JP6501658B2 - Novel fluorine-containing chained ether compound, method for producing the same, and use thereof - Google Patents

Novel fluorine-containing chained ether compound, method for producing the same, and use thereof Download PDF

Info

Publication number
JP6501658B2
JP6501658B2 JP2015138587A JP2015138587A JP6501658B2 JP 6501658 B2 JP6501658 B2 JP 6501658B2 JP 2015138587 A JP2015138587 A JP 2015138587A JP 2015138587 A JP2015138587 A JP 2015138587A JP 6501658 B2 JP6501658 B2 JP 6501658B2
Authority
JP
Japan
Prior art keywords
fluorine
ether compound
compounds
compound
containing chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015138587A
Other languages
Japanese (ja)
Other versions
JP2017019746A (en
Inventor
青木 雅裕
雅裕 青木
大輔 平山
大輔 平山
英之 三村
英之 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2015138587A priority Critical patent/JP6501658B2/en
Publication of JP2017019746A publication Critical patent/JP2017019746A/en
Application granted granted Critical
Publication of JP6501658B2 publication Critical patent/JP6501658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、新規な含フッ素鎖状エーテル化合物に関する。   The present invention relates to novel fluorine-containing chain ether compounds.

ハロゲン化合物の中でも特殊な機能を持つフッ素化合物は、樹脂、ゴム、有機化合物、無機化合物、ガスなど、様々な形態をとりながら、自動車、電機・電子、建築、工学分野、医薬・農薬など幅広い分野で活用されている。   Among halogen compounds, fluorine compounds having special functions take various forms such as resins, rubbers, organic compounds, inorganic compounds, gases, etc., and a wide range of fields such as automobiles, electric and electronics, architecture, engineering fields, medicines and pesticides It is used by

これらフッ素化合物の中でも常温で液体の物性を有するものは、高い熱的・化学的安定性を有する溶媒として利用されている。このうち、パーフルオロアルカンやパーフルオロアルキルアミン等のパーフルオロ化合物は、有機化合物との相溶性を全く有さず、その用途としては熱媒体等が中心となる。一方、分子が部分的にフッ素化された含フッ素鎖状エーテル化合物は、有機化合物との相溶性を有し、低粘度、低融点といったエーテル化合物の特徴を有しながらも高い熱的・化学的安定性(耐酸化性)といった優れた物理的・化学的性質を有している。そのため、含フッ素鎖状エーテル化合物は、フッ素オイル用溶剤や可燃性溶媒の引火点調整、電子部品や工業製品の洗浄剤等として利用されている(非特許文献1)。   Among these fluorine compounds, those having physical properties of liquid at normal temperature are used as solvents having high thermal and chemical stability. Among these, perfluoro compounds such as perfluoroalkanes and perfluoroalkylamines do not have any compatibility with organic compounds at all, and their applications mainly consist of a heat medium and the like. On the other hand, fluorine-containing chain-like ether compounds in which the molecule is partially fluorinated are compatible with organic compounds, and have high thermal and chemical properties while having the characteristics of ether compounds such as low viscosity and low melting point. It has excellent physical and chemical properties such as stability (oxidation resistance). Therefore, a fluorine-containing chain ether compound is used as a flash point adjustment of a solvent for fluorine oil or a flammable solvent, a cleaning agent of electronic parts and industrial products, and the like (Non-Patent Document 1).

このような含フッ素鎖状エーテル化合物としては、例えば、パーフルオロブチルメチルエーテルやパーフルオロブチルエチルエーテル等のパーフルオロアルキルエーテル化合物が知られており、また、その具体的用途として血液浄化器の中空糸膜の洗浄剤や車両用洗浄剤が提案されている(特許文献1、2)。しかし、これらのパーフルオロアルキルエーテル化合物においても有機合成反応や抽出等で利用可能な広範な有機化合物との相溶性という点では依然十分でない。また、パーフルオロアルキルエーテル化合物は低沸点であるため、使用温度範囲が制限されるなどの課題もあった。   As such a fluorine-containing chain ether compound, for example, perfluoroalkyl ether compounds such as perfluorobutyl methyl ether and perfluorobutyl ethyl ether are known, and a hollow of a blood purifier as a specific application thereof Yarn film cleaners and vehicle cleaners have been proposed (Patent Documents 1 and 2). However, even these perfluoroalkyl ether compounds are still insufficient in terms of compatibility with a wide range of organic compounds that can be used in organic synthesis reactions, extraction and the like. Further, since the perfluoroalkyl ether compound has a low boiling point, there is also a problem that the use temperature range is limited.

また近年、含フッ素鎖状エーテル化合物は、リチウムイオン二次電池に代表される非水系二次電池用の電解液溶媒としても検討されている(特許文献3、4)。これは、非水系二次電池においては電池サイズの縮小と駆動時間の延長のために電池のエネルギー密度の向上が求められているところ(非特許文献2)、この様な要求に対して、低粘性且つ酸化耐性に優れた含フッ素鎖状エーテル化合物が有効なためである。特許文献3には、分子内に1個の酸素原子を有する含フッ素鎖状エーテル化合物が開示されている。
しかし、特許文献3、4で用いられている化合物もエチレンカーボネート等の他の電解液成分との相溶性が十分でないため組成上の制約がある。また、特許文献3で用いられている化合物も低沸点であるため幅広い温度範囲で安定な動作が求められている非水系二次電池では十分な性能を有しているとは言えなかった。
In recent years, fluorine-containing chain ether compounds have also been studied as electrolyte solvents for non-aqueous secondary batteries represented by lithium ion secondary batteries (Patent Documents 3 and 4). This is because non-aqueous secondary batteries are required to improve the energy density of the battery in order to reduce the battery size and extend the driving time (Non-Patent Document 2). It is because the fluorine-containing chain | strand-shaped ether compound excellent in viscosity and oxidation resistance is effective. Patent Document 3 discloses a fluorine-containing chain ether compound having one oxygen atom in the molecule.
However, since the compounds used in Patent Documents 3 and 4 are not sufficiently compatible with other electrolytic solution components such as ethylene carbonate, there are restrictions on the composition. In addition, since the compound used in Patent Document 3 also has a low boiling point, it can not be said that the non-aqueous secondary battery for which stable operation is required in a wide temperature range has sufficient performance.

特開平10−174848号公報Japanese Patent Application Laid-Open No. 10-174848 特開2008−280463号公報JP 2008-280463 A 特開平11−026015号公報Japanese Patent Application Laid-Open No. 11-026015 特開平11−307123号公報Unexamined-Japanese-Patent No. 11-307123 gazette 特開平10−050343号公報JP 10-050343 A 国際公開2000/016427号International Publication No. 2000/016427

「フッ素系材料と技術」、株式会社シーエムシ―出版、松尾仁著、2002年4月30日"Fluorine-based materials and technology", CMC Co., Ltd.-Publishing, Hitoshi Matsuo, April 30, 2002 「自動車用リチウムイオン電池」日刊工業新聞社(2010)p.31〜32"Car Lithium Ion Battery" Nikkan Kogyo Shimbun (2010) p. 31 to 32

上記のようなパーフルオロアルキルエーテル化合物や分子内に酸素原子を1個有する含フッ素鎖状エーテル化合物(以下、これらを総じて従来知られているパーフルオロアルキルエーテル化合物等ともいう)の課題に対して、分子内に酸素原子2個を有する比較的高沸点の含フッ素エーテル化合物が提案されている(特許文献5、6)   With respect to the problems of the above-mentioned perfluoroalkyl ether compounds and fluorine-containing chained ether compounds having one oxygen atom in the molecule (hereinafter, these are also generally referred to as conventionally known perfluoroalkyl ether compounds etc.) And relatively high boiling point fluorinated ether compounds having two oxygen atoms in the molecule have been proposed (Patent Documents 5 and 6).

