JP6499478B2 - Steam generator, nuclear power plant, and seismic reinforcement method for steam generator - Google Patents

Steam generator, nuclear power plant, and seismic reinforcement method for steam generator Download PDF

Info

Publication number
JP6499478B2
JP6499478B2 JP2015043057A JP2015043057A JP6499478B2 JP 6499478 B2 JP6499478 B2 JP 6499478B2 JP 2015043057 A JP2015043057 A JP 2015043057A JP 2015043057 A JP2015043057 A JP 2015043057A JP 6499478 B2 JP6499478 B2 JP 6499478B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
plane direction
steam generator
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015043057A
Other languages
Japanese (ja)
Other versions
JP2016161266A (en
Inventor
匡胤 門出
匡胤 門出
隆一 梅原
隆一 梅原
和生 廣田
和生 廣田
朋乃 峯野
朋乃 峯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015043057A priority Critical patent/JP6499478B2/en
Publication of JP2016161266A publication Critical patent/JP2016161266A/en
Application granted granted Critical
Publication of JP6499478B2 publication Critical patent/JP6499478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本開示は、伝熱管内を流れる流体との熱交換によって蒸気を生成するための蒸気発生器、及び該蒸気発生器を備える原子力プラント、並びに蒸気発生器の耐震補強方法に関する。   The present disclosure relates to a steam generator for generating steam by heat exchange with a fluid flowing in a heat transfer tube, a nuclear power plant including the steam generator, and a seismic reinforcement method for the steam generator.

一般に、蒸気発生器の伝熱管構造として、鉛直方向に配列された複数の直管部が、U字形状の曲り部によって互いに連結された構造が知られている。複数の曲り部の集合体は、通常、Uベンド部と称される。
Uベンド部における耐震構造として、例えば特許文献1には、Uベンド部において複数の伝熱管を保持する部材を支持部材によって固定する構造が開示されている。また、特許文献2には、支持部材を介してUベンド部の伝熱管を蒸気発生器の容器(胴部)に固定する構造が開示されている。
In general, as a heat transfer tube structure of a steam generator, a structure in which a plurality of straight tube portions arranged in a vertical direction are connected to each other by a U-shaped bent portion is known. An assembly of a plurality of bent portions is usually referred to as a U-bend portion.
As an earthquake resistant structure in the U bend part, for example, Patent Document 1 discloses a structure in which a member holding a plurality of heat transfer tubes in the U bend part is fixed by a support member. Further, Patent Document 2 discloses a structure in which a heat transfer tube of a U bend portion is fixed to a container (body portion) of a steam generator via a support member.

さらに、特許文献3には、Uベンド部の耐震性及び流動振動に対する耐性を向上させることができるUベンド部の支持構造が開示されている。ここで、流体励起振動は、Uベンド部の伝熱管の周囲を流れる二次冷却水や、Uベンド部の伝熱管内を流れる一次冷却水によって発生する振動である。具体的には、この蒸気発生器は、Uベンド部と管群外筒との間においてUベンド部を取り囲むように設けられる第1の支持部材と、第1の支持部材と管群外筒との間に設けられる第2の支持部材と、第2の支持部材を支持する第3の支持部と、を備えている。   Furthermore, Patent Document 3 discloses a support structure for a U bend part that can improve the earthquake resistance of the U bend part and the resistance to flow vibration. Here, the fluid excitation vibration is vibration generated by the secondary cooling water flowing around the heat transfer tube of the U bend part or the primary cooling water flowing in the heat transfer pipe of the U bend part. Specifically, the steam generator includes a first support member provided so as to surround the U bend portion between the U bend portion and the tube group outer tube, a first support member, and the tube group outer tube. And a third support member for supporting the second support member.

米国特許第6772832号明細書US Pat. No. 6,772,732 米国特許第5692557号明細書US Pat. No. 5,692,557 特開2013−011380号公報JP 2013-011380 A

近年、蒸気発生器の耐震性向上の要求が高まっていることから、蒸気発生器の耐震裕度をより一層向上させることが求められている。一方、蒸気発生器の高効率化を目的として、蒸気発生器の大型化及び伝熱管の小径化が進んでおり、蒸気発生器の重量が増加する傾向にある。そのため、地震等の振動に対して伝熱管の揺れが大きくなる懸念がある。蒸気発生器の重量軽減のために伝熱管の薄肉化が図られているが、伝熱管の揺れの観点からは、薄肉化により伝熱管の剛性が低下して伝熱管の揺れを促進する可能性がある。
そのため、高効率化に対応した蒸気発生器に対しても高い耐震性能を実現できる構造が望まれている。
In recent years, since the demand for improving the earthquake resistance of steam generators is increasing, it is required to further improve the earthquake resistance of the steam generator. On the other hand, for the purpose of increasing the efficiency of the steam generator, the steam generator has been increased in size and the heat transfer tube has been reduced in diameter, and the weight of the steam generator tends to increase. Therefore, there is a concern that the shaking of the heat transfer tube will increase with respect to vibrations such as earthquakes. To reduce the weight of the steam generator, the heat transfer tube is made thinner, but from the viewpoint of the heat transfer tube shaking, the heat transfer tube rigidity may decrease due to the thinning of the heat transfer tube, and the heat transfer tube may be shaken. There is.
Therefore, a structure capable of realizing high seismic performance even for a steam generator corresponding to high efficiency is desired.

この点、特許文献3に記載の蒸気発生器では第1の支持部材、第2の支持部材及び第3の支持部材によって耐震性能が向上しているが、近年の蒸気発生器の耐震性能に対する要求の高まりから、さらなる耐震性能の向上が可能な蒸気発生器の開発が期待されている。   In this regard, in the steam generator described in Patent Document 3, the first support member, the second support member, and the third support member have improved the earthquake resistance performance. However, recent requirements for the earthquake resistance performance of the steam generator have been improved. As a result, the development of steam generators that can further improve seismic performance is expected.

上述の事情に鑑みて、本発明の少なくとも一実施形態は、伝熱管の曲り部における耐震性を向上し得る蒸気発生器及び原子力プラント、並びに蒸気発生器の耐震補強方法を提供することを目的とする。   In view of the above circumstances, at least one embodiment of the present invention aims to provide a steam generator and a nuclear power plant that can improve earthquake resistance in a bent portion of a heat transfer tube, and a method for earthquake strengthening of the steam generator. To do.

(1)本発明の少なくとも一実施形態に係る蒸気発生器は、
伝熱管内を流れる流体との熱交換によって蒸気を生成するための蒸気発生器であって、
前記流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、
前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材と、を備え、
曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記規則配列は、前記面内方向又は前記面外方向に沿った少なくとも一列において前記伝熱管が存在しない配列欠陥部を含み、
前記支持部材は、前記配列欠陥部の周囲に存在する複数の伝熱管の前記曲り部によって囲まれる空間の少なくとも一部に設けられていることを特徴とする。
(1) A steam generator according to at least one embodiment of the present invention comprises:
A steam generator for generating steam by heat exchange with a fluid flowing in a heat transfer pipe,
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bend located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes each having a portion;
A tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted;
A support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction orthogonal to a plane including the bent portion,
The plurality of heat transfer tubes such that a plurality of the bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and a plurality of the bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion pass are arranged according to a regular arrangement in a top view of the pipe support plate,
The regular arrangement includes an arrangement defect portion in which the heat transfer tubes do not exist in at least one row along the in-plane direction or the out-of-plane direction,
The support member is provided in at least a part of a space surrounded by the bent portions of a plurality of heat transfer tubes existing around the arrangement defect portion.

上記(1)の構成によれば、第1直管部及び第2直管部が通過する複数の貫通孔は管支持板の上面視において規則配列に従って配列されており、前記規則配列は、面内方向又は面外方向に沿った少なくとも一列において伝熱管が存在しない配列欠陥部を含む。すなわち、第1直管部及び第2直管部が挿通される貫通孔によって規定される規則配列のうち少なくとも一列が欠けており(配列欠陥部)、かかる配列欠陥部には第1直管部及び第2直管部が通過する貫通孔が存在しない。そして、配列欠陥部の周囲に存在する複数の伝熱管の曲り部によって囲まれる空間の少なくとも一部には、面外方向への伝熱管の動きを規制するための支持部材が設けられる。
これにより、面外方向への伝熱管の揺れが発生したとき、配列欠陥部の周囲の伝熱管の曲り部が支持部材に当接し、それ以上の変位が阻止される。また、他の伝熱管の曲り部についても、配列欠陥部の周囲の伝熱管の曲り部の変位が阻止される結果、面外方向への動きが規制される。よって、伝熱管群の曲り部における揺れを抑制でき、蒸気発生器の耐震性を向上させることができる。
また、配列欠陥部は少なくとも一本の伝熱管に相当する隙間を形成するため、この配列欠陥部に設けられる支持部材に十分な肉厚又は径を持たせることができる。このため、支持部材に対して十分な剛性を付与することができる。
さらに、既存の蒸気発生器に対する追加工事によって上記構成を適用する場合、複数の伝熱管の規則配列から少なくとも一列の伝熱管を排除して配列欠陥部を設ければよく、基本的な規則配列を大幅に変更することなく、上記構成を既存の設計に対して容易に導入することができる。但し、既存の伝熱管を利用して支持部材を構成する場合には、配列欠陥部に対応する位置に配置された伝熱管を取り除くことなく、この伝熱管を支持部材に改造してもよい。
According to the configuration of (1) above, the plurality of through holes through which the first straight pipe portion and the second straight pipe portion pass are arranged according to a regular arrangement in a top view of the pipe support plate. It includes an arrangement defect portion in which the heat transfer tubes do not exist in at least one row along the inward or out-of-plane direction. That is, at least one row is missing in the regular arrangement defined by the through-hole through which the first straight pipe portion and the second straight pipe portion are inserted (arrangement defect portion), and the first straight pipe portion is included in the arrangement defect portion. And there is no through hole through which the second straight pipe portion passes. A support member for restricting the movement of the heat transfer tubes in the out-of-plane direction is provided in at least a part of the space surrounded by the bent portions of the plurality of heat transfer tubes existing around the arrangement defect portion.
As a result, when the heat transfer tube shakes in the out-of-plane direction, the bent portion of the heat transfer tube around the arrangement defect portion contacts the support member, and further displacement is prevented. Moreover, also about the bending part of another heat exchanger tube, the movement to the out-of-plane direction is controlled as a result of preventing the displacement of the bent part of the heat exchanger tube around an arrangement | sequence defect part. Therefore, the vibration in the bent part of the heat transfer tube group can be suppressed, and the earthquake resistance of the steam generator can be improved.
In addition, since the arrangement defect portion forms a gap corresponding to at least one heat transfer tube, the support member provided in the arrangement defect portion can have a sufficient thickness or diameter. For this reason, sufficient rigidity can be provided to the support member.
Further, when the above configuration is applied by additional work for an existing steam generator, it is sufficient to eliminate the at least one row of heat transfer tubes from the regular arrangement of a plurality of heat transfer tubes and provide a defective arrangement. The above configuration can be easily introduced to existing designs without significant changes. However, when the support member is configured using an existing heat transfer tube, the heat transfer tube may be modified into a support member without removing the heat transfer tube disposed at a position corresponding to the arrangement defect portion.

なお、支持部材は、伝熱管が格納される胴部に対して剛に支持されていてもよい。例えば、支持部材は、後述の振止め部材を介さずに胴部に直接的に支持されていてもよい。
この場合、支持部材と胴部との間の荷重伝達経路から剛性の低い部位(例えば振止め部材又は振止め部材と保持部材との間の接合部)を排除して、支持部材によるUベンド部の耐震性能の優れた向上効果を享受できる。
これに対し、仮に支持部材と胴部との間に剛性の低い部位(例えば振止め部材又は振止め部材と保持部材との間の接合部)が含まれている場合、支持部材自体の剛性を向上させても、伝熱管から支持部材が受けた荷重を胴部に伝達する過程で低剛性の部位が損傷してしまう可能性がある。
The support member may be rigidly supported with respect to the body portion in which the heat transfer tube is stored. For example, the support member may be directly supported by the trunk without using a later-described anti-vibration member.
In this case, a U-bend portion formed by the support member is eliminated by removing a portion having a low rigidity (for example, the anti-vibration member or the joint between the anti-vibration member and the holding member) from the load transmission path between the support member and the trunk portion. You can enjoy the excellent improvement effect of seismic performance.
On the other hand, if a low-rigidity portion (for example, the anti-vibration member or the joint between the anti-vibration member and the holding member) is included between the support member and the body, the rigidity of the support member itself is reduced. Even if it is improved, there is a possibility that the low rigidity portion may be damaged in the process of transmitting the load received by the support member from the heat transfer tube to the trunk.

(2)幾つかの実施形態では、上記(1)の構成において、
前記支持部材は、前記管支持板に固定され、複数の前記曲り部の間において前記面内方向に沿って設けられた少なくとも一枚の仕切り板を含む。
上記(2)の構成によれば、支持部材は、面内方向に沿って設けられた少なくとも一枚の仕切り板を含んでいる。これにより、面外方向への伝熱管の揺れが発生したとき、曲り部は仕切り板に当接してその動きが規制される。このとき、仕切り板は多数の伝熱管に当接するので、少ない設置枚数で曲り部集合体の大部分における揺れを抑制することができる。また、仕切り板によって、複数の曲り部が面外方向において分割されるので、一の仕切り板が支持すべき伝熱管の移動質量を小さくすることができる。
さらに、支持部材は管支持板に固定されているので、支持部材を胴部に対して剛に支持することができる。したがって、支持部材が、伝熱管の揺れに起因した曲り部の荷重を受けたときに、伝熱管から支持部材が受けた荷重を胴部に伝達する過程で低剛性の部位が損傷してしまうことを防止できる。
(2) In some embodiments, in the configuration of (1) above,
The support member includes at least one partition plate fixed to the tube support plate and provided along the in-plane direction between the plurality of bent portions.
According to the configuration of (2) above, the support member includes at least one partition plate provided along the in-plane direction. Thereby, when the heat transfer tube shakes in the out-of-plane direction, the bent portion abuts on the partition plate and its movement is restricted. At this time, since the partition plate comes into contact with a large number of heat transfer tubes, it is possible to suppress shaking in a large part of the bent portion assembly with a small number of installations. Moreover, since a some bending part is divided | segmented in an out-of-plane direction by a partition plate, the moving mass of the heat exchanger tube which the one partition plate should support can be made small.
Furthermore, since the support member is fixed to the tube support plate, the support member can be supported rigidly with respect to the trunk portion. Therefore, when the support member receives the load of the bent portion due to the shaking of the heat transfer tube, the low rigidity portion may be damaged in the process of transmitting the load received by the support member from the heat transfer tube to the trunk portion. Can be prevented.

(3)幾つかの実施形態では、上記(2)の構成において、
前記複数の伝熱管の前記曲り部によって前記管支持板の上方に形成される半球形状のUベンド部の外形に沿って設けられた保持部材と、
前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記保持部材から前記Uベンド部の前記半球形状の径方向における内側に向かって延在する複数の振止め部材と、をさらに備え、
前記仕切り板は、前記複数の振止め部材によって両側から挟まれている。
上記(3)の構成では、面外方向において隣接する曲り部の間に設けられ、保持部材からUベンド部の半球形状の径方向における内側に向かって延在する複数の振止め部材を備えている。この振止め部材によって、主として曲り部の流体励起振動を抑制することができる。なお、前記流体励起振動とは、蒸気発生器の運転時において、伝熱管の周囲を流れる流体(例えば蒸気等の二次冷却水)や伝熱管内を流れる流体によって発生する曲り部の振動である。また、仕切り板が、複数の振止め部材によって両側から挟まれているので、複数の伝熱管の曲り部からの荷重を、振止め部材を介して仕切り板で受けることができる。
(3) In some embodiments, in the configuration of (2) above,
A holding member provided along the outer shape of a hemispherical U-bend portion formed above the tube support plate by the bent portions of the plurality of heat transfer tubes;
A plurality of anti-vibration members provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction and extending inward in the radial direction of the hemispherical shape of the U-bend portion from the holding member; Further comprising
The partition plate is sandwiched from both sides by the plurality of anti-vibration members.
In the configuration of (3), a plurality of anti-vibration members provided between the bent portions adjacent in the out-of-plane direction and extending inward in the radial direction of the hemispherical shape of the U bend portion are provided. Yes. By this anti-vibration member, fluid-excited vibration of the bent portion can be mainly suppressed. The fluid excitation vibration is vibration of a bent portion generated by a fluid flowing around the heat transfer tube (for example, secondary cooling water such as steam) or a fluid flowing in the heat transfer tube during operation of the steam generator. . Moreover, since the partition plate is pinched | interposed from the both sides by the some bracing member, the load from the bending part of a some heat exchanger tube can be received by a partition plate via a bracing member.

(4)幾つかの実施形態では、上記(3)の構成において、
前記仕切り板は、前記Uベンド部の前記外形に沿った円弧状の縁部を有し、
前記縁部は、前記保持部材に固定される。
上記(4)の構成によれば、仕切り板の縁部が保持部材によって固定され、仕切り板の基部側が管支持板によって固定されるので、離間した2か所で仕切り板が固定されることとなり、仕切り板をより一層強固に固定することができる。
(4) In some embodiments, in the configuration of (3) above,
The partition plate has an arc-shaped edge along the outer shape of the U-bend portion,
The edge is fixed to the holding member.
According to the configuration of (4) above, the edge of the partition plate is fixed by the holding member, and the base side of the partition plate is fixed by the tube support plate, so the partition plate is fixed at two spaced locations. The partition plate can be more firmly fixed.

