JP6503951B2 - Method and system for preventing withdrawal of suction anchor - Google Patents

Method and system for preventing withdrawal of suction anchor Download PDF

Info

Publication number
JP6503951B2
JP6503951B2 JP2015140138A JP2015140138A JP6503951B2 JP 6503951 B2 JP6503951 B2 JP 6503951B2 JP 2015140138 A JP2015140138 A JP 2015140138A JP 2015140138 A JP2015140138 A JP 2015140138A JP 6503951 B2 JP6503951 B2 JP 6503951B2
Authority
JP
Japan
Prior art keywords
suction anchor
tensile force
peripheral wall
wall portion
cylindrical peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015140138A
Other languages
Japanese (ja)
Other versions
JP2017020287A (en
Inventor
祐樹 山田
祐樹 山田
悠紀 粕谷
悠紀 粕谷
山本 彰
山本  彰
高橋 真一
真一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015140138A priority Critical patent/JP6503951B2/en
Publication of JP2017020287A publication Critical patent/JP2017020287A/en
Application granted granted Critical
Publication of JP6503951B2 publication Critical patent/JP6503951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)
  • Wind Motors (AREA)

Description

本発明は、主として海底地盤等に沈設されるサクションアンカーの引抜き防止方法及びシステムに関する。   BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a method and system for preventing withdrawal of a suction anchor that is mainly set in a seabed or the like.

浮体式の海洋構造物を海上の所定位置に保持するためには、ワイヤーやチェーンで構成された係留索あるいは係留鎖を介して海底のアンカーに係留し、あるいはテンドンと呼ばれる緊張索を介してアンカーに係留する必要があるが、このようなアンカーとしてサクションアンカーが知られている。   In order to hold the floating marine structure at a predetermined position on the sea, the anchor is anchored to the seabed anchor via a mooring cord or chain composed of wires or chains, or anchored via a tensor called tendon. Suction anchors are known as such anchors.

サクションアンカーは、筒状周壁部とその一端を塞ぐ天板部とで構成されたサクション構造体をアンカーとして利用するものであって、沈設の際には、筒状周壁部の開口側が下方となるようにサクション構造体を海底に設置した後、筒状周壁部内の水を排水してその内外で水圧差を生じさせ、その水圧差を押込み力として筒状周壁部を海底地盤に貫入することができるようになっているものであり、サクション構造体を設置するための起重機船やサクション力を与える排水ポンプさえあれば、それ以外は特殊な施工機械を使用せずに施工可能であるとともに、水平力に対しては、筒状周壁部の外周面に作用する海底地盤からの受動土圧が抵抗力となるため、工期短縮が可能でかつ強度特性に優れたアンカー方式として、北海油田の石油掘削プラットホーム等で採用されている。   The suction anchor utilizes a suction structure composed of a cylindrical peripheral wall and a top plate closing one end as an anchor, and the opening side of the cylindrical peripheral wall is on the lower side at the time of sinking As described above, after the suction structure is installed on the seabed, the water in the cylindrical peripheral wall is drained to generate a water pressure difference between the inside and the outside, and the cylindrical peripheral wall is penetrated into the seabed ground using the water pressure difference as a pushing force. It can be constructed without using a special construction machine, as long as it can carry out, and there is only a hoisting vessel for installing a suction structure and a drainage pump for giving a suction force, and it can be constructed without using a special construction machine. To the force, passive earth pressure from the seabed ground acting on the outer peripheral surface of the cylindrical peripheral wall is a resistance force, so the drilling period can be shortened and as an anchor method with excellent strength characteristics, oil drilling in the North Sea oil field The It has been adopted by such Ttohomu.

一方、温室効果ガスの排出抑制が可能で安全性にも優れたあらたなエネルギー源確保が急務となっている昨今、我が国においては洋上風力発電が有望視されているが、その設置方法については、周辺海域の水深が比較的大きいことから、サクションアンカーを用いた浮体式の導入が検討されている。   On the other hand, with the urgent need to secure new energy sources that can control greenhouse gas emissions and have excellent safety, offshore wind power generation is considered promising in Japan, but the installation method is as follows: Because the water depth in the surrounding sea area is relatively large, the introduction of a floating type using a suction anchor is being considered.

特開2015−34430号公報JP, 2015-34430, A

波浪や強風といった外力が洋上風力発電をはじめとした浮体式の海洋構造物に作用した場合、サクションアンカーには緊張索等を介して引張力が伝達されるが、サクションアンカーの自重とその周面に作用する海底地盤からの周面摩擦力とを合わせた荷重が抵抗力となり、該抵抗力が上述の引張力を支持する。   When an external force such as waves or strong winds acts on a floating offshore structure such as offshore wind power generation, tensile force is transmitted to the suction anchor via a tension cord etc. However, the weight of the suction anchor and its surrounding surface The load combined with the circumferential friction force from the seabed ground acting on the surface acts as a resistance, and the resistance supports the above-mentioned tensile force.

そのため、外力による引張力が上述の抵抗力以下である場合には、引抜きに関するサクションアンカーの健全性も確実に維持される。   Therefore, when the tensile force due to the external force is equal to or less than the above-described resistance, the soundness of the suction anchor relating to the withdrawal is reliably maintained.

一方、過大な外力が海洋構造物に作用して引張力が上述の抵抗力を上回ると、サクションアンカーが海底地盤から引き抜かれる現象が発生する。   On the other hand, when an excessive external force acts on the offshore structure and the tensile force exceeds the above-mentioned resistance, a phenomenon occurs in which the suction anchor is pulled out of the seabed ground.

その際、サクションアンカーには、引抜き変位の大きさに応じて内外で水圧差が生じ、該水圧差がサクションアンカーを下方に押し込んで引抜きに抵抗するものの、該引抜き変位は、過大な外力が入力するたびに累積して大きくなるため、サクションアンカーにおいては、周面摩擦力による抵抗力が徐々に低下し、やがてはアンカーとしての機能を喪失する。   At that time, a water pressure difference occurs inside and outside the suction anchor according to the size of the drawing displacement, and the water pressure difference pushes the suction anchor downward and resists drawing, but the drawing displacement is an excessive external force As it becomes larger each time it is accumulated, in the suction anchor, the resistance due to the circumferential surface frictional force gradually decreases, and eventually the function as the anchor is lost.

ちなみに、サクションアンカーの規模を大きくすれば上述の問題は解決されるが、その場合には、経済性が損なわれる懸念ががある。   Incidentally, increasing the size of the suction anchor solves the above-mentioned problems, but in that case there is a concern that the economic efficiency will be lost.

本発明は、上述した事情を考慮してなされたもので、サクションアンカーの規模を大きくせずとも、過大な外力による引抜きを防止可能なサクションアンカーの引抜き防止方法及びシステムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and it is an object of the present invention to provide a method and system for preventing withdrawal of a suction anchor capable of preventing withdrawal due to excessive external force without increasing the size of the suction anchor. Do.

上記目的を達成するため、本発明に係るサクションアンカーの引抜き防止方法は請求項1に記載したように、筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入されてなるサクションアンカーの引抜き防止方法において、
前記サクションアンカーと浮体構造物とをつなぐ引張材の引張力を計測し、
該引張力が予め定められた許容引張力を上回り又はそのおそれがあるときに、前記サクションアンカー内の水を排水するものである。
In order to achieve the above object, the method for preventing withdrawal of a suction anchor according to the present invention comprises, as described in claim 1, a cylindrical peripheral wall portion and a top plate portion closing one end thereof. In the method for preventing withdrawal of the suction anchor which is inserted into the
Measure the tensile force of the tensile material connecting the suction anchor and the floating structure,
The water in the suction anchor is drained when the tensile force exceeds or is likely to exceed a predetermined allowable tensile force.

