JP6505092B2 - ナノポア構造体内に複数の単一分子レセプタを作製する方法、およびナノポア構造体 - Google Patents

ナノポア構造体内に複数の単一分子レセプタを作製する方法、およびナノポア構造体 Download PDF

Info

Publication number
JP6505092B2
JP6505092B2 JP2016522086A JP2016522086A JP6505092B2 JP 6505092 B2 JP6505092 B2 JP 6505092B2 JP 2016522086 A JP2016522086 A JP 2016522086A JP 2016522086 A JP2016522086 A JP 2016522086A JP 6505092 B2 JP6505092 B2 JP 6505092B2
Authority
JP
Japan
Prior art keywords
group
patch
nanochannel
nanopore
nanopore structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016522086A
Other languages
English (en)
Other versions
JP2017502647A (ja
Inventor
バルドフ、ジュリア
ハラー、ステファン
シーバー、クリスティーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2017502647A publication Critical patent/JP2017502647A/ja
Application granted granted Critical
Publication of JP6505092B2 publication Critical patent/JP6505092B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/631Detection means characterised by use of a special device being a biochannel or pore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明はナノポアに関し、特に、表面が機能化されたナノポアおよび機能化されたナノチャネルに関する。特に、本発明は空間的に隔てられた機能性検知要素を含むナノ流体センサに関する。
分子寸法の固体ナノポアおよびナノチャネルは、例えばデオキシリボ核酸(DNA)、タンパク質、および他の生体分子などの分析物の化学的性質に関する情報を提供しうる。固体ナノポアデバイスは、二つの塩溶液を隔てる少なくとも単一の開口すなわち「ナノポア」を有する多層基板を含みうる。ナノポアデバイスの特定の寸法および組成は、所望の応用例に合わせて調整される。
動作時には、電圧を印加することによりナノポアを横断して電位差が生成され、ナノポアを通過するイオン電流が計測される。その後、ナノポアを分析物が通過することにより、計測される開放電流レベルの減少が引き起こされる。検出された減少またはイオン電流の低下は分析物の単一分子によるナノポアの通過を示し、これを転移事象とも呼称することができる。
転移データは、単一分子レベルでポアを横断する分析物についての特性を明らかにしうる。ナノポアまたはナノチャネル内の一つ以上のレセプタ部位に対する分析物の結合等の間接的計測技術は、多くの小さな化学化合物および生化学化合物の化学的性質および生物学的性質についての貴重な情報を提供しうる。
ナノポア構造体内に複数の単一分子レセプタを作製する方法、および複数の単一分子レセプタを含むナノポア構造体を提供する。
一実施形態によれば、ナノポア構造体内に複数の単一分子レセプタを作製する方法は、物理蒸着法(PVD)技術によって第一材料および第二材料をナノチャネルの異なる選択された内側表面上へ堆積させ、第一材料、第二材料、または第一および第二材料の両方の表面を、少なくとも二つの官能基を有する化学化合物で機能化するステップを含む。第一および第二材料は同じでも異なってもよく、第一および第二材料は、約1〜約100ナノメートル(nm)の直径を有するパッチを形成する。
別の実施形態では、ナノポア構造体内に複数の単一分子レセプタを作製する方法は、ナノポア構造体内のナノチャネルの選択された内側表面上へビームを配置するためにビームに対して第一角度でナノポア構造体を傾けるステップであって、ビームは、PVD技術により材料を堆積させるために動作する、ステップと;ナノチャネルの選択された内側表面上へ第一材料を堆積させるためにビームを操作するステップと;ビームに対して第二角度を形成するためにナノポアを再度傾けるステップと;ナノチャネルの別の選択された内側表面上へ第二材料を堆積させて第二パッチを形成するためにビームを操作するステップと;第一パッチ、第二パッチ、または第一および第二パッチの両方の表面を機能化するステップとを含む。第一および第二材料は同じでも異なってもよく、第一材料は、約3〜約10,000nmの表面積を有する第一パッチを形成する。
さらに別の実施形態では、複数の単一分子レセプタを含むナノポア構造体は、第一表面と反対側の第二表面とを有する基板と;第一表面から反対側の第二表面まで伸び、内側表面を画成するナノチャネルと;ナノチャネルの内側表面の選択されたエリア上へ配設される第一材料であって、約3〜約10,000nmの表面積を有する第一パッチを形成する第一材料と;ナノチャネルの内側表面の異なる選択されたエリア上へ配設される第二材料であって、第二材料は、約3〜約10,000nmの表面積を有する第二パッチを形成し、第一材料と第二材料とは同じであるかまたは異なっている、第二材料と;第一および第二材料のうちの少なくとも一つの上へ配設された分析物結合機能性を有する化学化合物とを含む。
本発明の技術を通じて、追加の特徴および利点が実現される。本発明の他の実施形態および態様が本明細書に詳述され、請求された本発明の一部と考えられる。本発明とその利点および特徴についてのより良い理解のために、説明および図面を参照されたい。
本発明とみなされる内容は、明細書の結論部の特許請求の範囲において特に指摘し、明確に請求する。本発明の以上および他の特徴、ならびに利点は、添付の図面に関連して以下の詳細な説明を理解することで明らかになる。
ナノポア構造体内に単一分子レセプタを作製する方法の例示的実施形態を示したブロックダイヤグラムである。 ナノポア構造体内に単一分子レセプタを作製する方法の例示的実施形態を示した部分切り取り側面図である。 図2のナノポア構造体内の単一分子レセプタの例示的実施形態を示した部分切り取り側面図である。 ナノポア構造体内に単一分子レセプタを作製する方法の例示的実施形態を示したブロックダイヤグラムである。 図5A〜Hは、ナノポア構造体内の単一分子レセプタの様々な可能な組み合わせの例示的実施形態を示した部分切り取り側面図である。 ナノポア構造体内に複数の単一分子レセプタを作製する方法の例示的実施形態を示したブロックダイヤグラムである。 ナノポア構造体内に複数の単一分子レセプタを作製する方法の例示的実施形態を示したブロックダイヤグラムである。 一つまたは複数の単一分子レセプタを有するナノポア構造体を使用する方法の例示的実施形態を示した部分切り取り側面図である。
ナノポアまたはナノチャネル内に単一分子レセプタを作製する方法を、本明細書に開示される。二つのイオン溶液を隔てるナノポアまたはナノチャネルに電圧を印加すると、分析物の単一分子の転移もしくは結合またはその両方によってイオン電流の計測可能な変化が引き起こされる。したがって、ナノポア内のレセプタへのタンパク質または小さな生化学化合物等の分析物の単一分子の制御された転移もしくは可逆的結合またはその両方により、分析物の物理的特性もしくは化学的特性またはその両方を明らかにすることができる。
ナノポア構造体内に制御された数の埋設された単一結合部位を提供することにより、複数の無制御の結合事象が生じうるシステムと比較して実質的に高い信頼性が提供される。複数の無制御の結合事象の可能性は、データおよび後の解釈の複雑化につながる。それに対して、本開示の方法は、単一の結合事象または制御された限定数の結合事象を分析する手段を提供し、データ分析の信頼性だけでなく容易性を高める。
さらに、本開示の方法およびナノポア構造体は、単一分子結合部位に対する結合が生じるものと結合が生じないものという二つの異なる転移シナリオだけを提供する。このようなシナリオも、データ解釈の容易性を可能にする。
加えて、ナノポアに限定および制御された数の戦略的に置かれた複数の結合部位を作り出す能力によって、貴重な対照実験として使用できる複数の結合部位でのデータ収集および解釈が可能になる。特に、これらの対照を用いて、未知数の結合部位でのナノポアデータを解釈することができる。
ナノチャネル内に制御された数の単一分子結合部位を有するナノポア構造体は、単純化された電流プロファイルを提供する。したがって、結果データがより確実かつ容易に解釈される。さらに、一つのナノポア構造体またはデバイス内の異なる単一分子結合部位によって、一回の計測でのいくつかの分析物の検知および検出が可能になる。