ここに提案された含フッ素鎖状エーテル化合物は150℃以上の沸点を有し、広範な温度で利用できる化合物である。しかし、特許文献5に示された化合物は比較的粘度が高いという課題があり、特許文献6に示された化合物は、合成方法が煩雑で製造効率性に乏しく、工業的な利用が難しい等の課題があった。   The fluorine-containing chain ether compounds proposed herein have boiling points of 150 ° C. or higher and are compounds which can be used in a wide range of temperatures. However, the compound shown in Patent Document 5 has a problem that the viscosity is relatively high, and the compound shown in Patent Document 6 has a complicated synthesis method, is poor in production efficiency, and is difficult to be industrially used, etc. There was a problem.

本発明は上記課題に鑑みなされたものである。即ち、従来知られているパーフルオロアルキルエーテル化合物等と比較して高い沸点を備えるとともに有機化合物との相溶性に優れ、且つ粘度についても改善可能であり容易に合成可能な含フッ素鎖状エーテル化合物及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems. That is, a fluorine-containing chain ether compound having a high boiling point as compared to conventionally known perfluoroalkyl ether compounds and the like, as well as being excellent in compatibility with organic compounds and capable of improving viscosity and being easily synthesizable And it aims at providing the manufacturing method.

本発明者は、上記課題を解決すべく鋭意検討を重ねた。結果、含フッ素アルコキシエタノールとフルオロアルケンの付加反応によって得られる新規の含フッ素鎖状エーテル化合物が、従来知られているパーフルオロアルキルエーテル化合物等と比較して高い沸点を有するとともに有機化合物との相溶性に優れることを見い出した。また、本発明者は、当該化合物が粘度についても改善可能であり容易に合成可能である事を見出した。さらに、本発明者は、当該化合物が耐酸化性についても改善された物性を有することを見い出した。
これにより、本発明者は、本発明を完成させるに至った。
The present inventors diligently studied to solve the above problems. As a result, the novel fluorine-containing chain-like ether compound obtained by the addition reaction of fluorine-containing alkoxyethanol and fluoroalkene has a high boiling point as compared with conventionally known perfluoroalkyl ether compounds and the like and a phase with an organic compound It has been found that the solubility is excellent. The inventors have also found that the compound can also be improved in viscosity and can be easily synthesized. Furthermore, the inventors have found that the compounds have improved physical properties with regard to oxidation resistance.
Thus, the inventor has completed the present invention.

即ち、本発明は下記の要旨に係わるものである。
(I)
一般式(1):
(式中、Rは少なくとも1つのフッ素原子により置換されている炭素数1〜2のアルキル基を表し、Xは水素原子又はトリフルオロメチル基を表し、Yは水素原子、フッ素原子又はトリフルオロメチル基を表し、Zは水素原子またはフッ素原子を表す。)で表される含フッ素鎖状エーテル化合物。
That is, the present invention relates to the following gist.
(I)
General formula (1):
(Wherein, R 1 represents an alkyl group having 1 to 2 carbon atoms which is substituted by at least one fluorine atom, X represents a hydrogen atom or a trifluoromethyl group, and Y represents a hydrogen atom, a fluorine atom or trifluoro A fluorine-containing chain ether compound represented by: methyl group, and Z represents a hydrogen atom or a fluorine atom.

(II)
前記一般式(1)で表される含フッ素鎖状エーテル化合物が、1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタンである(I)に記載の含フッ素鎖状エーテル化合物。
(II)
The fluorine-containing chain ether compound represented by the above general formula (1) is 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane The fluorine-containing chain ether compound as described in (I).

(III)
(I)または(II)の含フッ素鎖状エーテル化合物を含む洗浄剤。
(III)
A cleaning agent comprising the fluorinated chained ether compound of (I) or (II).

(IV)
非水溶媒と、電解質塩と、(I)または(II)の含フッ素鎖状エーテル化合物とを含む、非水二次電池用電解液。
(IV)
An electrolytic solution for a non-aqueous secondary battery, comprising a non-aqueous solvent, an electrolyte salt, and a fluorinated chain ether compound of (I) or (II).

(V)
一般式(2):

(式中、Rは少なくとも1つのフッ素原子により置換されている炭素数1〜2のアルキル基を表し、Xは水素原子又はトリフルオロメチル基を表す。)で表される含フッ素アルコキシエタノール化合物と一般式(3):
(式中、Yは水素原子、フッ素原子又はトリフルオロメチル基を表し、Zは水素原子またはフッ素原子を表す。)で表されるフルオロアルケン化合物とを反応させることを含む一般式(1):

(式中、R、X、Y、Zは前述の通り)で表される含フッ素鎖状エーテル化合物の製造方法。
(V)
General formula (2):

(Wherein, R 1 represents an alkyl group having 1 to 2 carbon atoms which is substituted by at least one fluorine atom, and X represents a hydrogen atom or a trifluoromethyl group). And general formula (3):
(Wherein Y represents a hydrogen atom, a fluorine atom or a trifluoromethyl group, and Z represents a hydrogen atom or a fluorine atom), which is reacted with a fluoroalkene compound represented by the general formula (1):

(Wherein, R 1 , X, Y and Z are as defined above).

本発明によれば、従来知られているパーフルオロアルキルエーテル化合物等と比較して高い沸点を備えるとともに有機化合物との相溶性に優れ、且つ粘度についても改善可能であり容易に合成可能な含フッ素鎖状エーテル化合物及びその製造方法を提供することができる。また、該含フッ素鎖状エーテル化合物を含む洗浄剤及び非水系二次電池用電解液を提供することができる。   According to the present invention, a fluorine-containing fluorine compound having a high boiling point as compared to conventionally known perfluoroalkyl ether compounds and the like, as well as being excellent in compatibility with organic compounds and capable of improving viscosity and being easily synthesizable A chain ether compound and a method for producing the same can be provided. Moreover, the cleaning agent containing this fluorine-containing chain | strand-shaped ether compound and the electrolyte solution for non-aqueous secondary batteries can be provided.

実施例および比較例のLSVグラフである。実線は1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタンを含む実施例1aの電解液のLSVグラフである。破線はビス(2,2,2−トリフルオロエトキシ)エタンを含む比較例1aの電解液のLSVグラフである。It is a LSV graph of an Example and a comparative example. The solid line is a LSV graph of the electrolyte solution of Example 1a containing 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane. The broken line is a LSV graph of the electrolyte solution of Comparative Example 1a containing bis (2,2,2-trifluoroethoxy) ethane. 実施例においてイオン伝導度測定のために用いた、白金電極を組み合わせた電気化学セルの構成の概要を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline | summary of the structure of the electrochemical cell which combined the platinum electrode used for the ion conductivity measurement in the Example.

以下、本発明の1つの実施形態について詳細に説明する。
本実施形態は一般式(1)で表される新規含フッ素鎖状エーテル化合物(以下、含フッ素鎖状エーテル化合物(1)ともいう)に関する。
Hereinafter, one embodiment of the present invention will be described in detail.
The present embodiment relates to a novel fluorine-containing chained ether compound (hereinafter also referred to as fluorine-containing chained ether compound (1)) represented by the general formula (1).

本実施形態の含フッ素鎖状エーテル化合物(1)の構造を表す一般式(1)におけるRの定義について説明する。Rは少なくとも1つのフッ素原子により置換されている炭素数1または2のアルキル基を示す。具体的に例示すると、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1−フルオロエチル基、2−フルオロエチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、1,1,2,2−テトラフルオロエチル基、1,1,2,2,2−ペンタフルオロエチル基等を挙げることができる。この中でも、化合物が高フッ素含有率で、且つより高い沸点を有し、耐酸化性及び安全性にもより優れることから、Rとして、ジフルオロメチル基、トリフルオロメチル基、1,1,2,2−テトラフルオロエチル基、1,1,2,2,2−ペンタフルオロエチル基が好ましい。その中でも化合物がより低粘度でありさらなる高酸化耐性を有することが期待できるため、Rとしてトリフルオロメチル基が特に好ましい。 The definition of R 1 in the general formula (1) representing the structure of the fluorine-containing chain ether compound (1) of the present embodiment will be described. R 1 represents a C 1 or C 2 alkyl group substituted by at least one fluorine atom. Specifically, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 2,2 And 2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 1,1,2,2,2-pentafluoroethyl group etc. can be mentioned. Among these, since the compound has a high fluorine content and a higher boiling point and is more excellent in oxidation resistance and safety, it is possible to use difluoromethyl group, trifluoromethyl group, 1,1,2 as R 1. , 2-tetrafluoroethyl group and 1,1,2,2,2-pentafluoroethyl group are preferable. Among them, a trifluoromethyl group is particularly preferable as R 1 because the compound can be expected to have lower viscosity and further high oxidation resistance.