また、本発明に係るサクションアンカーの引抜き防止方法は請求項2に記載したように、筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入されてなるサクションアンカーの引抜き防止方法において、
前記サクションアンカーに引張材を介してつながれた浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは前記浮体構造物の姿勢変化を計測し又は該浮体構造物が風力発電施設である場合にその発電量を計測し、
前記計測工程で得られた結果を用いて前記引張材の引張力を推定し、
該引張力が予め定められた許容引張力を上回り又はそのおそれがあるときに、前記サクションアンカー内の水を排水するものである。
Further, as described in claim 2, the method for preventing withdrawal of the suction anchor according to the present invention comprises a cylindrical peripheral wall portion and a top plate portion closing one end thereof, and the cylindrical peripheral wall portion is penetrated into the underwater ground. In the method of preventing withdrawal of suction anchor,
Waves around the floating structure, which are connected to the suction anchor via tension members, tide fluctuations, wind power and other meteorological elements, or posture changes of the floating structure, or when the floating structure is a wind power generation facility Measure the amount of power generation,
The tensile force of the tensile material is estimated using the result obtained in the measurement step,
The water in the suction anchor is drained when the tensile force exceeds or is likely to exceed a predetermined allowable tensile force.

また、本発明に係るサクションアンカーの引抜き防止システムは請求項3に記載したように、筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入された状態で引張材を介して浮体構造物がつながれたサクションアンカーの引抜き防止システムにおいて、
前記サクションアンカーの内部空間に連通接続された排水ポンプと、前記引張材に生じた引張力を計測する計測手段と、前記排水ポンプの作動を制御する演算制御手段とを備え、該演算制御手段は、前記計測手段で計測された引張力が予め定められた許容引張力を上回り又はそのおそれがあるかどうかを判定し、前記引張力が前記許容引張力を上回り又は上回るおそれがあるとき、前記排水ポンプを作動させるようになっているものである。
Further, as described in claim 3, the suction anchor pullout preventing system according to the present invention is constituted by a cylindrical peripheral wall portion and a top plate portion closing one end of the cylindrical peripheral wall portion, and the cylindrical peripheral wall portion is penetrated into the underwater ground. In a withdrawal prevention system for a suction anchor connected to a floating body structure via a tension member at
It comprises: a drainage pump communicatively connected to the internal space of the suction anchor; measurement means for measuring the tensile force generated in the tension member; and arithmetic control means for controlling the operation of the drainage pump, the arithmetic control means Determining whether the tensile force measured by the measuring means exceeds or exceeds a predetermined allowable tensile force, and the tensile force may exceed or exceed the allowable tensile force; The pump is to be operated.

また、本発明に係るサクションアンカーの引抜き防止システムは請求項4に記載したように、筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入された状態で引張材を介して浮体構造物がつながれたサクションアンカーの引抜き防止システムにおいて、
前記サクションアンカーの内部空間に連通接続された排水ポンプと、前記浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは前記浮体構造物の姿勢変化を計測し又は該浮体構造物が風力発電施設である場合にその発電量を計測する計測手段と、前記排水ポンプの作動を制御する演算制御手段とを備え、該演算制御手段は、前記計測手段による計測結果を用いて前記引張材の引張力を推定し、該引張力が予め定められた許容引張力を上回り又はそのおそれがあるかどうかを判定し、前記引張力が前記許容引張力を上回り又は上回るおそれがあるとき、前記排水ポンプを作動させるようになっているものである。
The suction anchor pullout preventing system according to the present invention comprises the cylindrical peripheral wall portion and the top plate portion closing one end as described in claim 4, and the cylindrical peripheral wall portion is penetrated into the underwater ground. In a withdrawal prevention system for a suction anchor connected to a floating body structure via a tension member at
The drainage pump connected to the internal space of the suction anchor, waves around the floating structure, tide fluctuation, wind power and other meteorological elements or posture changes of the floating structure are measured or the floating structure is a wind power generator In the case of a facility, it comprises measurement means for measuring the amount of power generation, and arithmetic control means for controlling the operation of the drainage pump, wherein the arithmetic control means pulls the tension material using the measurement result by the measurement means. The force is estimated, it is determined whether or not the tensile force exceeds or exceeds a predetermined allowable tensile force, and when the tensile force is likely to exceed or exceed the allowable tensile force, the drainage pump is It is intended to be activated.

また、本発明に係るサクションアンカーの引抜き防止システムは、前記排水ポンプの作動によって生じる前記サクションアンカーの内外の圧力差が、予め定められた最大圧力差に向けて段階的に増加し又は連続的に漸増するように前記演算制御手段を構成したものである。   Further, in the suction anchor withdrawal prevention system according to the present invention, the pressure difference between the inside and the outside of the suction anchor caused by the operation of the drainage pump increases stepwise or continuously toward the predetermined maximum pressure difference. The arithmetic control means is configured to increase gradually.

[サクションアンカーの引抜き防止方法]
第1及び第2の発明に係るサクションアンカーの引抜き防止方法においては、筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入されてなるサクションアンカーに適用されるものであり、第1の発明においては、サクションアンカーと浮体構造物とをつなぐ引張材の引張力を計測し、第2の発明においては、サクションアンカーに引張材を介してつながれた浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは浮体構造物の姿勢変化を計測し又は該浮体構造物が風力発電施設である場合にはその発電量を計測する。
[Method for preventing withdrawal of suction anchor]
In the method for preventing withdrawal of a suction anchor according to the first and second inventions, the method is applied to a suction anchor which is constituted by a cylindrical peripheral wall portion and a top plate portion closing one end thereof and the cylindrical peripheral wall portion is penetrated into water bottom ground. In the first invention, the tensile force of the tensile material connecting the suction anchor and the floating structure is measured, and in the second invention, the floating body structure connected to the suction anchor via the tensile material. Waves around the object, tide fluctuations, wind power and other meteorological elements or posture changes of the floating structure are measured, or if the floating structure is a wind power generation facility, the amount of power generation is measured.

次に、第2の発明の場合には計測工程で得られた結果を用いて引張材の引張力を推定した上、引張力が予め定められた許容引張力を上回り又はそのおそれがあるときに、サクションアンカー内の水を排水する。   Next, in the case of the second invention, when the tensile force of the tension material is estimated using the result obtained in the measurement step, and the tensile force exceeds or exceeds a predetermined allowable tensile force. Drain the water in the suction anchor.

[サクションアンカーの引抜き防止システム]
第3及び第4の発明に係るサクションアンカーの引抜き防止システムにおいては、筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入されてなるサクションアンカーに適用されるものであり、第3の発明においては、サクションアンカーと浮体構造物とをつなぐ引張材の引張力を計測手段で計測し、第4の発明においては、サクションアンカーに引張材を介してつながれた浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは浮体構造物の姿勢変化を計測手段で計測し又は該浮体構造物が風力発電施設である場合にはその発電量を計測手段で計測する。
[Suction anchor withdrawal prevention system]
In the suction anchor withdrawal prevention system according to the third and fourth inventions, it is applied to a suction anchor which is constituted by a cylindrical peripheral wall portion and a top plate portion closing the one end, and the cylindrical peripheral wall portion is penetrated into the underwater ground. In the third invention, the tensile force of the tensile material connecting the suction anchor and the floating structure is measured by the measuring means, and in the fourth invention, the suction anchor is connected to the floating structure via the tensile material. Waves around the floating body structure, tide fluctuation, wind power and other meteorological elements or attitude changes of the floating body structure are measured by the measuring means, or if the floating body structure is a wind power generation facility measure.