本明細書で使用されるところの「分析物」という用語は、分析対象のまたは検出しようとしている化合物、分子、物質、または化学的構成成分を指す。本開示が特定の分析物に限定されることは意図していない。代表的な分析物には、イオン、糖類、タンパク質、核酸、および核酸配列が含まれる。
本明細書で使用されるところの「単一分子レセプタ」という用語は、目的成分すなわち分析物の単一分子が結合または物理的に相互作用する構造体を指す。本明細書に開示される単一分子レセプタは、ナノポア構造体またはナノチャネルの内側表面上へ堆積される機能化された材料を含む。材料が、ナノメートル寸法のサイズを有する薄膜またはパッチを形成し、機能化された材料は、分析物と物理的に相互作用または結合する官能基すなわち分析物結合基を含む。
本明細書で使用されるところの「ナノポア」および「ナノポア構造体」という用語は、固体基板と基板を通る「ナノチャネル」すなわちナノスケールの通路とを有し、ナノチャネルをイオン電流が流れることができる構造体を指す。ナノポアまたはナノチャネルの内径は、使用意図に応じて大きく変動しうる。
本明細書で使用されるところの「物理蒸着法」、「PVD」などの用語は、表面上への材料の薄膜またはコーティングの堆積のための方法を指す。これらの方法は一般に、蒸発させた形の材料の表面上への凝結を含む。PVD技術の非限定的な例には、パルスレーザアブレーション、スパッタリング、電子ビーム蒸着、パルス電子蒸着、またはその任意の組み合わせが含まれる。本明細書で使用されるところの「物理蒸着ビーム」、「PVDビーム」、または「ビーム」という用語は、PVD法で使用されるイオンビームまたは電子ビームを指す。
本明細書で使用されるところの「官能基」という用語は、原子、原子の組み合わせ、化学基、生化学基、生化学分子、またはその任意の組み合わせを包含する。官能基は、リンカーと直接連結または結合されることができ、本明細書に記載の化学化合物にその化学反応性を与える、任意の基である。
ここで図を参照すると、図1および2はそれぞれ、ナノポア構造体内に単一分子レセプタを作製する方法の例示的実施形態のブロックダイヤグラムおよび図解である。図3は、分析物と相互作用する図2の単一分子レセプタを有するナノポア構造体の一部を示す。
ナノポア構造体は、チップ、ディスク、ブロック、プレートなどの基板から製作できる。このような基板は、酸化ケイ素、窒化ケイ素を含むシリコン、ガラス、セラミック、ゲルマニウム、ポリマー(例えばポリスチレン)、ガリウム砒素、またはその任意の組み合わせを含むがこれに限定されない様々な材料から作製できる。基板はエッチングされることができ、例えばチップは半導体チップでありうる。基板は、多層基板でありうる。本明細書の目的上、多層基板内の中心材料が外側の材料と同じであることまたは異なることは意図されない。多層基板内の個々の層の厚みだけでなく基板の厚みも、一般的に変動しうる。したがって、ナノポア基板の特定の厚みは限定されない。
ナノポア基板は、化学蒸着(CVD)法、プラズマ増強学蒸着(PECVD;pulsma enhanced CVD)法、リソグラフィパターニングおよびエッチング法、ならびにエピタキシャル成長プロセスを含むがこれに限定されない任意の適切な製作プロセスを用いて製作できる。その後、電子ビーム穿孔またはイオンビーム穿孔を含むがこれに限定されない任意の適切なプロセスにより基板を通じてナノポア内のナノチャネルが製作されうる。
図1は、ナノポア構造体内に単一分子レセプタを作製する例示的方法100のブロックダイヤグラムを示す。ブロック110では、方法100は、PVD技術によりナノポア構造体の選択された内側表面上へ材料を堆積させるステップを含む。一実施形態では、材料は、約1〜約100ナノメートル(nm)の直径を有する材料のパッチを形成する。別の実施形態では、材料は、約90nm〜約1,000nmの直径を有するパッチを形成する。ブロック120では、材料の表面が、少なくとも二つの官能基を有する化学化合物で機能化される。材料が機能化されると、機能化された材料が目的分析物に結合しうる。しかし、方法100は例示的実施形態にすぎない。方法100の他の実施形態が使用されてもよい。
図2は、ナノポア構造体230内に単一分子レセプタ224を作製する方法200の例示的実施形態を示す。方法200は、PVD技術240によってナノポア構造体230の選択された内側表面上へ材料220を堆積させるステップと、その後、化学化合物222で材料220の表面を機能化するステップとを含む。ナノポア構造体230は、第一表面210と、反対側の第二表面215と、第一表面210から反対側の第二表面215まで伸び、ナノポア構造体230の内側表面245を画成する、ナノチャネル235とを含む。特に、ナノチャネル235の選択された内側表面245上へ材料220が堆積される。ナノチャネル235は、第一表面210に開いた第一開口部216と、第二表面215に開いた第二開口部(図示せず)とを有する。しかし、方法200は例示的実施形態にすぎない。方法200の他の実施形態が使用されてもよい。
材料220は、PVD技術240により堆積させうる任意の材料とすることができるが、材料のタイプおよびナノポア構造体230の表面特性次第である。一実施形態では、材料は、金属、金属合金、半導体、絶縁体、またはその任意の組み合わせである。好適な材料の非限定的な例には、アルミニウム、非晶質カーボン、クロミウム、コバルト、ダイヤモンド、ガリウム砒素、窒化ガリウム、ゲルマニウム、金、鉄、モリブデン、ニッケル、ニオブ、オスミウム、パラジウム、プラチナ、レニウム、ロジウム、ルテニウム、タングステン、シリコン、窒化ケイ素、酸化ケイ素、銀、酸化チタン、タングステン、またはその任意の組み合わせが含まれる。
図3は、ナノポア構造体内の単一分子レセプタ224の一部の拡大図の例示的実施形態を示す。材料220の堆積の後、化学化合物222で材料220が機能化される。化学化合物222は、リンカー330により任意に接続される少なくとも二つの官能基RおよびRを含む。別の実施形態では、機能化するステップは、化学化合物222を材料220の表面上へ堆積させるステップを含み、化学化合物222は、材料220との接触生成物を形成する第一官能基Rと、分析物310との接触生成物を形成する第二官能基Rと、第一官能基Rを第二官能基Rに接続するリンカー330とを含む。化学化合物222は、材料220の表面または表面の少なくとも一部の上に自己組織化単層(SAM;self‐assembled monolayer)を形成しうる。
一例示的実施形態では、ナノポア構造体は、第一表面と反対側の第二表面とを有する基板と、第一表面から反対側の第二表面まで伸び、内側表面を画成するナノチャネルと、ナノチャネルの内側表面の選択されたエリア上に配設された材料と、機能化された材料を形成するために材料上に配設された化学化合物とを含む。さらに、材料は約3〜約1,000nmの表面積を有し、機能化された材料が、分析物に結合する単一分子レセプタを形成する。
ナノポア構造体230の製作後、材料220の堆積もしくは化学化合物222による機能化の前または後の任意の時点で、ナノチャネル235の内側表面245の少なくとも一部の上に任意のSAMを製作しうる。SAMの組成および特性は一般に変動し、ナノポア基板の組成および特性に依存し、限定されない。一実施形態では、SAMはシラン基を含む。
化学化合物222の第一官能基Rは、一般に変動してよく、限定されない。具体的には、第一官能基Rは、材料220との接触生成物を形成することができる任意の官能基であってよい。第一官能基Rは、材料220に対して特異的または非特異的親和性を有しうる。例えばチオールは、プラチナおよび金の表面に結合し、接触生成物を形成しうる。加えて、イソニトリルは、プラチナの表面と接触生成物を形成する。第一官能基Rの非限定的な例は、ハロゲン化アシル基、アミン基、アミド基、アルコール基、カルボン酸チオール基、ニトリル基、リン酸基、ホスフィン基、シラン基、硫酸基、スルフィド基、亜硫酸基、チオール基、チオレート基、またはその任意の組み合わせである。
一実施形態では、第一官能基Rは、材料220との可逆的接触生成物を形成する。例えば材料220を、あるタイプの第一官能基Rを有する第一化学化合物で機能化し、その後、第一化学化合物を除去しうる。その後、材料220を、最初の(第一)化学化合物とは異なる第一官能基Rを有する第二化学化合物で機能化しうる。このプロセスを繰り返すことができ、このことから機能化されたナノチャネル表面の再利用可能性が示される。
第一官能基Rと第二官能基Rとの間の任意のリンカー330は、第一官能基Rと第二官能基Rとの間にリンクを形成できる任意の化学化合物、ポリマーまたはバイオポリマーでありうる。好適なリンカー330の非限定的な例には、炭化水素、ペプチド、バイオポリマー、合成ポリマー(例えばポリエチレングリコール(PEG;polyethylene glycol))またはその任意の組み合わせが含まれる。リンカー330の長さは、第一および第二官能基RおよびRのそれぞれの同一性ならびにナノチャネル235の寸法に依存しうる任意の所望の長さに調節することができる。さらに、リンカー330は、直鎖でも分岐していてもよい。