また、一般式(1)において、Xは、水素原子又はトリフルオロメチル基を表し、Yは水素原子、フッ素原子又はトリフルオロメチル基を表し、Zは水素原子またはフッ素原子を表す。   In the general formula (1), X represents a hydrogen atom or a trifluoromethyl group, Y represents a hydrogen atom, a fluorine atom or a trifluoromethyl group, and Z represents a hydrogen atom or a fluorine atom.

一般式(1)の含フッ素鎖状エーテル化合物としては、具体的には下記のような化合物が例示されるが、本発明はこれに限定されるものではない。   Although the following compounds are specifically illustrated as a fluorine-containing chain | strand-shaped ether compound of General formula (1), This invention is not limited to this.

次に、本実施形態の含フッ素鎖状エーテル化合物(1)の製造方法について説明する。
本実施形態の含フッ素鎖状エーテル化合物(1)は、例えば、下記一般式(2)で表される含フッ素アルコキシエタノール化合物と下記一般式(3)で表されるフルオロアルケン化合物との反応により合成する事が出来る。一般式(2)に含まれるR、X、及び一般式(3)に含まれるY及びZは、一般式(1)中のR、X、Y及びZと同義である。
Next, the manufacturing method of the fluorine-containing chain | strand-shaped ether compound (1) of this embodiment is demonstrated.
The fluorine-containing chain ether compound (1) of the present embodiment is obtained, for example, by the reaction of a fluorine-containing alkoxyethanol compound represented by the following general formula (2) with a fluoroalkene compound represented by the following general formula (3) It can be synthesized. R 1, X, and Y and Z contained in the general formula (3) contained in the general formula (2) is, R 1 in the formula (1), X, is synonymous with Y and Z.

一般式(2)で表される含フッ素アルコキシエタノール化合物は、含フッ素アルコールとエチレンカーボネートまたはエチレンオキサイドを反応させる等、当業者のよく知る一般的な合成法に従って製造することができる。また、市販品を用いてもよい。
一般式(2)で表される含フッ素アルコキシエタノール化合物は、具体的には下記のような化合物が例示されるが、本発明はこれに限定されるものではない。
The fluorine-containing alkoxyethanol compound represented by the general formula (2) can be produced according to a general synthesis method well known to those skilled in the art, for example, by reacting a fluorine-containing alcohol with ethylene carbonate or ethylene oxide. Alternatively, commercially available products may be used.
Specific examples of the fluorine-containing alkoxyethanol compound represented by the general formula (2) include the following compounds, but the present invention is not limited thereto.


また、一般式(3)で表されるフルオロアルケン化合物も、当業者のよく知る一般的な合成法に従って製造することができる。
一般式(3)で表されるフルオロアルケン化合物としては、テトラフルオロエチレン、トリフルオロエチレン、1,1−ジフルオロエチレン、1,1,3,3,3−ペンタフルオロプロペン及びヘキサフルオロプロピレンが挙げられる。
The fluoroalkene compounds represented by the general formula (3) can also be produced according to general synthetic methods well known to those skilled in the art.
Examples of the fluoroalkene compound represented by the general formula (3) include tetrafluoroethylene, trifluoroethylene, 1,1-difluoroethylene, 1,1,3,3,3-pentafluoropropene and hexafluoropropylene. .

一般式(2)で表される含フッ素アルコキシエタノール化合物と、一般式(3)で表されるフルオロアルケン化合物との反応は、無機塩基およびその水溶液を用いて行う事が出来る。無機塩基としては、例えば炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどのアルカリ炭酸塩、水酸化ナトリウム、水酸化カリウム等のアルカリ水酸化物、水酸化マグネシウム、水酸化カルシウム等の周期表第2族に属する金属の水酸化物等を用いる事が出来る。これら無機塩基は、固体のまま使用しても良いし、水に溶解若しくは懸濁させて使用することもできる。これら無機塩基は、単独で使用しても良く、また2つ以上を混合して使用しても良い。   The reaction of the fluorine-containing alkoxyethanol compound represented by the general formula (2) with the fluoroalkene compound represented by the general formula (3) can be carried out using an inorganic base and an aqueous solution thereof. As the inorganic base, for example, alkali carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, alkali hydroxides such as sodium hydroxide and potassium hydroxide, periodic table such as magnesium hydroxide and calcium hydroxide It is possible to use hydroxides of metals belonging to These inorganic bases may be used as a solid or may be used by dissolving or suspending in water. These inorganic bases may be used alone or in combination of two or more.

無機塩基の使用量は、一般式(2)で表されるアルコキシエタノール化合物1モルに対して、0.001〜1.0モルが好ましく、0.01〜0.5モルがより好ましく、0.02〜0.2モルが更に好ましい。   The amount of the inorganic base to be used is preferably 0.001 to 1.0 mol, more preferably 0.01 to 0.5 mol, per 1 mol of the alkoxyethanol compound represented by General Formula (2). More preferred is 02 to 0.2 mol.

一般式(2)で表される含フッ素アルコキシエタノール化合物に対する、一般式(3)で表されるフルオロアルケン化合物のモル比は、特に制限されないが、収率が良い点で1:10〜10:1から適宜選ばれた比が好ましく、1:1〜1:4から適宜選ばれた比が経済的にさらに好ましい。   The molar ratio of the fluoroalkene compound represented by the general formula (3) to the fluorine-containing alkoxyethanol compound represented by the general formula (2) is not particularly limited, but 1:10 to 10: in terms of a good yield. A ratio appropriately selected from 1 is preferable, and a ratio appropriately selected from 1: 1 to 1: 4 is economically more preferable.

一般式(2)で表される含フッ素アルコキシエタノール化合物と、一般式(3)で表されるフルオロアルケン化合物の反応温度は特に制限されないが、例えば−20〜200℃から適宜選択された温度で実施することができる。このうち、収率が良い点で、0〜150℃から適宜選択された温度で実施することが好ましい。また、反応方法、反応圧力も特に制限されないが、通常、フルオロアルケン化合物を連続的に供給しながら、常圧〜5MPa、より好ましくは、0.1〜2MPaの圧力で反応を行うことが好ましい。なお、本明細書において、常圧とは、標準大気圧101325Paを中心に上下20%の圧力の範囲をいう。   The reaction temperature of the fluorine-containing alkoxyethanol compound represented by the general formula (2) and the fluoroalkene compound represented by the general formula (3) is not particularly limited, but for example, at a temperature appropriately selected from -20 to 200 ° C. It can be implemented. Among these, it is preferable to carry out at a temperature appropriately selected from 0 to 150 ° C. in terms of a good yield. The reaction method and reaction pressure are also not particularly limited, but it is usually preferable to carry out the reaction at a pressure of normal pressure to 5 MPa, more preferably 0.1 to 2 MPa, while continuously feeding the fluoroalkene compound. In addition, in this specification, normal pressure means the range of the pressure of 20% of upper and lower sides centering on standard atmospheric pressure 101325Pa.

上記反応により得られる含フッ素鎖状エーテル化合物(1)は、一般式(2)で表される含アルコキシエタノール化合物と、一般式(3)で表されるフルオロアルケン化合物との反応終了後に抽出、ろ過等の通常の処理を行うことで単離することができる。必要に応じて、蒸留またはカラムクロマトグラフィー等で含フッ素鎖状エーテル化合物(1)を精製してもよい。   The fluorinated chain ether compound (1) obtained by the above reaction is extracted after completion of the reaction of the alkoxyethanol-containing compound represented by the general formula (2) and the fluoroalkene compound represented by the general formula (3), It can be isolated by performing ordinary treatments such as filtration. If necessary, the fluorinated chain ether compound (1) may be purified by distillation, column chromatography or the like.

