JP6504628B2 - Nanofibers, assembly of nanofibers, mixed product for electrospinning, method of manufacturing nanofibers, and method of manufacturing aggregate of nanofibers. - Google Patents

Nanofibers, assembly of nanofibers, mixed product for electrospinning, method of manufacturing nanofibers, and method of manufacturing aggregate of nanofibers. Download PDF

Info

Publication number
JP6504628B2
JP6504628B2 JP2017544510A JP2017544510A JP6504628B2 JP 6504628 B2 JP6504628 B2 JP 6504628B2 JP 2017544510 A JP2017544510 A JP 2017544510A JP 2017544510 A JP2017544510 A JP 2017544510A JP 6504628 B2 JP6504628 B2 JP 6504628B2
Authority
JP
Japan
Prior art keywords
nanofibers
polymer
benzooxaborole
evoh
mixed product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017544510A
Other languages
Japanese (ja)
Other versions
JPWO2017061435A1 (en
Inventor
陽平 小土橋
陽平 小土橋
充宏 荏原
充宏 荏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of JPWO2017061435A1 publication Critical patent/JPWO2017061435A1/en
Application granted granted Critical
Publication of JP6504628B2 publication Critical patent/JP6504628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Artificial Filaments (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は安定性が高いために通常は機能性を付与することが困難なビニルアルコール樹脂に簡単に機能性を付与する方法並びにこの機能化のために使用する物質に関する。
本願は、2015年10月6日に、日本に出願された特願2015−198316号に基づき優先権を主張し、その内容をここに援用する。また、本願は、非特許文献「Yohei Kotsuchibashi and Mitsuhiro Ebara: Polymers 2016, 8(2), 41,p1〜11;doi:10.3390/polym8020041」およびその「Supplementary Materials S1〜S3」の内容をここに援用する(incorporated herein by reference)。
The present invention relates to a method for simply imparting functionality to vinyl alcohol resins, which are usually difficult to impart functionality due to high stability, as well as the materials used for this functionalization.
Priority is claimed on Japanese Patent Application No. 2015-198316, filed October 6, 2015, the content of which is incorporated herein by reference. In addition, the present application relates to the contents of the non-patent documents "Yohei Kotsuchibashi and Mitsuhiro Ebara: Polymers 2016, 8 (2), 41, p1 to 11; doi: 10.3390 / polym8020041" and their "Supplementary Materials S1 to S3". Incorporated here (incorporated by reference).

エチレン−ビニルアルコール共重合体(poly(ethylene−co−vinylalcohol)、例えば株式会社クラレから販売されているエバール(登録商標)等、以下、EVOHと略称する)は高いガスバリア性を有する高分子であり、包装フィルムや燃料タンクに広く使用されている。EVOHはまた高い生体適合性を示し、人工透析用の中空糸(ダイラタイザー)としても実用化されている。   Ethylene-vinyl alcohol copolymer (poly (ethylene-co-vinylalcohol), for example, Eval (registered trademark) sold by Kuraray Co., Ltd., hereinafter abbreviated as EVOH) is a polymer having high gas barrier properties and It is widely used in packaging films and fuel tanks. EVOH also exhibits high biocompatibility, and is also put to practical use as a hollow fiber (dilatizer) for artificial dialysis.

しかしながら、EVOHは、その高い安定性のために新たに機能性を付与することが困難である。機能性を付加するため、例えば、EVOHのOH基の酸化やUV処理により、表面の性質を変化させることも可能であるが、この場合多くの作業工程を必要とし、また生成に時間を要するという問題もある。これに加えて、このような処理を行うことはEVOH自体の構造を変化させることになるため、その特性への悪影響が懸念される。
他の方法として、EVOHに疎水性のポリマーを混合することにより複合材料を形成することも可能である。しかし、条件によっては、この複合材料を用いて形成されたフィルムやファイバー等から混合したポリマーが漏れ出してしまうことがあり、実用上問題となる。
一方、フェニルボロン酸より、ベンゾオキサボロール基の方がジオールとの結合性が強いことが知られている(非特許文献1)。また、このベンゾオキサボロール基を有するベンゾオキサボロールポリマーを用いて糖ポリマーとのゲルを調製することは本願発明者が公表している(非特許文献2,3)。
However, EVOH is difficult to newly add functionality due to its high stability. Although it is possible to change the surface properties by, for example, oxidation of the OH group of EVOH or UV treatment to add functionality, in this case many operation steps are required and it takes time to generate. There is also a problem. In addition to this, performing such processing changes the structure of the EVOH itself, which may cause adverse effects on the characteristics thereof.
As another method, it is also possible to form a composite material by mixing EVOH with a hydrophobic polymer. However, depending on the conditions, a polymer mixed from a film, a fiber or the like formed using this composite material may leak out, which causes a problem in practical use.
On the other hand, it is known that the benzoxaborole group has stronger bondability with diol than phenylboronic acid (Non-patent Document 1). In addition, the inventors of the present application have published the preparation of a gel with a sugar polymer using the benzooxaborole polymer having this benzooxaborole group (Non-Patent Documents 2 and 3).