第二官能基Rは、分析物310の結合部位を形成する。第二官能基Rは、所望の分析物310との接触生成物を形成することができる任意の官能基でありうる。したがって、第二官能基Rの以下の例は、限定を意図するものではない。第二官能基Rの適切な例には、小さな化学化合物および生化学化合物、例えばペプチド、タンパク質、炭水化物、脂質が含まれる。さらに、Rにつき上述した任意の化学化合物をRに使用しうる。
材料220は、公知技術の任意のPVD技術240により、ナノポア230の選択された内側表面245上へ堆積される。PVD技術240は、表面上への薄膜蒸着のための方法である。表面上への堆積時に、材料が材料の薄膜すなわちパッチを形成する。パッチの形状、寸法および組成は一般に様々であり、限定されない。一実施形態では、材料220は、ナノメートル寸法を有するパッチを形成する。一つ以上の材料の一つの層または複数の層が、一つ以上のPVD技術240を使用して、ナノポア230の選択された内側表面245上へ堆積されうる。
図4は、ナノポア構造体内に単一分子レセプタを作製する例示的方法400のブロックダイヤグラムを示す。ブロック410では、方法400は、ナノポア構造体内のナノチャネルの選択された内側表面上へビームを配置するために、ナノポア構造体をビームに対してある角度に傾ける(図2参照)ステップであって、ビームは、PVD技術によって材料を堆積させるために動作する、ステップを含む。ブロック420では、ナノチャネルの選択された内側表面上へ材料を堆積させるためにビームが操作される。材料は、約3〜約10,000nmの間の範囲の表面積を有するパッチを形成する。ブロック430では、単一分子レセプタを形成するためにパッチの表面が機能化される。
PVD技術240は、蒸発させた形の材料220の表面上への凝結による、表面上への所望の材料の真空蒸着を含む。PVD技術240の非限定的な例には、パルスレーザ蒸着/アブレーション蒸着(PLD;pulsed laser deposition)、スパッタリング、電子ビーム蒸着、パルス電子蒸着(PED;pulsed electron deposition)、またはその任意の組み合わせが含まれる。PVD技術240は、ターゲット材料を蒸発させるための電子ビームまたはイオンビームの使用を含む。一般に、PLD技術は、表面上へ堆積させる予定の材料のターゲットに当てるために真空チャンバ内に集束される高出力パルスレーザビームの使用を含む。この材料はターゲットから(プラズマプルームとして)蒸発させられ、それによって材料が、ターゲットに面するまたはターゲット付近の基板または表面上に薄膜として堆積される。このプロセスは、超高真空内またはバックグラウンドガスの存在下で生じうる。酸化物を堆積させる際には、堆積される材料を酸化させるために酸素を使用しうる。
一般に、スパッタリングプロセスは、真空チャンバ内でソースであるターゲットから基板表面上に材料を射出するステップを含む。この効果は、アルゴン等の不活性ガスでありうるイオン化ガスのターゲットに対する衝突により生じる。
一般に、電子ビーム蒸着は、電子ビーム曝露の結果としての電子を介した前駆体分子の分解により、固体材料がターゲット材料上へ堆積されるプロセスである。電子ビームは、高真空下でタングステンフィラメントから放出される。電子ビームにより、導入された蒸気プルームの解離反応が引き起こされ、固体堆積物の薄層が生じる。
一般に、PEDは、パルス化された高出力電子ビームがターゲット材料を透過し、プラズマ状態への急速な蒸発および変換が生じるプロセスである。それからプラズマ状態のターゲット材料が、表面上へ堆積される。全ての固体状態材料の金属、半導体および絶縁体が、PEDを用いて薄膜として堆積されうる。
一実施形態では、PVD技術240は、金属堆積の追加機能を備えた「デュアルビーム」顕微鏡等の複合電子ビームおよび集束イオンビーム(FIB;focused ion beam)方法を含みうる。特に、高分解能電界放射走査型電子顕微鏡(SEM)および精密集束イオンビーム(FIB)エッチングおよび蒸着を組み合わせた顕微鏡(例えばヒルズバラ、オレゴン州Feiカンパニー、Nova Dual Beam顕微鏡)を使用できる。
再び図2を参照すると、材料220を堆積させるために、ナノポア230がPVDビーム250に対して傾けられる。例示的実施形態では、PVD方法240は、デュアルビーム顕微鏡を利用し、PVDビーム250は複合電子ビームおよびFIBである。ナノポア構造体230が、顕微鏡ステージ上へ配設されうる。それから、第一表面210が水平面260に対して角度θを形成するように、顕微鏡ステージしたがってナノポア構造体230が傾けられうる。したがって、ナノポア230の第一表面210は、PVDビーム250に対して角度θを形成する(90°−θ)。ナノポア230を傾けると、PVDビーム250が、ナノポア230の第一表面210の第一開口部216を通ってナノチャネル235の選択された内側表面245上へと導かれる。後述のように、傾きパラメータの調節を用いて、ナノチャネル235内の材料パッチの精密な配置を微調整することができる。
角度θは、約1°〜約52°の間とすることができる。一実施形態では、θは、約10°〜約40°の間とすることができる。別の実施形態では、θは、約20°〜約35°の間とすることができる。
したがって、90°−θに等しい角度θは、約38°〜約89°の間とすることができる。一実施形態では、θは、約45°〜約75°の間とすることができる。別の実施形態では、θは、約50°〜約65°の間とすることができる。
所与のナノチャネルの直径dに対し、PVDビーム250のアクセス可能直径pはsin(θ)×dに等しい。さらに、材料220の位置または第一表面210からの距離xは、p/cos(θ)に等しい。例えば、d=20nmの直径を有するナノチャネル235は、約12nmのアクセス直径pを有し、第一表面210から約16nm(x)の距離に配置される。したがって、傾き角度θおよびθを調節することにより、第一開口部216をブロックすることなくナノチャネル235内の精密な配置が可能になる。
ナノチャネル235の直径dは、任意の応用例に合わせて調整されうる。したがって、以下の直径は限定を意図するものではない。一実施形態では、ナノチャネルの直径dは、約30〜約100nmの間である。別の実施形態では、ナノチャネルの直径dは、約10〜約30nmの間である。さらに別の実施形態では、ナノチャネルの直径dは、約1〜約10nmの間である。
アクセス可能直径pは、上述のようにナノチャネルの直径dと角度θとに依存する(p=sin(θ)×d)。したがってアクセス可能直径pは、ナノチャネルの直径d、角度θまたはその両方を調節することにより、任意の所望の応用例に合わせて調整されうる。アクセス可能直径pは一般に様々であるため、以下のアクセス可能直径pは限定を意図するものではない。一実施形態では、アクセス可能直径pは、約10〜約100nmの間である。別の実施形態では、アクセス可能直径pは、約20〜約80nmの間である。さらに別の実施形態では、アクセス可能直径pは、約30〜約60nmの間である。
材料220がナノチャネル235の選択された内側表面245上へ堆積された後、材料220は、第一表面210から距離xに配置されたパッチを形成する。上述のように、パッチの正確な位置または第一表面210からの距離xは、アクセス可能直径pとθとに依存する(x=p/cos(θ)=sin(θ)×d/cos(θ)=d/tan(θ))。したがってパッチ距離xは、アクセス可能直径p、角度θまたは両方を調節することにより、任意の所望の応用例に合わせて調整されうる。例えば、約41°の角度θで傾けられたd=20nmを有するナノチャネル235は、約12nmのアクセス直径pを有し、第一表面210から約16nm(x)の距離に配置される。
したがって、以下のナノチャネル235内の第一表面210からの距離(x)は、限定を意図するものではない。一実施形態では、第一表面210からの距離xは、約1〜約50nmの間である。別の実施形態では、第一表面210からの距離xは、約10〜約40nmの間である。さらに別の実施形態では、第一表面210からの距離xは、約15〜約35nmの間である。
パッチのサイズまたはパッチ直径(図示せず)は可変的であり、材料を堆積させるために用いられる器具類に合うよう調節されうる。したがって、以下のパッチ直径は限定を意図するものではない。一実施形態では、パッチ直径は、約1〜約100nmの間である。別の実施形態では、パッチ直径は、約10〜約80nmの間である。さらに別の実施形態では、パッチ直径は、約20〜約60nmの間である。
材料220は、ナノチャネル235の選択された内側表面245上へ一つ以上の層において堆積させることができ、一つ以上の層は一つ以上の材料を含むことができる。少なくとも一つの材料220のパッチの厚みは、任意のサイズ、厚みまたは形状を有しうる。材料220のパッチの形状の非限定的な例には、円形、楕円形、長楕円形、正方形、三角形、長方形、リング形、またはその任意の組み合わが含まれる。一実施形態では、パッチは、ナノチャネル235の内周面を取り囲むリングの形状である。