次に、本実施形態の含フッ素鎖状エーテル化合物(1)の用途の一例について説明する。本実施形態の含フッ素鎖状エーテル化合物(1)は、従来知られているパーフルオロアルキルエーテル化合物等と比較して高い沸点を有するとともに有機化合物との相溶性にも優れる。また、本実施形態の含フッ素鎖状エーテル化合物(1)は、粘度についても改善された物性を有する。加えて、本実施形態の含フッ素鎖状エーテル化合物(1)は、耐酸化性についても改善された物性を有する。
そのため、本実施形態の含フッ素鎖状エーテル化合物(1)は、フッ素オイル用溶剤、洗浄剤、有機合成反応用溶媒、抽出溶媒、さらには非水系二次電池用電解液等の様々な用途で利用することができる。
Next, an example of application of the fluorine-containing chain ether compound (1) of the present embodiment will be described. The fluorinated chain ether compound (1) of the present embodiment has a high boiling point as compared with the conventionally known perfluoroalkyl ether compound etc. and is also excellent in compatibility with organic compounds. The fluorine-containing chain ether compound (1) of the present embodiment also has improved physical properties with respect to viscosity. In addition, the fluorine-containing chain ether compound (1) of the present embodiment has improved physical properties with respect to oxidation resistance.
Therefore, the fluorinated chain ether compound (1) of the present embodiment is used in various applications such as solvents for fluorine oil, detergents, solvents for organic synthesis reaction, extraction solvents, and electrolytes for non-aqueous secondary batteries. It can be used.

本実施形態の含フッ素鎖状エーテル化合物(1)を含む洗浄剤に関し、その洗浄対象は特に限定されないが、例えば電子部品、工業製品などを挙げることができる。本実施形態の含フッ素鎖状エーテル化合物(1)を洗浄剤成分として用いる場合において、一般式(1)で表される含フッ素鎖状エーテル化合物単独で洗浄剤として用いても良い。また、含フッ素鎖状エーテル化合物(1)と非水溶媒とを混合して洗浄剤を構成するようにしてもよい。本実施形態の含フッ素鎖状エーテル化合物(1)は、様々な有機化合物との相溶が可能であるため、混合する非水溶媒として特に制限はなく、溶解させる化合物の溶解性に応じて適宜選択することができる。具体的にはメタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール等のアルコール類、クロロホルムやジクロロメタン等のハロゲン化炭化水素類、トルエン、キシレン等の炭化水素類、酢酸エチルや酢酸ブチル等のエステル類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、ジグライムやトリグライム、テトラグライム等のグライム類等を例示することができ、例えばこれらのうち1種または2種類以上を非水溶媒として用いることができる。   Although the cleaning object is not specifically limited regarding the cleaning agent containing the fluorine-containing chain | strand-shaped ether compound (1) of this embodiment, For example, an electronic component, an industrial product, etc. can be mentioned. When the fluorine-containing chain ether compound (1) of the present embodiment is used as a detergent component, the fluorine-containing chain ether compound represented by the general formula (1) may be used alone as a detergent. The fluorine-containing chain ether compound (1) and the non-aqueous solvent may be mixed to constitute the cleaning agent. The fluorine-containing chained ether compound (1) of the present embodiment is compatible with various organic compounds, and there is no particular limitation on the non-aqueous solvent to be mixed, and it is suitable according to the solubility of the compound to be dissolved. It can be selected. Specifically, alcohols such as methanol, ethanol, isopropanol, butanol and hexanol, halogenated hydrocarbons such as chloroform and dichloromethane, hydrocarbons such as toluene and xylene, esters such as ethyl acetate and butyl acetate, diethyl ether And ethers such as tetrahydrofuran, glymes such as diglyme, triglyme, tetraglyme and the like, and one or more of them may be used as the non-aqueous solvent.

洗浄剤の具体的な用途としては、グリース、油、インク、ワックス、フラックス等の除去剤、車のウインドウォッシャー液等の車両用洗浄剤、レジストや電子部品等の洗浄剤、水切り剤等を挙げることができる。   Specific applications of the cleaning agent include grease, oil, ink, wax, removing agents such as flux, vehicle cleaning agents such as car window washer fluid, cleaning agents such as resist and electronic parts, drainage agents, etc. be able to.

また、本実施形態の含フッ素鎖状エーテル化合物(1)は、フッ素オイル、フッ素系塗料等の希釈用溶剤としても利用することができる。   The fluorine-containing chain ether compound (1) of the present embodiment can also be used as a diluting solvent for fluorine oil, fluorine-based paint and the like.

本実施形態の含フッ素鎖状エーテル化合物(1)を有機合成反応用溶媒の成分として用いる場合は、単独で用いても良い。また、洗浄剤の場合と同様に、反応に応じて、フッ素鎖状エーテル化合物(1)と各種非水溶媒とを混合して有機合成反応用溶媒を構成するようにしてもよい。本実施形態の含フッ素鎖状エーテル化合物(1)は、上述のとおり優れた化学的な安定性(耐酸化性)を有しているため、種々の有機合成反応の溶媒として利用できる。
含フッ素鎖状エーテル化合物(1)を含む有機合成反応用溶媒を用いての反応例としては、例えば、エステル化反応、アミド化反応、アミノ化反応、加水分解反応、クロスカップリング反応、酸化反応、還元反応、ハロゲン化反応及び重合反応等を挙げることができる。
本実施形態の含フッ素鎖状エーテル化合物(1)は上述のとおり高い沸点を有する。また、本実施形態の含フッ素鎖状エーテル化合物(1)は従来知られているパーフルオロアルキルエーテル化合物等と比較して低い融点を有している。そのため、本実施形態の含フッ素鎖状エーテル化合物(1)は従来知られているパーフルオロアルキルエーテル化合物等と比較して熱安定性に優れており、特に限定されないが、例えば−50〜150℃の広い温度範囲で反応を実施することができる。
When using fluorine-containing chain | strand-shaped ether compound (1) of this embodiment as a component of the solvent for organic synthesis reaction, you may use independently. Further, as in the case of the detergent, depending on the reaction, the fluorine chain ether compound (1) and various non-aqueous solvents may be mixed to constitute a solvent for organic synthesis reaction. The fluorine-containing chain ether compound (1) of the present embodiment has excellent chemical stability (oxidation resistance) as described above, and can be used as a solvent for various organic synthesis reactions.
Examples of reactions using a solvent for organic synthesis reaction containing a fluorinated chain ether compound (1) include, for example, esterification reaction, amidification reaction, amination reaction, hydrolysis reaction, cross coupling reaction, oxidation reaction , Reduction reaction, halogenation reaction, polymerization reaction and the like can be mentioned.
The fluorine-containing chain ether compound (1) of the present embodiment has a high boiling point as described above. In addition, the fluorine-containing chain ether compound (1) of the present embodiment has a melting point lower than conventionally known perfluoroalkyl ether compounds and the like. Therefore, the fluorine-containing chain ether compound (1) of the present embodiment is superior in thermal stability to conventionally known perfluoroalkyl ether compounds and the like, and is not particularly limited. The reaction can be carried out in a wide temperature range of

また、本実施形態の含フッ素鎖状エーテル化合物(1)は、抽出溶媒として用いることもできる。抽出溶媒として利用する際は、比重が1よりも大きく抽出層が下層となるため、水溶液から目的物を抽出する際、抽出率が低く抽出回数が多くなるような場合は特に操作上の優位性を有している。   The fluorine-containing chain ether compound (1) of the present embodiment can also be used as an extraction solvent. When used as an extraction solvent, the extraction layer is a lower layer with a specific gravity of greater than 1 and, therefore, when extracting the desired product from the aqueous solution, especially when the extraction rate is low and the number of extractions increases have.