M. Dowlut and D. G. Hall, J. Am. Chem. Soc. 2006, 128, 4226−4227.M. Dowlut and D. G. Hall, J. Am. Chem. Soc. 2006, 128, 4226-4227. Y. Kotsuchibashi et al., ACS Macro Lett. 2013, 2, 260−264.Y. Kotsuchibashi et al. , ACS Macro Lett. 2013, 2, 260-264. Y. Kotsuchibashi et al., J. Phys. Chem. B 2015, 119, 2323−2329.Y. Kotsuchibashi et al. , J. Phys. Chem. B 2015, 119, 2323-2329.

本発明は上述した従来技術の問題点を解消し、EVOHに簡単に各種の機能性を付与するための方法及び当該方法に使用される物質を提供することをその課題とする。なお、EVOHはそのモノマーであるエチレンとビニルアルコールとの比率を広い範囲で変化させることができ、特にエチレンを含まない場合(すなわちポリビニルアルコールの場合)でも本発明を適用できるため、本願ではEVOHをポリビニルアルコールまで含むポリマーの意味で使用する。また、本発明の「ビニルアルコール樹脂」も「エチレン−ビニルアルコール共重合体またはポリビニルアルコール」の意味で使用する。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for easily imparting various functions to EVOH and a substance used in the method. In addition, EVOH can change the ratio of ethylene and vinyl alcohol as its monomers in a wide range, and the present invention can be applied particularly when ethylene is not contained (that is, in the case of polyvinyl alcohol). Used in the sense of a polymer containing up to polyvinyl alcohol. The "vinyl alcohol resin" of the present invention is also used in the meaning of "ethylene-vinyl alcohol copolymer or polyvinyl alcohol".

本発明の一側面によれば、ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーとビニルアルコール樹脂とを混合して両者を可逆的に結合する、ビニルアルコール樹脂機能化方法が与えられる。
ここで、前記所望の機能性は温度応答性、粘性、電界紡糸性及び染色性からなる群から選択されてよい。
また、前記所望の機能性は前記ベンゾオキサボロールポリマーが有する機能性であってよい。
また、前記ベンゾオキサボロールポリマーはベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとを含む共重合体であってよい。
また、前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーであってよい。
本発明の他の側面によれば、ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーからなる、ビニルアルコール樹脂機能化剤が与えられる。
ここで、前記所望の機能性は温度応答性、粘性、電界紡糸性及び染色性からなる群から選択されてよい。
また、前記所望の機能性は前記ベンゾオキサボロールポリマーが有する機能性であってよい。
また、前記ベンゾオキサボロールポリマーはベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとを含む共重合体であってよい。
また、前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーであってよい。
本発明の別の側面によれば、機能性を与えるモノマー由来構造とベンゾオキサボロール構造とを含むベンゾオキサボロールポリマーと
ジオール構造を有するビニルアルコール樹脂と
を前記ベンゾオキサボロール構造と前記ジオール構造との結合によって
可逆的に結合してなることを特徴とする、ベンゾオキサボロールポリマーとビニルアルコール樹脂の混合生成物を与える。
前記ベンゾオキサボロールポリマーは前記ベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとの共重合体であってよい。
また、前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーであってよい。
According to one aspect of the present invention, there is provided a vinyl alcohol resin functionalization method in which a benzooxaborole polymer having a benzooxaborole structure and a vinyl alcohol resin are mixed and reversibly bonded to each other.
Here, the desired functionality may be selected from the group consisting of temperature response, viscosity, electrospinning and staining.
In addition, the desired functionality may be the functionality possessed by the benzoxaborole polymer.
Also, the benzoxaborole polymer may be a copolymer comprising a monomer having a benzoxaborole structure and a monomer providing the functionality.
Also, the benzooxaborole polymer may be a benzooxaborole polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
According to another aspect of the present invention, there is provided a vinyl alcohol resin functionalizing agent comprising a benzooxaborole polymer comprising a benzooxaborole structure.
Here, the desired functionality may be selected from the group consisting of temperature response, viscosity, electrospinning and staining.
In addition, the desired functionality may be the functionality possessed by the benzoxaborole polymer.
Also, the benzoxaborole polymer may be a copolymer comprising a monomer having a benzoxaborole structure and a monomer providing the functionality.
Also, the benzooxaborole polymer may be a benzooxaborole polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
According to another aspect of the present invention, there is provided a benzooxaborole polymer comprising a monomer-derived structure giving functionality and a benzooxaborole structure, and a vinyl alcohol resin having a diol structure, the benzooxaborole structure and the diol. The present invention provides a mixed product of a benzooxaborole polymer and a vinyl alcohol resin, which is characterized by being reversibly bonded by bonding with a structure.
The benzooxaborole polymer may be a copolymer of a monomer having the benzooxaborole structure and a monomer providing the functionality.
Also, the benzooxaborole polymer may be a benzooxaborole polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.

本発明によれば、通常のEVOHに機能化剤を添加して混合するという極めて簡単な処理でEVOHに機能性を付与することができる。   According to the present invention, functionality can be imparted to EVOH by a very simple process of adding and mixing a functionalizing agent with ordinary EVOH.