次に、第4の発明の場合には計測手段による計測結果を用いて引張材の引張力を演算制御手段で推定した上、計測された引張力あるいは推定された引張力が、予め定められた許容引張力を上回り又はそのおそれがあるかどうかを演算制御手段で判定する。   Next, in the case of the fourth invention, the tensile force of the tensile material is estimated by the arithmetic control means using the measurement result by the measuring means, and the measured tensile force or the estimated tensile force is predetermined. It is determined by the arithmetic control means whether or not the allowable tensile force is exceeded.

次に、引張力が許容引張力を上回り又は上回るおそれがあるとき、演算制御手段で排水ポンプを作動させることで、サクションアンカー内の水を排水する。   Next, when there is a possibility that the tensile force exceeds or exceeds the allowable tensile force, the water in the suction anchor is drained by operating the drainage pump by the arithmetic control means.

[各発明共通]
このようにすると、第1〜第4に係る各発明において、サクションアンカーの内外で水圧差が生じ、該水圧差がサクションアンカーを下方に押し込んで引張力に抵抗するため、引張力の増加分を上述した水圧差による押込み力で支持することができる。
[Common to each invention]
In this case, in each of the first to fourth inventions, a water pressure difference is generated inside and outside the suction anchor, and the water pressure difference pushes the suction anchor downward and resists the tensile force, so an increase in tensile force can be obtained. It can support by the pushing force by the water pressure difference mentioned above.

そのため、許容引張力を適宜設定しておけば、サクションアンカーの周面に作用する水底地盤からの摩擦力が、限界周面摩擦力、すなわちサクションアンカーが水底地盤から引き抜かれる直前の摩擦力に達しにくくすることが可能となり、かくして、引張力が、サクションアンカーの自重とその周面摩擦力とを合わせた抵抗力を上回ってサクションアンカーが水底地盤から引き抜かれるといった事態を防止することが可能となる。   Therefore, if the allowable tensile force is set appropriately, the frictional force from the bottom of the water acting on the circumferential surface of the suction anchor reaches the limit circumferential frictional force, that is, the frictional force immediately before the suction anchor is pulled out of the underwater bottom. It becomes possible to make it hard, and in this way it is possible to prevent the situation where the suction anchor is pulled out from the water bottom ground by exceeding the resistance which combines the self weight of the suction anchor and its circumferential friction. .

水底地盤は、海底地盤をはじめ、湖沼等の水底に拡がる地盤も包摂される。   The waterbed ground includes the seabed ground and the ground spreading to the water bottom such as a lake.

浮体構造物は、TLP型(テンションレグプラットフォーム)の洋上風力発電施設などが主として該当するが、石油掘削プラットフォームも包摂される。   The floating structure mainly corresponds to TLP type (tension leg platform) offshore wind power facilities, but also includes an oil drilling platform.

[第2,第4に係る発明]
第2,第4の発明においては、
(a) 浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは浮体構造物の姿勢変化
(b) 浮体構造物が風力発電施設である場合にはその発電量
のいずれかが計測対象であって、計測結果を用いて引張材の引張力を第2の発明では作業員等が、第4の発明では演算制御手段がそれぞれ推定し、その上で、引張力が、予め定められた許容引張力を上回り又はそのおそれがあるかどうかを、第2の発明では作業員等が判断し、第4の発明では演算制御手段が判定する。
[Inventions pertaining to second and fourth]
In the second and fourth inventions,
(a) Waves around the floating structure, tide fluctuation, wind power and other meteorological elements or attitude changes of the floating structure
(b) When the floating body structure is a wind power generation facility, one of the power generation amounts is to be measured, and in the second invention, a worker etc. In the fourth invention, the arithmetic control means respectively estimates, and then, in the second invention, a worker or the like determines whether or not the tensile force exceeds or exceeds the predetermined allowable tensile force. In the fourth invention, the operation control means makes a determination.

(a)の気象要素とは、気象によって引き起こされる計測可能な物理的変動特性という意味であって、上述した波浪、潮位変動、風力等のみならず、大気圧や水圧の変動なども含まれる。   The meteorological factor of (a) means a measurable physical variation characteristic caused by the weather, and includes not only the above-mentioned waves, tide variation, wind power, etc. but also atmospheric pressure, water pressure fluctuation, etc.

ここで、(a)においては、例えば浮体構造物の周辺水域における波高、潮位あるいは風力と引張材における引張力の変動特性とを現地調査や実験等で予め関連付けておけば、上述の波高、潮位あるいは風力を計測することにより、引張材の引張力を推定することができるし、浮体構造物の姿勢変化についても同様であって、例えば重心廻りの回転角度と引張材における引張力の変動特性とを関連付けておけば、該回転角度を計測することで、引張材の引張力を推定することができる。   Here, in (a), for example, if the wave height, tide level or wind force in the surrounding water area of the floating body structure and the fluctuation characteristics of the tensile force in the tension member are linked in advance by field surveys or experiments, etc. Alternatively, by measuring the wind force, the tensile force of the tension member can be estimated, and the same applies to the posture change of the floating body structure, for example, the rotational angle around the center of gravity and the fluctuation characteristics of the tensile force in the tension member Can be estimated, by measuring the rotation angle.

(b)では、発電量と風力との関係が風力発電施設の仕様として予め把握されているため、発電量を計測すれば、引張材の引張力を推定することができる。   In (b), since the relationship between the amount of power generation and the wind power is grasped in advance as the specification of the wind power generation facility, if the amount of power generation is measured, the tensile force of the tension material can be estimated.

[第3,第4に係る発明]
第3の発明では許容引張力を、第4の発明ではさらに、上述した関連付けや発電量と風力との関係をそれぞれ演算制御手段にデータの形で保存しておき、これらを適宜読み出した上、上述した推定や判定を行えばよい。
[Inventions pertaining to third and fourth aspects]
In the third aspect of the invention, the allowable tensile force is stored, and in the fourth aspect of the invention, the relationship between the association and the power generation amount and the wind force is stored in the form of data in the arithmetic control means, respectively, The above estimation and determination may be performed.

排水ポンプをどのように作動させるかは任意であるが、排水ポンプの作動によって生じるサクションアンカーの内外の圧力差が、予め定められた最大圧力差に向けて段階的に増加し又は連続的に漸増するように演算制御手段を構成したならば、圧力差形成の進行が速すぎる、あるいは圧力差が大きすぎることによって水底地盤の有効応力が急激に減少するのを防止し、ひいてはボイリング等の水底地盤の破壊現象や、それに伴うサクションアンカーの引抜き抵抗力の低下を防止することができる。   Although the manner in which the drainage pump is operated is optional, the pressure difference between the inside and the outside of the suction anchor caused by the operation of the drainage pump is gradually increased or continuously increased toward the predetermined maximum pressure difference. If the calculation control means is configured to perform the pressure difference formation too fast, or if the pressure difference is too large, the effective stress of the water bottom ground is prevented from being sharply reduced, and thus the water bottom ground such as boiling etc. It is possible to prevent the breakage phenomenon of the above and the decrease in pullout resistance of the suction anchor.

最大圧力差とは、サクションアンカーの内外の圧力差における上限値であって、いわゆる限界サクションと呼ばれるものであり、水底地盤の破壊条件等から予め定めることが可能である。   The maximum pressure difference is an upper limit value of the pressure difference between the inside and outside of the suction anchor, and is called so-called limit suction, and can be determined in advance from the failure condition of the underwater ground and the like.