また、本実施形態の含フッ素鎖状エーテル化合物(1)は、非水系二次電池用電解液において用いるようにすることもできる。当該非水系二次電池用電解液は、本実施形態の含フッ素鎖状エーテル化合物と、非水溶媒と、電解質塩とを含んで構成されており、例えばこれらを混合することにより調製することができる。本実施形態の含フッ素鎖状エーテル化合物(1)は、上述のとおり高い酸化耐性を有しているため、高電圧リチウムイオン電池等の高エネルギー密度のデバイス用の電解液として特に適している。   The fluorine-containing chain ether compound (1) of the present embodiment can also be used in an electrolyte solution for non-aqueous secondary batteries. The said electrolyte solution for non-aqueous secondary batteries is comprised including the fluorine-containing chain | strand-shaped ether compound of this embodiment, a non-aqueous solvent, and electrolyte salt, for example, it can prepare by mixing these. it can. The fluorine-containing chain ether compound (1) of the present embodiment has high oxidation resistance as described above, and is particularly suitable as an electrolyte solution for high energy density devices such as high voltage lithium ion batteries.

また、本実施形態の含フッ素鎖状エーテル化合物(1)は、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒とも十分に相溶可能である。そのため、本実施形態の含フッ素鎖状エーテル化合物(1)は、様々な非水溶媒と混合して非水系二次電池用電解液を構成することができる。
また、特に限定されないが、電解液性能の関連から含フッ素鎖状エーテル化合物(1)の含有率は非水溶媒に対して0.1〜70体積%の範囲で含有するのが好ましく、0.5〜50体積%の範囲で含有することが特に好ましい。
In addition, the fluorinated chain ether compound (1) of the present embodiment is sufficiently compatible with high dielectric constant solvents such as ethylene carbonate and propylene carbonate. Therefore, the fluorine-containing chain-like ether compound (1) of the present embodiment can be mixed with various non-aqueous solvents to constitute an electrolyte solution for non-aqueous secondary batteries.
In addition, although not particularly limited, the content of the fluorine-containing chain ether compound (1) is preferably in the range of 0.1 to 70% by volume with respect to the non-aqueous solvent from the viewpoint of electrolyte performance. It is particularly preferable to contain in the range of 5 to 50% by volume.

含フッ素鎖状エーテル化合物(1)以外に非水系二次電池用電解液中に混合される非水溶媒としては、例えば様々な非プロトン性極性溶媒を用いることができる。非プロトン性極性溶媒を具体的に例示すると、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状エステル、酢酸メチル、酪酸メチル、トリフルオロ酢酸エチル等の鎖状エステル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキソラン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等のエーテル類及びアセトニトリル、ベンゾニトリル等のニトリル類、リン酸トリメチル、リン酸トリエチル等のリン酸エステル類、リン酸トリス(2,2,2−トリフルオロエチル)等の含フッ素リン酸エステル類等が挙げられる。これらは単独又はそれら2種以上を混合して用いる事ができる。   As a non-aqueous solvent mixed in the electrolyte solution for non-aqueous secondary batteries other than fluorine-containing chain | strand-shaped ether compound (1), various aprotic polar solvents can be used, for example. Specific examples of the aprotic polar solvent include ethylene carbonate, propylene carbonate, butylene carbonate, chloroethylene carbonate, fluoroethylene carbonate, cyclic carbonates such as difluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, Chain carbonates such as bis (2,2,2-trifluoroethyl) carbonate, cyclic esters such as γ-butyrolactone, γ-valerolactone, propiolactone, chains such as methyl acetate, methyl butyrate and ethyl trifluoroacetate Ethers such as ester, diisopropyl ether, tetrahydrofuran, dioxolane, dimethoxyethane, diethoxyethane, methoxyethoxyethane and the like and acetonitrile Examples thereof include nitriles such as ryl and benzonitrile, phosphate esters such as trimethyl phosphate and triethyl phosphate, and fluorine-containing phosphate esters such as tris (2,2,2-trifluoroethyl) phosphate. These may be used alone or in combination of two or more.

電解質塩としては、例えば、LiBF、LiPF、LiPF(CF)、LiAsF、LiSbF、LiClO、LiCFSO、LiN(SOF)、LiN(SOCF、LiN(SO、LiC(SOCF等のLi塩、Mg(PF6)2、Mg(N(SO等のMg塩等が挙げられる。これらは単独で用いてもよく、2種以上を混合して用いることもできる。これら電解質塩のうち、解離性に優れ、高いイオン伝導度が得られるという点で、LiPF、LiN(SOF)、LiN(CFSOが好ましい。 As the electrolyte salt, for example, LiBF 4, LiPF 6, LiPF 5 (CF 3), LiAsF 6, LiSbF 6, LiClO 4, LiCF 3 SO 3, LiN (SO 2 F) 2, LiN (SO 2 CF 3) 2 , Li salts such as LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , Mg salts such as Mg (PF 6) 2, Mg (N (SO 2 C 2 F 5 ) 2 ) 2 etc. Can be mentioned. These may be used alone or in combination of two or more. Among these electrolyte salts, LiPF 6 , LiN (SO 2 F) 2 , and LiN (CF 3 SO 2 ) 2 are preferable in that they have excellent dissociativeness and high ion conductivity.

本実施形態に係る非水系二次電池用電解液におけるリチウム塩の濃度は、とくに制限されるものではないが、0.1〜2.5mol/Lの範囲とすることが望ましい。リチウム塩は、以下の範囲よりも濃度が低いと範囲内にある場合と比較してイオン伝導度が低下し、また、以下の範囲よりも濃度が高いと範囲内にある場合と比較して粘度が上昇しイオン伝導度が低下するため、0.5〜2.0mol/Lがより好ましく、0.7〜1.7mol/Lが更により好ましい。   The concentration of the lithium salt in the non-aqueous secondary battery electrolyte according to the present embodiment is not particularly limited, but is preferably in the range of 0.1 to 2.5 mol / L. The lithium salt has a lower ion conductivity than when it is in the range if the concentration is lower than the following range, and a viscosity compared to when it is in the range when the concentration is higher than the following range 0.5 to 2.0 mol / L is more preferable, and 0.7 to 1.7 mol / L is even more preferable.

以下に実施例を用いて本発明をさらに詳細に説明するが、本発明はこの実施例によって限定されるものではない。   The present invention will be described in more detail using the following examples, but the present invention is not limited by these examples.

[実施例1:1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタン(TeFTFEE)の合成

2−(2,2,2−トリフルオロエトキシ)エタノール205.0g、48%KOH水溶液8.2gをオートクレーブに投入した後、内温が30℃になるまで昇温した。このオートクレーブを撹拌条件下、内温を30〜40℃に維持しながら、0.4〜1.5MPaの圧力でテトラフルオロエチレンをオートクレーブに導入した。放冷後、オートクレーブを開放し、水を加え、有機層を分取した。同量の水で洗浄後、蒸留(89.5 ℃/15kPa)により精製することにより、1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタン(以下、TeFTFEEと略す)331.7gを得た(収率95.5%)。
Example 1: Synthesis of 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane (TeFTFEE)

After 205.0 g of 2- (2,2,2-trifluoroethoxy) ethanol and 8.2 g of a 48% aqueous solution of KOH were charged into the autoclave, the temperature was raised until the internal temperature reached 30 ° C. In this autoclave, tetrafluoroethylene was introduced into the autoclave at a pressure of 0.4 to 1.5 MPa while maintaining the internal temperature at 30 to 40 ° C. under stirring conditions. After allowing to cool, the autoclave was opened, water was added, and the organic layer was separated. After washing with the same amount of water, purification by distillation (89.5 ° C./15 kPa) gives 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoro 331.7 g of ethoxy) ethane (hereinafter abbreviated as TeFTFEE) was obtained (yield 95.5%).

得られたTeFTFEEの沸点は、常圧換算で156℃であり、また、JIS K0065「化学製品の凝固点測定方法」に従い測定した凝固点は−50℃以下であった。このため、実施例1の当該化合物は、従来知られているパーフルオロアルキルエーテル化合物等と比較して広い温度範囲で取り扱い可能な液体であることが確認された。   The boiling point of the obtained TeFTFEE was 156 ° C. in terms of normal pressure, and the freezing point measured according to JIS K 0065 “Method of measuring freezing point of chemical product” was −50 ° C. or less. For this reason, it was confirmed that the said compound of Example 1 is a liquid which can be handled in a wide temperature range compared with the conventionally known perfluoro alkyl ether compound etc.