(5)幾つかの実施形態では、上記(3)又は(4)の構成において、
前記蒸気発生器の内壁に支持され、且つ、前記Uベンド部を囲む円環支持部をさらに備え、
前記円環支持部に設けた凹部に前記仕切り板の縁部が遊嵌されている。
上記(5)の構成によれば、蒸気発生器の内壁(例えば胴部の内壁)に支持された円環支持部の凹部に仕切り板の縁部を遊嵌したので、伝熱管の揺れ発生時において仕切り板及び円環支持部を介して蒸気発生器の内壁側に荷重を伝達することができ、伝熱管の揺れに起因した曲り部の荷重支持能力を向上させることができる。また、円環支持部に対して仕切り部が遊嵌されているので、内壁又は円環支持部と支持部材との熱伸び差に起因した熱応力を逃がすことができる。
(5) In some embodiments, in the above configuration (3) or (4),
An annular support portion supported on the inner wall of the steam generator and surrounding the U-bend portion;
An edge of the partition plate is loosely fitted in a recess provided in the annular support portion.
According to the configuration of (5) above, since the edge of the partition plate is loosely fitted in the recess of the annular support portion supported by the inner wall of the steam generator (for example, the inner wall of the trunk portion), when the heat transfer tube shakes The load can be transmitted to the inner wall side of the steam generator through the partition plate and the annular support portion, and the load support capability of the bent portion caused by the shaking of the heat transfer tube can be improved. Moreover, since the partition part is loosely fitted with respect to the annular support part, the thermal stress resulting from the thermal expansion difference between the inner wall or the annular support part and the support member can be released.

(6)幾つかの実施形態では、上記(2)乃至(5)の構成において、
前記仕切り板には、少なくとも一つの開口が設けられている。
上記(6)によれば、流体(例えば蒸気等の二次冷却水)が、仕切り板の開口を通って面外方向に沿って流れるため、仕切り板によってUベンド部における熱流動が阻害されることを抑制できる。
(6) In some embodiments, in the above configurations (2) to (5),
The partition plate is provided with at least one opening.
According to the above (6), since the fluid (for example, secondary cooling water such as steam) flows along the out-of-plane direction through the opening of the partition plate, the partition plate impedes the heat flow in the U-bend portion. This can be suppressed.

(7)一実施形態では、上記(6)の構成において、
前記開口は、開口径が最小となるオリフィス部を有する。
上記(7)の構成によれば、仕切り板が面外方向に変位しようとしたとき、開口のオリフィス部を通過する流体(例えば蒸気等の二次冷却水)による抵抗力によって、仕切り板の変位を抑制することができる。
(7) In one embodiment, in the configuration of (6) above,
The opening has an orifice portion having a minimum opening diameter.
According to the configuration of (7) above, when the partition plate is about to be displaced in the out-of-plane direction, the partition plate is displaced by the resistance force of the fluid (for example, secondary cooling water such as steam) passing through the orifice portion of the opening. Can be suppressed.

(8)幾つかの実施形態では、上記(2)乃至(7)の何れかの構成において、
前記少なくとも一枚の仕切り板は、前記面外方向に並ぶように前記面内方向に沿って設けられた複数の仕切り板を含む。
上記(8)の構成によれば、複数の仕切り板によって、複数の曲り部の集合体(Uベンド部)が面外方向において3以上に分割されるため、一の仕切り板が受け持つ伝熱管の移動質量をより小さくすることができる。
(8) In some embodiments, in any one of the above configurations (2) to (7),
The at least one partition plate includes a plurality of partition plates provided along the in-plane direction so as to be aligned in the out-of-plane direction.
According to the configuration of (8) above, the assembly of the plurality of bent portions (U bend portion) is divided into three or more in the out-of-plane direction by the plurality of partition plates. The moving mass can be further reduced.

(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、
前記支持部材は、前記面内方向に沿って設けられ、且つ、前記曲り部よりも剛性が高い少なくとも一本の湾曲支持棒を含む。
上記(9)の構成によれば、面外方向への伝熱管の揺れが発生したとき、曲り部は、該曲り部よりも剛性が高い湾曲支持棒に当接してその動きが規制される。また、湾曲支持棒は、曲り部を含む平面に対しての投影面積が比較的小さいため、湾曲支持棒が面外方向に沿った熱流動に与える影響を低減できる。さらに、上記構成においては、配列欠陥部を形成するために規則配列から排除する伝熱管本数は少なくてすむため、配列欠陥部による伝熱効率の低下を抑制することができる。
(9) In some embodiments, in any one of the above configurations (1) to (8),
The support member includes at least one curved support bar provided along the in-plane direction and having higher rigidity than the bent portion.
According to the configuration of (9) above, when the heat transfer tube sways in the out-of-plane direction, the bent portion comes into contact with the curved support rod having higher rigidity than the bent portion and its movement is restricted. Further, since the curved support rod has a relatively small projected area with respect to the plane including the bent portion, the influence of the curved support rod on the heat flow along the out-of-plane direction can be reduced. Further, in the above configuration, since the number of heat transfer tubes excluded from the regular arrangement in order to form the arrangement defect portion can be reduced, a decrease in heat transfer efficiency due to the arrangement defect portion can be suppressed.

(10)一実施形態では、上記(9)の構成において、
前記湾曲支持棒は、前記伝熱管と同一の直径を有し、且つ、中実である。
上記(10)の構成によれば、湾曲支持棒の支持に際して、伝熱管と同一の支持構造を利用することができる。例えば、伝熱管が貫通するように構成された管支持板によって該伝熱管を支持する場合、伝熱管と同様に湾曲支持棒も管支持板を貫通させることによって支持することができる。
(10) In one embodiment, in the configuration of (9) above,
The curved support rod has the same diameter as the heat transfer tube and is solid.
According to the configuration of (10) above, the same support structure as that of the heat transfer tube can be used when supporting the curved support rod. For example, when the heat transfer tube is supported by a tube support plate configured to penetrate the heat transfer tube, the curved support bar can be supported by penetrating the tube support plate in the same manner as the heat transfer tube.

(11)他の実施形態では、上記(9)の構成において、
前記伝熱管よりも管厚又は管径が大きい少なくとも一本の高剛性伝熱管をさらに備え、
前記湾曲支持棒は、前記高剛性伝熱管の曲り部である。
上記(11)の構成によれば、伝熱管の揺れに起因した曲り部の荷重を高剛性伝熱管によって支持することができ、且つ、高剛性伝熱管内に流体(例えば一次冷却水)を流すことによって、配列欠陥部による伝熱効率の低下をより一層抑制することができる。
(11) In another embodiment, in the configuration of (9) above,
Further comprising at least one high-rigidity heat transfer tube having a tube thickness or a tube diameter larger than that of the heat transfer tube,
The curved support rod is a bent portion of the high-rigidity heat transfer tube.
According to the configuration of (11) above, the load of the bent portion caused by the shaking of the heat transfer tube can be supported by the high-rigidity heat transfer tube, and a fluid (for example, primary cooling water) flows through the high-rigidity heat transfer tube. As a result, a decrease in heat transfer efficiency due to the arrangement defect portion can be further suppressed.

(12)幾つかの実施形態では、上記(9)乃至(11)の何れかの構成において、
複数の前記湾曲支持棒が、互いに連結されている。
上記(12)の構成によれば、複数の前記湾曲支持棒が互いに連結されているので、湾曲支持棒の剛性を高くすることができる。すなわち、伝熱管の揺れに起因した曲り部の荷重支持能力を向上することができる。
(12) In some embodiments, in any one of the above configurations (9) to (11),
The plurality of curved support bars are connected to each other.
According to the configuration of (12) above, since the plurality of curved support bars are connected to each other, the rigidity of the curved support bars can be increased. That is, it is possible to improve the load supporting ability of the bent portion due to the shaking of the heat transfer tube.

(13)幾つかの実施形態では、上記(9)、(11)又は(12)の何れかの構成において、
前記複数の伝熱管の前記曲り部が、前記管支持板の上方において半球形状のUベンド部を形成しており、
前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記Uベンド部の前記半球形状の径方向に沿って延在する複数の振止め部材と、をさらに備え、
前記湾曲支持棒は、
前記平面に平行な面内に設けられる中空湾曲管部と、
少なくとも、前記面外方向から視たときに前記振止め部材と交差する前記中空湾曲管部の補強領域において、前記中空湾曲管部の内部に設けられる充填部材と、
を含む。
(13) In some embodiments, in any one of the above configurations (9), (11), or (12),
The bent portions of the plurality of heat transfer tubes form a hemispherical U-bend portion above the tube support plate;
A plurality of bracing members provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction and extending along the radial direction of the hemispherical shape of the U-bend portion;
The curved support rod is
A hollow curved pipe provided in a plane parallel to the plane;
At least in a reinforcing region of the hollow curved tube portion that intersects the anti-vibration member when viewed from the out-of-plane direction, a filling member provided inside the hollow curved tube portion;
including.

上記(13)の構成においては、曲り部における流体励起振動を抑制することを目的として、面外方向において隣接する伝熱管の曲り部の間に振止め部材を設けている。このような構成を備える場合、Uベンド部に振動(例えば地震等)が発生したときに、面外方向への伝熱管の揺れに起因した荷重が、振止め部材を介して、面外方向において隣接する伝熱管の曲り部間で伝達される。振止め部材と交差する領域に中空の伝熱管のみが配置される場合、振止め部材を介して伝達される荷重によって伝熱管がつぶれてUベンド部全体の振動を抑えることができなくなる可能性がある。
そこで、上記(13)の構成では、曲り部よりも剛性が高い湾曲支持棒を支持部材として備えており、この湾曲支持棒が、曲り部を含む平面に平行な面内に設けられる中空湾曲管部と、振止め部材と交差する補強領域において中空湾曲管部の内部に設けられる充填部材と、を含む。すなわち、振止め部材と交差する中空湾曲管部の補強領域においては、中空湾曲管部の内部に充填部材が詰められているので、中空の伝熱管よりも剛性が高くなる。伝熱管の面外方向への揺れに起因した荷重は、剛性の高い中空湾曲管部の補強領域に主として作用するため、中空湾曲管部がつぶれることなく荷重を受けることができる。よって、Uベンド部の耐震性を向上させることができる。
また、中空湾曲管部として伝熱管を用いてもよい。すなわち、伝熱管の内部に充填部材を設けて支持部材(湾曲支持棒)としてもよい。これにより、既存の蒸気発生器に対して容易に上記(13)の構成を実現するための耐震施工を行うことができる。
In the configuration of (13), the anti-vibration member is provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction for the purpose of suppressing the fluid excitation vibration in the bent portion. When such a configuration is provided, when vibration (for example, an earthquake or the like) occurs in the U bend portion, the load caused by the heat transfer tube swaying in the out-of-plane direction is caused in the out-of-plane direction via the anti-vibration member. It is transmitted between the bent portions of adjacent heat transfer tubes. When only a hollow heat transfer tube is arranged in a region intersecting with the anti-rest member, there is a possibility that the heat transfer tube may be crushed by a load transmitted through the anti-rest member and the vibration of the entire U-bend portion cannot be suppressed. is there.
Therefore, in the configuration of (13), a curved support rod having higher rigidity than the bent portion is provided as a support member, and the curved support rod is provided in a plane parallel to a plane including the bent portion. And a filling member provided inside the hollow curved tube portion in the reinforcing region intersecting with the anti-vibration member. That is, in the reinforcing region of the hollow curved tube portion that intersects with the bracing member, since the filling member is packed inside the hollow curved tube portion, the rigidity becomes higher than that of the hollow heat transfer tube. Since the load resulting from the out-of-plane vibration of the heat transfer tube mainly acts on the reinforcing region of the hollow curved tube portion having high rigidity, the load can be received without collapsing the hollow curved tube portion. Therefore, the earthquake resistance of the U bend portion can be improved.
Moreover, you may use a heat exchanger tube as a hollow curved tube part. That is, a filling member may be provided inside the heat transfer tube to form a support member (curved support rod). Thereby, the earthquake-proof construction for implement | achieving the structure of said (13) with respect to the existing steam generator can be performed easily.

(14)一実施形態では、上記(13)の構成において、
複数の前記湾曲支持棒と複数の前記振止め部材とが、前記面外方向において交互に配列され、
前記面外方向に並んだ前記中空湾曲管部の前記補強領域、該補強領域内の前記充填部材、および、前記振止め部材によって、前記Uベンド部を前記面外方向に貫通する荷重伝達経路が形成されている。
上記(14)の構成によれば、荷重伝達経路が、中空湾曲管部の補強領域、該補強領域内の充填部材、および、振止め部材によって、荷重伝達経路が形成されているので、荷重伝達経路上では荷重伝達方向における剛性を高くすることができる。よって、Uベンド部の耐震性を効果的に向上させることができる。
(14) In one embodiment, in the configuration of (13) above,
A plurality of the curved support rods and a plurality of the bracing members are alternately arranged in the out-of-plane direction,
A load transmission path that penetrates the U-bend portion in the out-of-plane direction by the reinforcing region of the hollow curved tube portions arranged in the out-of-plane direction, the filling member in the reinforcing region, and the anti-vibration member. Is formed.
According to the configuration of (14) above, the load transmission path is formed by the reinforcing region of the hollow curved tube portion, the filling member in the reinforcing region, and the anti-vibration member. On the path, the rigidity in the load transmission direction can be increased. Therefore, the earthquake resistance of the U bend portion can be effectively improved.

(15)一実施形態では、上記(14)の構成において、
前記蒸気発生器の内壁に支持され、且つ、前記Uベンド部を囲む円環支持部をさらに備え、
前記荷重伝達経路の両端において前記湾曲支持棒又は前記振止め部材が、前記円環支持部に設けた凹部に遊嵌されている。
上記(15)の構成によれば、蒸気発生器の内壁に支持された円環支持部の凹部に、湾曲支持棒又は振止め部材が遊嵌されているので、円環支持部と湾曲支持棒又は振止め部材との熱伸び差に起因した応力を逃がしながら、荷重伝達経路からの荷重を内壁で受けることができる。
(15) In one embodiment, in the configuration of (14) above,
An annular support portion supported on the inner wall of the steam generator and surrounding the U-bend portion;
At both ends of the load transmission path, the curved support rod or the anti-vibration member is loosely fitted in a recess provided in the annular support portion.
According to the configuration of (15) above, since the curved support rod or the anti-vibration member is loosely fitted in the concave portion of the annular support portion supported by the inner wall of the steam generator, the annular support portion and the curved support rod Alternatively, the load from the load transmission path can be received by the inner wall while releasing the stress caused by the difference in thermal expansion with the vibration-preventing member.

(16)幾つかの実施形態では、上記(13)乃至(15)の構成において、
前記充填部材は、前記中空湾曲管部の前記補強領域及び該補強領域の両側に位置する一対の前記振止め部材を含む、前記中空湾曲管部の管長方向に沿った断面内に設けられた複数のセクションによって構成される。
上記(16)の構成によれば、複数のセクションからなる分割構造によって充填部材を形成するようにしたので、面外方向に沿った荷重伝達経路上において、充填部材の各セクションと中空湾曲管部の内壁面との間に隙間が形成されてしまうことを防止できる。これにより、中空湾曲管部のつぶれを防止し、Uベンド部全体の振動を効果的に抑制できる。
(16) In some embodiments, in the above configurations (13) to (15),
The filling member includes a plurality of sections provided in a cross-section along the tube length direction of the hollow curved tube portion, including the reinforcing region of the hollow curved tube portion and a pair of anti-vibration members located on both sides of the reinforcing region. Composed of sections.
According to the configuration of (16), since the filling member is formed by the divided structure composed of a plurality of sections, each section of the filling member and the hollow curved tube portion are arranged on the load transmission path along the out-of-plane direction. It is possible to prevent a gap from being formed between the inner wall surface and the inner wall surface. As a result, the hollow curved tube portion can be prevented from being crushed, and the vibration of the entire U bend portion can be effectively suppressed.

(17)幾つかの実施形態では、上記(13)乃至(16)の構成において、
前記湾曲支持棒は、一部の前記伝熱管の内部に前記充填部材を設置することで形成されている。
上記(17)の構成によれば、既存の蒸気発生器に対して容易に上記(13)乃至(16)の構成を実現するための耐震施工を行うことができる。
(17) In some embodiments, in the above configurations (13) to (16),
The curved support rod is formed by installing the filling member inside some of the heat transfer tubes.
According to the configuration of (17) above, it is possible to easily perform the earthquake resistant construction for realizing the configurations of (13) to (16) with respect to the existing steam generator.

(18)幾つかの実施形態では、上記(1)乃至(17)の何れかの構成において、
前記支持部材は、前記面外方向または前記面内方向に沿って水平方向に延在し、前記蒸気発生器の内壁に両端が支持される少なくとも一本の水平支持棒を含む。
上記(18)の構成によれば、面外方向への伝熱管の揺れが発生したとき、曲り部は、水平支持棒に当接してその動きが規制される。また、水平支持棒は、面内方向における投影面積が比較的小さいため、水平支持棒が面外方向に沿った熱流動に与える影響を低減できる。
(18) In some embodiments, in any one of the configurations (1) to (17),
The support member includes at least one horizontal support bar that extends in the horizontal direction along the out-of-plane direction or the in-plane direction and is supported at both ends by the inner wall of the steam generator.
According to the configuration of (18), when the heat transfer tube sways in the out-of-plane direction, the bent portion abuts on the horizontal support rod and its movement is restricted. Further, since the horizontal support bar has a relatively small projected area in the in-plane direction, the influence of the horizontal support bar on the heat flow along the out-of-plane direction can be reduced.

(19)一実施形態では、上記(18)の構成において、
前記蒸気発生器の内壁に支持され、且つ、前記複数の伝熱管の前記曲り部によって前記管支持板の上方に形成される半球形状のUベンド部を囲む円環支持部をさらに備え、
前記少なくとも一本の水平支持棒の前記両端は、前記円環支持部によって支持されている。
上記(19)の構成によれば、蒸気発生器の内壁(例えば胴部の内壁)に剛に支持された円環支持部に水平支持棒の両端を支持させるようにしたので、伝熱管の揺れに起因した曲り部の荷重支持能力を向上させることができる。
(19) In one embodiment, in the configuration of (18) above,
An annular support portion that is supported on the inner wall of the steam generator and surrounds a hemispherical U-bend portion formed above the tube support plate by the bent portions of the plurality of heat transfer tubes;
The both ends of the at least one horizontal support rod are supported by the annular support portion.
According to the configuration of (19) above, both ends of the horizontal support rod are supported by the annular support portion that is rigidly supported by the inner wall of the steam generator (for example, the inner wall of the trunk portion). It is possible to improve the load supporting ability of the bent portion resulting from the above.