上述した構成のうち、段階的増加の場合の具体例としては、最大圧力差を100%としたとき、サクションアンカーの内外の圧力差が、例えば25%、50%、75%と段階的に増加するようにし、サクションアンカーの内外の圧力差が上述の各段階に達したとき、排水ポンプの作動を一時停止し、所定時間経過後に再開する構成や、各段階で一時停止した後、水底地盤の状況を確認して問題がなければ次の段階に向けて排水ポンプの作動を再開し、問題があれば排水ポンプの作動を中止する構成を採用することができる。   Among the above-described configurations, as a specific example in the case of stepwise increase, when the maximum pressure difference is 100%, the pressure difference inside and outside the suction anchor increases stepwise, for example, 25%, 50%, 75%. When the pressure difference between the inside and the outside of the suction anchor reaches each of the above-mentioned stages, the operation of the drainage pump is temporarily stopped and resumed after a predetermined time has elapsed, or after being temporarily stopped at each stage It is possible to adopt a configuration in which the situation is confirmed and if there is no problem, the operation of the drainage pump is resumed for the next stage, and if there is a problem, the operation of the drainage pump is stopped.

一方、連続的漸増の場合には、最大圧力差に向けて排水ポンプを作動させながら、水底地盤の状況を継続的に監視し、問題がなければ排水ポンプの作動を継続し、問題があれば作動を中止する構成を採用することができる。   On the other hand, in the case of continuous gradual increase, while operating the drainage pump toward the maximum pressure difference, continuously monitor the condition of the underwater ground, and if there is no problem, continue the operation of the drainage pump, and if there is a problem It is possible to adopt a configuration for stopping the operation.

第1実施形態に係るサクションアンカーの引抜き防止システム1の図であり、(a)は配置図、(b)はブロック図。It is a figure of the withdrawal prevention system 1 of the suction anchor which concerns on 1st Embodiment, (a) is a layout, (b) is a block diagram. 第1実施形態に係るサクションアンカーの引抜き防止システム1を用いてサクションアンカー2の引抜きを防止する様子を示した詳細図。The detail figure which showed a mode that drawing-out of the suction anchor 2 was prevented using the extraction prevention system 1 of the suction anchor which concerns on 1st Embodiment. 第1実施形態に係るサクションアンカーの引抜き防止システム1の作用を示した説明図。Explanatory drawing which showed the effect | action of the withdrawal prevention system 1 of the suction anchor which concerns on 1st Embodiment. 第2実施形態に係るサクションアンカーの引抜き防止システム41の図であり、(a)は配置図、(b)はブロック図。It is a figure of the withdrawal prevention system 41 of the suction anchor which concerns on 2nd Embodiment, (a) is a layout, (b) is a block diagram.

以下、本発明に係るサクションアンカーの引抜き防止方法及びシステムの実施の形態について、添付図面を参照して説明する。   BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the suction anchor extraction prevention method and system according to the present invention will be described below with reference to the attached drawings.

[第1実施形態]
図1は、第1実施形態に係るサクションアンカーの引抜き防止システム1の配置図及びブロック図である。これらの図でわかるように、本実施形態に係るサクションアンカーの引抜き防止システム1は、筒状周壁部3及びその一端を塞ぐ天板部4で構成されてなるサクションアンカー2に適用されるものであって、該サクションアンカーは、筒状周壁部3が海底地盤9に貫入された状態で、引張材としての緊張索5を浮体構造物である風力発電施設6につなぐことにより、該風力発電施設を係留できるようになっている。
First Embodiment
FIG. 1 is a layout view and a block diagram of a suction anchor withdrawal prevention system 1 according to a first embodiment. As can be seen from these figures, the suction anchor withdrawal prevention system 1 according to the present embodiment is applied to the suction anchor 2 composed of the cylindrical peripheral wall portion 3 and the top plate portion 4 that closes one end thereof. The suction anchor is connected to the wind power generation facility 6 as a floating body structure by connecting the tension cord 5 as a tension material in a state where the cylindrical peripheral wall portion 3 is intruded into the seabed ground 9. Can be moored.

風力発電施設6は、TLP型(テンションレグプラットフォーム)の洋上風力発電施設として構成してある。   The wind power generation facility 6 is configured as an offshore wind power generation facility of TLP type (tension leg platform).

本実施形態に係るサクションアンカーの引抜き防止システム1は、サクションアンカー2の内部空間に連通接続された排水ポンプ10と、緊張索5に生じた引張力を計測する計測手段としての荷重計7と、排水ポンプ10の作動を制御する演算制御手段としての演算制御装置8とを備える。   The suction anchor withdrawal prevention system 1 according to the present embodiment includes a drainage pump 10 communicatively connected to the internal space of the suction anchor 2 and a load meter 7 as a measuring means for measuring the tensile force generated in the tension cord 5; An arithmetic control unit 8 as arithmetic control means for controlling the operation of the drainage pump 10 is provided.

排水ポンプ10は、例えば電動式水中ポンプで構成することが可能であって、サクションアンカー2の天板部4に載置してもよいし、保守点検を考慮するのであれば、風力発電施設6の底板6aの上面や該底板に立設された支柱6bの側面に取り付けることが可能であるが、いずれにしろ、排水ホース等を介在させることによってサクションアンカー2の内部空間、すなわち筒状周壁部3と天板部4に囲まれた内側空間に連通接続されるように構成しておく。   The drainage pump 10 can be configured by, for example, an electric submersible pump, and may be placed on the top plate 4 of the suction anchor 2, and if maintenance and inspection are considered, the wind power generation facility 6 It is possible to attach it to the upper surface of the bottom plate 6a or the side surface of the column 6b erected on the bottom plate, but in any case, by interposing a drainage hose or the like, the internal space of the suction anchor 2, ie, the cylindrical peripheral wall portion It is configured to be communicably connected to the inner space surrounded by 3 and the top plate 4.

荷重計7は、ワイヤーやロープの張力を計測可能な公知の計測手段から適宜選択すればよいが、計測環境が水中であることを考慮し、例えば3点ロール法による計測方式を採用することができる。   The load meter 7 may be appropriately selected from known measuring means capable of measuring the tension of a wire or a rope, but in consideration of the fact that the measurement environment is underwater, adopting a measurement method by a three-point roll method, for example it can.

演算制御装置8は、荷重計7で計測された引張力が、予め定められた許容引張力を上回り又はそのおそれがあるかどうかを判定し、該引張力が許容引張力を上回り又は上回るおそれがあるときには、排水ポンプ10を作動させてサクションアンカー2の内部空間に拡がる水を排水するようになっている。   The arithmetic and control unit 8 determines whether the tensile force measured by the load meter 7 exceeds or is likely to exceed a predetermined allowable tensile force, and the tensile force may exceed or exceed the allowable tensile force. At one time, the drainage pump 10 is operated to drain water spreading to the internal space of the suction anchor 2.

なお、排水ポンプ10が作動していないときに該排水ポンプに接続された排水ホース等を介して海水が逆流する懸念があるのであれば、排水ホース等に開閉弁(図示せず)を設けておき、これを排水ポンプ10に連動させる形で演算制御装置8で駆動制御するように構成すればよい。   If there is a concern that seawater will flow back through the drainage hose or the like connected to the drainage pump when the drainage pump 10 is not operating, an on-off valve (not shown) should be provided on the drainage hose or the like. In addition, it may be configured to drive and control the operation and control device 8 in a manner to interlock this with the drainage pump 10.

本実施形態に係るサクションアンカーの引抜き防止システム1を用いてサクションアンカー2の引抜きを防止するには、まず、緊張索5に生じている引張力を荷重計7で計測する。   In order to prevent the withdrawal of the suction anchor 2 using the withdrawal prevention system 1 of the suction anchor according to the present embodiment, first, the tensile force generated in the tension cord 5 is measured by the load meter 7.