材料220のパッチは任意の厚みを有することができ、厚みも所望の応用例に合わせて調整されうる。したがって、以下のパッチ厚は、限定を意図するものではない。一実施形態では、パッチ厚は、材料次第で約0.5〜約10nmの間である。別の実施形態では、パッチ厚は、約2〜約8nmの間である。さらに別の実施形態では、パッチ厚は、約4〜約6nmの間である。
さらに、材料220のパッチの表面積は、応用例に合うよう調節されうる。したがって、以下の表面積は、限定を意図するものではない。一実施形態では、材料220のパッチは、約3〜約1,000nmの間の表面積を有する。別の実施形態では、材料220のパッチは、約100〜約800nmの間の表面積を有する。さらに別の実施形態では、パッチは、約250〜約600nmの間の表面積を有する。
一実施形態では、ナノポア構造体230は、ナノチャネル235内に制御された数の単一分子レセプタ224を有する(材料の二つ以上のパッチが二つ以上の単一分子レセプタを形成する)。例えばFIBを用いたPVD技術240を使用して、材料220の一つ以上のパッチが、ナノチャネル235の表面245上へ堆積されうる。材料220の複数のパッチを上述のように堆積させることができる、パッチは同じでも異なってもよい。さらに、材料220の一つ以上のパッチを、任意の種類のパッチ配列に設けうるが、この点は以下に詳述する。
一実施形態では、ナノポア230は、材料220の第一パッチと同じでも異なってもよい、材料220の少なくとも第二パッチを含みうる。したがって、第一材料220を堆積させた後に、ナノポア構造体230を再度傾けて、PVDビーム250(θ)に対して約38°〜約89°の間の第二角度を形成しうる。それから、ビーム250を操作して、ナノチャネル235の異なる選択された内側表面245上へ、第一材料220と同じでも異なってもよい材料220を堆積させうる。その後、材料の第二パッチ、第三パッチまたは第nパッチを、第一パッチと同じまたは異なる機能性を含みうる化学化合物により機能化しうる。一実施形態では、nは、約2〜約10の間の数に等しい。別の実施形態では、nは、約3〜約8の間の数に等しい。別の実施形態では、nは、約2〜約5の間の数に等しい。
図5A〜Hは、様々な形状、位置、タイプ、配列および機能性を含む、ナノポア構造体内の単一分子レセプタの様々な可能な組み合わせの例示的実施形態を示した部分切り取り側面図である。図5Aおよび5Bは、異なるサイズおよび形状を有する材料220のパッチの例示的実施形態を示す。特に、図5Aは円形または正方形の形状を有する材料220のパッチを示し、図5Bは長円形または長方形の形状を有する材料220のパッチを示す。様々なサイズおよび形状のパッチが、検出される分析物の特性に合わせて調整されうる。例えば長パッチは、急速に転位する分析物の結合確率を高める。対して、ゆっくり転位する分析物には、より小直径のパッチで足りる。材料220の形状の任意の組み合わせを用いて、制御された数の単一分子結合部位を提供することができる。
図5Cおよび5Dは、様々な位置または第一表面210からの距離xの材料220のパッチの例示的実施形態を示す。図5Cは、第一表面210の近くに配置されたパッチを示す。図5Dは、ナノチャネル235の中央領域に向かって、図5Cより大きい距離xに配置されたパッチを示す。パッチ位置または距離xの任意の組み合わせを用いて、複数の単一分子結合部位を提供することができる。
図5Eは、異なる材料220の二つのパッチの組み合わせの例示的実施形態を示す。しかし、一実施形態では、ナノチャネル235は、同じ材料220の二つのパッチを含む(図示せず)。図5A〜Eに示されるパッチの様々な組み合わせを用いて、限りない数のカスタマイズされたナノポアデザインを提供することができる。材料パッチサイズ、形状、位置および材料220の任意の組み合わせを用いることができる。
材料220を堆積させて図A〜Eに示したパッチの任意の組み合わせを形成した後、パッチ(パッチの少なくとも一つ以上)の表面が機能化されて、単一分子結合部位が形成される。図5F〜Hは、機能化された材料220のパッチの例示的実施形態を示す。図5Fに示すように、材料220の任意の一つ以上のパッチを、分析物との接触生成物を形成する官能基を有する化学化合物で機能化しうる。あるいは、材料220のパッチの二つ以上または全てを、分析物との接触生成物を形成する官能基を有する化学化合物で機能化しうる。
図5Gに示すように、パッチを形成する材料220が一つ以上のパッチで同じであるとき、機能性は同じ(図示せず)でも異なってもよい。したがって、同一材料のパッチが、異なる分析物と結合しうる異なる官能基(第二官能基R)で機能化されてもよい。あるいは、図5Hに示すように、異なる材料のパッチが、同じ(図示せず)または異なる機能性を有する異なる化学化合物で機能化されてもよい。図5A〜Hは、例示的実施形態にすぎないことに注意しなければならない。パッチ位置、サイズ、形状、材料および機能性の組み合わせの他の実施形態が使用されてもよい。
材料220のパッチの位置を変更することにより、ナノポアを通る電流の理解が可能になり、単一分子レセプタ224の間の交互作用をナノチャネル235の外側の近くまたは遠くで生じさせることが可能になる。異なる材料220に対して適切な機能化または化学化合物222を選択することにより、同時に検出できる異なるターゲット分析物310の結合および検出が可能になる。サイズまたはナノチャネル235内の場所の違いにより、異なる分析物310を区別することができる。
一例示的実施形態では、複数の単一分子レセプタを有するナノポア構造体は、第一表面と反対側の第二表面とを有する基板と、第一表面から反対側の第二表面まで伸び、内側表面を画成するナノチャネルと、ナノチャネルの内側表面の選択されたエリア上へ配設される第一材料と、ナノチャネルの内側表面の異なる選択されたエリア上へ配設される第二材料と、第一および第二材料上へ配設されて複数の単一分子レセプタを形成する分析物結合機能性を有する化学化合物とを含む。さらに、第一材料および第二材料は、それぞれ約3〜約10,000nmの表面積を有する第一および第二パッチを形成する。第一および第二材料は、同じまたは異なる第一および第二分析物との接触生成物を形成する官能基(R)を含みうる。さらに、第一および第二パッチは、第一表面から距離xおよびxに配置することができ、距離xおよびxは同じであるかまたは異なる。
図6は、ナノポア構造体内に複数の単一分子レセプタを作製する方法600の例示的実施形態のブロックダイヤグラムを示す。ブロック610では、PVD技術により第一材料および第二材料がナノチャネルの異なる選択された内側表面上へ堆積される。第一および第二材料は同じでも異なってもよく、それぞれが約1〜約100nmの直径を有するパッチを形成する。ブロック620では、第一材料、第二材料、または第一および第二材料の両方の表面が、少なくとも二つの官能基を有する化学化合物で機能化される。第一材料、第二材料、または第一および第二材料の両方は、上述の材料220のいずれであってもよい。しかし、方法600は例示的実施形態にすぎない。方法600の他の実施形態が使用されてもよい。
図7は、ナノポア構造体内に複数の単一分子レセプタを作製する方法700の例示的実施形態のブロックダイヤグラムを示す。ブロック710では、ナノポア構造体内のナノチャネルの選択された内側表面上へビームを配置するために、ナノポア構造体がビームに対して第一角度で傾けられる。ビームは、PVD技術により材料を堆積させるために動作する。ブロック720では、ナノチャネルの選択された内側表面上へ第一材料を堆積させるためにビームが操作される。第一材料は、約3〜約10,000nmの表面積を有する第一パッチを形成する。ブロック730では、ビームに対して第二角度を形成するためにナノポアが再度傾けられる。ブロック740では、第二材料をナノチャネルの別の選択された内側表面上へ堆積させて第二パッチを形成するためにビームが操作される。ブロック750では、第一パッチ、第二パッチ、または第一および第二パッチの両方の表面が機能化される。第一材料、第二材料、または第一および第二材料の両方は、上述の材料220のいずれであってもよい。しかし、方法700は例示的実施形態にすぎない。方法700の他の実施形態が使用されてもよい。
図8は、一つ以上の単一分子結合部位224を有するナノポア構造体230を使用する方法800の例示的実施形態を示す。分析物310の分析中には、電流変動の適切な計測値を提供するために、印加された電場下でナノポアが十分に大きいイオン電流を可能にしなければならない。一つ以上の単一分子レセプタ224に対する分析物310の結合および分離もしくはナノチャネル235を通じた分析物310の転移またはその全てにより、電流変動が引き起こされる。したがって、分析物310の単一分子が単一分子レセプタ224に結合する際に電流変動を計測できる。これらの電流変動により、分析物310についての化学的情報および生化学的情報が提供される。