(20)本発明の少なくとも一実施形態に係る原子力プラントは、
一次冷却材を加熱するように構成された原子炉容器と、
二次冷却材の蒸気によって駆動されるように構成された蒸気タービンと、
前記一次冷却材との熱交換によって前記二次冷却材の前記蒸気を発生させるように構成された上記(1)乃至(19)の何れか一に記載の蒸気発生器と、
を備えることを特徴とする。
(20) A nuclear power plant according to at least one embodiment of the present invention,
A reactor vessel configured to heat the primary coolant;
A steam turbine configured to be driven by the steam of the secondary coolant;
The steam generator according to any one of (1) to (19), configured to generate the steam of the secondary coolant by heat exchange with the primary coolant;
It is characterized by providing.

上記(20)の構成によれば、上述の理由により、伝熱管の曲り部における揺れを抑制でき、蒸気発生器の耐震性能を向上させることが可能であるため、信頼性の高い原子力プラントを提供できる。   According to the configuration of (20) above, for the reasons described above, it is possible to suppress the vibration at the bent portion of the heat transfer tube and to improve the seismic performance of the steam generator, thereby providing a highly reliable nuclear power plant. it can.

(21)本発明の少なくとも一実施形態に係る蒸気発生器の耐震補強方法は、
流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、を有し、前記伝熱管内を流れる前記流体との熱交換によって蒸気を生成するための蒸気発生器の耐震補強方法であって、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材を前記蒸気発生器に設置する設置ステップを備え、
前記蒸気発生器では、曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記設置ステップでは、前記規則配列のうち前記面内方向又は前記面外方向に沿った少なくとも一列において、前記伝熱管に替えて前記支持部材を設置することを特徴とする。
(21) The seismic reinforcement method for a steam generator according to at least one embodiment of the present invention includes:
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bent portion located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes, and a tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted. A method for seismic reinforcement of a steam generator for generating steam by heat exchange with the fluid flowing in the heat transfer pipe,
An installation step of installing in the steam generator a support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction perpendicular to the plane including the bent portion;
In the steam generator, the plurality of bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and the plurality of bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion of the plurality of heat transfer tubes pass are arranged according to a regular arrangement in a top view of the tube support plate,
In the installation step, the support member is installed in place of the heat transfer tube in at least one row along the in-plane direction or the out-of-plane direction in the regular array.

上記(21)の方法によれば、面外方向への伝熱管の揺れが発生したとき、曲り部は支持部材に当接し、それ以上の変位が阻止されるので、曲り部の変位を小さくとどめることができる。よって、伝熱管の曲り部における揺れを抑制でき、蒸気発生器の耐震性を向上することができる。
また、複数の伝熱管の規則配列のうち面内方向又は面外方向に沿った少なくとも一列において、伝熱管に替えて支持部材を設置するようにしたので、既存の蒸気発生器に対して上記(21)の方法に従って容易に耐震施工を行うことができる。
According to the above method (21), when the heat transfer tube sways in the out-of-plane direction, the bent portion abuts on the support member and further displacement is prevented, so that the displacement of the bent portion is kept small. be able to. Therefore, the vibration in the bent part of the heat transfer tube can be suppressed, and the earthquake resistance of the steam generator can be improved.
In addition, in at least one row along the in-plane direction or the out-of-plane direction among the regular arrangement of the plurality of heat transfer tubes, the support members are installed instead of the heat transfer tubes. Seismic construction can be easily performed according to the method of 21).

(22)幾つかの実施形態では、上記(21)の方法において、
前記設置ステップでは、前記面内方向に沿って設けられ、且つ、前記曲り部よりも剛性が高い少なくとも一本の湾曲支持棒を前記支持部材として設置する。
上記(22)の方法によれば、面外方向への伝熱管の揺れが発生したとき、曲り部は、該曲り部よりも剛性が高い湾曲支持棒に当接してその動きが規制されるため、曲り部の揺れを抑制できる。また、湾曲支持棒は、面内方向における投影面積が比較的小さいため、湾曲支持棒が面外方向に沿った熱流動に与える影響を低減できる。
(22) In some embodiments, in the method of (21) above,
In the installation step, at least one curved support bar provided along the in-plane direction and having higher rigidity than the bent portion is installed as the support member.
According to the above method (22), when the heat transfer tube sways in the out-of-plane direction, the bent portion comes into contact with the curved support rod having higher rigidity than the bent portion, and its movement is restricted. , Can suppress the swing of the bent portion. Moreover, since the curved support rod has a relatively small projected area in the in-plane direction, the influence of the curved support rod on the heat flow along the out-of-plane direction can be reduced.

(23)一実施形態では、上記(22)の方法において、
前記設置ステップでは、前記複数の伝熱管のうち一部である補強対象伝熱管の内部に充填部材を設けることで前記湾曲支持棒を形成する。
上記(23)の方法によれば、既存の蒸気発生器に支持部材を設置する際に伝熱管の一部を除去する必要がないため、既存の蒸気発生器に対して耐震施工を容易に行うことができる。
(23) In one embodiment, in the method of (22) above,
In the installation step, the curved support rod is formed by providing a filling member inside a heat transfer tube to be reinforced which is a part of the plurality of heat transfer tubes.
According to the above method (23), since it is not necessary to remove a part of the heat transfer tube when installing the support member on the existing steam generator, the existing steam generator is easily seismic-proofed. be able to.

(24)一実施形態では、上記(23)の方法において、
前記複数の伝熱管の前記曲り部が、前記管支持板の上方において半球形状のUベンド部を形成しており、
前記蒸気発生器は、前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記Uベンド部の前記半球形状の径方向に沿って延在する複数の振止め部材と、をさらに有し、
前記設置ステップでは、
前記面外方向から視たときに前記振止め部材と交差する前記補強対象伝熱管の補強領域において、前記補強対象伝熱管の内部に前記充填部材を設ける。
上記(24)の方法によれば、振止め部材と交差する補強対象伝熱管の補強領域においては、補強対象伝熱管の内部に充填部材が詰められているので、中空の伝熱管よりも剛性が高くなる。面外方向の振動成分に起因した荷重は、剛性の高い補強対象伝熱管の補強領域に主として作用するため、補強対象伝熱管がつぶれることなく荷重を受けることができる。よって、Uベンド部の耐震性を向上させることができる。
(24) In one embodiment, in the method of (23) above,
The bent portions of the plurality of heat transfer tubes form a hemispherical U-bend portion above the tube support plate;
The steam generator is provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction and extends along the hemispherical radial direction of the U bend portion; and Further comprising
In the installation step,
The filling member is provided inside the reinforcement target heat transfer tube in a reinforcement region of the reinforcement target heat transfer tube intersecting with the anti-vibration member when viewed from the out-of-plane direction.
According to the above method (24), in the reinforcement region of the reinforcement target heat transfer tube intersecting with the bracing member, since the filling member is packed inside the reinforcement target heat transfer tube, the rigidity is higher than that of the hollow heat transfer tube. Get higher. Since the load caused by the vibration component in the out-of-plane direction mainly acts on the reinforced region of the heat transfer tube with high rigidity, the load to be reinforced can be received without being crushed. Therefore, the earthquake resistance of the U bend portion can be improved.

(25)一実施形態では、上記(24)の方法において、
複数の前記湾曲支持棒と複数の前記振止め部材とが、前記面外方向において交互に配列されており、
前記設置ステップでは、前記面外方向に並んだ前記補強対象伝熱管の前記補強領域、該補強領域内の前記充填部材、および、前記振止め部材によって、前記Uベンド部を前記面外方向に貫通する荷重伝達経路を形成する。
上記(25)の方法によれば、補強対象伝熱管の補強領域、該補強領域内の充填部材、および、振止め部材によって、荷重伝達経路が形成されているので、面外方向におけるUベンド部の剛性を高くすることができる。よって、Uベンド部の耐震性を効果的に向上させることができる。
(25) In one embodiment, in the method of (24) above,
A plurality of the curved support rods and a plurality of the bracing members are alternately arranged in the out-of-plane direction;
In the installation step, the U-bend portion is penetrated in the out-of-plane direction by the reinforcement region of the heat transfer tubes to be reinforced arranged in the out-of-plane direction, the filling member in the reinforcement region, and the anti-vibration member. A load transmission path is formed.
According to the method of (25) above, since the load transmission path is formed by the reinforcement region of the heat transfer tube to be reinforced, the filling member in the reinforcement region, and the anti-vibration member, the U-bend portion in the out-of-plane direction The rigidity of can be increased. Therefore, the earthquake resistance of the U bend portion can be effectively improved.

本発明の少なくとも一実施形態によれば、地震等により伝熱管の面外方向への揺れが発生したとき、伝熱管の曲り部は支持部材に当接し、それ以上の変位が阻止されるので、曲り部の変位を小さくとどめることができる。よって、伝熱管の曲り部における揺れを抑制でき、蒸気発生器の耐震性を向上することができる。   According to at least one embodiment of the present invention, when a vibration in the out-of-plane direction of the heat transfer tube occurs due to an earthquake or the like, the bent portion of the heat transfer tube contacts the support member, and further displacement is prevented. The bending portion can be kept small. Therefore, the vibration in the bent part of the heat transfer tube can be suppressed, and the earthquake resistance of the steam generator can be improved.

一実施形態に係る蒸気発生器の断面図である。It is sectional drawing of the steam generator which concerns on one Embodiment. 一実施形態に係る流体励起振動抑制構造を備えたUベンド部の斜視図である。It is a perspective view of the U bend part provided with the fluid excitation vibration suppression structure which concerns on one Embodiment. 一実施形態に係る流体励起振動抑制構造を備えたUベンド部の変形例を示す斜視図である。It is a perspective view which shows the modification of the U bend part provided with the fluid excitation vibration suppression structure which concerns on one Embodiment. 図3に示すUベンド部の一部を拡大した図である。It is the figure which expanded a part of U bend part shown in FIG. 一実施形態に係る管支持板の平面図である。It is a top view of the pipe support plate concerning one embodiment. 一実施形態に係る耐震構造を備えたUベンド部を示す断面図(A−A断面)である。It is sectional drawing (AA cross section) which shows the U bend part provided with the earthquake-resistant structure which concerns on one Embodiment. 一実施形態の変形例に係る管支持板の平面図である。It is a top view of the pipe support plate concerning the modification of one embodiment. 一実施形態の変形例に係る耐震構造を備えたUベンド部を示す断面図(B−B断面)である。It is sectional drawing (BB cross section) which shows the U bend part provided with the earthquake proof structure which concerns on the modification of one Embodiment. 振止め部材による仕切り板の支持構造の一例を示す図である。It is a figure which shows an example of the support structure of the partition plate by a bracing member. 第2保持部材(ブリッジ)による仕切り板の支持構造の一例を示す図である。It is a figure which shows an example of the support structure of the partition plate by a 2nd holding member (bridge). 円環支持部による仕切り板の支持構造の一例を示す図である。It is a figure which shows an example of the support structure of the partition plate by a ring support part. 仕切り板の一構成例を示す部分断面図である。It is a fragmentary sectional view showing an example of 1 composition of a partition plate. 仕切り板の他の構成例を示す部分断面図である。It is a fragmentary sectional view which shows the other structural example of a partition plate. 他の実施形態に係る管支持板の平面図である。It is a top view of the pipe support plate concerning other embodiments. 他の実施形態に係る耐震構造を備えたUベンド部を示す断面図(C−C断面)である。It is sectional drawing (CC cross section) which shows the U bend part provided with the earthquake proof structure which concerns on other embodiment. さらに他の実施形態に係る管支持板の平面図である。It is a top view of the pipe support plate concerning other embodiments. さらに他の実施形態に係る耐震構造を備えたUベンド部を示す断面図(D−D断面)である。It is sectional drawing (DD cross section) which shows the U bend part provided with the earthquake proof structure which concerns on other embodiment. 湾曲支持棒の一構成例を示す部分側面図である。It is a partial side view which shows the example of 1 structure of a curved support bar. 湾曲支持棒の他の構成例を示す部分側面図である。It is a partial side view which shows the other structural example of a curved support bar. 他の実施形態の変形例に係る耐震構造を備えたUベンド部を示す断面図である。It is sectional drawing which shows the U bend part provided with the earthquake proof structure which concerns on the modification of other embodiment. 図15Aに示すUベンド部の断面図(E−E断面)である。It is sectional drawing (EE cross section) of the U-bend part shown to FIG. 15A. 一実施形態に係る蒸気発生器の耐震補強方法を説明するための図である。It is a figure for demonstrating the earthquake-proof reinforcement method of the steam generator which concerns on one Embodiment. 充填部材の構成例を示す断面図である。It is sectional drawing which shows the structural example of a filling member. 図17AのF−F断面図である。It is FF sectional drawing of FIG. 17A. ワイヤ端部の構成例を示す側面図である。It is a side view which shows the structural example of a wire edge part. 充填部材の他の構成例を示す側面図である。It is a side view which shows the other structural example of a filling member. 充填部材のさらに他の構成例を示す側面図である。It is a side view which shows the other structural example of a filling member.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
本実施形態では、最初に蒸気発生器の全体構成を説明した後、蒸気発生器の耐震構造について説明する。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
In this embodiment, after first explaining the whole structure of a steam generator, the earthquake-resistant structure of a steam generator is demonstrated.

図1は、一実施形態に係る蒸気発生器1の概略構成図である。
幾つかの実施形態において、蒸気発生器1は、胴部2の内部に配設された複数の伝熱管3と、複数の伝熱管3が挿通される管支持板7と、を備えており、複数の伝熱管3内を流れる流体との熱交換によって蒸気を生成するように構成される。
複数の伝熱管3は、それぞれ、流体の入口側に位置する第1直管部4と、流体の出口側に位置する第2直管部5と、第1直管部4と第2直管部5との間に位置する曲がり部6と、を有している。
管支持板7には、第1直管部4及び第2直管部5が挿通される複数の貫通孔71(図5A、図6A、図11A、及び図12A参照)が形成されている。
FIG. 1 is a schematic configuration diagram of a steam generator 1 according to an embodiment.
In some embodiments, the steam generator 1 includes a plurality of heat transfer tubes 3 disposed inside the trunk portion 2, and a tube support plate 7 through which the plurality of heat transfer tubes 3 are inserted. The steam is generated by heat exchange with the fluid flowing in the plurality of heat transfer tubes 3.
The plurality of heat transfer tubes 3 include a first straight pipe portion 4 located on the fluid inlet side, a second straight pipe portion 5 located on the fluid outlet side, the first straight pipe portion 4 and the second straight pipe, respectively. And a bent portion 6 located between the portions 5.
A plurality of through holes 71 (see FIGS. 5A, 6A, 11A, and 12A) through which the first straight pipe portion 4 and the second straight pipe portion 5 are inserted are formed in the pipe support plate 7.

図1では、一実施形態として、加圧水型原子炉(PWR:Pressurized Water Reactor)を備えた原子力プラントに用いられる蒸気発生器1を例示している。加圧水型原子炉とは、原子炉冷却材および中性子減速材として軽水(一次冷却材)を使用するものであり、一次冷却材(一次冷却水)を炉心全体にわたって沸騰しない高温高圧水として蒸気発生器1に送る。蒸気発生器1では、高温高圧の一次冷却水の熱を二次冷却材(二次冷却水)に伝え、二次冷却水を水蒸気とする。この水蒸気は、蒸気タービンに送られて、該蒸気タービンを駆動する。蒸気タービンの出力軸には発電機の入力軸が連結されており、蒸気タービンによって発電機が駆動され、発電が行われる。   In FIG. 1, the steam generator 1 used for the nuclear power plant provided with the pressurized water reactor (PWR: Pressurized Water Reactor) is illustrated as one Embodiment. A pressurized water reactor uses light water (primary coolant) as a reactor coolant and neutron moderator, and a steam generator as high-temperature high-pressure water that does not boil the primary coolant (primary coolant) over the entire core Send to 1. In the steam generator 1, the heat of the high-temperature and high-pressure primary cooling water is transmitted to the secondary coolant (secondary cooling water), and the secondary cooling water is used as steam. This steam is sent to a steam turbine to drive the steam turbine. The output shaft of the steam turbine is connected to the input shaft of the generator, and the generator is driven by the steam turbine to generate power.

ここで、図1に示す蒸気発生器1の具体的な構成例について説明する。
蒸気発生器1の胴部2は、上下方向に延在し、かつ、密閉された中空円筒形状であって、上半部に対して下半部の方が小径の構造物である。胴部2には、下端部側に水室8が配置され、上端部側に蒸気排出口15が配置されている。
胴部2の下半部内から上半部内にかけて、胴部2の内壁面と所定間隔をもって配置された円筒形状の管群外筒(内壁)9が設けられている。この管群外筒9は、その下端部が、胴部2の下半部内の下方に配置された管板10まで延在している。管群外筒9内には、複数の伝熱管3が配置されている。すなわち、管群外筒9の外周側に設けられた胴部2内に、管群外筒9及び複数の伝熱管3が格納されている。
Here, the specific structural example of the steam generator 1 shown in FIG. 1 is demonstrated.
The body portion 2 of the steam generator 1 has a hollow cylindrical shape that extends in the vertical direction and is hermetically sealed, and the lower half portion has a smaller diameter than the upper half portion. In the body portion 2, a water chamber 8 is disposed on the lower end side, and a steam discharge port 15 is disposed on the upper end side.
A cylindrical tube group outer cylinder (inner wall) 9 is provided from the lower half portion of the trunk portion 2 to the upper half portion, and is arranged with a predetermined distance from the inner wall surface of the trunk portion 2. The lower end portion of the tube group outer tube 9 extends to a tube plate 10 disposed below in the lower half of the body portion 2. A plurality of heat transfer tubes 3 are arranged in the tube group outer tube 9. That is, the tube group outer tube 9 and the plurality of heat transfer tubes 3 are stored in the body portion 2 provided on the outer peripheral side of the tube group outer tube 9.

