JP6504597B2 - Method of producing bismuth telluride thin film - Google Patents

Method of producing bismuth telluride thin film Download PDF

Info

Publication number
JP6504597B2
JP6504597B2 JP2015018256A JP2015018256A JP6504597B2 JP 6504597 B2 JP6504597 B2 JP 6504597B2 JP 2015018256 A JP2015018256 A JP 2015018256A JP 2015018256 A JP2015018256 A JP 2015018256A JP 6504597 B2 JP6504597 B2 JP 6504597B2
Authority
JP
Japan
Prior art keywords
thin film
type
sputtering
bismuth telluride
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015018256A
Other languages
Japanese (ja)
Other versions
JP2016143758A (en
Inventor
後藤 真宏
真宏 後藤
道子 佐々木
道子 佐々木
一彬 後藤
一彬 後藤
幸宏 磯田
幸宏 磯田
土佐 正弘
正弘 土佐
嘉一 篠原
嘉一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2015018256A priority Critical patent/JP6504597B2/en
Publication of JP2016143758A publication Critical patent/JP2016143758A/en
Application granted granted Critical
Publication of JP6504597B2 publication Critical patent/JP6504597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

本発明はテルル化ビスマス薄膜製造方法に関し、特に単一のターゲットを使用してマグネトロン・スパッタリングによりp型及びn型の両方のテルル化ビスマス(BiTe)薄膜を製造する方法に関する The present invention relates to a method of making a bismuth telluride thin film, and more particularly to a method of making both p-type and n-type bismuth telluride (Bi 2 Te 3 ) thin films by magnetron sputtering using a single target .

最近、熱電(thermoelectric、TE)薄膜の研究が急激に増加している。その第1の理由は、微小熱電発電機(非特許文献1)、微小熱電冷却器(非特許文献2)、微小熱電センサー(非特許文献3、4)などのような多様な応用の可能性があるからである。これらの微小熱電デバイスは、電子及びフォノンの量子論的及び古典的なサイズ効果により、対応するバルク型のデバイスよりも高い効率を実現する(非特許文献5)。第2の理由は、熱電薄膜によって超格子構造が生成されるからである(非特許文献6〜8)。低次元構造によって与えられる超格子はいくつかの効果によって熱電性能指数が高くなる(非特許文献6、9)。最後の理由は、熱電材料の結晶構造、結晶粒サイズ及び組成による熱電特性の基本的な研究を行うためには薄膜が有用だからである。バルク材料についてはこれらすべてを一様に制御することは極めて困難である。熱電薄膜はこれらの条件を制御するために有用であるので、熱電薄膜を使ってこれらの条件に依存する熱電特性を解析することができる。   Recently, research on thermoelectric (TE) thin films has been rapidly increasing. The first reason is the possibility of various applications such as micro thermoelectric generator (Non-patent document 1), micro thermoelectric cooler (Non-patent document 2), micro thermoelectric sensor (Non-patent documents 3 and 4), etc. Because there is These micro thermoelectric devices achieve higher efficiencies than the corresponding bulk devices due to the quantum and classical size effects of electrons and phonons (Non-patent Document 5). The second reason is that the superlattice structure is generated by the thermoelectric thin film (Non-Patent Documents 6 to 8). The superlattice provided by the low dimensional structure has a high thermoelectric figure of merit due to several effects (Non-patent Documents 6 and 9). The last reason is that thin films are useful for conducting basic studies of thermoelectric properties by the crystal structure, grain size and composition of the thermoelectric material. It is very difficult to control all these uniformly for bulk materials. Since thermoelectric thin films are useful to control these conditions, they can be used to analyze the thermoelectric properties dependent on these conditions.

BiTeは室温付近での応用向けの重要な熱電材料の一つである。マグネトロン・スパッタリングは効率的な工業的方法の一つであるので、BiTe薄膜はこのスパッタリング技術を使用して幅広く行われてきた。熱電特性は各種のスパッタ・コーティング条件、例えば基板温度(非特許文献10〜13)、作動圧力(非特許文献12)、アニール温度(非特許文献14〜16)及びパルスマグネトロン・スパッタリングの成膜パラメータ(非特許文献17)、に影響を受ける。Zhang他は面内層状成長柱状ナノ構造(in-plane layered grown columnar nanostructure)を有する、高度に(001)結晶配向されたBiTe薄膜を作製して、33.7mWcm−1−2の出力因子(power factor)に到達した(非特許文献18)。しかしながら、従来、マグネトロン・スパッタリング法でp型のBiTe薄膜を作製するには、Bi、Te以外の元素を添加する方法及び二つのターゲットから独立にBi及びTeを供給し、Teの供給量を多くすることでp型にする方法以外は知られていなかった。 Bi 2 Te 3 is one of the important thermoelectric materials for applications near room temperature. As magnetron sputtering is one of the efficient industrial methods, Bi 2 Te 3 thin films have been widely used using this sputtering technique. Thermoelectric properties include various sputter coating conditions, such as substrate temperature (non-patent documents 10 to 13), operating pressure (non-patent document 12), annealing temperature (non-patent documents 14 to 16) and film formation parameters of pulse magnetron sputtering (Non-Patent Document 17). Zhang et al. Prepared highly (001) crystal-oriented Bi 2 Te 3 thin films with in-plane layered grown columnar nanostructures, and had 33.7 mW cm −1 K −2 The power factor has been reached (Non-patent Document 18). However, conventionally, in order to prepare a p-type Bi 2 Te 3 thin film by magnetron sputtering method, a method of adding an element other than Bi and Te and supply of Bi and Te independently from two targets and supply of Te There was no known method other than the method of making it p-type by increasing the amount.

ポリマー膜基板上にBiTe薄膜をコーティングすることもまた重要である。と言うのは、このコーティングは柔軟な熱電変換デバイスへの応用があるからである。そのようなデバイスを製造するためには、ポリマー膜基板への損傷を防ぐため、コーティングをアニーリング・プロセスなしで合成しなければならない。 It is also important to coat Bi 2 Te 3 thin films on polymer film substrates. This is because this coating has application to flexible thermoelectric conversion devices. In order to manufacture such devices, the coating must be synthesized without an annealing process to prevent damage to the polymer film substrate.