ナノポア構造体230は、第一セル部808と第二セル部810とを有する流体セルを画成する。特に、ナノポア構造体230は、第一セル部808と第二セル部810との間に配設される。ナノポア構造体230は、ナノチャネル235の内側表面の選択されたエリア上へ配設された、単一分子レセプタ224を形成する機能化された材料のパッチを含む。
第一シール部812が、第一セル部808とナノポア構造体230の第一表面210との間に密封係合される。第二シール部814が、ナノポア構造体230の第二表面215と第二セル部810との間に密封係合される。第一および第二シール部812および814は、例えばシリコンで作られたOリングガスケットであってもよい。第一セル部808は、ナノポア構造体230内のナノチャネル235と流体連通する第一ポート818および第二ポート820を画成する。第二セル部810は、ナノポア構造体230内のナノチャネル235と流体連通する第三ポート822および第四ポート(図示せず)を画成する。
第二ポート820および第三ポート822に配設された電極801および803が設けられた、電圧源802が示される。電流検知デバイス804は、電極801および803の間の電流の変化を検出するために動作する。電流検知デバイス804は、動作ソフトウェアを通じてパーソナルコンピュータにより制御されうる。電流は、ナノポア構造体230内にナノチャネル235により画成された電流経路を有する。
分析物310の分析の前に、まず緩衝化塩溶液がナノチャネル235に導入される。緩衝化塩溶液は、第一ポート818および第三ポート822を介して導入される。緩衝化塩溶液が、第二ポート820および第四ポート(図示せず)を介してナノチャネル235から流されうる。しかし、代替的実施形態では、ポートの役割を逆にしてもよい。電極801および803は、緩衝化塩溶液と連通する。電流はナノチャネル235により画成された電流経路を有し、単一分子レセプタ224結合するもしくはナノチャネル235を通過する分析物310またはその両方により電流が影響される。分析物310をナノチャネル235に導入すると、分析物310が単一分子レセプタ224と結合しまたは接触生成物を形成する。その結果は、イオン電流出力の検出可能な変化である。
緩衝化塩溶液は一般に様々であり、特定の分析物および応用例に依存する。緩衝化塩溶液は、任意の所望の電解質、イオン、バッファまたは成分を含みうる。
電流経路のイオン電流は、検知した電流値を処理し、ユーザに対しディスプレイ上に論理的結果を出力するために動作する例えばコンピュータプロセッサおよびディスプレイを含みうる処理およびディスプレイデバイス606に接続されうる電流検知デバイス804により計測される。上述のように、通過および単一分子レセプタ224に結合する分析物310により、電流が影響される。したがって、所望の任意のバッファ、溶液または溶媒中で、第一ポート818を介して分析物310がナノチャネル235に導入されうる。しかし、方法800は例示的実施形態にすぎない。方法800の他の実施形態が使用されてもよい。
本明細書に用いられる用語は、特定の実施形態の説明を目的としたものにすぎず、本発明を限定することを意図したものではない。本明細書で用いられるところの、単数形「一つの(a)」、「一つの(an)」および「その(the)」は、文脈から別段の明示がない限り、複数形も含むことを意図する。さらに当然のことながら、「含む(comprises)」もしくは「含んでいる(comprising)」という用語またはその両方は、本明細書において用いられるときには、述べられた特徴、整数、ステップ、動作、要素もしくは成分またはその全ての存在を指定するが、一つ以上の他の特徴、整数、ステップ、動作、要素成分もしくはその群またはその全ての存在または追加を排除するものではない。
以下の特許請求の範囲における全てのミーンズまたはステッププラスファンクション要素の対応する構造、材料、行為、および等価物は、特に請求した他の請求された要素と組み合わせて機能を実行するための任意の構造、材料、または行為を含むことを意図したものである。本発明の記載は、例示および説明の目的のために提示されているが、網羅的であることまたは本発明を開示された形態に限定することは意図していない。通常の技術を有する当業者には、本発明の範囲および精神から逸脱することのない多くの修正および変形例が明らかとなる。実施形態は、本発明の原理および実際の応用例を最もよく説明するため、および通常の技術を有する当業者が想定された具体的用途に適した様々な修正を含む様々な実施形態に関して本発明を理解することを可能にするために選択し、記載したものである。
本明細書に記載したフローダイヤグラムは、一例にすぎない。このダイヤグラムに対する、またはダイヤグラムに記載されたステップ(または動作)に対する、本発明の精神から逸脱することのない多くの変形例が存在しうる。例えば、ステップが異なる順序で実行されてもよいし、またはステップが追加、削除または修正されてもよい。これらの全ての変形例が、請求された本発明の一部と考えられる。
本発明の好ましい実施形態を記載しているが、当然のことながら、通常の技術を有する当業者は、現在および将来にわたり、以下の特許請求の範囲に含まれる様々な改良および強化を行うことができる。これらの特許請求の範囲は、最初に記載された本発明の適切な保護を維持するものと解釈しなければならない。

Claims (17)

  1. ナノポア構造体内に複数の単一分子レセプタを作製する方法であって、
    物理蒸着法技術により、第一材料および第二材料をナノチャネルの異なる選択された内側表面上へ堆積させるステップであって、第一材料をナノチャネル内表面に堆積させるためにナノチャネルを第一角度傾けて、前記ステップは第一材料を堆積させた後に、第二材料を堆積させるためにナノチャネルを第二角度傾けて、第二材料を堆積させ、前記第一および第二材料は、同じであるかまたは異なり、1〜100nmの直径を有するパッチを形成するステップと、
    前記第一材料、前記第二材料、または前記第一および第二材料の両方の表面を、少なくとも二つの官能基を有する化学化合物であって、端部に材料表面に結合するための官能基を有し、かつ、他端には分析物と相互作用するための官能基を有しているリンカーである前記化合物で機能化するステップと、
    を含む方法。
  2. 前記第一材料、前記第二材料、または前記第一材料および前記第二材料の両方は、金属、金属合金、半導体、絶縁体、またはその任意の組み合わせである、請求項1に記載の方法。
  3. 前記第一材料、前記第二材料、または前記第一材料および前記第二材料の両方は、アルミニウム、プラチナ、タングステン、金、銀、ニッケル、パラジウム、カーボン、コバルト、またはその任意の組み合わせである、請求項2に記載の方法。
  4. 前記物理蒸着法技術は、パルスレーザ蒸着/アブレーション、スパッタリング、電子ビーム蒸着、パルス電子蒸着、集束イオンビーム蒸着、またはその任意の組み合わせである、請求項1に記載の方法。
  5. 前記少なくとも二つの官能基のうちの一つは、前記材料との接触生成物を形成する基であり、ハロゲン化アシル基、アミン基、アミド基、アルコール基、カルボン酸チオール基、ニトリル基、リン酸基、ホスフィン基、シラン基、硫酸基、スルフィド基、亜硫酸基、チオール基、チオレート基、またはその任意の組み合わせである、請求項1に記載の方法。
  6. ナノポア構造体内に複数の単一分子レセプタを作製する方法であって、
    前記ナノポア構造体内のナノチャネルの選択された内側表面上へビームを配置するために、前記ナノポア構造体を前記ビームに対して第一角度で傾けるステップであって、前記ビームは、PVD技術により材料を堆積させるために動作する、ステップと;
    第一材料を前記ナノチャネルの選択された内側表面上へ堆積させるために前記ビームを操作するステップであって、前記第一材料は、3〜10,000nmの表面積を有する第一パッチを形成する、ステップと;
    前記ビームに対して第二角度を形成するために前記ナノポアを再度傾けるステップと;
    第二材料を前記ナノチャネルの別の選択された内側表面上へ堆積させて第二パッチを形成するために前記ビームを操作するステップであって、前記第一材料および前記第二材料は、同じであるかまたは異なる、ステップと;
    前記第一パッチ、前記第二パッチ、または前記第一および第二パッチの両方の表面を、少なくとも二つの官能基を有する化学化合物であって、端部に材料表面に結合するための官能基を有し、かつ、他端には分析物と相互作用するための官能基を有しているリンカーである前記化合物で機能化するステップと
    を含む、方法。
  7. 機能化するステップは、表面上へ化学化合物を堆積させるステップであり、前記化学化合物は、前記表面との接触生成物を形成する第一官能基と、分析物との接触生成物を形成する第二官能基とを含む、請求項6に記載の方法。
  8. 前記第一パッチ上へ堆積される前記化学化合物は、前記第二パッチ上へ堆積される前記化学化合物と異なる、請求項7に記載の方法。
  9. 前記第一官能基は、ハロゲン化アシル基、アミン基、アミド基、アルコール基、カルボン酸チオール基、ニトリル基、リン酸基、ホスフィン基、シラン基、硫酸基、スルフィド基、亜硫酸基、チオール基、チオレート基、またはその任意の組み合わせである、請求項7に記載の方法。