各伝熱管3は、上述したように、入口8c(入室8b)側に位置する第1直管部4と、出口8e(出室8d)側に位置する第2直管部5と、第1直管部4と第2直管部5との間に位置する曲がり部6と、を有している。図示される例では、第1直管部4及び第2直管部5は鉛直方向に延在しており、第1直管部4の上端に曲がり部6の一端が接続され、第2直管部5の上端に曲がり部6の他端が接続されている。すなわち、第1直管部4及び第2直管部5よりも上方に曲がり部6が位置している。また、第1直管部4及び第2直管部5の各下端部は、管板10に支持されており、第1直管部4及び第2直管部5の各中間部は、複数の管支持板7に支持されている。管支持板7には、上述したように複数の貫通孔71(図5A、図6A、図11A、及び図12A参照)が形成されており、この貫通孔71内に第1直管部4及び第2直管部5が主として非接触状態で貫通している。
複数の伝熱管3の曲がり部6が集合した部分は、Uベンド部20と称される。Uベンド部20は、半球形状をなしており、管支持板7の上方に形成されている。
なお、Uベンド部20の具体的な構成については後述する。
As described above, each heat transfer tube 3 includes the first straight pipe portion 4 located on the inlet 8c (entry chamber 8b) side, the second straight pipe portion 5 located on the outlet 8e (exit chamber 8d) side, and the first And a bent portion 6 located between the straight pipe portion 4 and the second straight pipe portion 5. In the illustrated example, the first straight pipe portion 4 and the second straight pipe portion 5 extend in the vertical direction, and one end of the bent portion 6 is connected to the upper end of the first straight pipe portion 4 so that the second straight pipe portion 4 is connected. The other end of the bent portion 6 is connected to the upper end of the tube portion 5. That is, the bent portion 6 is located above the first straight pipe portion 4 and the second straight pipe portion 5. Moreover, each lower end part of the 1st straight pipe part 4 and the 2nd straight pipe part 5 is supported by the tube sheet 10, and each intermediate part of the 1st straight pipe part 4 and the 2nd straight pipe part 5 is plural. The tube support plate 7 is supported. A plurality of through holes 71 (see FIGS. 5A, 6A, 11A, and 12A) are formed in the tube support plate 7 as described above, and the first straight pipe portion 4 and The second straight pipe portion 5 penetrates mainly in a non-contact state.
A portion where the bent portions 6 of the plurality of heat transfer tubes 3 are gathered is referred to as a U-bend portion 20. The U-bend portion 20 has a hemispherical shape and is formed above the tube support plate 7.
The specific configuration of the U bend unit 20 will be described later.

胴部2の下端部に設けられた水室8は、隔壁8aによって内部空間が入室8bと出室8dに区画されている。入室8bには、胴部2の外部に通じる入口(入口ノズル)8cが形成されており、該入室8bに各伝熱管3の一端部が連通している。出室8dには、胴部の外部に通じる出口(出口ノズル)8eが形成されており、該出室8dに各伝熱管3の他端部が連通している。入口8cには、加圧水型原子炉から一次冷却水が送られる冷却水配管が連結されている。出口8eには、熱交換された後の一次冷却水を加圧水型原子炉に送る冷却水配管が連結されている。   The water chamber 8 provided at the lower end of the body portion 2 is partitioned into an entrance chamber 8b and an exit chamber 8d by a partition wall 8a. In the entrance chamber 8b, an inlet (inlet nozzle) 8c communicating with the outside of the body portion 2 is formed, and one end portion of each heat transfer tube 3 communicates with the entrance chamber 8b. The exit chamber 8d is formed with an outlet (exit nozzle) 8e communicating with the outside of the body portion, and the other end portion of each heat transfer tube 3 communicates with the exit chamber 8d. A cooling water pipe through which primary cooling water is sent from the pressurized water reactor is connected to the inlet 8c. The outlet 8e is connected to a cooling water pipe for sending the primary cooling water after heat exchange to the pressurized water reactor.

胴部2の上半部には、給水Wを蒸気Sと熱水とに分離する気水分離器11、及び、分離された蒸気Sの湿分を除去して乾き蒸気に近い状態とする湿分分離器12が設けられている。気水分離器11と複数の伝熱管3との間には、外部から胴部2内に二次冷却水を給水する給水管13が挿入されている。
胴部2の上端部には、蒸気排出口15が形成されている。また、胴部2の下半部内には、給水管13から胴部2内に給水された二次冷却水を、胴部2と管群外筒9との間を流下させて管板10で折り返させ、伝熱管3に沿って上昇させる給水路14が設けられている。なお、蒸気排出口15には、タービンに蒸気を送る冷却水配管が連結され、給水管13には、二次冷却水を供給するための冷却水配管が連結される。この二次冷却水は、タービンで使用された蒸気を復水器で冷却して復水させたものである。
In the upper half of the body portion 2, a steam / water separator 11 that separates the feed water W into steam S and hot water, and moisture that removes the moisture of the separated steam S to make it close to dry steam. A separator 12 is provided. Between the steam / water separator 11 and the plurality of heat transfer tubes 3, a water supply tube 13 for supplying secondary cooling water into the body 2 from the outside is inserted.
A steam discharge port 15 is formed at the upper end of the body 2. Further, in the lower half of the body part 2, the secondary cooling water supplied from the water supply pipe 13 into the body part 2 is caused to flow down between the body part 2 and the tube group outer tube 9 by the tube plate 10. A water supply path 14 that is folded back and raised along the heat transfer tube 3 is provided. The steam outlet 15 is connected to a cooling water pipe for sending steam to the turbine, and the water supply pipe 13 is connected to a cooling water pipe for supplying secondary cooling water. The secondary cooling water is obtained by cooling the steam used in the turbine with a condenser and condensing it.

上記した構成を有する蒸気発生器1の作用に関して、加圧水型原子炉で加熱された一次冷却水は、蒸気発生器1の入口8cから入室8bに導入された後、入室8bから複数の伝熱管3内に導入され、各伝熱管3内を通って循環して出室8dに至り、出室8dから出口8eを介して蒸気発生器1の外部へ排出される。一方、復水器で冷却された二次冷却水は、給水管13に送られ、胴部2内の給水路14を通って複数の伝熱管3に沿って上昇する。このとき、胴部2内においては、高圧高温の一次冷却水と二次冷却水との間で熱交換が行われる。そして、冷却された一次冷却水は出室8dから加圧水型原子炉に戻される。一方、高圧高温の一次冷却水と熱交換した二次冷却水は、胴部2内を上昇し、気水分離器11で蒸気と熱水とに分離される。そして、分離された蒸気は、湿分分離器12で湿分を除去されてからタービンに送られる。   Regarding the operation of the steam generator 1 having the above-described configuration, the primary cooling water heated in the pressurized water reactor is introduced from the inlet 8c of the steam generator 1 into the entrance chamber 8b and then from the entrance chamber 8b to the plurality of heat transfer tubes 3. It is introduced into the interior, circulates through the heat transfer tubes 3, reaches the exit chamber 8d, and is discharged from the exit chamber 8d to the outside of the steam generator 1 through the outlet 8e. On the other hand, the secondary cooling water cooled by the condenser is sent to the water supply pipe 13 and rises along the plurality of heat transfer pipes 3 through the water supply path 14 in the trunk portion 2. At this time, heat exchange is performed between the high-pressure and high-temperature primary cooling water and the secondary cooling water in the body portion 2. Then, the cooled primary cooling water is returned to the pressurized water reactor from the exit chamber 8d. On the other hand, the secondary cooling water heat-exchanged with the high-pressure and high-temperature primary cooling water rises in the body portion 2 and is separated into steam and hot water by the steam separator 11. The separated steam is sent to the turbine after moisture is removed by the moisture separator 12.

一実施形態において、蒸気発生器1は、図2乃至図4に示すように、流体励起振動に対する耐性を向上させるための流体励起振動抑制構造をさらに備えていてもよい。図2は、一実施形態に係る流体励起振動抑制構造を備えたUベンド部20の斜視図である。図3は、一実施形態に係る流体励起振動抑制構造を備えたUベンド部20の変形例を示す斜視図である。図4は、図3に示すUベンド部20の一部を拡大した図である。
流体励起振動とは、Uベンド部20の伝熱管3(曲り部6)の周囲を流れる二次冷却水や、Uベンド部20の伝熱管3(曲り部6)内部を流れる一次冷却水によって発生する振動である。流体励起振動による伝熱管3の振動が大きくなると、伝熱管3同士が接触し、伝熱管3を摩耗させる可能性がある。以下の流体励起振動抑制構造は、流体励起振動を抑制する目的で用いられる。
In one embodiment, the steam generator 1 may further include a fluid excitation vibration suppressing structure for improving resistance to fluid excitation vibration as illustrated in FIGS. 2 to 4. FIG. 2 is a perspective view of the U-bend portion 20 including the fluid excitation vibration suppressing structure according to the embodiment. FIG. 3 is a perspective view showing a modified example of the U-bend portion 20 including the fluid excitation vibration suppressing structure according to the embodiment. FIG. 4 is an enlarged view of a part of the U-bend portion 20 shown in FIG.
The fluid excitation vibration is generated by secondary cooling water flowing around the heat transfer tube 3 (bending portion 6) of the U bend portion 20 or primary cooling water flowing inside the heat transfer tube 3 (bending portion 6) of the U bend portion 20. Vibration. When the vibration of the heat transfer tube 3 due to the fluid excitation vibration becomes large, the heat transfer tubes 3 may come into contact with each other and the heat transfer tube 3 may be worn. The following fluid excitation vibration suppression structure is used for the purpose of suppressing fluid excitation vibration.

図2及び図3を参照して、まずUベンド部20の具体的な構成例について説明する。
Uベンド部20において、伝熱管3の曲り部6は、外側(上側)に向かうに従って曲り部6の曲率半径が大きなものが順次配列されており、このように配列されたものを、曲り部6を含む平面に直交する方向(面外方向)に重ねながら曲り部6の曲率半径を変化させることで、複数の伝熱管3の上端部を半球形状に形成している。これによって、曲り部6が集合配列されてなる全体として半球状をなすUベンド部20が構成されている。なお、図1に示す蒸気排出口15に最も近い部分がUベンド部20の頂部になる。
With reference to FIG.2 and FIG.3, the specific structural example of the U-bend part 20 is demonstrated first.
In the U-bend portion 20, the bent portions 6 of the heat transfer tubes 3 are arranged in order of increasing curvature radius of the bent portions 6 toward the outside (upper side), and the bent portions 6 are arranged in this manner. The upper ends of the plurality of heat transfer tubes 3 are formed in a hemispherical shape by changing the radius of curvature of the bent portion 6 while overlapping in a direction (out-of-plane direction) orthogonal to a plane including As a result, a U-bend portion 20 having a hemispherical shape as a whole is formed by arranging the bent portions 6 in a collective arrangement. The portion closest to the steam outlet 15 shown in FIG. 1 is the top of the U bend portion 20.

一実施形態において、蒸気発生器1は、上述した流体励起振動抑制構造として、第1保持部材21と、振止め部材22と、を備える。   In one embodiment, the steam generator 1 includes the first holding member 21 and the anti-vibration member 22 as the fluid excitation vibration suppressing structure described above.

第1保持部材21は、Uベンド部20の外形に沿って設けられる。
振止め部材22は、曲り部6を含む平面に直交する面外方向において、隣接する伝熱管3の曲り部6の間に設けられる。この振止め部材22は、第1保持部材21からUベンド部20の半球形状の径方向における内側に向かって延在している。すなわち、振止め金具は、後述する規則配列70(図5A、図6A、図11A、及び図12A参照)に対応して配置される伝熱管3同士の間に設けられる。
The first holding member 21 is provided along the outer shape of the U-bend portion 20.
The anti-vibration member 22 is provided between the bent portions 6 of the adjacent heat transfer tubes 3 in the out-of-plane direction orthogonal to the plane including the bent portion 6. The anti-vibration member 22 extends from the first holding member 21 toward the inner side in the radial direction of the hemispherical shape of the U bend portion 20. That is, the brace is provided between the heat transfer tubes 3 arranged corresponding to a regular array 70 (see FIGS. 5A, 6A, 11A, and 12A) described later.

具体的には、振止め部材22は、面外方向に重ねられた曲り部6の列の間に挿入されており、これにより面外方向に隣り合う曲り部6を接続している。例えば、振止め部材22は、矩形断面の棒状部材をV字形状に形成した部材である。振止め部材22は、重ねられた各曲り部6の列における同径の部位に屈曲部が配置され、且つ、曲り部6の曲率半径が最も大きい曲り部6の円弧部の外側に端部が突出されている。すなわち、振止め部材22の端部22aは、図2に示すように、最も外側の伝熱管3の曲り部6によって構成されるUベンド部20の半球面20aから突出している。これにより、振止め部材22の端部22aは、Uベンド部20の外径をなす円弧に沿って、曲り部6を含む平面に沿う水平方向(面内方向)に一列に並んで配置されている。また、このように一列に並んだ複数の端部22aが、面外方向に伝熱管3の分だけ間隔をあけて複数配置されている。   Specifically, the anti-vibration member 22 is inserted between the rows of the bent portions 6 stacked in the out-of-plane direction, thereby connecting the adjacent bent portions 6 in the out-of-plane direction. For example, the anti-vibration member 22 is a member in which a bar-shaped member having a rectangular cross section is formed in a V shape. The bent member 22 has a bent portion arranged at the same diameter portion in the row of the bent portions 6 that are stacked, and an end portion outside the arc portion of the bent portion 6 having the largest radius of curvature. It is protruding. That is, as shown in FIG. 2, the end portion 22 a of the anti-vibration member 22 protrudes from the hemispherical surface 20 a of the U-bend portion 20 constituted by the bent portion 6 of the outermost heat transfer tube 3. As a result, the end 22a of the anti-vibration member 22 is arranged in a line in the horizontal direction (in-plane direction) along the plane including the bent portion 6 along the arc forming the outer diameter of the U-bend portion 20. Yes. In addition, a plurality of end portions 22a arranged in a line in this way are arranged in the out-of-plane direction with a gap corresponding to the heat transfer tube 3.

また、振止め部材22は、大きいV字形状のものの内側に小さいV字形状のものが配置されて対をなしていてもよい。図2に示す例では、振止め部材22の対が、伝熱管3の曲り部6に3つ配置されている。さらに、振止め部材22は、重ねられた伝熱管3の列の間に挿入されている部分が、振動を抑制するのに好ましい材料(例えばSUS405)で形成されていてもよい。   Further, the anti-vibration members 22 may be paired with a small V-shaped member disposed inside a large V-shaped member. In the example shown in FIG. 2, three pairs of the anti-vibration members 22 are arranged on the bent portion 6 of the heat transfer tube 3. Furthermore, the part inserted between the row | line | columns of the piled heat exchanger tube 3 may be formed with the material (for example, SUS405) preferable for suppressing the vibration.

振止め部材22の端部22aには、図2及び図4に示すように第1保持部材21が溶接されて、複数の振止め部材22の端部22aを連結している。第1保持部材21は、Uベンド部20の外周、すなわち、Uベンド部20の半球状の外周(半球面20a)に沿って取り付けられた円弧状の棒状部材である。第1保持部材21は、複数の伝熱管3が重ねられる方向と直交する方向に延在している。
複数の第1保持部材21は、第2保持部材(ブリッジ)24によって連結されていてもよい。
第2保持部材24は、Uベンド部20の外周、すなわち、Uベンド部20の半球状の外周(半球面20a)に沿って配置された、円弧形状かつ板状の部材である。第2保持部材24は、Uベンド部20において伝熱管3の曲り部6が延在する方向に沿って延在している。図4においては1本の第2保持部材24が示されているが、第2保持部材24は、複数の曲り部6が重ねられる方向と平行な方向に向かって複数配置されている。
なお、第1保持部材21及び第2保持部材24によって連結された複数の振止め部材22は、後述する振動規制構造によってその振動が規制されるようになっている。
As shown in FIGS. 2 and 4, the first holding member 21 is welded to the end portion 22 a of the anti-vibration member 22 to connect the end portions 22 a of the plural anti-vibration members 22. The first holding member 21 is an arc-shaped rod-like member attached along the outer periphery of the U bend portion 20, that is, the hemispherical outer periphery (hemispheric surface 20 a) of the U bend portion 20. The first holding member 21 extends in a direction orthogonal to the direction in which the plurality of heat transfer tubes 3 are stacked.
The plurality of first holding members 21 may be connected by a second holding member (bridge) 24.
The second holding member 24 is an arc-shaped and plate-shaped member disposed along the outer periphery of the U bend portion 20, that is, the hemispherical outer periphery (hemispheric surface 20 a) of the U bend portion 20. The second holding member 24 extends along the direction in which the bent portion 6 of the heat transfer tube 3 extends in the U bend portion 20. Although one second holding member 24 is shown in FIG. 4, a plurality of second holding members 24 are arranged in a direction parallel to the direction in which the plurality of bent portions 6 are overlapped.
The vibrations of the plurality of anti-vibration members 22 connected by the first holding member 21 and the second holding member 24 are restricted by a vibration restricting structure described later.

一実施形態の変形例では、図3及び図4に示すように、蒸気発生器1は、地震等の振動の発生時において流体励起振動抑制構造の振動を抑制するための耐震構造をさらに備えていてもよい。
図3及び図4に示すように、蒸気発生器1は、耐震構造として、円環支持部31(31A,31B)と、アーム状支持部32(32A,32B)と、外筒支持部33(33A,33B)と、を備えている。
In a modification of the embodiment, as shown in FIGS. 3 and 4, the steam generator 1 further includes an earthquake resistant structure for suppressing the vibration of the fluid excitation vibration suppressing structure when vibration such as an earthquake occurs. May be.
As shown in FIGS. 3 and 4, the steam generator 1 has an annular support portion 31 (31 </ b> A, 31 </ b> B), an arm-shaped support portion 32 (32 </ b> A, 32 </ b> B), and an outer cylinder support portion 33 ( 33A, 33B).