薄膜微小熱電デバイスを製造するためには、アニーリングなしでマグネトロン・スパッタリング法によりp型及びn型の両方のBiTe薄膜を生成することが望まれる。2001年に、Zou他は加熱されたガラス基板上にビスマスとテルルとを共蒸着することによってp型及びn型の両方のBiTe薄膜をデポジットすることに成功した(非特許文献19)。しかし、この共蒸着プロセスは基板加熱を必要とするため、上述の要請に完全に応えることができたわけではない。 In order to produce thin film micro thermoelectric devices, it is desirable to produce both p-type and n-type Bi 2 Te 3 thin films by magnetron sputtering without annealing. In 2001, Zou et al. Succeeded in depositing both p-type and n-type Bi 2 Te 3 thin films by co-evaporating bismuth and tellurium on a heated glass substrate (Non-patent Document 19) . However, since this co-deposition process requires substrate heating, it has not been able to completely meet the above-mentioned requirements.

本発明の課題は、BiTeターゲットを使用してp型及びn型の両方のBiTe薄膜を作り分けることができるようにすることにある。 An object of the present invention is to make it possible to make both p-type and n-type Bi 2 Te 3 thin films separately using a Bi 2 Te 3 target.

本発明の一側面によれば、マグネトロン・スパッタリング法によりテルル化ビスマスからなる一種類のターゲットを使用して基板上にテルル化ビスマス薄膜を製造する方法において、製造されるテルル化ビスマス薄膜中のテルルの組成が50原子%を超える高周波スパッタリング電力を印加することにより、製造されるテルル化ビス膜薄膜の伝導型をp型とする、テルル化ビスマス薄膜製造方法が与えられる。
ここで、第1の範囲の高周波スパッタリング電力を印加してn型テルル化ビスマス薄膜を形成するステップと、前記第1の範囲の高周波スパッタリング電力よりも高い第2の範囲のスパッタリング電力を印加してp型テルル化ビスマス薄膜を形成するステップと
を設けてよい。
また、前記第1の範囲の高周波スパッタリング電力は、製造されるテルル化ビスマス薄膜中のビスマスの組成が50原子%以上となる高周波スパッタリング電力の範囲であってよい。
本発明の他の側面によれば、マグネトロン・スパッタリング法により基板上にテルル化ビスマス薄膜を製造する方法において、90W以下の高周波スパッタリング電力を印加してn型テルル化ビスマス薄膜を形成するステップを設けたテルル化ビスマス薄膜製造方法が与えられる。
本発明の更に他の側面によれば、マグネトロン・スパッタリング法により基板上にテルル化ビスマス薄膜を製造する方法において、100W以上の高周波スパッタリング電力を印加してp型テルル化ビスマス薄膜を形成するステップを設けたテルル化ビスマス薄膜製造方法が与えられる。
本発明の更に他の側面によれば、上記何れかの方法で製造されたテルル化ビスマス薄膜が与えられる。
According to one aspect of the present invention, tellurium in a bismuth telluride thin film is produced in a method of producing a bismuth telluride thin film on a substrate using one kind of target consisting of bismuth telluride by a magnetron sputtering method. By applying a high frequency sputtering power having a composition of 50 atomic% or more, a method of producing a bismuth telluride thin film is provided, in which the conductivity type of the tellurium bis telluride thin film is p-type.
Here, a step of forming an n-type bismuth telluride thin film by applying a high frequency sputtering power of a first range, and applying a sputtering power of a second range higher than the high frequency sputtering power of the first range forming a p-type bismuth telluride thin film.
Further, the high frequency sputtering power in the first range may be a range of the high frequency sputtering power in which the composition of bismuth in the bismuth telluride thin film to be manufactured is 50 atomic% or more.
According to another aspect of the present invention, in the method of manufacturing a bismuth telluride thin film on a substrate by a magnetron sputtering method, a step of applying a high frequency sputtering power of 90 W or less to form an n-type bismuth telluride thin film is provided. A method of making a bismuth bismuth telluride thin film is provided.
According to still another aspect of the present invention, there is provided a method of forming a p-type bismuth telluride thin film by applying a high frequency sputtering power of 100 W or more in a method of producing a bismuth telluride thin film on a substrate by a magnetron sputtering method. The provided bismuth telluride thin film manufacturing method is provided.
According to still another aspect of the present invention, there is provided a bismuth telluride thin film manufactured by any of the above methods.

本発明によれば、単一のBiTeターゲットを使用してスパッタリングの際に印加する高周波電力を変化させるだけでp型及びn型の両方のBiTe薄膜を作製することができるので、この薄膜の作成プロセスの簡易化を達成することができる。また、その際に基板を加熱する必要がないため、熱に弱い材料を基板として使用できるようになる。 According to the present invention, both p-type and n-type Bi 2 Te 3 thin films can be produced simply by changing the high frequency power applied during sputtering using a single Bi 2 Te 3 target. So, simplification of the process of producing this thin film can be achieved. In addition, since it is not necessary to heat the substrate at that time, it is possible to use a material which is weak to heat as the substrate.