ベンゾオキサボロールとジオールとの結合を説明する図。The figure explaining the coupling | bonding with benzo oxaborole and a diol. EVOHとP(MEOMA−co−OEGMA−co−MAAmBO)とを混合して得られたゲルの写真。EVOH and P (MEO 2 MA-co- OEGMA-co-MAAmBO) and obtained by mixing the gel photo. EVOHとP(MEOMA−co−OEGMA−co−MAAmBO)との混合生成物を電界紡糸した結果及び比較例を電界紡糸した結果を示す図。EVOH and P shows a (MEO 2 MA-co-OEGMA -co-MAAmBO) results and comparative example in which the mixed product was electrospun with the results obtained by electrospinning a. (a)EVOHとカルボキシル基で修飾されたベンゾオキサボロールポリマーとの混合生成物を電界紡糸して得られる集積物の写真。(b)比較例としての、EVOHとカルボキシル基で修飾されていないベンゾオキサボロールポリマーとの混合生成物を電界紡糸して得られる集積物の写真。(A) Photograph of an aggregate obtained by electrospinning a mixed product of EVOH and a benzooxaborole polymer modified with a carboxyl group. (B) A photograph of an aggregate obtained by electrospinning a mixed product of EVOH and a benzooxaborole polymer not modified with a carboxyl group as a comparative example. (a)図4(a)に示された集積物をメチレンブルーにより染色した結果を示す写真。(b)図4(b)に示された集積物をメチレンブルーにより染色した結果を示す写真。(A) A photograph showing the result of staining the accumulation shown in FIG. 4 (a) with methylene blue. (B) A photograph showing the result of staining the accumulation shown in FIG. 4 (b) with methylene blue.

上述の従来技術の問題点を解消するため、本発明の一態様において、式(1)で表すEVOH   In order to solve the above-mentioned problems of the prior art, in one aspect of the present invention, EVOH represented by the formula (1)

と可逆的に結合できる式(2)で表すベンゾオキサボロール(benzoxaborole;ボロキソール(boroxole)とも呼ばれる) And benzoxaborole (benzoxaborole; also called boroxole) represented by the formula (2) capable of reversibly binding to

の構造を有するポリマー(以下、ベンゾオキサボロールポリマーと称する)を合成した。ベンゾオキサボロールポリマーはベンゾオキサボロールモノマーを一般に使用されているラジカル重合により合成することが可能であり、またリビングラジカル重合を使用することによって、その構造や組成を精密に制御することもできる。更に他のモノマーとともに共重合体を合成することもできる。これにより、ポリマーの分子量、分子量分布、構造等を制御することができる。各種の機能性(例えば刺激反応性、生体適合性、導電性、耐火性等)を当該ベンゾオキサボロールポリマーに付与することができるため、EVOH側には特段の機能性付与処理を施さなくても、EVOH製品の能力の向上が可能となる。また、本発明は、所望の機能性を付与したベンゾオキサボロールポリマーをEVOHと溶媒中で混合するだけで極めて簡単に実現できるので、非常に簡便かつ低コストである。なお、所望の機能性を有するベンゾオキサボロールポリマーとしては、所望の機能性を発現させるために必要に応じて官能基で修飾したベンゾオキサボロールポリマー、ベンゾオキサボロール構造を有するモノマーと所望の機能性を提供するための他のモノマーとの共重合体等の各種の態様が可能である。 A polymer having the structure of (hereinafter referred to as benzoxaborole polymer) was synthesized. Benzoxaborole polymers can be synthesized by radical polymerization commonly used with benzoxaborole monomers, and their structure and composition can be precisely controlled by using living radical polymerization. . Copolymers can also be synthesized with other monomers. Thus, the molecular weight, molecular weight distribution, structure, etc. of the polymer can be controlled. Since various types of functionality (for example, stimulus reactivity, biocompatibility, conductivity, fire resistance, etc.) can be imparted to the benzoxaborole polymer, no special functionalization treatment is performed on the EVOH side. Also, the capacity of EVOH products can be improved. In addition, the present invention is very simple and inexpensive because it can be realized extremely simply by mixing the benzooxaborole polymer having the desired functionality with EVOH in a solvent. In addition, as the benzooxaborole polymer having a desired functionality, a benzooxaborole polymer modified with a functional group as necessary to express a desired functionality, and a monomer having a benzooxaborole structure are desired. Various embodiments are possible, such as copolymers with other monomers to provide the functionality of

ベンゾオキサボロールポリマーとEVOHとの可逆的な結合には、図1に示すような、ベンゾオキサボロール構造とEVOHが有する水酸基との相互作用を利用した。図1に示す可逆反応は、中性〜アルカリ性では右側(ベンゾオキサボロール基とジオールとが結合する方向)へ、また酸性では左側(ベンゾオキサボロール基とジオールとが解離する方向)へ進む。なお、図1ではベンゾオキサボロールそれ自体とジオールとの相互作用が示されているがこれは例示的な記載であり、当該相互作用はベンゾオキサボロール構造を有する任意の化合物で発現する。このようなベンゾオキサボロール構造を有する化合物の例としては、これに限定するわけではないが、(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーがある。ここで注意すべき点として、たとえ立体規則性の高いポリマーであっても、ベンゾオキサボロールの構造を有していれば、図1に示したジオールとの結合の平衡反応は、ある程度進行しにくくなるとしても起こることに変わりはない。   The interaction between the benzooxaborole structure and the hydroxyl group possessed by EVOH, as shown in FIG. 1, was utilized for the reversible binding of the benzooxaborole polymer to the EVOH. The reversible reaction shown in FIG. 1 proceeds to the right (in the direction in which the benzoxaborole group and the diol are bonded) in neutral to alkaline, and to the left (in the direction in which the benzoxaborole group and the diol are dissociated) in the acidity. . In addition, although the interaction of benzooxaborole itself and diol is shown in FIG. 1, this is an exemplary description, and the interaction is expressed with any compound having a benzooxaborole structure. Examples of the compound having such a benzooxaborole structure include, but not limited to, benzooxaborole polymers having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton. It should be noted that even if the polymer is highly stereoregular, if it has the structure of benzoxaborole, the equilibrium reaction of bonding with the diol shown in FIG. 1 proceeds to some extent. Even if it gets harder, it does not change what happens.