円環支持部31は、環状に形成されており、Uベンド部20を囲むように曲り部6の上方に設けられている。この円環支持部31は、平面視(上面視)においてUベンド部20と同心円状となるように配置されていてもよい。また、円環支持部31は、アーム状支持部32によって、Uベンド部20の外周を取り囲む管群外筒(内壁)9に支持されている。円環支持部31は、Uベンド部20及び管群外筒9に対して、それぞれ所定の間隔を有している。
アーム状支持部32は、管群外筒9と円環支持部31との間に取り付けられ、該円環支持部31を管群外筒9に支持させるようになっている。例えば、棒状に形成されたアーム状支持部32は、円環支持部31の径方向外側に複数設けられる。これらの複数のアーム状支持部32が、円環支持部31から管群外筒9に向けて放射状に延在している。
具体的な構成例として、円環支持部31は、管支持板7側の下方円環支持部31Aと、Uベンド部20の頂部側の上方円環支持部31Bと、を含む。下方円環支持部31Aは、上方円環支持部31Bよりも径が大きい。アーム状支持部32は、下方円環支持部31Aと管群外筒9とを連結するための複数の下方アーム状支持部32Aと、上方円環支持部31Bと管群外筒9とを連結するための複数の上方アーム状支持部32Bと、を含む。なお、円環支持部31の設置数はこれに限定されるものではない。
The annular support portion 31 is formed in an annular shape, and is provided above the bent portion 6 so as to surround the U bend portion 20. The annular support portion 31 may be arranged so as to be concentric with the U bend portion 20 in plan view (top view). Further, the annular support portion 31 is supported by the tube group outer cylinder (inner wall) 9 surrounding the outer periphery of the U-bend portion 20 by the arm-shaped support portion 32. The annular support portion 31 has a predetermined distance from the U bend portion 20 and the tube group outer tube 9.
The arm-shaped support portion 32 is attached between the tube group outer cylinder 9 and the ring support portion 31 so that the tube group outer tube 9 supports the ring support portion 31. For example, a plurality of arm-shaped support portions 32 formed in a rod shape are provided on the outer side in the radial direction of the annular support portion 31. The plurality of arm-shaped support portions 32 extend radially from the annular support portion 31 toward the tube group outer tube 9.
As a specific configuration example, the annular support portion 31 includes a lower annular support portion 31 </ b> A on the tube support plate 7 side and an upper annular support portion 31 </ b> B on the top side of the U bend portion 20. The lower annular support portion 31A has a larger diameter than the upper annular support portion 31B. The arm-shaped support part 32 connects a plurality of lower arm-shaped support parts 32A for connecting the lower ring support part 31A and the tube group outer cylinder 9, and the upper ring support part 31B and the tube group outer cylinder 9 to each other. A plurality of upper arm-shaped support portions 32B. In addition, the number of installation of the annular support part 31 is not limited to this.

外筒支持部33は、胴部2と管群外筒9との間に設けられ、管群外筒9を胴部2に支持させるようになっている。外筒支持部33は、胴部2と管群外筒9との間に、周方向において複数設けられていてもよい。上記構成によって、円環支持部31は、アーム状支持部32及び管群外筒9を介して、胴部2に支持される。   The outer cylinder support part 33 is provided between the trunk | drum 2 and the pipe group outer cylinder 9, and makes the trunk | drum 2 support the pipe group outer cylinder 9. As shown in FIG. A plurality of outer tube support portions 33 may be provided in the circumferential direction between the body portion 2 and the tube group outer tube 9. With the above configuration, the annular support portion 31 is supported by the trunk portion 2 via the arm-shaped support portion 32 and the tube group outer tube 9.

一実施形態では、円環支持部31とアーム状支持部32との連結部、アーム状支持部32と管群外筒9との連結部、並びに、管群外筒9及び胴部2と外筒支持部33との連結部は、溶接又はボルト等の接合手段によって剛に連結されている。したがって、円環支持部31は、胴部2に対して剛に支持される。   In one embodiment, the connecting portion between the annular support portion 31 and the arm-shaped support portion 32, the connecting portion between the arm-shaped support portion 32 and the tube group outer tube 9, and the tube group outer tube 9 and the body portion 2 and the outer portion. The connecting portion with the tube support portion 33 is rigidly connected by joining means such as welding or bolts. Therefore, the annular support portion 31 is supported rigidly with respect to the trunk portion 2.

上記構成によれば、地震等により、断面が円形状の胴部2の径方向と平行な方向(水平方向)にUベンド部20が振動すると、円環支持部31と、アーム状支持部32及び外筒支持部33とを介して、Uベンド部20の振動を胴部2で受けることができるので、Uベンド部20の耐震性が確保される。なお、円環支持部31はUベンド部20の伝熱管3を拘束しないので、蒸気発生器1が運用されているときには、円環支持部31とUベンド部20との間を通過する二次冷却水による曲り部6の振動摩耗等を抑制することができる。そのため、円環支持部31を有する上記耐震構造によれば、伝熱管3の流体励起振動に対する耐性に与える影響を低減し、伝熱管3の流体励起振動を抑制することができる。   According to the above configuration, when the U-bend portion 20 vibrates in a direction (horizontal direction) parallel to the radial direction of the body portion 2 having a circular cross section due to an earthquake or the like, the annular support portion 31 and the arm-shaped support portion 32 are provided. Since the vibration of the U-bend portion 20 can be received by the body portion 2 through the outer cylinder support portion 33, the earthquake resistance of the U-bend portion 20 is ensured. In addition, since the annular support part 31 does not restrain the heat transfer tube 3 of the U bend part 20, when the steam generator 1 is operated, the secondary that passes between the annular support part 31 and the U bend part 20. Vibration wear and the like of the bent portion 6 due to cooling water can be suppressed. Therefore, according to the said earthquake-resistant structure which has the annular support part 31, the influence which it has on the tolerance with respect to the fluid excitation vibration of the heat exchanger tube 3 can be reduced, and the fluid excitation vibration of the heat exchanger tube 3 can be suppressed.

ここで、複数の振止め部材22の振動を規制するための振動規制構造について説明する。
上述したように、複数の振止め部材22は複数の曲り部6の間に配置されており、複数の振止め部材22の端部22aが第1保持部材21によって連結されている。さらに、複数の第1保持部材21が、第2保持部材24によって連結されている。
一実施形態において、蒸気発生器1は、振止め部材22の振動を規制するための規制部材25をさらに備えている。規制部材25は、円環支持部31に取り付けられており、所定の間隙を有した状態で第2保持部材24を挟み込んで、面外方向における第2保持部材24の動きを規制するように構成されている。より具体的には、円環支持部31の規制部材25は凹部25aを有しており、この凹部25aに、第2保持部材24が所定の間隙を有して挟み込まれる。例えば、規制部材25は、円環支持部31に対して溶接等の接合手段によって剛に接合される。規制部材25と第2保持部材24との間隔は、円環支持部31とUベンド部20の複数の伝熱管3との間隔よりも小さくてもよい。
Here, a vibration restricting structure for restricting vibrations of the plurality of anti-vibration members 22 will be described.
As described above, the plurality of bracing members 22 are disposed between the plurality of bent portions 6, and the end portions 22 a of the plurality of bracing members 22 are connected by the first holding member 21. Further, the plurality of first holding members 21 are connected by the second holding member 24.
In one embodiment, the steam generator 1 further includes a restricting member 25 for restricting vibration of the anti-vibration member 22. The restricting member 25 is attached to the annular support portion 31, and is configured to sandwich the second holding member 24 with a predetermined gap and restrict the movement of the second holding member 24 in the out-of-plane direction. Has been. More specifically, the regulating member 25 of the annular support portion 31 has a recess 25a, and the second holding member 24 is sandwiched between the recess 25a with a predetermined gap. For example, the regulating member 25 is rigidly joined to the annular support portion 31 by joining means such as welding. The interval between the restriction member 25 and the second holding member 24 may be smaller than the interval between the annular support portion 31 and the plurality of heat transfer tubes 3 of the U bend portion 20.

本実施形態に係る蒸気発生器1は、伝熱管3の曲り部6における耐震性を向上し得る耐震構造として、さらに以下の構成を備えている。   The steam generator 1 which concerns on this embodiment is further provided with the following structures as an earthquake-resistant structure which can improve the earthquake resistance in the bending part 6 of the heat exchanger tube 3. FIG.

図5A及び図5B、図6A及び図6B、図10A及び図10B、並びに図11A乃至図11Cに示すように、蒸気発生器1は、Uベンド部20において、面外方向への複数の伝熱管3(曲り部6)の動きを規制するための支持部材40(40A,40B),50,60をさらに備えている。なお、図5Aは、一実施形態に係る管支持板7の平面図であり、図5Bは、一実施形態に係る耐震構造を備えたUベンド部20を示す断面図(A−A断面)である。図6Aは、一実施形態の変形例に係る管支持板7の平面図であり、図6Bは、一実施形態の変形例に係る耐震構造を備えたUベンド部20を示す断面図(B−B断面)である。図10Aは、他の実施形態に係る管支持板7の平面図であり、図10Bは、他の実施形態に係る耐震構造を備えたUベンド部20を示す断面図(C−C断面)である。図11Aは、さらに他の実施形態に係る管支持板7の平面図であり、図11Bは、さらに他の実施形態に係る耐震構造を備えたUベンド部20を示す断面図(D−D断面)である。   As shown in FIGS. 5A and 5B, FIGS. 6A and 6B, FIGS. 10A and 10B, and FIGS. 11A to 11C, the steam generator 1 includes a plurality of heat transfer tubes in the out-of-plane direction at the U-bend portion 20. 3 (bending portion 6) is further provided with support members 40 (40A, 40B), 50, 60 for restricting movement. 5A is a plan view of the tube support plate 7 according to the embodiment, and FIG. 5B is a cross-sectional view (A-A cross section) showing the U-bend portion 20 including the earthquake-resistant structure according to the embodiment. is there. FIG. 6A is a plan view of a tube support plate 7 according to a modification of the embodiment, and FIG. 6B is a cross-sectional view (B--) showing the U-bend portion 20 including the earthquake-resistant structure according to the modification of the embodiment. B cross section). FIG. 10A is a plan view of a tube support plate 7 according to another embodiment, and FIG. 10B is a cross-sectional view (CC cross-section) showing a U-bend portion 20 provided with an earthquake-resistant structure according to another embodiment. is there. FIG. 11A is a plan view of a tube support plate 7 according to still another embodiment, and FIG. 11B is a cross-sectional view (DD cross section) showing a U-bend portion 20 provided with an earthquake-resistant structure according to still another embodiment. ).

以下、支持部材40,50,60の具体的な構成について説明する。
図5A,図6A,図10A及び図11Aに示すように、管支持板7には、複数の伝熱管3の第1直管部4及び第2直管部5の通過する複数の貫通孔71が形成されている。複数の貫通孔71は、曲率半径が異なる複数の曲り部6が面内方向に沿って並び、且つ、曲率半径が同一の複数の曲り部6が面外方向に並ぶように、管支持板7の上面視において規則配列70に従って配列されている。すなわち、規則配列70に従って配列された曲り部6は、図1に示すように、曲率半径の異なる複数の曲り部6a,6a,6a,…が面内方向に沿って並び、且つ、曲率半径の同一な複数の曲り部6a,6b,6c,…が面外方向に沿って並ぶように配列される。
Hereinafter, a specific configuration of the support members 40, 50, 60 will be described.
As shown in FIGS. 5A, 6A, 10A, and 11A, the tube support plate 7 has a plurality of through holes 71 through which the first straight tube portion 4 and the second straight tube portion 5 of the plurality of heat transfer tubes 3 pass. Is formed. The plurality of through-holes 71 have a tube support plate 7 such that a plurality of bent portions 6 having different curvature radii are arranged along the in-plane direction, and a plurality of bent portions 6 having the same curvature radius are arranged in the out-of-plane direction. Are arranged according to the regular arrangement 70 in a top view. That is, as shown in FIG. 1, the bent portions 6 arranged in accordance with the regular array 70 have a plurality of bent portions 6 a 1 , 6 a 2 , 6 a 3 ,... Arranged in the in-plane direction, and A plurality of bent portions 6a 1 , 6b 1 , 6c 1 ,... Having the same radius of curvature are arranged along the out-of-plane direction.

図5A,図6A,図10A及び図11Aに戻り、上記規則配列70は、面内方向又は面外方向に沿った少なくとも一列において伝熱管3が存在しない配列欠陥部72を含む。
そして、面外方向への複数の伝熱管3(曲り部6)の動きを規制するための支持部材40,50,60は、配列欠陥部72の周囲に存在する複数の伝熱管3の曲り部6によって囲まれる空間の少なくとも一部に設けられている。
Returning to FIGS. 5A, 6A, 10A, and 11A, the regular array 70 includes an array defect 72 in which the heat transfer tubes 3 do not exist in at least one line along the in-plane direction or the out-of-plane direction.
And the supporting members 40, 50, 60 for restricting the movement of the plurality of heat transfer tubes 3 (bending portions 6) in the out-of-plane direction are bent portions of the plurality of heat transfer tubes 3 existing around the arrangement defect portion 72. 6 is provided in at least a part of the space surrounded by 6.

上記構成によれば、第1直管部4及び第2直管部5が通過する複数の貫通孔71は管支持板7の上面視において規則配列70に従って配列されており、この規則配列70は、面内方向又は面外方向に沿った少なくとも一列において伝熱管3が存在しない配列欠陥部72を含む。すなわち、第1直管部4及び第2直管部5が挿通される貫通孔71によって規定される規則配列70のうち少なくとも一列が欠けており(配列欠陥部72)、かかる配列欠陥部72には第1直管部4及び第2直管部5が通過する貫通孔71が存在しない。そして、配列欠陥部72の周囲に存在する複数の伝熱管3の曲り部6によって囲まれる空間の少なくとも一部には、面外方向への伝熱管3の動きを規制するための支持部材40,50,60が設けられる。   According to the above configuration, the plurality of through holes 71 through which the first straight pipe portion 4 and the second straight pipe portion 5 pass are arranged according to the regular arrangement 70 in a top view of the pipe support plate 7, and this regular arrangement 70 is The arrangement defect part 72 in which the heat transfer tubes 3 are not present in at least one line along the in-plane direction or the out-of-plane direction is included. That is, at least one row of the regular array 70 defined by the through holes 71 through which the first straight pipe portion 4 and the second straight pipe portion 5 are inserted is missing (arrangement defect portion 72). There is no through hole 71 through which the first straight pipe portion 4 and the second straight pipe portion 5 pass. A support member 40 for restricting the movement of the heat transfer tube 3 in the out-of-plane direction is provided in at least a part of the space surrounded by the bent portions 6 of the plurality of heat transfer tubes 3 present around the arrangement defect portion 72. 50, 60 are provided.

これにより、面外方向への伝熱管3の揺れが発生したとき、配列欠陥部72の周囲の伝熱管3の曲り部6が支持部材40,50,60に当接し、それ以上の変位が阻止される。また、他の伝熱管3の曲り部6についても、配列欠陥部72の周囲の伝熱管3の曲り部6の変位が阻止される結果、面外方向への動きが規制される。よって、Uベンド部20の曲り部6における揺れを抑制でき、蒸気発生器1の耐震性を向上させることができる。
また、配列欠陥部72は少なくとも一本の伝熱管3に相当する隙間を形成するため、この配列欠陥部72に設けられる支持部材40,50,60に十分な肉厚又は径を持たせることができる。このため、支持部材40,50,60に対して十分な剛性を付与することができる。
As a result, when the heat transfer tube 3 sways in the out-of-plane direction, the bent portion 6 of the heat transfer tube 3 around the arrangement defect portion 72 abuts against the support members 40, 50, 60, and further displacement is prevented. Is done. Moreover, also about the bending part 6 of the other heat exchanger tube 3, as a result of the displacement of the bending part 6 of the heat exchanger tube 3 around the arrangement | positioning defect part 72 being blocked | prevented, the movement to an out-of-plane direction is controlled. Therefore, the vibration in the bending part 6 of the U bend part 20 can be suppressed, and the earthquake resistance of the steam generator 1 can be improved.
Further, since the arrangement defect portion 72 forms a gap corresponding to at least one heat transfer tube 3, the support members 40, 50, 60 provided in the arrangement defect portion 72 may have a sufficient thickness or diameter. it can. For this reason, sufficient rigidity can be provided to the support members 40, 50, 60.

さらに、既存の蒸気発生器1に対する追加工事によって上記構成を適用する場合、複数の伝熱管3の規則配列70から少なくとも一列の伝熱管3を排除して配列欠陥部72を設ければよく、基本的な規則配列70を大幅に変更することなく、上記構成を既存の設計に対して容易に導入することができる。但し、図12A及び図12Bに示すように既存の伝熱管3を利用して支持部材60を構成する場合には、配列欠陥部72に対応する位置に配置された伝熱管3を取り除くことなく、この伝熱管3を支持部材60に改造してもよい。   Furthermore, when the above configuration is applied by additional work on the existing steam generator 1, at least one row of the heat transfer tubes 3 may be excluded from the regular array 70 of the plurality of heat transfer tubes 3, and the arrangement defect portion 72 may be provided. The above configuration can be easily introduced into an existing design without significantly changing the regular rule array 70. However, when the support member 60 is configured using the existing heat transfer tube 3 as shown in FIGS. 12A and 12B, without removing the heat transfer tube 3 disposed at a position corresponding to the arrangement defect portion 72, The heat transfer tube 3 may be modified to the support member 60.