本発明の一実施例においてBiTe薄膜のマグネトロン・スパッタリングを行う装置構成の概念図。Conceptual view of an apparatus configured to perform magnetron sputtering of Bi 2 Te 3 thin film in one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜の表面トポグラフィーを示す原子間力顕微鏡(AFM)像。Atomic force microscope (AFM) images showing surface topography of various Bi 2 Te 3 thin films prepared according to an embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜のXRDスペクトルを示す図。It shows XRD spectra of various Bi 2 Te 3 thin film fabricated according to one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜のXPSによるBiとTeとの元素組成比のRF印加電力依存性を示す図。Shows the RF applied electric power dependence of the elemental composition ratio of Bi and Te by XPS various Bi 2 Te 3 thin film fabricated in accordance with one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜のTe及びBiのXPSスペクトルを示す図。It shows the XPS spectrum of fabricated various Bi 2 Te 3 film of Te and Bi in accordance with one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜の熱電特性の測定を行う際の試料のセッティングを示す概念図。Conceptual diagram showing the setting of the sample when performing the measurement of the thermoelectric properties of the various Bi 2 Te 3 thin film fabricated according to one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜のゼーベック係数の測定結果を示す図。Figure showing the results of measurement of the Seebeck coefficient of the various Bi 2 Te 3 thin film fabricated according to one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜の出力因子の測定結果を示す図。It shows the measurement result of the output factor of the Bi 2 Te 3 film of fabricated various according to an exemplary embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜の抵抗率を示す図。It shows the resistivity of the various Bi 2 Te 3 thin film fabricated according to one embodiment of the present invention. 本発明の一実施例により作製された各種のBiTe薄膜の熱伝導率の測定結果を示す図。Shows the measurement of the thermal conductivity of the Bi 2 Te 3 film of which produced the various results according to one embodiment of the present invention.

本発明の一形態では、基板加熱を伴わないp型及びn型両方のBiTe薄膜の成長最適化が実現される。具体的にはマグネトロン・スパッタリングによりBiTe薄膜を形成する際に印加する高周波(RF)スパッタリング電力の大きさにより、p型とn型の何れの極性となるかを制御できる。実験では、RFスパッタリング電力が70W〜90Wの範囲ではn型のBiTe薄膜が得られ、その中でもRFスパッタリング電力が80Wの場合に無次元性能指数が最大となった。また、RFスパッタリング電力が100W以上の場合にはp型のBiTe薄膜が得られた。このように、本発明では、マグネトロン・スパッタリングにより、同じターゲットを使用しながら、スパッタリング条件、具体的にはRFスパッタリング電力を変えることで、p型とn型の両方のBiTe薄膜を作り分けることができる。また、この薄膜製造過程で基板の加熱は必要とされないので、熱に弱い基板上に任意の伝導型のBiTe薄膜を容易に形成することができる。 In one aspect of the present invention, growth optimization of both p-type and n-type Bi 2 Te 3 thin films without substrate heating is achieved. Specifically, the polarity of either p-type or n-type can be controlled by the magnitude of the radio frequency (RF) sputtering power applied when forming a Bi 2 Te 3 thin film by magnetron sputtering. In the experiment, when the RF sputtering power is in the range of 70 W to 90 W, an n-type Bi 2 Te 3 thin film is obtained. Among them, the non-dimensional performance index is maximum when the RF sputtering power is 80 W. In addition, when the RF sputtering power was 100 W or more, a p-type Bi 2 Te 3 thin film was obtained. Thus, in the present invention, both p-type and n-type Bi 2 Te 3 thin films are formed by changing sputtering conditions, specifically RF sputtering power, using magnetron sputtering while using the same target. It can be divided. In addition, since heating of the substrate is not required in the thin film manufacturing process, it is possible to easily form a Bi 2 Te 3 thin film of any conductivity type on the substrate susceptible to heat.

各種のRFスパッタ電力を印加して作製したBiTe薄膜をXPSで調べたところ、電力によりその組成比が変化することがわかった。印加したRFスパッタ電力が低い間はBiの方がTeに比較して大きな値を示し、またその薄膜の導電型はn型であった。RFスパッタ電力を増加させていくとTeの組成が50原子%を超えて増加し、この領域では導電型が反転してp型となった。この性質を利用して、所望の導電型のBiTe薄膜を製造するためのRFスパッタリング電力条件を定めることができる。 When a Bi 2 Te 3 thin film manufactured by applying various RF sputtering powers was examined by XPS, it was found that the composition ratio was changed by the power. While the applied RF sputtering power was low, Bi exhibited a larger value than Te, and the conductivity type of the thin film was n-type. As the RF sputtering power was increased, the composition of Te increased to over 50 atomic%, and in this region, the conductivity type was reversed to be p-type. This property can be used to define RF sputtering power conditions for producing a desired conductivity type Bi 2 Te 3 thin film.

なお、上に書いたように、BiTe薄膜の導電型を変化させるために、当該薄膜中のBiとTeとの組成比を化学量論比である2:3からずらしている。しかしながら、当該技術分野ではこのような薄膜もBiTe薄膜と表記されている報告例がある(例えば、非特許文献19)。本願ではこの報告例に従い、組成が化学量論比からずれている場合でもBiTe薄膜と表記し、化学量論比からのずれがあることについては個別的に明記していないことに注意されたい。なお、組成が化学量論比からずれたBiTe薄膜の実際の構造は、そのXRD測定結果から見て、BiTe微結晶にBiまたはTeが単独で固溶しているか、一部について元素が置換されているものであると考えられる。 As described above, in order to change the conductivity type of the Bi 2 Te 3 thin film, the composition ratio of Bi to Te in the thin film is deviated from the stoichiometric ratio of 2: 3. However, in the art, there is a report that such a thin film is also described as a Bi 2 Te 3 thin film (for example, Non-Patent Document 19). In this application, according to this report, even if the composition deviates from the stoichiometric ratio, it is described as a Bi 2 Te 3 thin film, and it is noted that the deviation from the stoichiometric ratio is not individually described. I want to be Note that the actual structure of the Bi 2 Te 3 thin film whose composition deviates from the stoichiometric ratio is either whether Bi or Te is solid-solved alone in Bi 2 Te 3 microcrystals, as seen from the XRD measurement results. It is considered that elements are substituted in some parts.

このようにしてBiTe薄膜を作製することにより、図3及び図5からわかるように、BiTe薄膜の結晶配向性並びにBi、Teの化学結合性を連続して制御することができる。従来の製造方法は、その成膜法に依存した結晶配向性を有するものであり、特性を大幅に制御することは困難であったが、上述の方法では必要とする特性を有する膜を意識的に作製可能である。 By thus preparing the Bi 2 Te 3 thin film, as shown in FIGS. 3 and 5, it is possible to continuously control the crystal orientation of the Bi 2 Te 3 thin film and the chemical bonding of Bi and Te. it can. The conventional manufacturing method has crystal orientation that depends on the film forming method, and it has been difficult to control the characteristics significantly. However, in the above method, the film having the required characteristics is consciously conscious Can be manufactured.