なお、ベンゾオキサボロールポリマーとEVOHとを混合することによって図1に示すような反応が起こるが、処理としては単に両者を混合するだけであるので、以下では両者を混合することによって図1に示すような反応が起こった状態の物を「混合生成物」と称することがある。   Incidentally, although the reaction as shown in FIG. 1 occurs by mixing the benzooxaborole polymer and EVOH, the process is merely mixing the two, so in the following, the two are mixed as shown in FIG. The product in the state where the reaction as shown has occurred may be referred to as "mixed product".

なお、ベンゾオキサボロール基とフェニルボロン酸とを比較すると、ベンゾオキサボロール基の方がジオールとの結合性が強いことが証明されている(非特許文献1)。従って、ベンゾオキサボロールポリマーを使用する場合、より効率的にゲル化等を引き起こすができる。   In addition, when the benzo oxaborole group and phenylboronic acid are compared, it is proved that the benzoxaborole group has stronger bondability with the diol (Non-patent Document 1). Therefore, gelation and the like can be more efficiently caused when using a benzooxaborole polymer.

以下の実施例ではEVOHと温度応答性や染色性を有するベンゾオキサボロールポリマーを結合させることにより、EVOHに当該機能性を有するようにできることを示す。温度応答性を持たせることによって、室温中では容易に溶解してしまうポリマーであっても、材料により吸着できるような加工を行うことができる。また、EVOHとベンゾオキサボロールポリマーとが図1に示すように結合すると、一般に粘性が大きくなる。この粘性も機能性の一つである。例えば、適切な粘性を有するこれらの混合生成物を電界紡糸することで、混合生成物のファイバーを得ることができる。もちろん、EVOHに付与できる機能性は温度応答性、粘性、染色性等に限定されるものではなく、ここで説明される方法により付与可能な任意の機能性であって良い。   In the following examples, it is shown that EVOH can be made to have the functionality by combining EVOH with a benzooxaborole polymer having temperature response and staining properties. By giving temperature responsiveness, even a polymer that is easily dissolved at room temperature can be processed to be able to be adsorbed by the material. Also, when EVOH and the benzooxaborole polymer are combined as shown in FIG. 1, the viscosity generally increases. This viscosity is also one of the functions. For example, fibers of the mixed product can be obtained by electrospinning these mixed products with appropriate viscosity. Of course, the functionality that can be imparted to EVOH is not limited to temperature responsiveness, viscosity, dyeability, etc., and may be any functionality that can be imparted by the method described herein.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、以下ではEVOHとしてクラレ株式会社製のエバール(エチレン共重合比(モル比)44%)を使用したが、もちろん一般性を失うものでないことは明らかである。   Hereinafter, the present invention will be described in more detail based on examples. In the following, Eval (ethylene copolymerization ratio (molar ratio) 44%) manufactured by Kuraray Co., Ltd. was used as the EVOH, but it is obvious that, of course, generality is not lost.

[実施例1]
<機能性を付与したベンゾオキサボロールポリマー>
以下では、EVOHに対して温度応答性、ゲル化、電界紡糸性等の機能性を持たせる例を示す。なお、この場合の温度応答性とは、EVOHとベンゾオキサボロールポリマーから成るゲルやファイバーなどの混合生成物の表面性質を、温度により親水性/疎水性と制御することができることである。そのために使用することができるベンゾオキサボロールポリマーの例であるP(MEOMA−co−OEGMA−co−MAAmBO)の構造式を式(3)に示す。5−methacrylamido−1,2−benzoxaborole(MAAmBO)は、ベンゾオキサボロール構造の付与のため、2−(2−methoxyethoxy)ethyl methacrylate(MEOMA)およびoligo(ethylene glycol) methacrylate(OEGMA)は、温度応答性を示す温度を制御するために選択した。ベンゾオキサボロールポリマーは、これらのモノマーを基本とし、付与したい機能性を持つモノマーさらに混合後、共重合することで得られる。ここで使用される共重合法自体は既に知られている事項であるので具体的な説明は省略するが、必要に応じて本願発明者の論文である非特許文献2,3を参照されたい。
Example 1
<Functionalized benzoxaborole polymer>
Below, the example which gives functionality, such as temperature responsiveness, gelatinization, electrospinning property, to EVOH is shown. The temperature response in this case means that the surface properties of the mixed product of gel and fiber consisting of EVOH and benzooxaborole polymer can be controlled to be hydrophilic / hydrophobic by temperature. The structural formula of P (MEO 2 MA-co-OEGMA-co-MAAmBO), which is an example of a benzooxaborole polymer that can be used for that purpose, is shown in Formula (3). 5-methacrylamido-1,2-benzoxaborole (MAAmBO) is 2- (2-methoxyethoxy) ethyl methacrylate (MEO 2 MA) and oligo (ethylene glycol) methacrylate (OEGMA) because of the addition of the benzoxaborole structure It was chosen to control the temperature which shows temperature responsiveness. The benzooxaborole polymer is obtained by copolymerizing a monomer having a functionality to be added based on these monomers and further mixing. Since the copolymerization method itself used here is a known item, the specific description is omitted, but if necessary, refer to Non-Patent Documents 2 and 3 which are the papers of the present inventor.