支持部材40,50,60は、伝熱管3が格納される胴部2に対して剛に支持されていてもよい。例えば、支持部材40,50,60は、振止め部材22を介さずに胴部2に直接的に支持される。ここで、胴部2に直接的に支持とは、図3に示したように外筒支持部33を介して胴部2に連結された管群外筒9に取り付けられる場合や、管群外筒9及び外筒支持部33を介して胴部2に連結された管支持板7に取り付けられる場合のように、振止め部材22以外の他の部材を介して、支持部材40,50,60が胴部2に剛に連結される場合を含む。
これにより、支持部材40,50,60と胴部2との間の荷重伝達経路から剛性の低い部位(例えば振止め部材22又は振止め部材22と第1保持部材21との間の接合部)を排除して、支持部材40,50,60によるUベンド部20の耐震性能の優れた向上効果を享受できる。
The support members 40, 50, 60 may be rigidly supported with respect to the body portion 2 in which the heat transfer tube 3 is stored. For example, the support members 40, 50, and 60 are directly supported by the body portion 2 without using the anti-vibration member 22. Here, the direct support to the body portion 2 means that the tube body is attached to the tube group outer tube 9 connected to the body portion 2 via the outer tube support portion 33 as shown in FIG. The support members 40, 50, 60 are connected via members other than the anti-vibration member 22 as in the case of being attached to the tube support plate 7 connected to the body portion 2 via the tube 9 and the outer tube support portion 33. Is rigidly connected to the body 2.
Accordingly, a portion having low rigidity from the load transmission path between the support members 40, 50, 60 and the trunk portion 2 (for example, the anti-vibration member 22 or the joint portion between the anti-vibration member 22 and the first holding member 21). Thus, the excellent improvement effect of the seismic performance of the U-bend portion 20 by the support members 40, 50, 60 can be enjoyed.

次に、上述した耐震構造を備える蒸気発生器1の各実施形態について詳細に説明する。   Next, each embodiment of the steam generator 1 provided with the earthquake-resistant structure mentioned above is described in detail.

図5A,図5B及び図6A,図6Bに示すように、一実施形態において、支持部材40は、管支持板7に固定され、複数の曲り部6の間において面内方向に沿って設けられた少なくとも一枚の仕切り板を含む。この場合、図5Aに示すように、配列欠陥部72は、面外方向において直線状に形成される。そして、直線状の配列欠陥部72の周囲に存在する複数の伝熱管3の曲り部6によって囲まれる空間の少なくとも一部を占めるように、仕切り板40が配設される。仕切り板40は、管支持板7に対してボルト締結又は溶接等によって剛に固定される。仕切り板40は、管支持板7よりも上方にのみ設けられていてもよいし、管支持板7の上方のみならず、下方まで延在してもよい。また、仕切り板40の下方部位は、半球形状のUベンド部20の外径に対応して半円板形状に形成され、仕切り板40の下方部位は、第1直管部4及び第2直管部5の集合体の外径に対応して矩形板形状に形成されてもよい。さらに、仕切り板40の縁部は、伝熱管3よりも外方に位置してもよい。但し、仕切り板40の形状はこれに限定されるものではなく、例えば方形状等の他の形状であってもよい。   As shown in FIG. 5A, FIG. 5B and FIG. 6A, FIG. 6B, in one embodiment, the support member 40 is fixed to the tube support plate 7 and is provided between the plurality of bent portions 6 along the in-plane direction. And at least one partition plate. In this case, as shown in FIG. 5A, the alignment defect portion 72 is formed in a straight line shape in the out-of-plane direction. And the partition plate 40 is arrange | positioned so that it may occupy at least one part of the space enclosed by the bending part 6 of the some heat exchanger tube 3 which exists around the linear array defect part 72. FIG. The partition plate 40 is rigidly fixed to the tube support plate 7 by bolt fastening or welding. The partition plate 40 may be provided only above the tube support plate 7, and may extend not only above the tube support plate 7 but also below. The lower portion of the partition plate 40 is formed in a semicircular shape corresponding to the outer diameter of the hemispherical U-bend portion 20, and the lower portion of the partition plate 40 is formed by the first straight pipe portion 4 and the second straight pipe portion. It may be formed in a rectangular plate shape corresponding to the outer diameter of the aggregate of the tube portions 5. Furthermore, the edge part of the partition plate 40 may be located outside the heat transfer tube 3. However, the shape of the partition plate 40 is not limited to this, and may be another shape such as a square shape.

図5A及び図5Bに示すように、一実施形態では、面内方向における管支持板7の中心を通るように面外方向に沿って直線状に1本の配列欠陥部72が形成されている。そして、管支持板7の配列欠陥部72に対応した位置に、1枚の仕切り板40が設けられている。すなわち、仕切り板40は、配列欠陥部72によって形成された空間において、面内方向に沿うように管支持板7に立設される。
この構成によれば、面外方向への伝熱管3の揺れが発生したとき、曲り部6は仕切り板40に当接してその動きが規制される。このとき、仕切り板40は多数の伝熱管3の曲り部6に当接するので、少ない設置枚数でベンド部20の大部分における揺れを抑制することができる。また、仕切り板40によって、複数の曲り部6が面外方向において分割される(この場合は2つ)ので、一の仕切り板40が支持すべき伝熱管の移動質量を小さくすることができる。
さらに、仕切り板40は管支持板7に固定されているので、仕切り板40を胴部2に対して剛に支持することができる。したがって、仕切り板40が、伝熱管3の揺れに起因した曲り部6の荷重を受けたときに、伝熱管3から仕切り板40が受けた荷重を胴部2に伝達する過程で低剛性の部位が損傷してしまうことを防止できる。
As shown in FIGS. 5A and 5B, in one embodiment, one alignment defect 72 is formed linearly along the out-of-plane direction so as to pass through the center of the tube support plate 7 in the in-plane direction. . Then, one partition plate 40 is provided at a position corresponding to the arrangement defect portion 72 of the tube support plate 7. That is, the partition plate 40 is erected on the tube support plate 7 along the in-plane direction in the space formed by the arrangement defect portion 72.
According to this configuration, when the heat transfer tube 3 shakes in the out-of-plane direction, the bent portion 6 abuts on the partition plate 40 and its movement is restricted. At this time, since the partition plate 40 is in contact with the bent portions 6 of the large number of heat transfer tubes 3, it is possible to suppress the shaking of the majority of the bend portions 20 with a small number of installations. Moreover, since the some bending part 6 is divided | segmented in an out-of-plane direction by the partition plate 40 (in this case, two), the moving mass of the heat exchanger tube which the one partition plate 40 should support can be made small.
Furthermore, since the partition plate 40 is fixed to the tube support plate 7, the partition plate 40 can be rigidly supported with respect to the trunk portion 2. Therefore, when the partition plate 40 receives the load of the bent portion 6 due to the shaking of the heat transfer tube 3, the low rigidity portion in the process of transmitting the load received by the partition plate 40 from the heat transfer tube 3 to the body portion 2. Can be prevented from being damaged.

図6A及び図6Bに示すように、一実施形態に変形例においては、少なくとも一枚の仕切り板40は、面外方向に並ぶように面内方向に沿って設けられた複数の仕切り板40A,40Bを含む。これらの図に示す例では、2本の配列欠陥部72A,72Bが面外方向において異なる2か所を通り、且つ、それぞれが面内方向に沿って直線状に延在するように形成されている。そして、配列欠陥部72A,72Bによって形成された空間において、管支持板7の配列欠陥部72A,72Bに対応した位置に、2枚の仕切り板40A,40Bが設けられている。すなわち、2枚の仕切り板40A,40Bは、互いに平行に、面内方向に沿うように管支持板7にそれぞれ立設される。
この構成によれば、複数の仕切り板40A,40Bによって、複数の曲り部6の集合体(Uベンド部20)が面外方向において3以上に分割されるため、一の仕切り板40(40A,40B)が受け持つ伝熱管3の移動質量をより小さくすることができる。
As shown in FIGS. 6A and 6B, in a modification of the embodiment, at least one partition plate 40 includes a plurality of partition plates 40A provided along the in-plane direction so as to be aligned in the out-of-plane direction. 40B included. In the examples shown in these drawings, the two arrangement defect portions 72A and 72B are formed so as to pass through two different places in the out-of-plane direction, and each extend linearly along the in-plane direction. Yes. Two partition plates 40A and 40B are provided at positions corresponding to the alignment defect portions 72A and 72B of the tube support plate 7 in the space formed by the alignment defect portions 72A and 72B. That is, the two partition plates 40A and 40B are erected on the tube support plate 7 so as to be parallel to each other and along the in-plane direction.
According to this structure, since the aggregate | assembly (U bend part 20) of the some bending part 6 is divided | segmented into 3 or more in an out-of-plane direction by several partition plate 40A, 40B, one partition plate 40 (40A, 40A, 40B) can reduce the moving mass of the heat transfer tube 3.

図7乃至図9に、仕切り板40(40A,40B)の縁部40a側を支持するための各構成例を示す。なお、仕切り板40の縁部40aとは、管支持板7から遠い側(Uベンド部20の頂部側)の端縁領域である。   7 to 9 show configuration examples for supporting the edge 40a side of the partition plate 40 (40A, 40B). The edge 40a of the partition plate 40 is an edge region on the side far from the tube support plate 7 (the top side of the U-bend portion 20).

図7は、振止め部材22による仕切り板40の支持構造の一例を示す図である。
図7に示す例では、仕切り板40は、複数の振止め部材22によって両側から挟まれている。なお、振止め部材22は、上述した図2及び図3に示されるものと同一である。複数の曲り部6は面内方向に沿って延在しており、一方、振止め部材22は、複数の曲り部6の間に配置され、曲り部6と同様に面内方向に沿って延在している。
仕切り板40は、振止め部材22を通る平面または曲り部6を通る平面に平行に設けられる。仕切り板40の面内方向における両側に配置された一対の振止め部材22によって、仕切り板40の縁部側(径方向外方側)が支持される。このとき、仕切り板40と振止め部材22とは、固定されていなくてもよいし、溶接等によって固定されていてもよい。
この構成によれば、仕切り板40は、複数の振止め部材22によって両側から挟まれているので、複数の伝熱管3の曲り部6からの荷重を、振止め部材22を介して仕切り板40で受けることができる。
FIG. 7 is a view showing an example of a support structure of the partition plate 40 by the anti-vibration member 22.
In the example shown in FIG. 7, the partition plate 40 is sandwiched from both sides by the plurality of anti-vibration members 22. Note that the anti-vibration member 22 is the same as that shown in FIGS. 2 and 3 described above. The plurality of bent portions 6 extend along the in-plane direction, while the anti-vibration member 22 is disposed between the plurality of bent portions 6 and extends along the in-plane direction like the bent portions 6. Exist.
The partition plate 40 is provided in parallel to a plane passing through the anti-vibration member 22 or a plane passing through the bent portion 6. The edge side (radially outward side) of the partition plate 40 is supported by the pair of anti-vibration members 22 arranged on both sides in the in-plane direction of the partition plate 40. At this time, the partition plate 40 and the anti-vibration member 22 may not be fixed, or may be fixed by welding or the like.
According to this configuration, since the partition plate 40 is sandwiched from both sides by the plurality of anti-vibration members 22, the load from the bent portions 6 of the plurality of heat transfer tubes 3 is divided via the anti-vibration members 22. Can be received at.

図8は、保持部材(第2保持部材24)による仕切り板40(40A,40B)の支持構造の一例を示す図である。
図8に示す例では、仕切り板40は、Uベンド部20の外形に沿った円弧状の縁部40aを有しており、この縁部40aは、第2保持部材(ブリッジ)24に固定される。仕切り板40の縁部40aと第2保持部材24とは、溶接等により固定されてもよい。上述したように、第2保持部材24は、面外方向において半球形状のUベンド部20の外形に沿って形成されている。すなわち、仕切り板40の延在方向と第2保持部材24の延在方向とは概ね一致している。そのため、仕切り板40の縁部40aと第2保持部材24との接合面積を十分に確保することができる。
この構成によれば、仕切り板40の縁部40aが第2保持部材24によって固定され、仕切り板40の基部側が管支持板7によって固定されるので、離間した2か所で仕切り板40が固定されることとなり、仕切り板40をより一層強固に固定することができる。
FIG. 8 is a diagram illustrating an example of a support structure of the partition plate 40 (40A, 40B) by the holding member (second holding member 24).
In the example shown in FIG. 8, the partition plate 40 has an arcuate edge portion 40 a along the outer shape of the U-bend portion 20, and this edge portion 40 a is fixed to the second holding member (bridge) 24. The The edge 40a of the partition plate 40 and the second holding member 24 may be fixed by welding or the like. As described above, the second holding member 24 is formed along the outer shape of the hemispherical U-bend portion 20 in the out-of-plane direction. That is, the extending direction of the partition plate 40 and the extending direction of the second holding member 24 substantially coincide with each other. Therefore, it is possible to ensure a sufficient bonding area between the edge portion 40a of the partition plate 40 and the second holding member 24.
According to this configuration, the edge 40a of the partition plate 40 is fixed by the second holding member 24, and the base side of the partition plate 40 is fixed by the tube support plate 7, so that the partition plate 40 is fixed at two spaced locations. As a result, the partition plate 40 can be more firmly fixed.

図9は、円環支持部31による仕切り板40(40A,40B)の支持構造の一例を示す図である。
図9に示す例では、円環支持部31の規制部材25に設けられた凹部25aに、仕切り板40の縁部40aが遊嵌された構成となっている。具体的には、円環支持部31の規制部材25は凹部25aを有しており、この凹部25aに、仕切り板40の縁部40aが所定の間隙を有して挟み込まれる。規制部材25と仕切り板40の縁部40aとの間隔は、円環支持部31とUベンド部20の複数の伝熱管3との間隔よりも小さくてもよい。
この構成によれば、蒸気発生器1の内壁(例えば胴部2又は管群外筒9の内壁)に支持された円環支持部31の規制部材25の凹部25aに仕切り板40の縁部40aを遊嵌したので、伝熱管3の揺れ発生時において仕切り板40及び円環支持部31を介して蒸気発生器1の内壁側に荷重を伝達することができる。これにより、伝熱管3の揺れに起因した曲り部6の荷重支持能力を向上させることができる。また、円環支持部31に対して仕切り板40が遊嵌されているので、蒸気発生器1の内壁又は円環支持部31と支持部材(仕切り板)40との熱伸び差に起因した熱応力を逃がすことができる。
FIG. 9 is a view showing an example of a support structure of the partition plate 40 (40A, 40B) by the annular support portion 31. As shown in FIG.
In the example shown in FIG. 9, the edge portion 40 a of the partition plate 40 is loosely fitted in the recess portion 25 a provided in the restriction member 25 of the annular support portion 31. Specifically, the regulating member 25 of the annular support portion 31 has a recess 25a, and the edge 40a of the partition plate 40 is sandwiched between the recess 25a with a predetermined gap. The interval between the regulating member 25 and the edge 40 a of the partition plate 40 may be smaller than the interval between the annular support portion 31 and the plurality of heat transfer tubes 3 of the U bend portion 20.
According to this configuration, the edge portion 40a of the partition plate 40 is formed in the concave portion 25a of the restriction member 25 of the annular support portion 31 supported on the inner wall of the steam generator 1 (for example, the inner wall of the trunk portion 2 or the tube group outer tube 9). As a result, the load can be transmitted to the inner wall side of the steam generator 1 via the partition plate 40 and the annular support portion 31 when the heat transfer tube 3 is shaken. Thereby, the load support capability of the bending part 6 resulting from the shaking of the heat exchanger tube 3 can be improved. Further, since the partition plate 40 is loosely fitted to the annular support portion 31, heat caused by a difference in thermal expansion between the inner wall of the steam generator 1 or the annular support portion 31 and the support member (partition plate) 40. Stress can be released.

上記構成に加えて、仕切り板40(40A,40B)は、図10A又は図10Bに示す構成をさらに備えていてもよい。
図10Aは、仕切り板40(40A,40B)の一構成例を示す部分断面図である。
同図に示すように、仕切り板40には、少なくとも一つの開口40bが設けられている。この開口40bにより形成される空間は、仕切り板40の厚さ方向において同一形状の柱状をなしていてもよい。例えば、開口40bにより形成される空間が円柱形状である場合、仕切り板40の厚さ方向に開口40bの径は同一である。また、一枚の仕切り板40に対して複数の開口40bが設けられていてもよい。
この構成によれば、二次冷却水(蒸気を含む)が、仕切り板40の開口40bを通って面外方向に沿って流れるため、仕切り板40BによってUベンド部20における熱流動が阻害されることを抑制できる。
In addition to the above configuration, the partition plate 40 (40A, 40B) may further include the configuration shown in FIG. 10A or 10B.
FIG. 10A is a partial cross-sectional view showing a configuration example of the partition plate 40 (40A, 40B).
As shown in the figure, the partition plate 40 is provided with at least one opening 40b. The space formed by the opening 40 b may have a columnar shape with the same shape in the thickness direction of the partition plate 40. For example, when the space formed by the opening 40b is cylindrical, the diameter of the opening 40b is the same in the thickness direction of the partition plate 40. Further, a plurality of openings 40 b may be provided for one partition plate 40.
According to this configuration, since the secondary cooling water (including steam) flows along the out-of-plane direction through the opening 40b of the partition plate 40, the partition plate 40B inhibits the heat flow in the U bend portion 20. This can be suppressed.

図10Bは、仕切り板40(40A,40B)の他の構成例を示す部分断面図である。
同図に示すように、仕切り板40には、少なくとも一つの開口40bが設けられている。この開口40bは、開口径が最小となるオリフィス部40cを有する。図示される構成例では、オリフィス部40cは、仕切り板40の厚さ方向の中央部に位置している。そして、オリフィス部40cから仕切り板40の各面に向けて開口40bの壁面がテーパ状に形成されており、開口40bは、仕切り板40の厚さ方向において中央部からかく面に向けて拡径している。他の構成例では、オリフィス部40cは、仕切り板40のいずれかの面内に位置してもよい。
この構成によれば、仕切り板40が面外方向に変位しようとしたとき、開口40bのオリフィス部40cを通過する二次冷却水(蒸気を含む)による抵抗力によって、仕切り板40の変位を抑制することができる。
FIG. 10B is a partial cross-sectional view showing another configuration example of the partition plate 40 (40A, 40B).
As shown in the figure, the partition plate 40 is provided with at least one opening 40b. The opening 40b has an orifice portion 40c having a minimum opening diameter. In the illustrated configuration example, the orifice portion 40 c is located in the center portion of the partition plate 40 in the thickness direction. The wall surface of the opening 40b is formed in a tapered shape from the orifice portion 40c toward each surface of the partition plate 40, and the opening 40b increases in diameter from the central portion toward the surface in the thickness direction of the partition plate 40. doing. In another configuration example, the orifice portion 40 c may be located in any surface of the partition plate 40.
According to this configuration, when the partition plate 40 is about to be displaced in the out-of-plane direction, the displacement of the partition plate 40 is suppressed by the resistance force of the secondary cooling water (including steam) that passes through the orifice portion 40c of the opening 40b. can do.