風力発電施設6は、波浪や風あるいは潮位変動を受けて上下左右に並進移動しあるいは揺動するが、それに伴って該風力発電施設とサクションアンカー2とをつなぐ緊張索5の引張力も変動するので、これを荷重計7で計測することにより、緊張索5に生じる引張力を演算制御装置8で継続的に監視する。   The wind power generation facility 6 translates or swings up and down and to the left and right due to waves, wind, or tide fluctuation, and accordingly the tensile force of the tension cord 5 connecting the wind power generation facility and the suction anchor 2 also fluctuates. By measuring this with the load meter 7, the arithmetic and control unit 8 continuously monitors the tension generated in the tension cord 5.

荷重計7による計測は、連続的に行うようにしてもよいし、任意の時間間隔で行うようにかまわないが、後者の場合において、計測間隔を、海上が静穏なときは比較的長くし、海上が荒れているときは比較的短くする構成とすれば、緊張索5に生じる引張力を効率的に監視することが可能となる。   The measurement by the load meter 7 may be performed continuously or at arbitrary time intervals, but in the latter case, the measurement interval is made relatively long when the sea is quiet, When the sea is rough, if the construction is made relatively short, it is possible to efficiently monitor the tensile force generated in the tension cord 5.

次に、荷重計7で計測された引張力Pが、予め定められた許容引張力を上回り又はそのおそれがあるかどうかを演算制御装置8で判定する。   Next, the arithmetic and control unit 8 determines whether the tensile force P measured by the load meter 7 exceeds or exceeds a predetermined allowable tensile force.

判定にあたっては、サクションアンカー2の自重Wとその筒状周壁部3に作用する海底地盤9からの限界周面摩擦力RUとを合算した値が最大引抜き抵抗力PUとなるので、例えばこの最大引抜き抵抗力PUに安全率α(0<α≦1)を乗じた値を許容引張力αPUとし、該許容引張力との大小関係を判定するように演算制御装置8を構成すればよい。 In the determination, the sum of the weight W of the suction anchor 2 and the limit surface frictional force R U from the seabed ground 9 acting on the cylindrical peripheral wall portion 3 is the maximum pullout resistance P U. safety factor to the maximum pull-out resistance force P U α (0 <α ≦ 1) and the permissible tensile force .alpha.P U a value obtained by multiplying, by an arithmetic control unit 8 to determine a magnitude relation between the allowable tensile force Good.

判定の結果、荷重計7で計測された引張力Pが許容引張力αPUを下回った場合は、図2(a)に示すように、引張力Pがサクションアンカー2の自重Wとその筒状周壁部3に作用する海底地盤9からの周面摩擦力Rとの合算値と釣り合っており、なおかつ自重Wと限界周面摩擦力RUとの合算値である最大引抜き抵抗力PUよりも小さい関係、すなわち、
P=W+R
P<W+RU
を満たす関係にあって、サクションアンカー2が海底地盤9から引き抜かれるおそれはないので、荷重計7による計測及び演算制御装置8による監視を引き続き継続する。
Result of the determination, if the tensile force P which is measured by the load meter 7 falls below the allowable tensile force .alpha.P U, as shown in FIG. 2 (a), a tensile force P is the self-weight W of the suction anchor 2 that tubular More than the maximum pullout resistance P U which is balanced with the sum of the circumferential surface frictional force R from the seabed ground 9 acting on the peripheral wall portion 3 and which is also the sum of the self weight W and the limit circumferential surface frictional force R U Small relationship,
P = W + R
P <W + R U
Because there is no possibility that the suction anchor 2 will be pulled out of the seabed ground 9, the measurement by the load meter 7 and the monitoring by the arithmetic and control unit 8 are continued.

一方、引張力Pが許容引張力αPU以上となった場合、サクションアンカー2が海底地盤9から引き抜かれるおそれが生じるため、かかる場合には、演算制御装置8で排水ポンプ10を作動させることにより、図2(b)に示すように排水ホース21を介してサクションアンカー2内の水を排水する。 On the other hand, if the tensile force P exceeds the allowable tensile force αP U , the suction anchor 2 may be pulled out of the seabed ground 9. In such a case, the drainage pump 10 is operated by the arithmetic and control unit 8. The water in the suction anchor 2 is drained through the drain hose 21 as shown in FIG. 2 (b).

このようにすると、サクションアンカー2の内外で水圧差が生じ、該水圧差は、押込み力ΔSとなってサクションアンカー4を下方に押し込み、次式、
P=W+R+ΔS
P<W+RU+ΔS
で示すように、ΔSが引張力Pの増加分と釣り合う形で該引張力に抵抗するとともに、最大引抜き抵抗力PUにΔSが加わる(以下、これを最大引抜き抵抗力PU′と呼び、最大引抜き抵抗力PUとは区別する)ことによって、サクションアンカー2が海底地盤9から引き抜かれるおそれもない。
In this way, a water pressure difference is generated inside and outside the suction anchor 2, and the water pressure difference becomes a pushing force ΔS and pushes the suction anchor 4 downward, and the following equation,
P = W + R + ΔS
P <W + R U + ΔS
As shown in, as well as resistance to the cited tension in the form commensurate with the increase in the [Delta] S is the tensile force P, [Delta] S is applied to the maximum pull-out resistance force P U (hereinafter, referred to as the maximum pull-out resistance force P U ', the maximum pull-out resistance force distinguished from P U) that, suction anchor 2 our it nor withdrawn from the seabed 9.

以上説明したように、本実施形態に係るサクションアンカーの引抜き防止システム1及び方法によれば、排水ポンプ10による排水操作によってサクションアンカー2の内外で水圧差を生じさせ、該水圧差による押込み力ΔSでサクションアンカー2を下方に押し込んで引張力Pに抵抗するので、緊張索5に生じる引張力Pが波浪や風あるいは潮位変動に起因して増加方向に変動したとしても、その増加分を上述した水圧差による押込み力ΔSで支持することができる。   As described above, according to the suction anchor withdrawal prevention system 1 and method according to the present embodiment, a water pressure difference is generated between the inside and the outside of the suction anchor 2 by the drainage operation by the drainage pump 10, and the pushing force ΔS due to the water pressure difference Since the suction anchor 2 is pushed downward at the end to resist the tensile force P, even if the tensile force P generated in the tension cord 5 fluctuates in the increasing direction due to waves, wind or tide fluctuation, the increase is described above It can be supported by a pressing force ΔS due to a water pressure difference.

そのため、安全率α、ひいては許容引張力αPUを適宜設定しておけば、一定規模の外力に対し、サクションアンカー2の周面に作用する海底地盤9からの摩擦力が限界周面摩擦力RUに達しないようにすることが可能となり、かくして、従来のように、引張力Pが最大引抜き抵抗力PUを上回ってサクションアンカー2が海底地盤9から引き抜かれるといった事態を防止することができる。 Therefore, safety factor alpha, by setting appropriately and hence acceptable tensile force .alpha.P U, with respect to an external force of a certain size, the frictional force is limited circumferential surface frictional force from Seabed 9 which acts on the circumferential surface of the suction anchor 2 R it is possible to prevent reaching the U, thus, as in the prior art, the tensile force P can be suction anchors 2 exceeds the maximum pull-out resistance force P U to prevent a situation withdrawn from seabed 9 .

なお、排水ポンプ10による排水操作で発生させることができる水圧差にも限度があって、最大引抜き抵抗力PU′を上回る引張力P′が図3のように作用する場合も想定され、その場合には、同図に示すようにサクションアンカー2に引抜き変位w′が生じることは避けられないが、かかる場合であっても、引抜き変位w′を、排水操作を行わない場合の引抜き変位wよりも十分に抑制することができる。 There is also a limit to the water pressure difference that can be generated by the drainage operation by the drainage pump 10, and it is assumed that a tensile force P 'exceeding the maximum withdrawal resistance P U ' acts as shown in FIG. In this case, as shown in the same drawing, it is inevitable that the drawing displacement w 'occurs in the suction anchor 2, but even in such a case, the drawing displacement w' is drawn when the drainage operation is not performed. It can be more sufficiently suppressed.