このようにして作製された薄膜は、図3からわかるように、作製条件によって様々な結晶配向性を有し、それぞれが新たな熱電材料となる。すなわち、本発明の上記形態に従って作製された薄膜は、XRDで測定すれば、その作製条件に特有の結晶配向性を有するものとなるため、本形態とは別の方法で作製した膜と区別することが可能である。また、そのような結晶配向性や化学結合性(ESCAデータで規定)を有する膜は、測定の通りのZTあるいはパワーファクターを有するため、逆にこの値が具体的に提示された場合には、この値を実現するBiTe薄膜を作製するための条件を求めてそれを実際に作製することは容易である。 The thin film produced in this way has various crystal orientations depending on the production conditions, as shown in FIG. 3, and each becomes a new thermoelectric material. That is, the thin film produced according to the above-mentioned form of the present invention has crystal orientation characteristic unique to the preparation conditions when measured by XRD, so it is distinguished from the film produced by a method different from this form. It is possible. In addition, since a film having such crystal orientation and chemical bondability (defined by ESCA data) has the ZT or power factor as measured, conversely when this value is specifically presented, It is easy to find the conditions for producing a Bi 2 Te 3 thin film that realizes this value and to actually produce it.

以下では実施例により本発明を詳細に説明する。   The invention will now be described in detail by way of examples.

BiTeコーティングを、コンビナトリアル・スパッタ・コーティング・システム(COSCOS)により、コーティング・プロセスの間フローティング電位とした石英単結晶基板(22×4×1.5mm)上に外気温度の下で40W〜120Wの各種の高周波(RF)電力でマグネトロン・スパッタリングを行うことにより合成した。なお、コンビナトリアル・スパッタ・コーティング・システム自体は以前から当業者によく知られた事項であるので、本明細書ではその詳細は説明しないが、必要に応じて非特許文献20等を参照されたい。 40 W under ambient temperature on a quartz single crystal substrate (22 × 4 × 1.5 mm 3 ) with the Bi 2 Te 3 coating brought to a floating potential during the coating process by means of a combinatorial sputter coating system (COSCOS) It synthesize | combined by performing magnetron sputtering by various radio frequency (RF) electric power of -120W. Since the combinatorial sputter coating system itself is a matter well known to those skilled in the art, the details thereof will not be described herein, but if necessary, refer to Non-Patent Document 20 and the like.

この基板をアセトン中で15分間超音波洗浄した後、図1に示す装置構成を使用してマグネトロン・スパッタリングによるコーティング・プロセスを実行した。スパッタ・コーティングにはBiTeのスパッタ・ターゲット(直径50mm、厚さ6mm、純度99.99%、株式会社高純度化学研究所製)をアルゴンガス(Ar)(純度99.999%以上)と共に使用した。またArの作動圧力は0.4Paとした。ターゲットと試料(基板)との間の距離は55mmに固定し、またコーティングの厚さは約1μmとした。コーティング厚は従来の水晶厚さモニタによりモニタした。コーティングのパラメータとして、RFスパッタリング電力を40Wから120Wまで変化させた。BiTeコーティングの結晶構造をX線回折(XRD)分光計(株式会社リガク製のSmart Lab)により観察した。コーティング膜の原子組成及び化学結合エネルギーはエネルギー分散X線分光によって測定した。原子間力顕微鏡によって、コーティングの表面モルフォロジーも測定した。熱電特性であるゼーベック係数及び導電率は従来の測定システム(アルバック理工株式会社製のmodel ZEM-3)を使用して測定した。熱電特性測定のための試料セットアップを図6に示す。水晶基板上のBiTeコーティング膜のテスト用試料の両側端をニッケル製の金属ブロックにネジで固定した。また、2ω法ナノ薄膜熱伝導率計(アドバンス理工株式会社製のmodel TCN-2ω)により、コーティング膜の表面に沿った方向の熱伝導率評価も行った。 After ultrasonic cleaning of the substrate in acetone for 15 minutes, the coating process by magnetron sputtering was performed using the apparatus configuration shown in FIG. For sputter coating, a sputter target of Bi 2 Te 3 (diameter 50 mm, thickness 6 mm, purity 99.99%, manufactured by High Purity Chemical Laboratory Co., Ltd.) with argon gas (Ar) (purity 99.999% or more) Used with The operating pressure of Ar was 0.4 Pa. The distance between the target and the sample (substrate) was fixed at 55 mm, and the thickness of the coating was about 1 μm. The coating thickness was monitored by a conventional quartz thickness monitor. The RF sputtering power was varied from 40 W to 120 W as a coating parameter. The crystal structure of the Bi 2 Te 3 coating was observed by an X-ray diffraction (XRD) spectrometer (Smart Lab, manufactured by Rigaku Corporation). The atomic composition and chemical bond energy of the coating film were measured by energy dispersive X-ray spectroscopy. The surface morphology of the coating was also measured by atomic force microscopy. The Seebeck coefficient and the conductivity, which are thermoelectric characteristics, were measured using a conventional measurement system (model ZEM-3 manufactured by ULVAC-RIKO, Inc.). The sample setup for thermoelectric property measurement is shown in FIG. Both side ends of the test sample of the Bi 2 Te 3 coating film on the quartz substrate were screwed to a nickel metal block. Further, the thermal conductivity in the direction along the surface of the coating film was also evaluated by a 2ω method nano thin film thermal conductivity meter (model TCN-2ω manufactured by Advance Riko Co., Ltd.).