  10. 前記第一官能基は、前記表面との可逆的接触生成物を形成する、請求項7に記載の方法。
  11. 前記ビームは、電子ビーム、イオンビーム、またはその組み合わせである、請求項6に記載の方法。
  12. 前記第一および第二角度は、それぞれ38°〜89°の間である、請求項6に記載の方法。
  13. 前記ナノチャネルの直径は、30〜100nmである、請求項6に記載の方法。
  14. 前記第一パッチ、前記第二パッチ、または前記第一および第二パッチの両方は、円形、楕円形、正方形、三角形、長方形、リング形、またはその任意の組み合わせの形状である、請求項6に記載の方法。
  15. 複数の単一分子レセプタを含むナノポア構造体であって、
    第一表面と反対側の第二表面とを有する基板と、
    前記第一表面から前記反対側の第二表面まで伸び、内側表面を画成する、ナノチャネルと、
    前記ナノチャネルの前記内側表面の選択されたエリア上へ配設される第一材料であって、3〜10,000nmの表面積を有する第一パッチを形成する第一材料と、
    前記ナノチャネルの前記内側表面の異なる選択されたエリア上へ配設される第二材料であって、前記第二材料は、3〜10,000nmの表面積を有する第二パッチを形成し、前記第一材料および前記第二材料は、同じであるかまたは異なる、第二材料と、
    前記第一および第二材料のうちの少なくとも一つの上へ配設された分析物結合機能性を有する化学化合物であって、端部に材料表面に結合するための官能基を有し、かつ、他端には分析物と相互作用するための官能基を有しているリンカーである前記化合物と、を含む、ナノポア構造体。
  16. 前記第一材料、前記第二材料、または前記第一および第二材料の両方は、アルミニウム、プラチナ、タングステン、金、銀、ニッケル、パラジウム、カーボン、コバルト、またはその任意の組み合わせである、請求項15に記載のナノポア構造体。
  17. 前記第一および第二材料は、同じであるかまたは異なる第一および第二分析物との接触生成物を形成する官能基を含む、請求項15に記載のナノポア構造体。
JP2016522086A 2013-10-15 2014-10-01 ナノポア構造体内に複数の単一分子レセプタを作製する方法、およびナノポア構造体 Active JP6505092B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/054,013 2013-10-15
US14/054,013 US9303310B2 (en) 2013-10-15 2013-10-15 Nanofluidic sensor comprising spatially separated functional sensing components
PCT/US2014/058531 WO2015057388A1 (en) 2013-10-15 2014-10-01 Nanofluidic sensor comprising spatially separated functional sensing components

Publications (2)

Publication Number Publication Date
JP2017502647A JP2017502647A (ja) 2017-01-26
JP6505092B2 true JP6505092B2 (ja) 2019-04-24

Family

ID=52809843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016522086A Active JP6505092B2 (ja) 2013-10-15 2014-10-01 ナノポア構造体内に複数の単一分子レセプタを作製する方法、およびナノポア構造体

Country Status (6)

Country Link
US (2) US9303310B2 (ja)
JP (1) JP6505092B2 (ja)
CN (1) CN105658324B (ja)
DE (1) DE112014004740B4 (ja)
GB (1) GB2539085B (ja)
WO (1) WO2015057388A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024851B2 (en) * 2013-10-15 2018-07-17 International Business Machines Corporation Use of disulfide bonds to form a reversible and reusable coating for nanofluidic devices
US9255321B2 (en) * 2013-10-15 2016-02-09 Globalfoundries Inc. Directed surface functionalization on selected surface areas of topographical features with nanometer resolution
US9921181B2 (en) 2014-06-26 2018-03-20 International Business Machines Corporation Detection of translocation events using graphene-based nanopore assemblies
US10501851B2 (en) * 2016-05-12 2019-12-10 Fei Company Attachment of nano-objects to beam-deposited structures
US10564091B2 (en) 2017-08-19 2020-02-18 International Business Machines Corporation Optical sensing device with multiple field-enhanced nano-volumes
US11740226B2 (en) 2017-10-13 2023-08-29 Analog Devices International Unlimited Company Designs and fabrication of nanogap sensors

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397695A (en) 1987-09-18 1995-03-14 Eastman Kodak Company Attachment of compounds to polymeric particles using carbamoylonium compounds and a kit containing same
DE19715483A1 (de) * 1997-04-14 1998-10-15 Boehringer Mannheim Gmbh Methode zur gleichzeitigen Bestimmung von biomolekularen Wechselwirkungen mittels Plasmonenresonanz undFluoreszenzdetektion
EP2383776B1 (en) * 1999-06-22 2015-02-25 President and Fellows of Harvard College Solid state nanopore device for evaluating biopolymers
AU783675B2 (en) 1999-09-07 2005-11-24 Regents Of The University Of California, The Methods of determining the presence of double stranded nucleic acids in a sample
AU8023500A (en) 1999-10-13 2001-04-23 Mds Sciex System and method for detecting and identifying molecular events in a test sample
AU2002353778A1 (en) 2001-08-14 2003-03-18 The Penn State Research Foundation Fabrication of molecular scale devices using fluidic assembly
EP1437368B8 (en) 2001-10-16 2014-01-08 Federalnoe Gosudarstvennoe Byudzhetnoe Uchrezhdenie Nauki Institut Molekulyarnoi Biologi Im. V.A. Engelgardta Rossiiskoi Akademii Nauk Composition for polymerising immobilisation of biological molecules and method for producing said composition