上に示したベンゾオキサボロールポリマー中のベンゾオキサボロール構造以外のユニットは、エチレングリコール型の温度応答性を有する。このポリマーの相転移温度はこれらの温度応答性を有するユニットの分子量や構造により変化するので、これらのモノマーを適宜選択して共重合させることにより適切なポリマーを得ることが可能である。   Units other than the benzooxaborole structure in the benzoxaborole polymer shown above have a temperature response of ethylene glycol type. Since the phase transition temperature of this polymer changes depending on the molecular weight and structure of these temperature responsive units, it is possible to obtain an appropriate polymer by appropriately selecting and copolymerizing these monomers.

<EVOHとベンゾオキサボロールポリマーの混合生成物1:ゲル化>
図2に、EVOHとP(MEOMA−co−OEGMA−co−MAAmBO)とを混合して得られたゲルの写真を示す。ゲルの調製方法として、EVOHおよびP(MEOMA−co−OEGMA−co−MAAmBO)を、それぞれ70mg/mL、70mg/mLとなるようにHFIP(1,1,1,3,3,3−hexafluoroisopropanol)中に室温にて溶解させた。同体積の溶液を、室温にて混合することで、数分にてゲル状の混合生成物を得た。図1に示すような両者の相互作用により三次元的な架橋構造が構築されるため、ゲル構造を調製することが可能である。ゲルの強度は混合するポリマー比により制御することができる。また、ゾル状態における粘度についても同様に制御可能である。
<Mixed product of EVOH and benzooxaborole polymer 1: gelation>
Figure 2 shows a photograph of a gel obtained by mixing the EVOH and P (MEO 2 MA-co- OEGMA-co-MAAmBO). As a method of preparing the gel, HFIP (1, 1, 1, 3, 3, 3-, 70 mg / mL and 70 mg / mL of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO), respectively. It was dissolved in hexafluoroisopropanol at room temperature. The same volume of solution was mixed at room temperature to obtain a gel-like mixed product in a few minutes. It is possible to prepare a gel structure because a three-dimensional crosslinked structure is constructed by the interaction of the two as shown in FIG. The strength of the gel can be controlled by the ratio of polymers mixed. Further, the viscosity in the sol state can be similarly controlled.

EVOHとベンゾオキサボロールポリマーとの混合生成物は溶液中の濃度や混合比によりゾルとゲルの何れの状態としても取り扱えるため、その成形加工も容易である。バルク状態のものから、フィルム状薄膜、カプセル、またはナノファイバーにも形成加工することができる。   The mixed product of EVOH and the benzoxaborole polymer can be handled as either a sol or a gel depending on the concentration and the mixing ratio in the solution, and thus the molding process is easy. From the bulk state, it can be processed into film-like thin films, capsules or nanofibers.

[実施例2]
<EVOHとベンゾオキサボロールポリマーの混合生成物2:ナノファイバー>
実施例1で得られた式(3)で表すベンゾオキサボロールポリマーP(MEOMA−co−OEGMA−co−MAAmBO)を用いた。図3(B)はEVOH(濃度:3.5wt%)とP(MEOMA−co−OEGMA−co−MAAmBO)(濃度:2.5wt%)とをHFIP中で混合した溶液を電界紡糸した結果のSEM像を示す。
図3(B)からわかるように、EVOHとP(MEOMA−co−OEGMA−co−MAAmBO)との混合生成物2を電界紡糸することによってナノファイバーの集積体を得ることができる。この集積体では繊維間の隙間の大きさが比較的よくそろっている。なお、この隙間の大きさは、電界紡糸の条件や混合生成物濃度等を調節することによって制御可能である。
Example 2
<Mixed Product of EVOH and Benzoxaborol Polymer 2: Nanofiber>
The benzooxaborole polymer P (MEO 2 MA-co-OEGMA-co-MAAmBO) represented by the formula (3) obtained in Example 1 was used. FIG. 3 (B) shows the result of electrospinning of a solution of EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA-co-MAAmBO) (concentration: 2.5 wt%) mixed in HFIP. The SEM image of a result is shown.
As can be seen from FIG. 3 (B), an aggregate of nanofibers can be obtained by electrospinning the mixed product 2 of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO). In this aggregate, the sizes of the gaps between the fibers are relatively uniform. The size of the gap can be controlled by adjusting the conditions of electrospinning, the concentration of the mixed product, and the like.