図2は、マグネトロン・スパッタリングを行う際に印加したRF電力を40Wから120Wまで10W刻みで変化させて得られた9種類のBiTeコーティング膜をAFMにより観察した表面トポグラフィー像である。これらの像からわかるように、印加したRF電力が40W〜70Wでは表面状態の変化は小さく、また大きな塊が見られる。80Wになるとこれまでの大きな塊の構造はまだ見られるものの、その表面が緻密な微結晶で構成されてくる。90Wでは表面は極めて微細な結晶で構成されている。100Wになると結晶の大きさはまた大きくなり、110〜120Wになるにしたがって、再び微結晶となる。 FIG. 2 is a surface topographic image obtained by AFM observation of nine types of Bi 2 Te 3 coating films obtained by changing RF power applied during magnetron sputtering from 40 W to 120 W in 10 W steps. As can be seen from these images, when the applied RF power is 40 W to 70 W, the change of the surface state is small, and a large lump is observed. At 80 W, although the structure of the previous large lumps can still be seen, the surface is composed of fine crystallites. At 90 W, the surface is composed of extremely fine crystals. At 100 W, the size of the crystal increases again, and as 110 to 120 W, it becomes microcrystals again.

図3は印加RF電力を40W〜100Wとした場合に得られた7種類の試料のXRDスペクトルである。これも図2の結果と同様に、40W〜70Wでは大きな変化は見られないものの、80Wを境として結晶配向が変化していることがわかる。   FIG. 3 is an XRD spectrum of seven samples obtained when the applied RF power is 40 W to 100 W. Similarly to the results of FIG. 2, it can be seen that the crystal orientation changes at 80 W as a boundary, although a large change is not seen at 40 W to 70 W.

図4は、XPSによるBiとTeの元素組成比の印加RF電力依存性を示す。図2及び図3に見られた傾向に対応するように、80WからBiとTeの組成比が変化を始めており、Teが増加していることがわかる。また、図5はBiとTeのXPSスペクトルであるが、ここに示すスペクトルも図4に示す組成変化に対応して、80W以上でTeの571.5eVのピークが高エネルギー側にシフトしているのがわかる。また、Biの156.5、161.8eV近傍の弱いピークは、80W以上でピーク強度が増大するとともに、低エネルギー側にシフトしていることがわかる。   FIG. 4 shows the applied RF power dependency of the elemental composition ratio of Bi and Te by XPS. It can be seen that the composition ratio of Bi to Te starts to change from 80 W and Te increases, corresponding to the tendency seen in FIGS. 2 and 3. Further, FIG. 5 is an XPS spectrum of Bi and Te, but the spectrum shown here is also shifted to the high energy side at the peak of 571.5 eV of Te at 80 W or more, corresponding to the composition change shown in FIG. 4 You can see that. In addition, it can be seen that the weak peaks near 156.5 and 161.8 eV of Bi are shifted to the low energy side while the peak intensity increases at 80 W or more.

このように、マグネトロン・スパッタリング時の印加RF電力を変化させるとBiTeの組成や結晶配向を変化させることができることが分かった。 As described above, it was found that the composition and crystal orientation of Bi 2 Te 3 can be changed by changing the applied RF power at the time of magnetron sputtering.

図6は、BiTe薄膜の熱電特性(ゼーベック係数及び抵抗率)の測定を行った時の試料のセッティングを示す。BiTe薄膜の表面に熱電対を設置し、その温度差と電圧を測定した。試料の上端と下端との間にヒーターで温度差をつけている。 FIG. 6 shows the setting of samples when measuring the thermoelectric characteristics (Seebeck coefficient and resistivity) of the Bi 2 Te 3 thin film. A thermocouple was placed on the surface of the Bi 2 Te 3 thin film, and the temperature difference and the voltage were measured. A temperature difference is provided between the top and bottom of the sample by a heater.

図7A及び図7Bはそれぞれマグネトロン・スパッタリングの際の印加RF電力を40Wから120Wの間で変化させた際に得られたBiTe薄膜のゼーベック係数及び出力因子の測定結果を示す。ここに示されたゼーベック係数の値は印加RF電力が90W以下ではマイナスの値となり、n型の特性を示すが、100W以上では反転してp型の特性を示す。 FIGS. 7A and 7B show the measurement results of the Seebeck coefficient and power factor of the Bi 2 Te 3 thin film obtained when the applied RF power during magnetron sputtering was varied between 40 W and 120 W, respectively. The value of the Seebeck coefficient shown here is a negative value when the applied RF power is 90 W or less, and shows an n-type characteristic, but it is inverted and exhibits a p-type characteristic at 100 W or more.

図8は図7A、図7Bと同じ試料の抵抗率の温度変化を示す図である。これらの図から、印加RF90Wを境に、そこから上では抵抗が増大することがわかる。
図9は同じ試料(ただし、印加RF電力が40W〜100Wの範囲の試料のみ)の熱伝導率測定値を示す。これも同様に、90Wを境に、そこから上では熱伝導率が低下している。
FIG. 8 is a view showing the temperature change of the resistivity of the same sample as FIG. 7A and FIG. 7B. From these figures it can be seen that the resistance increases above and beyond the applied RF 90 W.
FIG. 9 shows the thermal conductivity measurements of the same sample, but only for samples in the range of 40 W to 100 W applied RF power. Again, at 90 W, the thermal conductivity drops from there.

以下に、40W〜100WのRFスパッタリング電力により作製したBiTe薄膜のゼーベック係数、抵抗率及び熱伝導率の値から算出したこれら薄膜の無次元性能指数ZT及びその導電型を以下の表1に示す。 Table 1 below shows the dimensionless figure of merit ZT of these thin films calculated from the values of Seebeck coefficient, resistivity and thermal conductivity of Bi 2 Te 3 thin films prepared by RF sputtering power of 40 W to 100 W and their conductivity types. Shown in.

