62978409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018526275A Active JP6505953B2 (ja) 2017-01-30 2018-01-24 通信システム、通信装置、方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP6505953B2 (ja)
WO (1) WO2018139490A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923860B2 (ja) * 2017-04-17 2021-08-25 株式会社スマート・ソリューション・テクノロジー 通信システム、通信方法、及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120213B2 (en) * 2000-10-27 2006-10-10 Texas Instruments Incorporated Using SISO decoder feedback to produce symbol probabilities for use in wireless communications that utilize single encoder turbo coding and transmit diversity
GB2408898B (en) * 2003-12-02 2006-08-16 Toshiba Res Europ Ltd Improved communications apparatus and methods
JP5388682B2 (ja) * 2009-05-12 2014-01-15 三菱電機株式会社 送信機、受信機および通信装置
JP2016208185A (ja) * 2015-04-20 2016-12-08 ヤマハ株式会社 放音システムおよび復調装置

Also Published As

Publication number Publication date
WO2018139490A1 (ja) 2018-08-02
JPWO2018139490A1 (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
JP4528365B1 (ja) 発信装置
US9318116B2 (en) Acoustic data transmission based on groups of audio receivers
CN107645343B (zh) 基于声波的数据发送/接收方法及数据传输系统
US7349481B2 (en) Communication using audible tones
US20030212549A1 (en) Wireless communication using sound
US20120134238A1 (en) Acoustic modulation protocol
US9184915B2 (en) Strong authentication token with acoustic data input over multiple carrier frequencies
US7359451B2 (en) System and method for wirelessly transmitting and receiving digital tokens for use in electronic gameplay
JP4295781B2 (ja) 情報提供システム
Novak et al. Ultrasound proximity networking on smart mobile devices for IoT applications
JP6505953B2 (ja) 通信システム、通信装置、方法、及びプログラム
CN106105108A (zh) 将一电子装置通过另一电子装置连接到互联网
Bai et al. BatComm: enabling inaudible acoustic communication with high-throughput for mobile devices
CN103841458B (zh) 辅助信息推送方法及装置、辅助信息接收方法及装置
JP6923860B2 (ja) 通信システム、通信方法、及びプログラム
JP6959638B2 (ja) 通信システム、通信方法およびプログラム
JP4545234B1 (ja) 発信装置
JP6934247B2 (ja) 通信システム、通信方法およびプログラム
US20160308704A1 (en) Method and system for communication digital data on an analog signal
JP6963290B2 (ja) 通信システム、通信装置、通信方法、及びプログラム
Jeon et al. Noncoherent low-frequency ultrasonic communication system with optimum symbol length
CN109119053B (zh) 一种信号传输方法、装置、电子设备以及计算机可读存储介质
JP2016208185A (ja) 放音システムおよび復調装置
McGrath Non-Intrusive Audible Quick Response Code for media application
Vazquez Acoustic Digital Communication for Identification Systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6505953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250