H-NMR(400MHz,CDCl):δ5.73(tt,J=53.4Hz,2.8Hz,1H),δ4.14(m,2H),δ3.90(q,J=8.6Hz,2H),δ3.88(m,2H),
19F-NMR(376MHz,CDCl):δ−74.9(t,J=8.6Hz,3F),δ−92.3(td,J=5.3Hz,2.8Hz,1H),δ−137.3(dt,J=53.4Hz,5.3Hz,1H)
1 H-NMR (400 MHz, CDCl 3 ): δ 5.73 (tt, J = 53.4 Hz, 2.8 Hz, 1 H), δ 4.14 (m, 2 H), δ 3.90 (q, J = 8.6 Hz , 2H), δ 3.88 (m, 2H),
19 F-NMR (376 MHz, CDCl 3 ): δ-74.9 (t, J = 8.6 Hz, 3 F), δ-92.3 (td, J = 5.3 Hz, 2.8 Hz, 1 H), δ -137.3 (dt, J = 53.4 Hz, 5.3 Hz, 1 H)

[試験例1:含フッ素鎖状エーテル化合物の酸化分解電位]
化合物の電気化学的安定性はリニアスィープボルタンメトリー(LSV)測定によって評価した。LSVの測定は、マルチチャンネルポテンショスタット/ガルバノスタット(Biologic社製、VMP−3)を用いて行った。
アルゴン雰囲気下、含フッ素鎖状エーテル化合物として、実施例1で得られたTeFTFEE0.24gに六フッ化リン酸リチウム(LiPF)0.30gを加えた。得られた混合物にエチレンカーボネート/エチルメチルカーボネート混合溶液(体積比:3/7)を加え10mlの実施例1aの電解液を調製した。この実施例1aの電解液におけるTeFTFEE濃度、LiPF6濃度は、それぞれ0.1mol/L、0.2mol/Lであった。
[Test Example 1: Oxidation Decomposition Potential of Fluorine-Containing Chain-Like Ether Compound]
The electrochemical stability of the compounds was assessed by linear sweep voltammetry (LSV) measurements. The measurement of LSV was performed using multichannel potentiostat / galvanostat (Biologic, VMP-3).
In an argon atmosphere, 0.30 g of lithium hexafluorophosphate (LiPF 6 ) was added to 0.24 g of TeFTFEE obtained in Example 1 as a fluorine-containing chain ether compound. An ethylene carbonate / ethyl methyl carbonate mixed solution (volume ratio: 3/7) was added to the obtained mixture to prepare 10 ml of an electrolytic solution of Example 1a. The TeFTFEE concentration and the LiPF 6 concentration in the electrolytic solution of Example 1a were 0.1 mol / L and 0.2 mol / L, respectively.

この実施例1aの電解液に、作用電極として白金、対極としてリチウム箔、参照極としてリチウム箔を挿入し、5mV/secの走査速度で貴側に掃引し、酸化分解電位の測定を行った。結果を図1に示す。さらに得られたLSVのグラフから、1mA/cm2の電流が観測された電圧を分解電位として表1に示す。なお、LSVの測定は全てアルゴン雰囲気で充満したグローブボックス中で実施した。   Into the electrolytic solution of Example 1a, platinum as a working electrode, lithium foil as a counter electrode and lithium foil as a reference electrode were inserted and swept toward the noble side at a scanning speed of 5 mV / sec to measure the oxidation decomposition potential. The results are shown in FIG. Further, from the graph of LSV obtained, a voltage at which a current of 1 mA / cm 2 was observed is shown in Table 1 as a decomposition potential. In addition, all the measurement of LSV was implemented in the glove box filled with argon atmosphere.

比較例1の含フッ素鎖状エーテル化合物としてビス(2,2,2−トリフルオロエトキシ)エタン(以下、BTFEEと略す)を用いた以外は、実施例1aと同様の方法で比較例1aの電解液を調製した。この比較例1aの電解液を用いて、実施例1aのLSVの方法で酸化分解電位の測定を行った。   An electrolysis of Comparative Example 1a was performed in the same manner as in Example 1a except that bis (2,2,2-trifluoroethoxy) ethane (hereinafter abbreviated as BTFEE) was used as the fluorine-containing chain ether compound of Comparative Example 1. The solution was prepared. The oxidative decomposition potential was measured by the method of LSV of Example 1a using the electrolytic solution of Comparative Example 1a.

実施例1a、比較例1aの結果を図1および表1に示す。   The results of Example 1a and Comparative Example 1a are shown in FIG. 1 and Table 1.



TeFTFEE:1−(1,1,2,2−テトラフルオロエトキシ)−2−
(2,2,2−トリフルオロエトキシ)エタン
BTFEE:ビス(2,2,2−トリフルオロエトキシ)エタン


TeFTFEE: 1- (1,1,2,2-tetrafluoroethoxy) -2-
(2,2,2-trifluoroethoxy) ethane BTFEE: bis (2,2,2-trifluoroethoxy) ethane

表1および図1の結果から、本発明の含フッ素鎖状エーテル化合物の1つであるTeFTFEEが、BTFEEに比べ耐酸化性に優れることが明らかとなった。この要因は明らかではないが、フッ素原子の数、及び酸素原子隣接炭素へのフッ素原子の結合等の構造的影響から、耐酸化性が向上したと考えられる。   From the results of Table 1 and FIG. 1, it became clear that TeFTFEE, which is one of the fluorine-containing chain ether compounds of the present invention, is superior in oxidation resistance to BTFEE. Although this factor is not clear, it is considered that the oxidation resistance is improved from the structural influences such as the number of fluorine atoms and the bonding of the fluorine atom to the oxygen atom adjacent carbon.

[試験例2:含フッ素鎖状エーテル化合物の粘度]
実施例1で合成したTeFTFEEの粘度を測定した。具体的には、ウベローデ式粘度計を用いて、JIS Z 8803:1991の方法に準じて、20℃の恒温槽中での動粘度を測定し、動粘度と20℃の密度の積から含フッ素鎖状エーテルの粘度を算出した。結果を表2に示す。
また、比較例2として用いたビス(1,1,2,2−テトラフルオロエトキシ)エタン(以下、BTeFEEと略す)の動粘度、密度から算出した粘度も併せて、表2に示す。
Test Example 2 Viscosity of Fluorine-Containing Chain-Like Ether Compound
The viscosity of TeFTFEE synthesized in Example 1 was measured. Specifically, the kinematic viscosity in a constant temperature bath at 20 ° C. is measured according to the method of JIS Z 8803: 1991 using a Ubbelohde viscometer, and the product of the dynamic viscosity and the density at 20 ° C. is fluorine-containing. The viscosity of the linear ether was calculated. The results are shown in Table 2.
Further, the kinematic viscosity of bis (1,1,2,2-tetrafluoroethoxy) ethane (hereinafter abbreviated as BTeFEE) used as Comparative Example 2 and the viscosity calculated from the density are also shown in Table 2.


TeFTFEE:1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2 −トリフルオロエトキシ)エタン
BTeFEE:ビス(1,1,2,2−テトラフルオロエトキシ)エタン

TeFTFEE: 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane BTeFEE: bis (1,1,2,2-tetrafluoroethoxy) ethane

表2から本発明の含フッ素鎖状エーテル化合物の1つであるTeFTFEEは、従来知られるBTeFEEに比べ低粘度であることが判る。   It can be seen from Table 2 that TeFTFEE, which is one of the fluorine-containing chain ether compounds of the present invention, has a lower viscosity than conventionally known BTeFEE.