他の実施形態においては、図11A及び図11Bに示すように、支持部材50は、面外方向または面内方向に沿って水平方向に延在し、蒸気発生器1の内壁(例えば胴部2又は管群外筒9の内壁)に両端が支持される少なくとも一本の水平支持棒50A,50Bを含む。この場合、図11Aに示すように、Uベンド部20の内部に少なくとも直線状の空間が形成されるような伝熱管3の配列となるように、配列欠陥部72が形成される。水平支持棒50は、蒸気発生器1の内壁に対してボルト締結又は溶接等によって剛に固定されてもよい。あるいは、蒸気発生器1の内壁と水平支持棒50との熱伸び差を許容可能なように、水平支持棒50が蒸気発生器1の内壁に支持されてもよい。例えば、水平支持棒50の延在方向において、水平支持棒50が蒸気発生器1の内壁に対して僅かに移動可能に支持される。
この構成によれば、面外方向への伝熱管3の揺れが発生したとき、曲り部6は、水平支持棒50に当接してその動きが規制される。また、水平支持棒50は、面内方向における投影面積が比較的小さいため、水平支持棒50が面外方向に沿った熱流動に与える影響を低減できる。
In another embodiment, as shown in FIGS. 11A and 11B, the support member 50 extends in the horizontal direction along the out-of-plane direction or the in-plane direction, and the inner wall (for example, the trunk portion 2) of the steam generator 1. Or at least one horizontal support rod 50A, 50B supported at both ends by the inner wall of the tube group outer tube 9). In this case, as shown in FIG. 11A, the arrangement defect portion 72 is formed so that the arrangement of the heat transfer tubes 3 is such that at least a linear space is formed inside the U-bend portion 20. The horizontal support bar 50 may be rigidly fixed to the inner wall of the steam generator 1 by bolt fastening or welding. Alternatively, the horizontal support bar 50 may be supported on the inner wall of the steam generator 1 so that a difference in thermal expansion between the inner wall of the steam generator 1 and the horizontal support bar 50 can be allowed. For example, the horizontal support bar 50 is supported so as to be slightly movable with respect to the inner wall of the steam generator 1 in the extending direction of the horizontal support bar 50.
According to this configuration, when the heat transfer tube 3 shakes in the out-of-plane direction, the bent portion 6 abuts on the horizontal support rod 50 and its movement is restricted. In addition, since the horizontal support bar 50 has a relatively small projected area in the in-plane direction, the influence of the horizontal support bar 50 on the heat flow along the out-of-plane direction can be reduced.

水平支持棒50の両端は、円環支持部31(31A,31B)によって支持されていてもよい。なお、円環支持部(31A,31B)は、図3及び図4に示したものと同一である。
図示される例では、配列欠陥部72A,72Bによって形成された空間において、2本の水平支持棒50A,50Bが互いに平行となるように、面外方向に沿って配置されている。但し、水平支持棒50の設置数は、2本に限定されるものではなく、1本であってもよいし3本以上であってもよい。また、水平支持棒50の面内方向に沿って延在するように配置されてもよい。
上記構成によれば、蒸気発生器1の内壁(例えば胴部2又は管群外筒9の内壁)に剛に支持された円環支持部31に水平支持棒50の両端を支持させるようにしたので、伝熱管3の揺れに起因した曲り部6の荷重支持能力を向上させることができる。
Both ends of the horizontal support rod 50 may be supported by the annular support portion 31 (31A, 31B). The annular support portions (31A, 31B) are the same as those shown in FIGS.
In the illustrated example, the two horizontal support bars 50A and 50B are arranged along the out-of-plane direction so as to be parallel to each other in the space formed by the arrangement defect portions 72A and 72B. However, the number of horizontal support bars 50 is not limited to two, and may be one or three or more. Moreover, you may arrange | position so that it may extend along the in-plane direction of the horizontal support bar | burr 50. FIG.
According to the above configuration, both ends of the horizontal support rod 50 are supported by the annular support portion 31 that is rigidly supported on the inner wall of the steam generator 1 (for example, the inner wall of the body 2 or the tube group outer tube 9). As a result, the load supporting ability of the bent portion 6 due to the shaking of the heat transfer tube 3 can be improved.

さらに他の実施形態においては、図12A乃至図12Cに示すように、支持部材60は、面内方向に沿って設けられ、且つ、曲り部6よりも剛性が高い少なくとも一本の湾曲支持棒60A,60Bを含む。規則配列70は、離散的に位置する配列欠陥部72を含んでおり、この配列欠陥部72によって形成される空間の少なくとも一部に湾曲支持棒60(60A,60B)が設けられている。図示される例では、面内方向及び面外方向に異なる位置に複数の湾曲支持棒60A,60Bが設けられている。   In still another embodiment, as shown in FIGS. 12A to 12C, the support member 60 is provided along the in-plane direction and has at least one curved support rod 60 </ b> A having higher rigidity than the bent portion 6. , 60B. The regular array 70 includes discrete defect portions 72 that are positioned discretely, and the curved support rods 60 (60 </ b> A, 60 </ b> B) are provided in at least a part of the space formed by the defective array portions 72. In the illustrated example, a plurality of curved support bars 60A and 60B are provided at different positions in the in-plane direction and the out-of-plane direction.

この構成によれば、面外方向への伝熱管3の揺れが発生したとき、曲り部6は、該曲り部6よりも剛性が高い湾曲支持棒60に当接してその動きが規制される。また、湾曲支持棒60は、曲り部6を含む平面への投影面積が比較的小さいため、湾曲支持棒60が面外方向に沿った熱流動に与える影響を低減できる。さらに、上記構成においては、配列欠陥部72を形成するために規則配列70から排除する伝熱管3の本数は少なくてすむため、配列欠陥部72による伝熱効率の低下を抑制することができる。   According to this configuration, when the heat transfer tube 3 sways in the out-of-plane direction, the bent portion 6 abuts on the curved support rod 60 having higher rigidity than the bent portion 6 and its movement is restricted. In addition, since the curved support rod 60 has a relatively small projected area onto the plane including the bent portion 6, the influence of the curved support rod 60 on the heat flow along the out-of-plane direction can be reduced. Further, in the above configuration, since the number of the heat transfer tubes 3 to be excluded from the regular array 70 in order to form the alignment defect portion 72 can be reduced, it is possible to suppress a decrease in heat transfer efficiency due to the alignment defect portion 72.

湾曲支持棒60は、伝熱管3と同一の直径を有し、且つ、中実であってもよい。
これにより、湾曲支持棒60の支持に際して、伝熱管3と同一の支持構造を利用することができる。例えば、伝熱管3が貫通するように構成された管支持板7によって該伝熱管3を支持する場合、伝熱管3と同様に湾曲支持棒60も管支持板7を貫通させることによって支持することができる。
The curved support rod 60 may have the same diameter as the heat transfer tube 3 and may be solid.
Thereby, when supporting the curved support rod 60, the same support structure as the heat transfer tube 3 can be used. For example, when the heat transfer tube 3 is supported by the tube support plate 7 configured to penetrate the heat transfer tube 3, the curved support rod 60 is supported by penetrating the tube support plate 7 in the same manner as the heat transfer tube 3. Can do.

図13は、湾曲支持棒60の一構成例を示す部分側面図である。
図13に示すように、複数の湾曲支持棒60は、互いに連結されていてもよい。すなわち、複数の湾曲支持棒60(図示される例では3本)が互いに隣接して配置され、これらの湾曲支持棒60が連結部材62によって互いに連結されている。この場合、複数の湾曲支持棒60は、面外方向に配列されていてもよいし、面内方向に配列されていてもよい。
この構成によれば、複数の湾曲支持棒60が互いに連結されているので、湾曲支持棒60の剛性を高くすることができる。すなわち、伝熱管3の揺れに起因した曲り部6の荷重支持能力を向上することができる。
FIG. 13 is a partial side view showing a configuration example of the curved support rod 60.
As shown in FIG. 13, the plurality of curved support bars 60 may be connected to each other. That is, a plurality of curved support bars 60 (three in the illustrated example) are arranged adjacent to each other, and these curved support bars 60 are connected to each other by the connecting member 62. In this case, the plurality of curved support bars 60 may be arranged in the out-of-plane direction or in the in-plane direction.
According to this configuration, since the plurality of curved support bars 60 are connected to each other, the rigidity of the curved support bars 60 can be increased. That is, the load supporting ability of the bent portion 6 due to the shaking of the heat transfer tube 3 can be improved.

図14は、湾曲支持棒60の他の構成例を示す部分側面図である。
図14に示すように、湾曲支持棒60は、伝熱管3よりも管厚又は管径が大きい少なくとも一本の高剛性伝熱管の曲り部であってもよい。図示される例では、高剛性伝熱管の曲り部によって構成される湾曲支持棒60は伝熱管3よりも管径が大きく、ボルト63によって管支持板7に取り付けられている。
この構成によれば、伝熱管3の揺れに起因した曲り部6の荷重を高剛性伝熱管の曲り部(湾曲支持棒60)によって支持することができ、且つ、高剛性伝熱管内に一次冷却水を流すことによって、配列欠陥部72による伝熱効率の低下をより一層抑制することができる。
FIG. 14 is a partial side view showing another configuration example of the curved support rod 60.
As shown in FIG. 14, the curved support rod 60 may be a bent portion of at least one high-rigidity heat transfer tube having a tube thickness or a tube diameter larger than that of the heat transfer tube 3. In the illustrated example, the curved support rod 60 constituted by the bent portion of the high-rigidity heat transfer tube has a larger diameter than the heat transfer tube 3 and is attached to the tube support plate 7 by bolts 63.
According to this configuration, the load of the bent portion 6 due to the shaking of the heat transfer tube 3 can be supported by the bent portion (curved support rod 60) of the high-rigidity heat transfer tube, and primary cooling is performed in the high-rigidity heat transfer tube. By flowing water, it is possible to further suppress a decrease in heat transfer efficiency due to the arrangement defect portion 72.

ここで、図15A及び図15Bを参照して、上述の図12A及び図12Bに示した他の実施形態の変形例について説明する。なお、図15Aは、他の実施形態の変形例に係る耐震構造を備えたUベンド部を示す断面図である。図15Bは、図15Aに示すUベンド部の断面図(E−E断面)である。   Here, with reference to FIG. 15A and FIG. 15B, the modification of other embodiment shown to the above-mentioned FIG. 12A and FIG. 12B is demonstrated. FIG. 15A is a cross-sectional view showing a U-bend portion provided with an earthquake-resistant structure according to a modification of another embodiment. 15B is a cross-sectional view (EE cross section) of the U-bend portion shown in FIG. 15A.

図15A及び図15Bに示すように、湾曲支持棒60は、曲り部6を含む平面に平行な面内(面内方向)に設けられる中空湾曲管部65と、少なくとも、面外方向から視たときに振止め部材22と交差する中空湾曲管部65の充填部材66において、中空湾曲管部65の内部に設けられる充填部材66と、を含む。
上記構成においては、曲り部6における流体励起振動を抑制することを目的として、面外方向において隣接する伝熱管3の曲り部6の間に振止め部材22を設けている。このような構成を備える場合、Uベンド部20に振動(例えば地震等)が発生したときに、面外方向への伝熱管3の揺れに起因した荷重が、振止め部材22を介して、面外方向において隣接する伝熱管3の曲り部6間で伝達される。振止め部材22と交差する領域に中空の伝熱管3のみが配置される場合、振止め部材22を介して伝達される荷重によって伝熱管3がつぶれてUベンド部20全体の振動を抑えることができなくなる可能性がある。
As shown in FIGS. 15A and 15B, the bending support rod 60 is viewed from the hollow bending tube portion 65 provided in a plane parallel to the plane including the bending portion 6 (in-plane direction), and at least from the out-of-plane direction. The filling member 66 of the hollow bending tube portion 65 that sometimes intersects with the anti-vibration member 22 includes a filling member 66 provided inside the hollow bending tube portion 65.
In the said structure, the anti-vibration member 22 is provided between the bending parts 6 of the heat exchanger tube 3 adjacent in an out-of-plane direction for the purpose of suppressing the fluid excitation vibration in the bending part 6. FIG. When such a configuration is provided, when vibration (for example, an earthquake or the like) occurs in the U-bend portion 20, a load caused by the shaking of the heat transfer tube 3 in the out-of-plane direction is caused to pass through the anti-vibration member 22. It is transmitted between the bent portions 6 of the heat transfer tubes 3 adjacent in the outer direction. When only the hollow heat transfer tube 3 is arranged in a region intersecting with the anti-vibration member 22, the heat transfer tube 3 is crushed by the load transmitted through the anti-vibration member 22 to suppress the vibration of the entire U bend portion 20. It may not be possible.

そこで、上記構成では、曲り部6よりも剛性が高い湾曲支持棒60を支持部材として備えており、この湾曲支持棒60が、曲り部6を含む平面に平行な面内に設けられる中空湾曲管部65と、振止め部材22と交差する充填部材66において中空湾曲管部65の内部に設けられる充填部材66と、を含む。すなわち、振止め部材22と交差する中空湾曲管部65の充填部材66においては、中空湾曲管部65の内部に充填部材66が詰められているので、中空の伝熱管3よりも剛性が高くなる。伝熱管3の面外方向への揺れに起因した荷重は、剛性の高い中空湾曲管部65の充填部材66に主として作用するため、中空湾曲管部65がつぶれることなく荷重を受けることができる。よって、Uベンド部20の耐震性を向上させることができる。   Therefore, in the above configuration, the curved support rod 60 having higher rigidity than the bent portion 6 is provided as a support member, and the curved bent rod 60 is provided in a plane parallel to the plane including the bent portion 6. And a filling member 66 provided inside the hollow curved tube portion 65 in the filling member 66 intersecting with the anti-vibration member 22. That is, in the filling member 66 of the hollow curved tube portion 65 that intersects with the anti-vibration member 22, since the filling member 66 is packed inside the hollow curved tube portion 65, the rigidity is higher than that of the hollow heat transfer tube 3. . Since the load resulting from the out-of-plane vibration of the heat transfer tube 3 mainly acts on the filling member 66 of the hollow bending tube portion 65 having high rigidity, the load can be received without the hollow bending tube portion 65 being crushed. Therefore, the earthquake resistance of the U bend part 20 can be improved.

図15Bに示される例では、高さ方向に異なる2箇所に下方円環支持部31A及び上方円環支持部31Bが設けられており、伝熱管3の曲り部6の入口側と出口側にそれぞれV字状の振止め部材22が配置されている。この構成においては、1本の中空湾曲管部65が振止め部材22と交差する充填部材66は4箇所となる。この4箇所の充填部材66において、中空湾曲管部65の内部に充填部材66が設けられる。
また、中空湾曲管部65として伝熱管3を用いてもよい。すなわち、伝熱管3の内部に充填部材66を設けて支持部材(湾曲支持棒60)としてもよい。これにより、既存の蒸気発生器1に対して容易に耐震施工を行うことができる。
In the example shown in FIG. 15B, the lower annular support portion 31 </ b> A and the upper annular support portion 31 </ b> B are provided at two different locations in the height direction, respectively on the inlet side and the outlet side of the bent portion 6 of the heat transfer tube 3. A V-shaped bracing member 22 is arranged. In this configuration, there are four filling members 66 where one hollow bending tube portion 65 intersects with the anti-vibration member 22. In these four filling members 66, the filling member 66 is provided inside the hollow bending tube portion 65.
Further, the heat transfer tube 3 may be used as the hollow bending tube portion 65. That is, a filling member 66 may be provided inside the heat transfer tube 3 to form a support member (curved support rod 60). Thereby, earthquake-proof construction can be easily performed with respect to the existing steam generator 1.

図15Aに示されるように、複数の湾曲支持棒60と複数の振止め部材22とが、面外方向において交互に配列されている場合、面外方向に並んだ中空湾曲管部65の充填部材66、該充填部材66内の充填部材66、および、振止め部材22によって、Uベンド部20を面外方向に貫通する荷重伝達経路が形成されていてもよい。図示される例では、複数の中空湾曲管部65内に設けられた複数の充填部材66が、面外方向において円環支持部31と同一高さに直線状に配列されている。そのため、荷重伝達経路は、円環支持部31、交互に配列された充填部材66及び振止め部材22、円環支持部31の順に直線状に形成される。
この構成によれば、荷重伝達経路が、中空湾曲管部の補強領域、該補強領域内の充填部材66、および、振止め部材22によって、荷重伝達経路が形成されているので、荷重伝達経路上では荷重伝達方向における剛性を高くすることができる。よって、Uベンド部20の耐震性を効果的に向上させることができる。
As shown in FIG. 15A, when a plurality of curved support rods 60 and a plurality of bracing members 22 are alternately arranged in the out-of-plane direction, the filling member of the hollow curved tube portion 65 arranged in the out-of-plane direction. 66, the filling member 66 in the filling member 66, and the anti-vibration member 22 may form a load transmission path that penetrates the U-bend portion 20 in the out-of-plane direction. In the illustrated example, the plurality of filling members 66 provided in the plurality of hollow curved tube portions 65 are linearly arranged at the same height as the annular support portion 31 in the out-of-plane direction. Therefore, the load transmission path is formed linearly in the order of the annular support portions 31, the alternately arranged filling members 66 and the anti-vibration members 22, and the annular support portions 31.
According to this configuration, since the load transmission path is formed by the reinforcing region of the hollow curved tube portion, the filling member 66 in the reinforcing region, and the anti-vibration member 22, Then, the rigidity in the load transmission direction can be increased. Therefore, the earthquake resistance of the U bend part 20 can be improved effectively.