上掲の表からわかるように、RFスパッタリング電力が90W以下の場合にn型が得られ、また80Wの場合に最も良好なZTが得られている。これより、n型BiTe薄膜を作製するに当たっては、RFスパッタリング電力を75W以上90W以下の範囲とするのが好ましいことがわかる。なお、RFスパッタリング電力を低下させていった場合、放電が継続している限り、一貫してn型のBiTe薄膜が得られる。また、100Wではp型となっていることがわかる。スパッタリング電力を大きくしていってもp型が得られる。本実施例ではスパッタ電力を120Wまで大きくしたが、その場合でもp型となることが確認された。しかし、スパッタ電力を過度に大きくするとターゲットが破壊されるため(本実施例で使用した装置では150W)、スパッタリング電力はこの破壊が起こる電力未満に抑える必要がある。 As can be seen from the above table, the n-type is obtained when the RF sputtering power is 90 W or less, and the best ZT is obtained at 80 W. From this, it can be seen that, in producing the n-type Bi 2 Te 3 thin film, the RF sputtering power is preferably in the range of 75 W to 90 W. When the RF sputtering power is reduced, an n-type Bi 2 Te 3 thin film can be obtained consistently as long as the discharge is continued. Also, it can be seen that at 100 W, it is p-type. The p-type can be obtained even if the sputtering power is increased. In this example, the sputtering power was increased to 120 W, but even in that case, it was confirmed to be p-type. However, when the sputtering power is excessively increased, the target is destroyed (150 W in the apparatus used in this embodiment), so the sputtering power needs to be less than the power at which the destruction occurs.

以上詳細に説明したように、本発明によればマグネトロン・スパッタリングにより、BiTeターゲットを使用してp型とn型の両方のBiTe薄膜を作製することができるので、これら薄膜の製造の簡易化等に貢献するものと期待される。また、上の説明からわかるように、BiTe薄膜の作製プロセス中で基板の加熱は必要とされないので、熱に弱い基板の上にもBiTe薄膜を作製できる。これにより、BiTe薄膜応用の範囲が広がることも期待される。 As described above in detail, according to the present invention, both p-type and n-type Bi 2 Te 3 thin films can be produced by magnetron sputtering using a Bi 2 Te 3 target. It is expected to contribute to the simplification of the production of Moreover, as can be seen from the above description, the heating of the substrate in the Bi 2 Te 3 in the thin film fabrication process because it is not required, also on the sensitive substrate on the heat can be fabricated Bi 2 Te 3 film. This is also expected to expand the range of Bi 2 Te 3 thin film application.

PeG ペニングイオン真空計
T.M.P. ターボ分子ポンプ
R.P. ロータリーポンプ
PeG Penning ion vacuum gauge T. M. P. Turbo molecular pump R. P. Rotary pump