[実施例3]
<EVOHとベンゾオキサボロールポリマーの混合生成物3:ナノファイバー>
実施例1で得られた式(3)で表すベンゾオキサボロールポリマーP(MEOMA−co−OEGMA−co−MAAmBO)を用いた。図3(C)はEVOH(濃度:3.5wt%)とP(MEOMA−co−OEGMA−co−MAAmBO)(濃度:0.5wt%)とをHFIP中で混合した溶液を電界紡糸した結果のSEM像を示す。
図3(C)ではEVOHとP(MEOMA−co−OEGMA−co−MAAmBO)との混合生成物3を電界紡糸したにもかかわらずナノファイバーが形成されていないが、これはP(MEOMA−co−OEGMA−co−MAAmBO)の量が実施例2の図3(B)の2.5wt%に比べて0.5wt%と少ないために、混合生成物3の粘性が図3(B)の場合に比べて低下したためである。
[Example 3]
<Mixed product of EVOH and benzooxaborole polymer 3: nanofibers>
The benzooxaborole polymer P (MEO 2 MA-co-OEGMA-co-MAAmBO) represented by the formula (3) obtained in Example 1 was used. FIG. 3 (C) shows the result of electrospinning a mixed solution of EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA-co-MAAmBO) (concentration: 0.5 wt%) in HFIP. The SEM image of a result is shown.
In FIG. 3 (C), although nanofibers are not formed despite electrospinning of the mixed product 3 of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO), this is not P (MEO). Since the amount of 2 MA-co-OEGMA-co-MAAmBO is as small as 0.5 wt% as compared with 2.5 wt% in FIG. 3 (B) of Example 2, the viscosity of the mixed product 3 is as shown in FIG. It is because it fell compared with the case of B).

[比較例1]
<EVOH単独のHFIP溶液>
図3(A)はEVOH(濃度:3.5wt%)単独のHFIP溶液を電界紡糸した結果のSEM像を示す。
[比較例2]
<EVOHとベンゾオキサボロール構造を有しない共重合体の混合物>
図3(D)には、EVOH(濃度:3.5wt%)とP(MEOMA−co−OEGMA)(濃度:2.5wt%)(すなわち、ベンゾオキサボロール構造を有しない共重合体)とをHFIP中で混合した溶液を電界紡糸した結果のSEM像を示す。
実施例2と3の結果に対して、比較例1のEVOH単独の場合(図3(A))及び比較例2のEVOHと混合したポリマーがベンゾオキサボロール構造を含んでいない場合(図3(D))は、EVOHの量は図3(B)の場合と同じく3.5wt%であったにもかかわらず、何れもナノファイバーが形成されなかった。これは、図1に示すような相互作用が起こっていないために粘度が低いままであったことによる。
Comparative Example 1
<EVOH alone HFIP solution>
FIG. 3 (A) shows a SEM image of the result of electrospinning an HFIP solution of EVOH (concentration: 3.5 wt%) alone.
Comparative Example 2
<Mixture of copolymer not having EVOH and benzooxaborole structure>
In FIG. 3 (D), EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA) (concentration: 2.5 wt%) (ie, a copolymer having no benzooxaborole structure) The SEM image of the result of electrospinning of the solution which mixed and in HFIP was shown.
With respect to the results of Examples 2 and 3, the EVOH of Comparative Example 1 alone (FIG. 3A) and the polymer mixed with the EVOH of Comparative Example 2 do not contain a benzooxaborole structure (FIG. 3). In (D)), although the amount of EVOH was 3.5 wt% as in the case of FIG. 3 (B), no nanofibers were formed. This is because the viscosity remains low because the interaction as shown in FIG. 1 does not occur.

[実施例4]
<EVOHとカルボキシル基を有するベンゾオキサボロールポリマーの混合生成物4:染色機能の付与>
以下の式(4)で一般的に表現される構造を有する、骨格をカルボキシル基で修飾したベンゾオキサボロールポリマー
Example 4
<Mixed Product of EVOH and Benzoxaborole Polymer Having Carboxyl Group 4: Addition of Dyeing Function>
Benzoxaborole polymer having a skeleton modified with a carboxyl group, having a structure generally represented by the following formula (4)

とEVOHとを混合することにより、カチオン性染料へのEVOHの染色性を向上させることができる。本実施例で使用したベンゾオキサボロールポリマーの具体的な構造は以下の式(5)通りである。 The dyeability of EVOH to the cationic dye can be improved by mixing E. and EVOH. The specific structure of the benzooxaborole polymer used in this example is as shown in the following formula (5).

EVOHとこのベンゾオキサボロールポリマーとの混合生成物を電界紡糸して得られた集積物(図4(a))を染色実験の対象として準備した。
この集積物を式(6)で表すメチレンブルー
An aggregate (FIG. 4 (a)) obtained by electrospinning a mixed product of EVOH and this benzoxaborole polymer was prepared as a target of the staining experiment.
Methylene blue represented by the formula (6)

で染色した結果をそれぞれ図5(a)に示す。
実施例5
<EVOHとカルボキシル基を含まないベンゾオキサボロールポリマーの混合生成物>
実施例4の式(5)で表すベンゾオキサボロールポリマーと比較して、カルボキシル基が修飾されていない点以外はほぼ同じ構造を有する式(7)で表すベンゾオキサボロールポリマー;なお、以下、比較例3とあるのは、実施例5と読み替えるものとする。
The results of staining with are shown in FIG. 5 (a).
[ Example 5 ]
<Mixed product of EVOH and benzooxaborole polymer containing no carboxyl group>
A benzooxaborole polymer represented by the formula (7) which has substantially the same structure as that of the benzooxaborole polymer represented by the formula (5) of Example 4 except that the carboxyl group is not modified ; In Comparative Example 3, it is assumed that the example 5 is read.