US8481334B1 (en) 2001-11-06 2013-07-09 Charm Sciences, Inc. Method of attaching a ligand to a solid support
US8278055B2 (en) 2002-05-01 2012-10-02 Intel Corporation Methods and device for analyte characterization
US7005264B2 (en) 2002-05-20 2006-02-28 Intel Corporation Method and apparatus for nucleic acid sequencing and identification
US7410564B2 (en) * 2003-01-27 2008-08-12 Agilent Technologies, Inc. Apparatus and method for biopolymer identification during translocation through a nanopore
US20040202994A1 (en) 2003-02-21 2004-10-14 West Virginia University Research Corporation Apparatus and method for on-chip concentration using a microfluidic device with an integrated ultrafiltration membrane structure
US20080073512A1 (en) 2003-06-06 2008-03-27 Waters Investments Limited Methods, compositions and devices for performing ionization desorption on silicon derivatives
US7250115B2 (en) 2003-06-12 2007-07-31 Agilent Technologies, Inc Nanopore with resonant tunneling electrodes
US7442339B2 (en) 2004-03-31 2008-10-28 Intel Corporation Microfluidic apparatus, Raman spectroscopy systems, and methods for performing molecular reactions
US8105471B1 (en) 2004-07-19 2012-01-31 Han Sang M Nanofluidics for bioseparation and analysis
JP2008528040A (ja) 2005-02-01 2008-07-31 アジェンコート バイオサイエンス コーポレイション ビーズベースの配列決定のための試薬、方法およびライブラリー
US7625469B1 (en) 2005-03-16 2009-12-01 Sandia Corporation Nanoelectrode array for electrochemical analysis
US20060231419A1 (en) * 2005-04-15 2006-10-19 Barth Philip W Molecular resonant tunneling sensor and methods of fabricating and using the same
US7947485B2 (en) 2005-06-03 2011-05-24 Hewlett-Packard Development Company, L.P. Method and apparatus for molecular analysis using nanoelectronic circuits
US8906609B1 (en) 2005-09-26 2014-12-09 Arrowhead Center, Inc. Label-free biomolecule sensor based on surface charge modulated ionic conductance
US8318520B2 (en) * 2005-12-30 2012-11-27 Lin Ming-Nung Method of microminiaturizing a nano-structure
US20080067056A1 (en) 2006-05-19 2008-03-20 The Johns Hopkins University Method and device for controlled release of biomolecules and nanoparticles
AU2007338862B2 (en) 2006-07-19 2014-02-06 Bionano Genomics, Inc. Nanonozzle device arrays: their preparation and use for macromolecular analysis
US8592225B2 (en) * 2006-09-28 2013-11-26 The Board Of Trustees Of The Leland Stanford Junior University Array-based bioactivated nanopore devices
WO2009020479A2 (en) 2007-04-27 2009-02-12 The Regents Of The University Of California Device and methods for detection of airborne agents
US9121843B2 (en) * 2007-05-08 2015-09-01 Trustees Of Boston University Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof
WO2008138934A2 (en) * 2007-05-09 2008-11-20 Westfälische Wilhelms-Universität Münster A method for the manufacture of patterned functional monolayer structures and products thereof
US20090136948A1 (en) 2007-10-31 2009-05-28 Jongyoon Han Nanoconfinement- based devices and methods of use thereof
JP2009224146A (ja) * 2008-03-14 2009-10-01 Fujifilm Corp 異方性導電性部材を有する積層板とその製造方法
WO2009117517A2 (en) 2008-03-18 2009-09-24 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Nanopore and carbon nanotube based dna sequencer
CA2720247C (en) 2008-03-31 2020-07-14 Pacific Biosciences Of California, Inc. Single molecule loading methods and compositions
EP2326951B1 (en) 2008-08-20 2014-04-02 Nxp B.V. Apparatus and method for molecule detection using nanopores
US8262879B2 (en) 2008-09-03 2012-09-11 Nabsys, Inc. Devices and methods for determining the length of biopolymers and distances between probes bound thereto
WO2010141326A1 (en) 2009-06-02 2010-12-09 Integenx Inc. Fluidic devices with diaphragm valves
EP2264460A1 (en) 2009-06-18 2010-12-22 Nxp B.V. Device having self-assembled-monolayer
US8232105B1 (en) 2010-09-30 2012-07-31 Magellan Biosciences Point-of-Care, Inc. Reagents and methods and systems using them
TWI456195B (zh) * 2011-01-27 2014-10-11 Univ Nat Cheng Kung 生醫及微奈米結構物質感測晶片及其製備方法