本実施形態では、浮体構造物を風力発電施設6としたが、これに代えて、石油掘削プラットホーム等を浮体構造物としてもかまわない。   In the present embodiment, the floating body structure is the wind power generation facility 6, but instead of this, an oil drilling platform or the like may be used as the floating body structure.

また、本実施形態では特に言及しなかったが、排水ポンプ10の作動によって生じるサクションアンカー2の内外の圧力差が、予め定められた最大圧力差、すなわち限界サクションに向けて段階的に増加するように演算制御装置8を構成するようにしてもよい。   Further, although not particularly mentioned in the present embodiment, the pressure difference between the inside and the outside of the suction anchor 2 caused by the operation of the drainage pump 10 increases stepwise toward the predetermined maximum pressure difference, ie, the limit suction. The arithmetic and control unit 8 may be configured as follows.

具体的には、地盤条件等から限界サクションを予め定めておき、これを100%としたとき、サクションアンカー2の内外の圧力差が、例えば25%、50%、75%と段階的に増加するように、排水ポンプ10を演算制御装置8で駆動制御する。   Specifically, the limit suction is determined in advance from ground conditions etc., and when this is set to 100%, the pressure difference between inside and outside of the suction anchor 2 increases stepwise, for example to 25%, 50%, 75%. Thus, the drainage pump 10 is driven and controlled by the arithmetic and control unit 8.

そして、サクションアンカー2の内外の圧力差が上述の各段階に達するごとに、排水ポンプ10の作動を一時停止し、次いで、海底地盤9の状況を確認後、問題がなければ次の段階に向けて排水ポンプ10の作動を再開し、問題があれば排水ポンプ10の作動を中止する。   And every time the pressure difference inside and outside the suction anchor 2 reaches the above-mentioned each stage, the operation of the drainage pump 10 is suspended, then, after confirming the condition of the seabed ground 9, if there is no problem, it goes to the next stage The operation of the drainage pump 10 is resumed, and if there is a problem, the operation of the drainage pump 10 is stopped.

かかる構成によれば、サクションアンカー2の内外における圧力差形成の進行が速すぎる、あるいは圧力差が大きすぎることによって、海底地盤9の有効応力が急激に減少し、これに起因してボイリング等の海底地盤9の破壊現象が起きたり、それに伴うサクションアンカー2の引抜き抵抗力が低下するのを防止することができる。   According to this configuration, the progress of the pressure difference formation inside and outside the suction anchor 2 is too fast or the pressure difference is too large, so that the effective stress of the seabed ground 9 is rapidly reduced, which may cause boiling or the like. It is possible to prevent the occurrence of the failure phenomenon of the seabed ground 9 and the decrease in the withdrawal resistance of the suction anchor 2 accompanying it.

なお、上述した段階的増加に代えて、排水ポンプ10の作動によって生じるサクションアンカー2の内外の圧力差が、予め定められた最大圧力差に向けて連続的に漸増するように演算制御装置8で該排水ポンプを作動させるように構成してもよい。   Note that, instead of the above-described stepwise increase, the arithmetic and control unit 8 causes the pressure difference between the inside and the outside of the suction anchor 2 generated by the operation of the drainage pump 10 to continuously and gradually increase toward the predetermined maximum pressure difference. The drainage pump may be configured to operate.

かかる構成においても、海底地盤9の状況を継続的に監視し、問題がなければ排水ポンプ10の作動を継続し、問題があれば作動を中止することができるので、上述したと同様の作用効果を得ることができる。   Also in this configuration, the condition of the submarine ground 9 is continuously monitored, and if there is no problem, the operation of the drainage pump 10 can be continued, and if there is a problem, the operation can be stopped. You can get

[第2実施形態]
次に、第2実施形態について説明する。なお、第1実施形態と実質的に同一の部品等については同一の符号を付してその説明を省略する。
Second Embodiment
Next, a second embodiment will be described. The same reference numerals are given to parts substantially the same as those of the first embodiment, and the description thereof is omitted.

図4は、第2実施形態に係るサクションアンカーの引抜き防止システム41の配置図及びブロック図である。これらの図でわかるように、本実施形態に係るサクションアンカーの引抜き防止システム41は、第1実施形態と同様のサクションアンカー2に適用されるものであって、該サクションアンカーの内部空間に連通接続された排水ポンプ10と、風力発電施設6周辺の潮位を計測する計測手段としての水位計42と、排水ポンプ10の作動を制御する演算制御装置8とを備える。   FIG. 4 is a layout view and a block diagram of a suction anchor withdrawal prevention system 41 according to a second embodiment. As can be seen from these figures, the suction anchor withdrawal prevention system 41 according to the present embodiment is applied to the same suction anchor 2 as that of the first embodiment, and is connected to the internal space of the suction anchor. The drainage pump 10, the water level gauge 42 as a measuring means for measuring the tide level around the wind power generation facility 6, and the arithmetic and control unit 8 for controlling the operation of the drainage pump 10 are provided.

水位計42は、例えば光検知式の非接触型センサーで構成することが可能である。   The water level gauge 42 can be configured by, for example, a light detection non-contact sensor.

演算制御装置8は、水位計42による計測結果を用いて緊張索5に生じた引張力を推定するとともに、推定された引張力が、予め定められた許容引張力を上回り又はそのおそれがあるかどうかを判定し、該引張力が許容引張力を上回り又は上回るおそれがあるときには、排水ポンプ10を作動させてサクションアンカー2の内部空間に拡がる水を排水するようになっている。   The arithmetic control device 8 estimates the tensile force generated in the tension cord 5 using the measurement result by the water level gauge 42, and does the estimated tensile force exceed or exceed a predetermined allowable tensile force? If it is determined that the tensile force may exceed or exceed the allowable tensile force, the drainage pump 10 is operated to drain the water spreading to the internal space of the suction anchor 2.

本実施形態に係るサクションアンカーの引抜き防止システム41を用いてサクションアンカー2の引抜きを防止するには、まず、風力発電施設6周辺の潮位を水位計42で計測するとともに、該計測結果を用いて緊張索5に生じている引張力Pを演算制御装置8で推定する。   In order to prevent withdrawal of the suction anchor 2 using the suction anchor withdrawal prevention system 41 according to the present embodiment, first, the tide level around the wind power generation facility 6 is measured by the water level gauge 42 and the measurement result is used The arithmetic and control unit 8 estimates the tensile force P generated in the tension cord 5.

引張力Pを推定するにあたっては、風力発電施設6周辺の潮位と緊張索5に生じる引張力との関係を実験や解析によって予め関連づけた上、これをテーブルの形で演算制御装置8に保存しておき、次いで、水位計42によって計測された潮位データを該テーブルに照合することで、該潮位に対応する引張力Pを読み出すようにすればよい。   In estimating the tensile force P, the relationship between the tide level around the wind power generation facility 6 and the tensile force generated in the tension cord 5 is associated in advance by experiment or analysis, and is stored in the form of a table in the arithmetic and control unit 8 Then, the tensile force P corresponding to the tide level may be read out by comparing the tide level data measured by the water level gauge 42 with the table.

水位計42による潮位の計測は、連続的に行うようにしてもよいし、任意の時間間隔で行うようにかまわないが、後者の場合において、計測間隔を、海上が静穏なときは比較的長くし、海上が荒れているときは比較的短くする構成とすれば、緊張索5に生じている引張力Pを効率的に推定監視することが可能となる。   The measurement of the tide level by the water level gauge 42 may be performed continuously or at any time interval, but in the latter case, the measurement interval is relatively long when the sea is quiet. If the construction is made relatively short when the sea is rough, it is possible to estimate and monitor the tensile force P generated in the tension cord 5 efficiently.