との混合生成物を電界紡糸した比較対象集積物(図4(b))を準備した。
実施例4と同様に、この集積物を式(6)で表すメチレンブルーで染色した結果をそれぞれ図5(b)に示す。
なお、上記式(5)と(7)で表すこれら2種類のベンゾオキサボロールポリマーを比較すると、実施例4の式(5)で表すベンゾオキサボロールポリマーは比較例3の式(7)で表すベンゾオキサボロールポリマーに更にカルボキシル基を有する比較的小さなモノマー由来の構造を追加した構造になっていることがわかる。
図5からわかるように、本発明の実施例4である、EVOHとカルボキシル基で修飾されたベンゾオキサボロールポリマーとの混合生成物4から作製された集積物はカルボキシル基で修飾されていないベンゾオキサボロールポリマーを使用した集積物に比べて強く染色されていることがわかる。なお、図5は白黒写真であるので、(a)側が(b)側に比べて僅かに黒いように見えるだけであるが、実際には(b)側が青色であるのに対して、(a)側は濃紺色に染色され、染色性の違いをはっきりと視認することができた。このようにEVOHとカルボキシル基で修飾されたベンゾオキサボロールポリマーとを混合して作成した集積物の方が高い染色性を有する理由は、集積物中で電離して−COO−の形態で存在するカルボキシル基とカチオン性の染料であるメチレンブルーとが静電相互作用を起こすためである。なお、本実施例では染料としてメチレンブルーを使用し、またベンゾオキサボロールポリマーをカルボキシル基で修飾したが、この組み合わせに限定されるものではなく、任意のカチオン性染料と負にイオン化する任意の官能基により修飾されたベンゾオキサボロールポリマーとの組み合わせにより染色性の向上を達成することができる。逆に、任意のアニオン性染料と正にイオン化する任意の官能基により修飾されたベンゾオキサボロールポリマーとの組み合わせででも染色性の向上が可能である。
A comparative accumulation (FIG. 4 (b)) was prepared by electrospinning the mixture product with
Similar to Example 4, the result of staining this accumulated product with methylene blue represented by the formula (6) is shown in FIG. 5 (b).
In addition, when these two types of benzoxaborole polymers represented by the said Formula (5) and (7) are compared, the benzo oxaborole polymer represented by Formula (5) of Example 4 is Formula (7) of Comparative Example 3, It can be seen that a structure derived from a relatively small monomer having a carboxyl group is further added to the benzooxaborole polymer represented by
As can be seen from FIG. 5, the aggregate prepared from the mixed product 4 of EVOH and a carboxyl group-modified benzoxaborole polymer, which is Example 4 of the present invention, is a carboxyl group-unmodified benzo compound. It can be seen that the dye is strongly stained as compared to the accumulation using the oxaborole polymer. Since FIG. 5 is a black-and-white photograph, the (a) side only looks slightly black compared to the (b) side, but in fact the (b) side is blue while the (b) side is blue. The side was dyed dark blue, and the difference in dyeability could be clearly seen. The reason why the aggregate prepared by mixing EVOH and the carboxyl group-modified benzooxaborol polymer has higher dyeability is that it is ionized in the aggregate and exists in the form of -COO- It is because the carboxyl group and the cationic dye methylene blue cause electrostatic interaction. In this example, methylene blue was used as the dye, and the benzooxaborole polymer was modified with a carboxyl group, but the present invention is not limited to this combination, and any functional that negatively ionizes with any cationic dye. An improvement in dyeability can be achieved by combination with a group-modified benzoxaborole polymer. Conversely, the dyeability can be improved by combining any anionic dye with any positively ionizable benzooxaborole polymer modified with any functional group.

以上詳細に説明したように、本発明においては、EVOHは容易に入手可能な既存の材料を使用し、これに所望の機能性を有するベンゾオキサボロールポリマーを混合するだけで、EVOHの特徴を維持したままで所望の機能性を持たせることができるので、本発明はEVOHの用途の拡大等に広く利用されることが期待される。   As described above in detail, in the present invention, EVOH uses existing materials which are easily available, and the characteristics of EVOH can be obtained simply by mixing the benzooxaborole polymer having the desired functionality thereto. The present invention is expected to be widely used for expanding the application of EVOH and the like because desired functionality can be provided while maintaining it.

Claims (8)

ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーとビニルアルコール樹脂とを混合して両者を可逆的に結合させてなる混合生成物を含有するナノファイバ。 A nanofiber comprising a mixed product obtained by mixing a benzooxaborole polymer having a benzooxaborole structure and a vinyl alcohol resin and reversibly bonding the two . 前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とする、請求項1に記載のナノファイバThe benzoxaborole polymer as a basic skeleton a (meth) acrylamide and (meth) acrylate type, nanofibers according to Motomeko 1. 前記結合が、前記ベンゾオキサボロール構造と、前記ビニルアルコール樹脂が有するジオール構造との結合である、請求項1又は2に記載のナノファイバ。  The nanofiber according to claim 1 or 2, wherein the bond is a bond between the benzooxaborole structure and a diol structure possessed by the vinyl alcohol resin. 前記ベンゾオキサボロールポリマーが更にオキシエチレン基を有する繰り返し単位を有する、請求項1〜3のいずれか1項に記載のナノファイバ。  The nanofiber according to any one of claims 1 to 3, wherein the benzoxaborole polymer further has a repeating unit having an oxyethylene group. 請求項1〜4のいずれか1項に記載のナノファイバを含むナノファイバの集積体。  An aggregate of nanofibers comprising the nanofiber according to any one of claims 1 to 4. ベンゾオキサボロール構造をを含むベンゾオキサボロールポリマーとビニルアルコール樹脂とを混合して両者を可逆的に結合させてなる、電界紡糸用の混合生成物。  A mixed product for electrospinning comprising a benzooxaborole polymer containing a benzooxaborole structure and a vinyl alcohol resin mixed and reversibly bonded to each other. ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーとビニルアルコール樹脂とを混合して混合生成物を得て、前記混合生成物を電界紡糸して請求項1〜4のいずれか1項に記載のナノファイバを得る、ナノファイバの製造方法。  A mixed product is obtained by mixing a benzooxaborole polymer having a benzooxaborole structure and a vinyl alcohol resin, and the mixed product is electrospun to obtain any one of claims 1 to 4. A method of producing nanofibers, wherein the nanofibers are obtained. 請求項7に記載のナノファイバの製造方法により得られたナノファイバを集積させてナノファイバの集積体を得る、ナノファイバの集積体の製造方法。  A method for producing an assembly of nanofibers, wherein nanofibers obtained by the method for producing nanofibers according to claim 7 are integrated to obtain an assembly of nanofibers.
JP2017544510A 2015-10-06 2016-10-04 Nanofibers, assembly of nanofibers, mixed product for electrospinning, method of manufacturing nanofibers, and method of manufacturing aggregate of nanofibers. Active JP6504628B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015198316 2015-10-06
JP2015198316 2015-10-06
PCT/JP2016/079524 WO2017061435A1 (en) 2015-10-06 2016-10-04 Method for functionalizing vinyl alcohol resin, and vinyl alcohol resin functionalizing agent

Publications (2)

Publication Number Publication Date
JPWO2017061435A1 JPWO2017061435A1 (en) 2018-07-05
JP6504628B2 true JP6504628B2 (en) 2019-04-24

Family

ID=58487731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544510A Active JP6504628B2 (en) 2015-10-06 2016-10-04 Nanofibers, assembly of nanofibers, mixed product for electrospinning, method of manufacturing nanofibers, and method of manufacturing aggregate of nanofibers.

Country Status (2)

Country Link
JP (1) JP6504628B2 (en)
WO (1) WO2017061435A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114423768A (en) 2019-09-20 2022-04-29 格里森德公司 Substituted phenylboronic acid-containing polymers and methods of use
EP4041740A4 (en) * 2019-09-20 2023-10-25 Glyscend, Inc. Benzoxaborole polymers and methods of use

Also Published As

Publication number Publication date
JPWO2017061435A1 (en) 2018-07-05
WO2017061435A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Fujisawa et al. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion
Li et al. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources
Wang et al. Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles
Littunen et al. Network formation of nanofibrillated cellulose in solution blended poly (methyl methacrylate) composites
Voisin et al. 3d printing of strong lightweight cellular structures using polysaccharide-based composite foams
CN102182060B (en) Special slurry for sizing warp containing polyester staple fibers
Bijlard et al. Functional colloidal stabilization
JP6504628B2 (en) Nanofibers, assembly of nanofibers, mixed product for electrospinning, method of manufacturing nanofibers, and method of manufacturing aggregate of nanofibers.
KR101720858B1 (en) Eco-friendly method of producing food and industrial packaging
US9751969B2 (en) NCC-based supramolecular materials for thermoplastic and thermoset polymer composites
Nuruddin et al. Gas and water vapor barrier performance of cellulose nanocrystal–citric acid-coated polypropylene for flexible packaging
Peng et al. Coacervation-driven instant paintable underwater adhesives with tunable optical and electrochromic properties
Depa et al. Poly (N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties
CN110114391B (en) Resin composition for pulp defibration, fiber-reinforced material, and molding material
CN113929927B (en) Polyvinyl alcohol-modified graphene oxide nano composite aqueous dispersion and preparation method thereof
JP2017119843A (en) Hollow polymer particle, manufacturing method of polymer particle dispersion and manufacturing method of hollow polymer particle
Zhang et al. Dynamic behavior of crosslinked amphiphilic block copolymer nanofibers dispersed in liquid poly (ethylene oxide) below and above their glass transition temperature
KR102429528B1 (en) Biodegradable resin-based composite polymer using cellulose nano fiber and manufacturing method thereof
Shankar et al. Emulsion polymerized styrene acrylic/nanocellulose composite coating to improve the strength and hydrophobicity of kraft paper
JP5845044B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
Wu et al. Designable synthesis of nanocomposite hydrogels with excellent mechanical properties based on chemical cross-linked interactions
KR20220117274A (en) temperature-sensitive particulates
Zhang et al. A thermo-responsive dual-crosslinked hydrogel with ultrahigh mechanical strength
KR102006822B1 (en) Polyvinyl chloride resin latex composition and method for preparing the same
Hassan et al. Acrylate/nanofibrillated cellulose nanocomposites and their use for paper coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190320

R150 Certificate of patent or registration of utility model

Ref document number: 6504628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250