US20120193231A1 (en) 2011-01-28 2012-08-02 International Business Machines Corporation Dna sequencing using multiple metal layer structure with organic coatings forming transient bonding to dna bases
WO2012122029A2 (en) 2011-03-04 2012-09-13 The Regents Of The University Of California Nanopore device for reversible ion and molecule sensing or migration
US8558326B2 (en) 2011-04-06 2013-10-15 International Business Machines Corporation Semiconductor devices having nanochannels confined by nanometer-spaced electrodes
WO2012142174A1 (en) * 2011-04-12 2012-10-18 Electronic Biosciences Inc. Site specific chemically modified nanopore devices
US9417210B2 (en) 2011-09-30 2016-08-16 Pandora Genomics, LLC System, apparatus and method for evaluating samples or analytes using a point-of-care device
MY175528A (en) 2012-04-02 2020-07-01 Lux Bio Group Inc Apparatus and method for molecular separation, purification, and sensing
KR20140021245A (ko) * 2012-08-09 2014-02-20 삼성전자주식회사 티올기를 갖는 물질이 부착된 금층을 포함한 나노포어를 갖는 장치를 제조하는 방법 및 그를 이용한 핵산 분석 방법
US9464985B2 (en) * 2013-01-16 2016-10-11 The Board Of Trustees Of The University Of Illinois Plasmon resonance imaging apparatus having nano-lycurgus-cup arrays and methods of use

Also Published As

Publication number Publication date
JP2017502647A (ja) 2017-01-26
CN105658324A (zh) 2016-06-08
WO2015057388A1 (en) 2015-04-23
US9303310B2 (en) 2016-04-05
DE112014004740T5 (de) 2016-07-14
DE112014004740B4 (de) 2020-09-24
US9309590B2 (en) 2016-04-12
CN105658324B (zh) 2018-11-02
GB2539085B (en) 2017-03-08
GB2539085A (en) 2016-12-07
US20150104354A1 (en) 2015-04-16
US20150104587A1 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6505092B2 (ja) ナノポア構造体内に複数の単一分子レセプタを作製する方法、およびナノポア構造体
US10047431B2 (en) Directed surface functionalization on selected surface areas of topographical features with nanometer resolution
Healy et al. Solid-state nanopore technologies for nanopore-based DNA analysis
Stern et al. Semiconducting nanowire field-effect transistor biomolecular sensors
CA2603352C (en) Molecular characterization with carbon nanotube control
Ma et al. Electrostatic funneling for precise nanoparticle placement: a route to wafer-scale integration
US20220397546A1 (en) Methods for Reducing Electrode Gap Distances in Electronic Devices and Resulting Devices Having Nanometer Electrode Gaps Via Liquid Phase Molecular Layer Deposition Technique
JP2007192805A (ja) ナノ粒子/ナノファイバによる化学センサ、そのセンサのアレイ、その使用及び製造方法、並びに検体の検出方法
WO2017102852A1 (en) Crack structures, tunneling junctions using crack structures and methods of making same
JP2006503277A (ja) 分子エレクトロニクスと分子エレクトロニクスに基づいたバイオセンサーデバイスのための半導体装置及びその製造方法
KR101284274B1 (ko) 나노채널 구조체를 구비하는 센서 및 그 제조방법
Jang et al. Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding
Yamada et al. Detection of C− Si Covalent Bond in CH3 Adsorbate Formed by Chemical Reaction of CH3MgBr and H: Si (111)
Adam et al. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review
WO2008021614A2 (en) Coded particle arrays for high throughput analyte analysis
Gadgil et al. Fabrication of nano structures in thin membranes with focused ion beam technology
Kant et al. Focused ion beam (FIB) technology for micro-and nanoscale fabrications
Lesser-Rojas et al. Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis
EP2253387A1 (en) A system for a controlled self-assembled layer formation on metal
Sahin et al. Rapid Turnaround Fabrication of Peptide Nucleic Acid (PNA)-Immobilized Nanowire Biosensors by O 2-Plasma Assisted Lithography of e-Beam Resists
Sheehan et al. Surface engineering with Chemically Modified Graphene
Barborini et al. Nanostructured coatings by cluster beam deposition: method and applications
Dekker Wednesday Afternoon, November 11, 2009
Flink et al. Cation sensing by patterned self-assembled monolayers on gold
Hemmatian Nano-fabrication of complex functional structures using non-conventional lithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6505092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150