次に、推定された引張力Pが、予め定められた許容引張力を上回り又はそのおそれがあるかどうかを演算制御装置8で判定するが、判定手順については、荷重計7による引張力Pの直接計測が、水位計42による推定計測に代わる以外、ほぼ同様であるので、ここではその説明を省略する。   Next, the arithmetic and control unit 8 determines whether or not the estimated tensile force P exceeds or exceeds a predetermined allowable tensile force. The direct measurement is almost the same as the measurement by the water level gauge 42, except for the measurement, so the description thereof is omitted here.

以上説明したように、本実施形態に係るサクションアンカーの引抜き防止システム41及び方法によれば、第1実施形態と同様、排水ポンプ10による排水操作によってサクションアンカー2の内外で水圧差を生じさせ、該水圧差による押込み力ΔSでサクションアンカー2を下方に押し込んで引張力Pに抵抗するので、緊張索5に生じる引張力Pが波浪や風あるいは潮位変動に起因して増加方向に変動したとしても、その増加分を上述した水圧差による押込み力ΔSで支持することができる。   As described above, according to the suction anchor withdrawal prevention system 41 and method according to the present embodiment, as in the first embodiment, a water pressure difference is generated between the inside and the outside of the suction anchor 2 by the drainage operation by the drainage pump 10, Since the suction anchor 2 is pushed downward by the hydraulic pressure difference to resist the tensile force P, even if the tensile force P generated in the tension cord 5 fluctuates in the increasing direction due to wave, wind or tide fluctuation. The increase can be supported by the pushing force ΔS due to the above-described water pressure difference.

以下、本実施形態でも第1実施形態と同様の作用効果を奏するが、ここでは重複を避けるため、記載を省略する。   Hereinafter, the same effects as those of the first embodiment can be obtained in the present embodiment as well, but the descriptions thereof will be omitted here to avoid duplication.

本実施形態では、浮体構造物を風力発電施設6としたが、これに代えて、石油掘削プラットホーム等を浮体構造物としてもかまわない。   In the present embodiment, the floating body structure is the wind power generation facility 6, but instead of this, an oil drilling platform or the like may be used as the floating body structure.

また、本実施形態では、緊張索5に生じる引張力Pを推定する計測対象として潮位を選択したが、気象によって引き起こされる計測可能な物理的変動特性であって引張力Pを推定できるのであればどのようなものを計測対象とするかは任意であり、潮位に代えて、波浪、風力、大気圧、水圧等を計測対象とすることが可能である。   Further, in the present embodiment, the tide level is selected as a measurement target for estimating the tensile force P generated in the tense cord 5, but if it is a measurable physical fluctuation characteristic caused by weather, the tensile force P can be estimated. It is arbitrary what kind of thing is to be measured, and it is possible to measure waves, wind power, atmospheric pressure, water pressure and the like instead of the tide level.

さらには、緊張索5に生じる引張力Pを推定する計測対象として、上述した気象要素に代えて、風力発電施設6の姿勢変化でもよいし、その発電量でもかまわない。   Furthermore, as a measurement target for estimating the tensile force P generated in the tension cord 5, the posture change of the wind power generation facility 6 may be used instead of the above-described weather factor, or the amount of power generation may be used.

これらの場合においても、風力発電施設6の例えば重心廻りの回転角度と緊張索5における引張力の変動特性とを予め関連付けておけば、該回転角度を計測することで、緊張索5の引張力を推定することができるし、発電量と風力との関係は風力発電施設6の仕様として予め把握されているため、風力と緊張索5における引張力の変動特性との関係を実験や解析で予め関連付けておけば、風力発電施設6の発電量から緊張索5の引張力を推定することも可能である。   Also in these cases, if the rotation angle of, for example, the center of gravity around the wind power generation facility 6 and the fluctuation characteristic of the tensile force in the tension cord 5 are associated in advance, the tensile force of the tension cord 5 can be measured by measuring the rotation angle. Since the relationship between the amount of power generation and the wind power is grasped in advance as the specification of the wind power generation facility 6, the relationship between the wind power and the fluctuation characteristic of the tensile force in the tension cord 5 is preliminarily obtained by experiment or analysis. If linked, it is also possible to estimate the tension of the tension cord 5 from the amount of power generation of the wind power generation facility 6.

また、本実施形態では特に言及しなかったが、第1実施形態と同様、排水ポンプ10の作動によって生じるサクションアンカー2の内外の圧力差が、予め定められた最大圧力差、すなわち限界サクションに向けて段階的に増加し、あるいは連続的に漸増するように演算制御装置8を構成するようにしてもよい。   Further, although not particularly mentioned in the present embodiment, as in the first embodiment, the pressure difference between the inside and the outside of the suction anchor 2 caused by the operation of the drainage pump 10 is directed to the predetermined maximum pressure difference, ie, the limit suction. The arithmetic control unit 8 may be configured to increase gradually or continuously increase continuously.

なお、その作用効果については第1実施形態と同様であるので、ここではその説明を省略する。   In addition, about the effect, it is the same as that of 1st Embodiment, Therefore The description is abbreviate | omitted here.

1,41 サクションアンカーの引抜き防止システム
2 サクションアンカー
3 筒状周壁部
4 天板部
5 緊張索(引張材)
6 風力発電施設(浮体構造物)
7 荷重計(計測手段)
8 演算制御装置(演算制御手段)
9 海底地盤(水底地盤)
10 排水ポンプ
42 水位計(計測手段)
1, 41 Suction anchor pullout prevention system 2 Suction anchor 3 Tubular peripheral wall 4 Top plate 5 Tension (tension material)
6 Wind power generation facility (floating structure)
7 Load cell (measuring means)
8 Arithmetic control unit (arithmetic control means)
9 Submarine ground (underwater ground)
10 Drainage pump 42 Water level gauge (measuring means)

Claims (5)

筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入されてなるサクションアンカーの引抜き防止方法において、
前記サクションアンカーと浮体構造物とをつなぐ引張材の引張力を計測し、
該引張力が予め定められた許容引張力を上回り又はそのおそれがあるときに、前記サクションアンカー内の水を排水することを特徴とするサクションアンカーの引抜き防止方法。
In a method for preventing withdrawal of a suction anchor, which comprises a cylindrical peripheral wall portion and a top plate portion closing one end of the cylindrical peripheral wall portion, the cylindrical peripheral wall portion being penetrated into the water bottom ground,
Measure the tensile force of the tensile material connecting the suction anchor and the floating structure,
A method for preventing withdrawal of a suction anchor, comprising draining water in the suction anchor when the tensile force exceeds or is likely to exceed a predetermined allowable tensile force.
筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入されてなるサクションアンカーの引抜き防止方法において、
前記サクションアンカーに引張材を介してつながれた浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは前記浮体構造物の姿勢変化を計測し又は該浮体構造物が風力発電施設である場合にその発電量を計測し、
前記計測工程で得られた結果を用いて前記引張材の引張力を推定し、
該引張力が予め定められた許容引張力を上回り又はそのおそれがあるときに、前記サクションアンカー内の水を排水することを特徴とするサクションアンカーの引抜き防止方法。
In a method for preventing withdrawal of a suction anchor, which comprises a cylindrical peripheral wall portion and a top plate portion closing one end of the cylindrical peripheral wall portion, the cylindrical peripheral wall portion being penetrated into the water bottom ground,
Waves around the floating structure, which are connected to the suction anchor via tension members, tide fluctuations, wind power and other meteorological elements, or posture changes of the floating structure, or when the floating structure is a wind power generation facility Measure the amount of power generation,
The tensile force of the tensile material is estimated using the result obtained in the measurement step,
A method for preventing withdrawal of a suction anchor, comprising draining water in the suction anchor when the tensile force exceeds or is likely to exceed a predetermined allowable tensile force.
筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入された状態で引張材を介して浮体構造物がつながれたサクションアンカーの引抜き防止システムにおいて、
前記サクションアンカーの内部空間に連通接続された排水ポンプと、前記引張材に生じた引張力を計測する計測手段と、前記排水ポンプの作動を制御する演算制御手段とを備え、該演算制御手段は、前記計測手段で計測された引張力が予め定められた許容引張力を上回り又はそのおそれがあるかどうかを判定し、前記引張力が前記許容引張力を上回り又は上回るおそれがあるとき、前記排水ポンプを作動させるようになっていることを特徴とするサクションアンカーの引抜き防止システム。
A suction anchor pullout preventing system comprising a cylindrical peripheral wall portion and a top plate portion closing one end thereof, the floating body structure being connected via a tensile material in a state where the cylindrical peripheral wall portion is penetrated into the underwater ground;
It comprises: a drainage pump communicatively connected to the internal space of the suction anchor; measurement means for measuring the tensile force generated in the tension member; and arithmetic control means for controlling the operation of the drainage pump, the arithmetic control means Determining whether the tensile force measured by the measuring means exceeds or exceeds a predetermined allowable tensile force, and the tensile force may exceed or exceed the allowable tensile force; A suction anchor withdrawal prevention system characterized in that it is adapted to operate a pump.
筒状周壁部及びその一端を塞ぐ天板部で構成され該筒状周壁部が水底地盤に貫入された状態で引張材を介して浮体構造物がつながれたサクションアンカーの引抜き防止システムにおいて、
前記サクションアンカーの内部空間に連通接続された排水ポンプと、前記浮体構造物周辺の波浪、潮位変動、風力その他の気象要素若しくは前記浮体構造物の姿勢変化を計測し又は該浮体構造物が風力発電施設である場合にその発電量を計測する計測手段と、前記排水ポンプの作動を制御する演算制御手段とを備え、該演算制御手段は、前記計測手段による計測結果を用いて前記引張材の引張力を推定し、該引張力が予め定められた許容引張力を上回り又はそのおそれがあるかどうかを判定し、前記引張力が前記許容引張力を上回り又は上回るおそれがあるとき、前記排水ポンプを作動させるようになっていることを特徴とするサクションアンカーの引抜き防止システム。
A suction anchor pullout preventing system comprising a cylindrical peripheral wall portion and a top plate portion closing one end thereof, the floating body structure being connected via a tensile material in a state where the cylindrical peripheral wall portion is penetrated into the underwater ground;
The drainage pump connected to the internal space of the suction anchor, waves around the floating structure, tide fluctuation, wind power and other meteorological elements or posture changes of the floating structure are measured or the floating structure is a wind power generator In the case of a facility, it comprises measurement means for measuring the amount of power generation, and arithmetic control means for controlling the operation of the drainage pump, wherein the arithmetic control means pulls the tension material using the measurement result by the measurement means. The force is estimated, it is determined whether or not the tensile force exceeds or exceeds a predetermined allowable tensile force, and when the tensile force is likely to exceed or exceed the allowable tensile force, the drainage pump is A suction anchor withdrawal prevention system characterized in that it is operated.
前記排水ポンプの作動によって生じる前記サクションアンカーの内外の圧力差が、予め定められた最大圧力差に向けて段階的に増加し又は連続的に漸増するように前記演算制御手段を構成した請求項3又は請求項4記載のサクションアンカーの引抜き防止システム。 The arithmetic control means is configured such that the pressure difference between the inside and the outside of the suction anchor caused by the operation of the drainage pump increases stepwise or continuously increases toward a predetermined maximum pressure difference. Or the withdrawal prevention system of the suction anchor according to claim 4.
JP2015140138A 2015-07-14 2015-07-14 Method and system for preventing withdrawal of suction anchor Active JP6503951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015140138A JP6503951B2 (en) 2015-07-14 2015-07-14 Method and system for preventing withdrawal of suction anchor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015140138A JP6503951B2 (en) 2015-07-14 2015-07-14 Method and system for preventing withdrawal of suction anchor

Publications (2)

Publication Number Publication Date
JP2017020287A JP2017020287A (en) 2017-01-26
JP6503951B2 true JP6503951B2 (en) 2019-04-24

Family

ID=57887857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015140138A Active JP6503951B2 (en) 2015-07-14 2015-07-14 Method and system for preventing withdrawal of suction anchor

Country Status (1)

Country Link
JP (1) JP6503951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128248A (en) * 2016-01-21 2017-07-27 株式会社大林組 Mooring structure for floating body structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627741B2 (en) * 2016-12-21 2020-01-08 Jfeエンジニアリング株式会社 Jacket position adjusting mechanism and method of constructing landing type foundation
JP7022025B2 (en) * 2018-07-25 2022-02-17 日立造船株式会社 Suction foundation and its installation method
CN110761315B (en) * 2019-09-17 2021-06-11 广州海洋地质调查局 Method for constructing suction anchor by using drilling ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2335133A5 (en) * 1973-03-05 1977-07-08 Sea Tank Co FOUNDATION PROCESS AND DEVICE BY DEPRESSION IN AQUATIC SITE
JPH04237693A (en) * 1991-01-19 1992-08-26 Takeshi Hayashi Anchor device
JP4961276B2 (en) * 2007-06-19 2012-06-27 株式会社クボタ Drainage pump device and drainage pump operating method
JP2010030379A (en) * 2008-07-28 2010-02-12 Mitsui Eng & Shipbuild Co Ltd Tension adjusting method for tensioned mooring cable and tensioned mooring float

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128248A (en) * 2016-01-21 2017-07-27 株式会社大林組 Mooring structure for floating body structure

Also Published As

Publication number Publication date
JP2017020287A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6503951B2 (en) Method and system for preventing withdrawal of suction anchor
DK2426356T3 (en) The wind turbine of variable height and method of operating same
KR101046649B1 (en) Marine wind power generation facility for automatically amending slope in operation
JP6264776B2 (en) Suction structure
KR101505725B1 (en) Marine floating structures of self buoyancy control device
KR101046648B1 (en) Marine wind power generation facility for automatically controlling movements in ultimate loads
WO2010093259A2 (en) Offshore wind turbine
CN104627331A (en) Wind power generation floating foundation
TW202032005A (en) Floating wind turbine generator installation
CN104196026A (en) A method for pulling out underwater steel pipe piles for temporary projects of bridges
WO2015071634A1 (en) Offshore foundation
JP2018066182A (en) Slope stabilization method, slope stabilization structure, soil structure management method, and soil structure management system
CN112325859A (en) Floating seabed base
KR101137237B1 (en) Apparatus for measuring support force of under water substructure
CN117313500B (en) Safety evaluation method for negative pressure penetration process of GFRP suction barrel foundation
US20130015659A1 (en) Tidal Turbine System
KR101384167B1 (en) single complex hybrid foundation type offshore wind tower
CN109492255B (en) Design method for submarine cable burying depth
CN104947671A (en) Wharf pile pulling analytical method for self-elevating drilling platform
KR101384168B1 (en) installation method of slab foundation for offshore wind power generator using position senser
CN108699792B (en) Measurement system, leg guide, jack-up platform
Martins Offshore Anchoring Systems with Torpedo Piles
WO2009142501A3 (en) Installation method for an offshore structure
FR2887847A1 (en) Ecological anchoring device for e.g. maintaining boat, has elastic part with safety end and pre-tensioned by buoyant apparatus or subsurface buoy, where apparatus distends rope or chain cable and elastic part is vertical due to pre-tension
van de Loo Laboratory experiments on the technical feasibility of the Ocean Battery suction foundation in sand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150