[試験例3:含フッ素鎖状エーテル化合物の有機溶媒との相溶性]
TeFTFEE2.0gに各有機溶媒を2.0g混合し、1分間振り混ぜた。その後、しばらく静置し、目視で液の状態を確認した。判定は二液が均一になっているものを○(相溶可能)、二層分離したものを×(相溶不可)として表3に記載した。
[Test Example 3: Compatibility of a Fluorinated Chain-like Ether Compound with an Organic Solvent]
2.0 g of each organic solvent was mixed with 2.0 g of TeFTFEE, and shaken for 1 minute. Thereafter, the mixture was allowed to stand for a while, and the state of the solution was visually confirmed. The evaluation was described in Table 3 as も の (compatible) in which the two solutions were uniform, and × (incompatible) in which the two layers were separated.

比較例3としてパーフルオロアルキルエーテル[C2F5CF(−O−CH3)C3F7、3M社製、商品名Novec7300]を用い、実施例と同様の方法で相溶性を検討した。結果を表3に示す。   As Comparative Example 3, the compatibility was examined in the same manner as in Example using perfluoroalkyl ether [C2F5CF (-O-CH3) C3F7, manufactured by 3M, trade name Novec 7300]. The results are shown in Table 3.


TeFTFEE:1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2 −トリフルオロエトキシ)エタン
Novec7300:ビス(1,1,2,2−テトラフルオロエトキシ)エタン
PC:プロピレンカーボネート

TeFTFEE: 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane Novec 7300: bis (1,1,2,2-tetrafluoroethoxy) ethane PC : Propylene carbonate

表3から、ノベック7300に比べ、本発明の含フッ素鎖状エーテル化合物の1つであるTeFTFEEはより多くの非水溶媒と相溶可能であり、相溶性により優れることは明らかである。   From Table 3, it is clear that TeFTFEE, which is one of the fluorine-containing chain ether compounds of the present invention, is compatible with more nonaqueous solvents and is more excellent in compatibility than Nobec 7300.

[試験例4:洗浄剤としての使用]
テストピース(SUS−304製)を鉱物油(松村石油製、ネオバックMR−100)に浸漬し、180℃、1分間加熱処理した。このテストピースをTeFTFEEに浸漬し、25℃の温度条件下、30秒間超音波洗浄を行った。引き続き、超音波洗浄後のテストピースをドライヤーで温風乾燥した結果、鉱物油の残存は認められず、油汚れが良好に除去できることが確認された。
[Test Example 4: Use as a cleaning agent]
The test piece (made of SUS-304) was immersed in mineral oil (manufactured by Matsumura Petroleum, Neovac MR-100) and heat-treated at 180 ° C. for 1 minute. The test piece was immersed in TeFTFEE and subjected to ultrasonic cleaning for 30 seconds at a temperature of 25 ° C. Subsequently, as a result of hot air drying of the test piece after ultrasonic cleaning with a drier, no remaining of mineral oil was observed, and it was confirmed that oil stains could be removed well.

[試験例5:含フッ素鎖状エーテル化合物(1)の有機合成用溶媒としての利用例(クロスカップリング反応)] [Test Example 5: Application Example of a fluorinated chain ether compound (1) as a solvent for organic synthesis (cross coupling reaction)]

100mlシュレンク管に実施例1で得られたTeFTFEE 20mlを入れ、4−n−プロピルフェニルボロン酸 1.1を加え溶解させた。窒素置換後、撹拌下でトリフェニルホスフィン 0.040g、ブロモベンゼン 0.97g、ジクロロビス(トリフェニルホスフィン)パラジウム(II)0.047g及び炭酸セシウム 4.0gを添加し、80℃で4時間反応させた。   In a 100 ml Schlenk tube, 20 ml of TeFTFEE obtained in Example 1 was placed, and 4-n-propylphenylboronic acid 1.1 was added and dissolved. After nitrogen substitution, add 0.040 g of triphenylphosphine, 0.97 g of bromobenzene, 0.047 g of dichlorobis (triphenylphosphine) palladium (II) and 4.0 g of cesium carbonate under stirring, and react at 80 ° C. for 4 hours The

反応後、反応液を20mlの水で水洗後、有機層(下層)をGC分析したところ、収率99%でクロスカップリング生成物である4−n−プロピルビフェニルが生成していることが確認された。   After the reaction, the reaction solution was washed with 20 ml of water, and the organic layer (lower layer) was subjected to GC analysis, and it was confirmed that 4-n-propylbiphenyl which is a cross coupling product was formed in a yield of 99%. It was done.

本結果より、上述のとおり相溶性に優れる本発明の含フッ素鎖状エーテル化合物の1つであるTeFTFEEは、有機合成用の溶媒として利用可能であることが確認された。   From this result, it was confirmed that TeFTFEE, which is one of the fluorinated chained ether compounds of the present invention having excellent compatibility as described above, can be used as a solvent for organic synthesis.

[試験例6:非水系電解液におけるイオン伝導度および粘度の評価]
実施例1により得られたつであるTeFTFEEを含む非水系電解液について、イオン伝導度と粘度の評価を行った。
[Test Example 6: Evaluation of ion conductivity and viscosity in non-aqueous electrolyte solution]
The ion conductivity and the viscosity of the non-aqueous electrolyte solution containing TeFTFEE, which is one obtained by Example 1, were evaluated.

非水系電解液のイオン伝導度(単位:mS/cm)の測定は、「電気化学測定マニュアル、基礎編、2002、45、電気化学会編、丸善株式会社」に記載の方法を用いて20℃で行った。すなわち、図2に記載の白金電極4を向い合せに組み合わせた電気化学セル3に、あらかじめ電気伝導度既知の標準液を注入し、セル定数を算出した。調製した電解液をこの電気化学セルに注入し密封した。溶液抵抗を、当該電気化学セルを20℃恒温槽中に1時間静置した後、ポテンショスタット/ガルバノスタット(東陽テクニカ社製、VersaSTAT4−400)を用い、複素インピーダンス法により測定した。得られた溶液抵抗値より、各非水電解液のイオン伝導度を算出した。
算出式:イオン伝導度(mS/cm)=溶液抵抗値(Ω)/セル定数
The measurement of the ion conductivity (unit: mS / cm) of the non-aqueous electrolyte solution is carried out at 20 ° C. using the method described in “Electrochemical Measurement Manual, Basic edition, 2002, 45, Electrochemical Society edition, Maruzen Co., Ltd.” I went there. That is, a standard solution with known conductivity was injected in advance into the electrochemical cell 3 in which the platinum electrodes 4 shown in FIG. 2 were combined facing each other, and the cell constant was calculated. The prepared electrolyte was injected into the electrochemical cell and sealed. The solution resistance was measured by a complex impedance method using a potentiostat / galvanostat (VersaSTAT 4-400 manufactured by Toyo Corporation) after the electrochemical cell was allowed to stand in a thermostat at 20 ° C. for 1 hour. The ion conductivity of each non-aqueous electrolyte was calculated from the obtained solution resistance value.
Calculation formula: Ion conductivity (mS / cm) = solution resistance (Ω) / cell constant

また、非水系電解液の粘度(単位:mPa・sec)の測定は、コーンプレート型回転粘度計(BrookField社製、DV−I PRIME)を用いて行った。すなわち、流動式恒温装置を接続した回転粘度計のカップに、調製した電解液を導入し、温度が20℃で一定となるまで流通させて測定した。   The viscosity (unit: mPa · sec) of the non-aqueous electrolyte solution was measured using a cone-plate type rotational viscometer (DV-I PRIME, manufactured by BrookField). That is, the prepared electrolytic solution was introduced into a cup of a rotational viscometer connected to a fluid-type thermostat, and it was made to flow and measured until the temperature became constant at 20 ° C.