W. Glatz, E. Schwyter, L. Durrer and C. Hierold,"Bi2+xTe3-xbased, flexible micro thermoelectric generator with optimized design", Journal of Microelectromechanical Systems, Vol. ED-18 (3), pp.763-772, 2009.W. Glatz, E. Schwyter, L. Durrer and C. Hierold, "Bi2 + xTe3-xbased, flexible micro thermoelectric generator with optimized design", Journal of Microelectromechanical Systems, Vol. ED-18 (3), pp. 763- 772, 2009. L. W. da Silva and M. Kaviany, Int. J. Heat Mass Transfer 47, 2417 s2004d.L. W. da Silva and M. Kaviany, Int. J. Heat Mass Transfer 47, 2417 s 2004 d. Dillner, U., Kessler, E., and Meyer, H.-G.: Figures of merit of thermoelectric and bolometric thermal radiation sensors, J. Sens. Sens. Syst., 2, 85-94, doi:10.5194/jsss-2-85-2013, 2013.Dillner, U., Kessler, E., and Meyer, H.-G .: Figures of the merits of thermoelectric and bolometric thermal radiation sensors, J. Sens. Sens. Syst., 2, 85-94, doi: 10.5194 / jsss -2-85-2013, 2013. Preparation and characteristics of Pt/ACC catalyst for thermoelectric thin film hydrogen sensor Original Research Article, Sensors and Actuators B: Chemical, Volume 128, Issue 1, 12 December 2007, Pages 266-272, Jiansong Zhang, Weiling Luan, Hu Huang, Yunshi Qi, Shan-Tung Tu.B. Chemical, Volume 128, Issue 1, 12 December 2007, Pages 266-272, Jiansong Zhang, Weiling Luan, Hu Huang, Yunshi Preparation and characteristics of Pt / ACC for thermoelectric thin film hydrogen sensors Original Research Articles, Sensors and Actuators B: Chemical, Volume 128, Issue 1, 12 December 2007 Qi, Shan-Tung Tu. Design of Thin-Film Thermoelectric Microcoolers, Yao, D.-J. ; Kim, C.-J. ; Chen, G., ASME -PUBLICATIONS- HTD; 366, 2; 345-352.Design of Thin-Film Thermoelectric Microcoolers, Yao, D.-J .; Kim, C.-J .; Chen, G., ASME-PUBLICATIONS- HTD; 366, 2; 345-352. Thin-film thermoelectric devices with high room-temperature figures of merit, Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts & Brooks O'Quinn, Nature 413, 597-602 (11 October 2001) | doi:10.1038/35098012.Thin-film thermoelectric devices with high room-temperature figures, Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts & Brooks O'Quinn, Nature 413, 597-602 (11 October 2001) | doi: 10 10.038 / 35098012. Design and Synthesis of [(Bi2Te3)x(TiTe2)y] Superlattices, Fred R. Harris, Stacey Standridge, Carolyn Feik, David C. Johnson, Angew. Chem. Int. Ed. 2003, 42, 5296-5299.Design and Synthesis of [(Bi2Te3) x (TiTe2) y] Superlattices, Fred R. Harris, Stacey Standridge, Carolyn Feik, David C. Johnson, Angew. Chem. Int. Ed. 2003, 42, 5296-5299. Thermoelectric properties of MeV Si ion bombarded Bi2Te3/Sb2Te3superlattice deposited by magnetron sputtering, B. Zheng, Z. Xiao, B. Chhay, R.L. Zimmerman, Matthew E. Edwards, D. ILA, Surface and Coatings Technology, Volume 203, Issues 17-18, 15 June 2009, Pages 2682-2686.Thermoelectric properties of MeV Si ion bombarded Bi2Te3 / Sb2Te3 superlattice deposited by magnetotron sputtering, B. Zheng, Z. Xiao, B. Chhay, RL Zimmerman, Matthew E. Edwards, D. ILA, Surface and Coatings Technology, Volume 203, Issues 17- 18, 15 June 2009, Pages 2682-2686. "Experimental proof-of-principle investigation of enhanced in (001) oriented Si/Ge superlattices", T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu and K. L. Wang, Appl. Phys. Lett. 77, 1490 (2000); http://dx.doi.org/10.1063/1.1308271."Experimental proof-of-principle investigation of enhanced in (001) oriented Si / Ge superlattices", T. Koga, SB Cronin, MS Dresselhaus, JL Liu and KL Wang, Appl. Phys. Lett. 77, 1490 (2000); http://dx.doi.org/10.1063/1.1308271. Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering, Dong-Ho Kim, Sung-Hun Lee, Jong-Kuk Kim, Gun-Hwan Lee, Applied Surface Science, Volume 252, Issue 10, 15 March 2006, Pages 3525-3531.Structure and electrical transport properties of bismuth thin films prepared by RF magnetic sputtering, Dong-Ho Kim, Sung-Hun Lee, Jong-Kuk Kim, Gun-Hwan Lee, Applied Surface Science, Volume 252, Issue 10, 15 March 2006, Pages 3525-3531. Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering, Dong-Ho Kim, Eungsun Byon, Gun-Hwan Lee, Sunglae Cho, Thin Solid Films, Volume 510, Issues 1-2, 3 July 2006, Pages 148-153.Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering, Dong-Ho Kim, Eungsun Byon, Gun-Hwan Lee, Sunglae Cho, Thin Solid Films, Volume 510, Issues 1-2, 3 July 2006, Pages 148-153. Thermoelectric properties of n-type Bi-Te thin films with deposition conditions using RF magnetron co-sputtering, Hee-Jung Lee, Hyun Sung Park, Seungwoo Han, Jung Yup Kim, Thermochimica Acta, Volume 542, 20 August 2012, Pages 57-61.Thermoelectric properties of n-type thin film with deposition conditions using RF magnetron co-sputtering, Hee-Jung Lee, Hyun Sung Park, Seungwoo Han, Jung Yup Kim, Thermochimica Acta, Volume 542, 20 August 2012, Pages 57- 61. Zhigang Zeng, Penghui Yang, Zhiyu Hu, Temperature and size effects on electrical properties and thermoelectric power of Bismuth Telluride thin films deposited by co-sputtering, Applied Surface Science, Volume 268, 1 March 2013, Pages 472-476.Zhigang Zeng, Penghui Yang, Zhiyu Hu, Temperature and size effects on electrical properties and thermoelectric power of Bismuth Telluride thin films deposited by co-sputtering, Volume 268, 1 March 2013, Pages 472-476. Dong-Ho Kim, Gun-Hwan Lee, Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering, Materials Science and Engineering: B, Volume 131, Issues 1-3, 15 July 2006, Pages 106-110.Dong-Ho Kim, Gun-Hwan Lee, Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering, Materials Science and Engineering: B, Volume 131, Issues 1-3, 15 July 2006, Pages 106- 110. Hu Huang, Wei-ling Luan, Shan-tung Tu, Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering, Thin Solid Films,Volume 517, Issue 13, 1 May 2009, Pages 3731-3734.Hu Huang, Wei-ling Luan, Shan-tung Tu, Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetotron sputtering, Thin Solid Films, Volume 517, Issue 13, 1 May 2009, Pages 3731-3734. Seong-jae Jeon, Minsub Oh, Haseok Jeon, Seungmin Hyun, Hoo-jeong Lee, Effects of post-annealing on thermoelectric properties of bismuth-tellurium thin films deposited by co-sputtering, Microelectronic Engineering, Volume 88, Issue 5, May 2011, Pages 541-544.Seong-jae Jeon, Minsub Oh, Haseok Jeon, Seungmin Hyun, Hoo-jeong Lee, Effects of post-annealing on thermoelectric properties of bismuth-tellurium thin films deposited by co-sputtering, Microelectronic Engineering, Volume 88, Issue 5, May 2011 , Pages 541-544. Krzysztof Wojciechowski, Elzbieta Godlewska, Krzysztof Mars, Ryszard Mania, Gabriele Karpinski, Pawel Ziolkowski, Christian Stiewe, Eckhard Mueller, Characterization of thermoelectric properties of layers obtained by pulsed magnetron sputtering, Vacuum, Volume 82, Issue 10, 3 June 2008, Pages 1003-1006.Krzysztof Wojciechowski, Elzbieta Godlewska, Krzysztof Mars, Ryszard Mania, Gabriele Karpinski, Pawel Ziolkowski, Christian Stiewe, Eckhard Mueller, Characterization of layers of properties of layers obtained by pulsed magnetronium, plasma waves, -1006. Zhiwei Zhang, Yao Wang, Yuan Deng, Yibin Xu, The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3thin film, Solid State Communications, Volume 151, Issue 21, November 2011, Pages 1520-1523.Zhiwei Zhang, Yao Wang, Yuan Deng, Yibin Xu, The effect of (00 l) crystal plane orientation on the thermoelectric properties of Bi2Te3thin film, Solid State Communications, Volume 151, Issue 21, November 2011, Pages 1520-1523. Helin Zou, D.M Rowe, Gao Min, Growth of p- and n-type bismuth telluride thin films by co-evaporation, Journal of Crystal Growth, Volume 222, Issues 1-2, January 2001, Pages 82-87.Helin Zou, D. M Rowe, Gao Min, Growth of p- and n-type bismuth telluride thin films by co-evaporation, Journal of Crystal Growth, Volume 222, Issues 1-2, January 2001, Pages 82-87. M. Goto, A. Kasahara, and M. Tosa, Low frictional property of copper oxide thin films optimised using a combinatorial sputter coating system, Appl. Surf. Sci. 252, 2482-2487 (2006).M. Goto, A. Kasahara, and M. Tosa, Low fractional property of copper oxide thin films optimized using a combinatorial sputter coating system, Appl. Surf. Sci. 252, 2482-2487 (2006).