実施例の非水系電解液の調製は以下のようにして行った。
エチレンカーボネート(以下、ECと略す)、リン酸トリス(2,2,2−トリフルオロエチル)(以下、TFEPと略す)、TeFTFEEを体積比、50/25/25の比率で混合した。得られた混合物に電解質として六フッ化リン酸リチウム(以下、LiPF6と略す)を1.0mol/Lの濃度となるように加え、20℃で充分に撹拌して完全に溶解し、実施例1bの非水系電解液を作成した。この実施例1bの非水系電解液について、上述の方法でイオン伝導度および粘度を測定した。
Preparation of the non-aqueous electrolyte solution of the example was performed as follows.
Ethylene carbonate (hereinafter abbreviated as EC), tris (2,2,2-trifluoroethyl) phosphate (hereinafter abbreviated as TFEP), and TeFTFEE were mixed at a volume ratio of 50/25/25. Lithium hexafluorophosphate (hereinafter referred to as LiPF6) was added as an electrolyte to the resulting mixture to a concentration of 1.0 mol / L, and the mixture was thoroughly stirred at 20 ° C. to dissolve completely, Example 1b A non-aqueous electrolyte was prepared. The ionic conductivity and the viscosity of the non-aqueous electrolyte solution of Example 1b were measured by the above-mentioned method.

また、TeFTFEEを加えず、ECとTFEPを50/50の体積比で混合した以外は、実施例1bと同様の操作で比較例4の非水系電解液を作成した。この比較例4の非水系電解液についても上述の方法でイオン伝導度および粘度を測定した。
結果を表4に示す。
A non-aqueous electrolytic solution of Comparative Example 4 was prepared in the same manner as in Example 1b, except that EC and TFEP were mixed at a volume ratio of 50/50 without adding TeFTFEE. The ion conductivity and the viscosity of the non-aqueous electrolyte solution of Comparative Example 4 were also measured by the above-described method.
The results are shown in Table 4.


LiPF6:六フッ化リン酸リチウム
EC:エチレンカーボネート
TFEP:リン酸トリス(2,2,2−トリフルオロエチル)
TeFTFEE:1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2 −トリフルオロエトキシ)エタン

LiPF6: lithium hexafluorophosphate EC: ethylene carbonate TFEP: tris (2,2,2-trifluoroethyl) phosphate
TeFTFEE: 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane

表4に示す結果から、実施例1bの非水系電解液は、比較例4の非水系電解液と比較して、イオン伝導度が高く、また、粘度も低いことが理解できる。   From the results shown in Table 4, it can be understood that the non-aqueous electrolyte of Example 1 b has high ion conductivity and low viscosity as compared to the non-aqueous electrolyte of Comparative Example 4.

本発明の含フッ素鎖状エーテル化合物は、従来知られているパーフルオロアルキルエーテル化合物等と比較して高い沸点を備えるとともに有機化合物との相溶性に優れ、且つ粘度についても改善可能であり容易に合成可能である。そのため、電子部品、工業製品等の洗浄剤あるいは有機合成用溶媒、非水系二次電池用電解液として広範囲に使用可能であり極めて有用である。   The fluorinated chain ether compound of the present invention has a high boiling point as compared with conventionally known perfluoroalkyl ether compounds and the like, and is excellent in compatibility with an organic compound and can improve the viscosity and is easy It can be synthesized. Therefore, it can be widely used as a cleaning agent for electronic parts, industrial products, etc., a solvent for organic synthesis, and an electrolyte for non-aqueous secondary batteries, and is extremely useful.

1: 1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフ ルオロエトキシ)エタン(実施例1a)のLSVグラフ
2: ビス(2,2,2−トリフルオロエトキシ)エタン(比較例1a)のLSVグラ フ
3: ガラス製電気化学セル
4: 白金製電極
1: LSV graph of 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane (Example 1a) 2: bis (2,2,2-triethoxy) LSV graph of fluoroethoxy) ethane (Comparative Example 1a) 3: Glass electrochemical cell 4: Platinum electrode

Claims (4)

1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタン。 1- (1,1,2,2-tetrafluoro-ethoxy) -2- (2,2,2-trifluoroethoxy) ethanone down. 請求項1に記載の1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタンを含む洗浄剤。 A detergent comprising 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane according to claim 1 . 非水溶媒と、電解質塩と、請求項1に記載の1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタンとを含む非水系二次電池用電解液。 A non-aqueous system comprising a non-aqueous solvent, an electrolyte salt, and 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane according to claim 1 Electrolyte solution for secondary battery. 請求項1に記載の1−(1,1,2,2−テトラフルオロエトキシ)−2−(2,2,2−トリフルオロエトキシ)エタンの製造方法であって、
2−(2,2,2−トリフルオロエトキシ)エタノールテトラフルオロエチレンとを反応させることを含む前記製造方法。
A process for producing 1- (1,1,2,2-tetrafluoroethoxy) -2- (2,2,2-trifluoroethoxy) ethane according to claim 1,
The above production method, which comprises reacting 2- (2,2,2-trifluoroethoxy) ethanol with tetrafluoroethylene .
JP2015138587A 2015-07-10 2015-07-10 Novel fluorine-containing chained ether compound, method for producing the same, and use thereof Active JP6501658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138587A JP6501658B2 (en) 2015-07-10 2015-07-10 Novel fluorine-containing chained ether compound, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138587A JP6501658B2 (en) 2015-07-10 2015-07-10 Novel fluorine-containing chained ether compound, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2017019746A JP2017019746A (en) 2017-01-26
JP6501658B2 true JP6501658B2 (en) 2019-04-17

Family

ID=57888992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138587A Active JP6501658B2 (en) 2015-07-10 2015-07-10 Novel fluorine-containing chained ether compound, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP6501658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011275A1 (en) * 2019-07-12 2021-01-21 Honeywell International Inc. Electrolyte solution for a lithium ion cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053295A1 (en) * 2021-09-29 2023-04-06 TeraWatt Technology株式会社 Lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071816B2 (en) * 2008-06-30 2011-12-06 3M Innovative Properties Company Hydrofluoroacetal compounds and processes for their preparation and use
JP5471616B2 (en) * 2010-03-05 2014-04-16 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011275A1 (en) * 2019-07-12 2021-01-21 Honeywell International Inc. Electrolyte solution for a lithium ion cell

Also Published As

Publication number Publication date
JP2017019746A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
KR102499563B1 (en) Nitrogen containing hydrofluoroethers and methods of using same
JP4469934B2 (en) Electrolyte solutions for lithium batteries with improved safety
JP6319852B2 (en) Solid electrolytes containing ionic liquids
JP4645648B2 (en) Electrolyte
JP6145449B2 (en) Electrolytic solution for electrochemical devices, aluminum electrolytic capacitor and electric double layer capacitor
CN102916222A (en) Phosphazene flame retardant, preparation method thereof and lithium-ion battery electrolyte
JP2010146740A (en) Electrolytic solution
WO2006106657A1 (en) Electrolyte solution
KR102499303B1 (en) Propenylamine and methods of making and using the same
JP6501658B2 (en) Novel fluorine-containing chained ether compound, method for producing the same, and use thereof
KR20170037977A (en) Fluorinated carbonates comprising two oxygen bearing functional groups
JP5074817B2 (en) BF3 complex and method for producing BF3 complex
JP6369292B2 (en) Method for purifying electrolyte solution and method for producing electrolyte solution
WO2007119322A1 (en) Electrolyte solution
WO2016161465A1 (en) Fluorinated alkali ion electrolytes with urethane groups
CN104885286A (en) Salts of N-containing heterocyclic anions as components in electrolytes
JP2012087092A (en) Fluorine-containing sulfone, fluorine-containing thioether, method for producing fluorine-containing thioether, and method for producing fluorine-containing sulfone
JPWO2005123656A1 (en) NOVEL METHYL CARBONATES, PROCESS FOR PRODUCING THE SAME, NON-AQUEOUS ELECTROLYTE SOLUTION
WO2016164505A1 (en) Fluorinated alkali ion electrolytes with cyclic carbonate groups
JP5301322B2 (en) Phosphonium group-containing gel-like nanocomposite, method for producing the same, and ion conductor
JP2005060261A (en) Bis(2,2,3,4,4,4-hexafluorobutyl) carbonate and method for producing the same, and nonaqueous electrolytic solution
JP2022527050A (en) How to prepare fluorinated alcohol
JP2004123631A (en) Onium salt
WO2013081137A1 (en) Method for producing fluorine-containing cyclic carbonate
JP2015044779A (en) Fluorine-containing linear ether compound and production method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250