Claims (4)

マグネトロン・スパッタリング法により基板上にn型テルル化ビスマス薄膜を製造する方法であって、
前記基板を加熱することなく、40W以上90W以下の高周波スパッタリング電力を印加し、テルル化ビスマス(Bi Te )ターゲットをスパッタリングするステップを包含する、方法
A method of producing an n-type bismuth telluride thin film on a substrate by a magnetron sputtering method, comprising:
Applying a radio frequency sputtering power of 40 W to 90 W without heating the substrate to sputter a bismuth telluride (Bi 2 Te 3 ) target .
前記スパッタリングするステップは、75W以上90W以下の高周波スパッタリング電力を印加する、請求項1に記載の方法。The method according to claim 1, wherein the sputtering step applies high frequency sputtering power of 75 W or more and 90 W or less. マグネトロン・スパッタリング法により基板上にp型テルル化ビスマス薄膜を製造する方法であって、
前記基板を加熱することなく、100W以上150W未満の高周波スパッタリング電力を印加し、テルル化ビスマス(Bi Te )ターゲットをスパッタリングするステップを包含する、方法
A method of producing a p-type bismuth telluride thin film on a substrate by a magnetron sputtering method, comprising:
Applying a radio frequency sputtering power of 100 W or more and less than 150 W without heating the substrate to sputter a bismuth telluride (Bi 2 Te 3 ) target .
前記スパッタリングするステップは、100W以上120W以下の高周波スパッタリング電力を印加する、請求項3に記載の方法。The method according to claim 3, wherein the sputtering step applies high frequency sputtering power of 100 W or more and 120 W or less.
JP2015018256A 2015-02-02 2015-02-02 Method of producing bismuth telluride thin film Active JP6504597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018256A JP6504597B2 (en) 2015-02-02 2015-02-02 Method of producing bismuth telluride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018256A JP6504597B2 (en) 2015-02-02 2015-02-02 Method of producing bismuth telluride thin film

Publications (2)

Publication Number Publication Date
JP2016143758A JP2016143758A (en) 2016-08-08
JP6504597B2 true JP6504597B2 (en) 2019-04-24

Family

ID=56570744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018256A Active JP6504597B2 (en) 2015-02-02 2015-02-02 Method of producing bismuth telluride thin film

Country Status (1)

Country Link
JP (1) JP6504597B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498354B (en) * 2016-09-18 2018-09-25 中国科学院电工研究所 A method of preparing hexagonal Spiral morphology bismuth telluride thermal electric film
CN108486530A (en) * 2018-03-16 2018-09-04 成都理工大学 The method that on-line heating realizes the transformation of glass Be2Ti3 film p-n junctions
CN113640637A (en) * 2020-04-27 2021-11-12 中国科学院大连化学物理研究所 Clamp for auxiliary measurement of performances of thin film and soft and brittle thermoelectric material and application of clamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776419B2 (en) * 1987-09-22 1995-08-16 松下電器産業株式会社 Sputtering film forming method and film forming apparatus
JP2000261052A (en) * 1999-03-05 2000-09-22 Sharp Corp Manufacture for thin-film thermoelectric conversion element and the thin-film thermoelectric conversion element
WO2006001827A2 (en) * 2003-12-02 2006-01-05 Battelle Memorial Institute Thermoelectric devices and applications for the same

Also Published As

Publication number Publication date
JP2016143758A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
Shen et al. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering
Goto et al. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology
Deng et al. Growth and transport properties of oriented bismuth telluride films
Goncalves et al. Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications
Adam et al. Ultra thin bismuth selenide-bismuth telluride layers for thermoelectric applications
Tan et al. Ordered structure and high thermoelectric properties of Bi2 (Te, Se) 3 nanowire array
Zhang et al. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film
Zheng et al. Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition
Fan et al. High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation
Wu et al. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties
Tan et al. Oriented growth of A2Te3 (A= Sb, Bi) films and their devices with enhanced thermoelectric performance
Saberi et al. Comparison of thermoelectric properties of Bi2Te3 and Bi2Se0· 3Te2. 7 thin film materials synthesized by hydrothermal process and thermal evaporation
Norimasa et al. Improvement of thermoelectric properties of flexible Bi2Te3 thin films in bent states during sputtering deposition and post-thermal annealing
JP6504597B2 (en) Method of producing bismuth telluride thin film
Lee et al. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film
Yonezawa et al. Atomic composition changes in bismuth telluride thin films by thermal annealing and estimation of their thermoelectric properties using experimental analyses and first-principles calculations
Kang et al. Large-scale MoS 2 thin films with a chemically formed holey structure for enhanced Seebeck thermopower and their anisotropic properties
Newbrook et al. Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour deposition
Liu et al. Self-formation of thickness tunable Bi 2 Te 3 nanoplates on thin films with enhanced thermoelectric performance
Newbrook et al. Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators
Norimasa et al. In-and cross-plane thermoelectric properties of oriented Bi2Te3 thin films electrodeposited on an insulating substrate for thermoelectric applications
Hmood et al. Fabrication and characterization of Pb1− xYbxTe-based alloy thin-film thermoelectric generators grown by thermal evaporation technique
Zhang et al. The investigation of thermal properties on multilayer Sb2Te3/Au thermoelectric material system with ultra-thin Au interlayers
Rapaka et al. The effect of sputtering power on structural, mechanical, and electrical properties of Copper Selenide Thermoelectric thin films deposited by magnetron sputtering
Ma et al. Ti-doping inducing high-performance flexible p-type Bi0. 5Sb1. 5Te3-based thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190320

R150 Certificate of patent or registration of utility model

Ref document number: 6504597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250