図15A及び図15Bに示されるように、荷重伝達経路の両端において湾曲支持棒60又は振止め部材22が、円環支持部31の規制部材25の凹部25a(図9参照)に遊嵌されていてもよい。
この構成によれば、蒸気発生器1の内壁に支持された円環支持部31の凹部25aに、湾曲支持棒60又は振止め部材22が遊嵌されているので、円環支持部31と湾曲支持棒60又は振止め部材22との熱伸び差に起因した応力を逃がしながら、荷重伝達経路からの荷重を蒸気発生器1の内壁で受けることができる。
As shown in FIGS. 15A and 15B, the curved support rod 60 or the anti-vibration member 22 is loosely fitted in the recess 25a (see FIG. 9) of the regulating member 25 of the annular support portion 31 at both ends of the load transmission path. May be.
According to this configuration, since the curved support rod 60 or the anti-vibration member 22 is loosely fitted in the concave portion 25a of the annular support portion 31 supported on the inner wall of the steam generator 1, the curved annular support portion 31 and the curved support portion 31 are curved. The load from the load transmission path can be received by the inner wall of the steam generator 1 while releasing the stress caused by the difference in thermal expansion with the support rod 60 or the anti-vibration member 22.

図16は、一実施形態に係る蒸気発生器の耐震補強方法を説明するための図である。図17Aは、充填部材の構成例を示す断面図であり、図17Bは、図17AのF−F断面図である。
充填部材66は、中空湾曲管部65の管長方向に沿った断面内に設けられた複数のセクションによって構成されてもよい。この断面は、図17Aに示すように、中空湾曲管部65の補強領域及び該補強領域の両側に位置する一対の振止め部材22を含む断面である。図16、図17A及び図17Bに示す例では、複数の充填部材66のそれぞれは、面外方向に並んだ2つのセクション66A,66Bを含む。なお、図16においては、各充填部材66は、紙面の奥行方向に2つのセクション66A,66Bが重なるように配置されているため、紙面手前側のセクション66Aを実線で示し、紙面奥側のセクション66Bを点線で示している。
この構成によれば、複数のセクション66A,66Bからなる分割構造によって充填部材66を形成するようにしたので、面外方向に沿った荷重伝達経路上において、充填部材66の各セクション66A,66Bと中空湾曲管部65の内壁面との間に隙間が形成されてしまうことを防止できる。これにより、中空湾曲管部65のつぶれを防止し、Uベンド部20全体の振動を効果的に抑制できる。
FIG. 16 is a diagram for explaining a seismic reinforcement method for a steam generator according to an embodiment. 17A is a cross-sectional view illustrating a configuration example of the filling member, and FIG. 17B is a cross-sectional view taken along line FF in FIG. 17A.
The filling member 66 may be configured by a plurality of sections provided in a cross section along the tube length direction of the hollow curved tube portion 65. As shown in FIG. 17A, this cross section is a cross section including a reinforcing region of the hollow bending tube portion 65 and a pair of anti-vibration members 22 located on both sides of the reinforcing region. In the example shown in FIGS. 16, 17A, and 17B, each of the plurality of filling members 66 includes two sections 66A and 66B arranged in the out-of-plane direction. In FIG. 16, each filling member 66 is arranged so that two sections 66A and 66B overlap in the depth direction of the paper surface. Therefore, the section 66A on the front side of the paper surface is indicated by a solid line, and the section on the back side of the paper surface. 66B is indicated by a dotted line.
According to this configuration, since the filling member 66 is formed by a divided structure including a plurality of sections 66A and 66B, each of the sections 66A and 66B of the filling member 66 on the load transmission path along the out-of-plane direction. It is possible to prevent a gap from being formed between the inner wall surface of the hollow bending tube portion 65. Thereby, crushing of the hollow bending tube part 65 can be prevented, and vibration of the entire U bend part 20 can be effectively suppressed.

また、湾曲支持棒60は、一部の伝熱管3の内部に充填部材66を設置することで形成されていてもよい。
この構成によれば、既存の蒸気発生器1に対して容易に耐震施工を行うことができる。
Further, the curved support rod 60 may be formed by installing a filling member 66 inside some of the heat transfer tubes 3.
According to this structure, earthquake-proof construction can be easily performed on the existing steam generator 1.

ここで、図16,図17A及び図17Bを参照して、一実施形態に係る蒸気発生器1の耐震補強方法について以下に説明する。
一実施形態では、蒸気発生器1の耐震補強方法は、面外方向への複数の伝熱管3の動きを規制するための支持部材60を蒸気発生器1に設置する設置ステップを備える。
なお、蒸気発生器1では、曲率半径が異なる複数の曲り部6が平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の曲り部6が面外方向に並ぶように、複数の伝熱管3の第1直管部4及び第2直管部5の通過する複数の貫通孔71が管支持板7の上面視において規則配列70(図5A,図6A,図10A及び図11A参照)に従って配列されている。そして、設置ステップでは、規則配列70のうち面内方向又は面外方向に沿った少なくとも一列において、伝熱管3に替えて支持部材60を設置する。
Here, with reference to FIG. 16, FIG. 17A and FIG. 17B, the seismic reinforcement method of the steam generator 1 which concerns on one Embodiment is demonstrated below.
In one embodiment, the seismic reinforcement method of the steam generator 1 includes an installation step of installing in the steam generator 1 a support member 60 for restricting the movement of the plurality of heat transfer tubes 3 in the out-of-plane direction.
In the steam generator 1, a plurality of bent portions 6 having different curvature radii are arranged along an in-plane direction parallel to the plane, and a plurality of bent portions 6 having the same curvature radius are arranged in an out-of-plane direction. The plurality of through-holes 71 through which the first straight pipe portion 4 and the second straight pipe portion 5 of the plurality of heat transfer tubes 3 pass are regularly arranged 70 (FIGS. 5A, 6A, 10A and (See FIG. 11A). In the installation step, the support members 60 are installed in place of the heat transfer tubes 3 in at least one row along the in-plane direction or the out-of-plane direction in the regular array 70.

上記方法によれば、面外方向への伝熱管3の揺れが発生したとき、曲り部6は支持部材60に当接し、それ以上の変位が阻止されるので、曲り部6の変位を小さくとどめることができる。よって、伝熱管3の曲り部6における揺れを抑制でき、蒸気発生器1の耐震性を向上することができる。
また、複数の伝熱管3の規則配列70のうち面内方向又は面外方向に沿った少なくとも一列において、伝熱管3に替えて支持部材60を設置するようにしたので、既存の蒸気発生器1に対して容易に耐震施工を行うことができる。
According to the above method, when the heat transfer tube 3 is shaken in the out-of-plane direction, the bent portion 6 abuts on the support member 60 and further displacement is prevented, so that the displacement of the bent portion 6 is kept small. be able to. Therefore, the shaking in the bending part 6 of the heat exchanger tube 3 can be suppressed, and the earthquake resistance of the steam generator 1 can be improved.
In addition, since the support members 60 are installed in place of the heat transfer tubes 3 in at least one row along the in-plane direction or the out-of-plane direction among the regular array 70 of the plurality of heat transfer tubes 3, the existing steam generator 1 Can be easily seismic-proofed.

また、設置ステップでは、面内方向に沿って設けられ、且つ、曲り部6よりも剛性が高い少なくとも一本の湾曲支持棒60を支持部材として設置してもよい。
面外方向への伝熱管3の揺れが発生したとき、曲り部6は、該曲り部6よりも剛性が高い湾曲支持棒60に当接してその動きが規制されるため、曲り部6の揺れを抑制できる。また、湾曲支持棒60は、曲り部6を含む面への投影面積が比較的小さいため、湾曲支持棒60が面外方向に沿った熱流動に与える影響を低減できる。
さらに、設置ステップでは、複数の伝熱管3のうち一部である補強対象伝熱管60’の内部に充填部材66を設けることで湾曲支持棒60を形成するようにしてもよい。
これによれば、既存の蒸気発生器1に支持部材60を設置する際に伝熱管3の一部を除去する必要がないため、既存の蒸気発生器1に対して耐震施工を容易に行うことができる。
In the installation step, at least one curved support rod 60 provided along the in-plane direction and having higher rigidity than the bent portion 6 may be installed as a support member.
When the heat transfer tube 3 swings in the out-of-plane direction, the bent portion 6 abuts on the curved support rod 60 having higher rigidity than the bent portion 6 and its movement is restricted. Can be suppressed. Further, since the curved support rod 60 has a relatively small projected area on the surface including the bent portion 6, the influence of the curved support rod 60 on the heat flow along the out-of-plane direction can be reduced.
Further, in the installation step, the curved support rod 60 may be formed by providing the filling member 66 inside the reinforcement target heat transfer tube 60 ′ which is a part of the plurality of heat transfer tubes 3.
According to this, since it is not necessary to remove a part of the heat transfer tube 3 when installing the support member 60 in the existing steam generator 1, it is easy to perform earthquake-proof construction on the existing steam generator 1. Can do.

他の実施形態において、蒸気発生器1が、上述した図2及び図3に示す振止め部材22を備える場合、設置ステップでは、面外方向から視たときに振止め部材22と交差する補強対象伝熱管60’の補強領域68において、補強対象伝熱管60’の内部に充填部材66(66−1,66−2,66−3,66−4)を設ける。なお、充填部材66−1,66−2,66−3,66−4は、それぞれ、図17A及び図17Bに示した充填部材66と同一の構成であってもよい。
この方法によれば、振止め部材22と交差する補強対象伝熱管60’の補強領域68’においては、補強対象伝熱管60’の内部に充填部材66(66−1,66−2,66−3,66−4)が詰められているので、中空の伝熱管3よりも剛性が高くなる。面外方向の振動成分に起因した荷重は、剛性の高い補強対象伝熱管60’の補強領域68’に主として作用するため、補強対象伝熱管60’がつぶれることなく荷重を受けることができる。よって、Uベンド部20の耐震性を向上させることができる。
In another embodiment, when the steam generator 1 includes the above-described anti-vibration member 22 illustrated in FIGS. 2 and 3, in the installation step, the reinforcement object that intersects with the anti-vibration member 22 when viewed from the out-of-plane direction. In the reinforcing region 68 of the heat transfer tube 60 ′, filling members 66 (66-1, 66-2, 66-3, 66-4) are provided inside the heat transfer target tube 60 ′. The filling members 66-1, 66-2, 66-3, 66-4 may have the same configuration as the filling member 66 shown in FIGS. 17A and 17B.
According to this method, in the reinforcement region 68 ′ of the reinforcement target heat transfer tube 60 ′ intersecting with the anti-vibration member 22, the filling member 66 (66-1, 66-2, 66− is provided inside the reinforcement target heat transfer tube 60 ′. 3, 66-4) is packed, so that the rigidity is higher than that of the hollow heat transfer tube 3. Since the load caused by the vibration component in the out-of-plane direction mainly acts on the reinforced region 68 ′ of the reinforced object heat transfer tube 60 ′ having high rigidity, the load can be received without being crushed. Therefore, the earthquake resistance of the U bend part 20 can be improved.

複数の湾曲支持棒60と複数の振止め部材とが、面外方向において交互に配列されており、
設置ステップでは、面外方向に並んだ補強対象伝熱管60’の補強領域68’、該補強領域68’内の充填部材66(66−1,66−2,66−3,66−4)、および、振止め部材22によって、Uベンド部20を面外方向に貫通する荷重伝達経路を形成する。
この方法によれば、補強対象伝熱管60’の補強領域68’、該補強領域68’内の充填部材66(66−1,66−2,66−3,66−4)、および、振止め部材22によって、荷重伝達経路が形成されているので、面外方向におけるUベンド部20の剛性を高くすることができる。よって、Uベンド部20の耐震性を効果的に向上させることができる。
A plurality of curved support rods 60 and a plurality of bracing members are alternately arranged in the out-of-plane direction,
In the installation step, the reinforcement region 68 ′ of the heat transfer tubes 60 ′ to be reinforced arranged in the out-of-plane direction, the filling members 66 (66-1, 66-2, 66-3, 66-4) in the reinforcement region 68 ′, And the load transmission path which penetrates the U-bend part 20 in an out-of-plane direction is formed by the anti-vibration member 22.
According to this method, the reinforcing region 68 ′ of the heat transfer tube 60 ′ to be reinforced, the filling member 66 (66-1, 66-2, 66-3, 66-4) in the reinforcing region 68 ′, and the anti-rest Since the load transmission path is formed by the member 22, the rigidity of the U-bend portion 20 in the out-of-plane direction can be increased. Therefore, the earthquake resistance of the U bend part 20 can be improved effectively.

例えば、充填部材66(66−1,66−2,66−3,66−4)はワイヤ80A,80Bによって補強対象伝熱管60’内の所定位置に設置されてもよい。
具体的には、図16、図17A及び図17Bに示すように、充填部材66(66−1,66−2,66−3,66−4)は補強領域68’ごとに設置される。各充填部材66(66−1,66−2,66−3,66−4)は、第1セクション66A(66A,66A,66A,66A)と、第2セクション66B(66B,66B,66B,66B)と、を含む。第1セクション66A及び第2セクション66Bは、管長方向に対して傾斜したテーパ面を有しており、互いのテーパ面が当接した状態で配置される。第1セクション66Aのテーパ面と第2セクション66Bのテーパ面とは、管長方向に対して同一の傾斜角を有している。第1セクション66A及び第2セクション66Bのテーパ面とは反対側の面は、補強対象伝熱管60’の管壁に沿うように形成されている。そのため、第1セクション66Aと第2セクション66Bの管長方向における相対的な位置が変化することで、第1セクション66A及び第2セクション66Bの一体的な幅(管径方向の幅)は変化する。なお、テーパ面は、平面であってもよいし、管長方向に凹凸を有した面とし、第1セクション66A及び第2セクション66Bの管長方向における位置が維持されるようにしてもよい。
For example, the filling member 66 (66-1, 66-2, 66-3, 66-4) may be installed at a predetermined position in the heat transfer tube 60 ′ to be reinforced by wires 80A and 80B.
Specifically, as shown in FIGS. 16, 17A, and 17B, the filling member 66 (66-1, 66-2, 66-3, 66-4) is installed for each reinforcing region 68 ′. Each filler member 66 (66-1,66-2,66-3,66-4) includes a first section 66A (66A 1, 66A 2, 66A 3, 66A 4), second section 66B (66B 1, 66B 2 , 66B 3 , 66B 4 ). The first section 66A and the second section 66B have tapered surfaces that are inclined with respect to the tube length direction, and are arranged in a state where the tapered surfaces contact each other. The tapered surface of the first section 66A and the tapered surface of the second section 66B have the same inclination angle with respect to the tube length direction. The surfaces of the first section 66A and the second section 66B opposite to the tapered surfaces are formed along the tube wall of the heat transfer tube 60 ′ to be reinforced. Therefore, when the relative positions in the tube length direction of the first section 66A and the second section 66B change, the integral width (width in the tube diameter direction) of the first section 66A and the second section 66B changes. The tapered surface may be a flat surface or a surface having irregularities in the tube length direction, and the positions of the first section 66A and the second section 66B in the tube length direction may be maintained.

各第1セクション66A(66A,66A,66A,66A)は、ワイヤ80Aによって互いに離間した状態で連結されている。同様に、各第2セクション66B(66B,66B,66B,66B)は、ワイヤ80Bによって互いに離間した状態で連結されている。ワイヤ80Aの端部には、断面L字型の第1部材82が取り付けられている。一方、ワイヤ80Bの端部には、第1部材82によって底面が押されて、一方向において該第1部材82とともに一体的に動くように構成された第2部材84が取り付けられている。 Each first section 66A (66A 1 , 66A 2 , 66A 3 , 66A 4 ) is connected to each other by a wire 80A in a state of being separated from each other. Similarly, the second sections 66B (66B 1 , 66B 2 , 66B 3 , 66B 4 ) are connected to each other in a state of being separated from each other by a wire 80B. A first member 82 having an L-shaped cross section is attached to the end of the wire 80A. On the other hand, a second member 84 is attached to the end of the wire 80B. The second member 84 is configured such that the bottom surface is pushed by the first member 82 and moves together with the first member 82 in one direction.

上記構成において充填部材66(66−1,66−2,66−3,66−4)を設置するとき、まず、第1セクション66Aが取り付けられたワイヤ80Aと、第2セクション66Bが取り付けられたワイヤ80Bと、を補強対象伝熱管60’内に挿入する。そして、第2部材84を第1部材82に載せた状態で、第1部材82の底面からプッシャ(不図示)によってワイヤ80A及びワイヤ80Bを補強対象伝熱管60’内に押し込む。そして、充填部材66(66−1,66−2,66−3,66−4)を所定の補強領域68’まで移動させる。なお、各充填部材66が所定の補強領域68’に位置した状態において、第1部材82から最も遠い第1セクション66A1から延出するワイヤ80Aが補強対象伝熱管60’から突出するように、ワイヤ80Aの長さを予め調節しておく。   When the filling member 66 (66-1, 66-2, 66-3, 66-4) is installed in the above configuration, first, the wire 80A to which the first section 66A is attached and the second section 66B are attached. The wire 80B is inserted into the reinforcement target heat transfer tube 60 ′. Then, with the second member 84 placed on the first member 82, the wire 80A and the wire 80B are pushed into the reinforcement target heat transfer tube 60 'from the bottom surface of the first member 82 by a pusher (not shown). Then, the filling member 66 (66-1, 66-2, 66-3, 66-4) is moved to a predetermined reinforcing region 68 '. In addition, in the state where each filling member 66 is located in the predetermined reinforcing region 68 ′, the wire 80A extending from the first section 66A1 farthest from the first member 82 protrudes from the heat transfer pipe 60 ′ to be reinforced. The length of 80A is adjusted in advance.

各充填部材66が所定の補強領域68’に位置したら、補強対象伝熱管60’から突出したワイヤ82Aを引っ張り、第1セクション66Aのみを僅かに移動させる。これにより、第1セクション66A及び第2セクション66Bの一体的な幅(管径方向の幅)が広がり、第1セクション66A及び第2セクション66Bが補強対象伝熱管60’の管壁に押し付けられる。そのため、荷重伝達経路において補強対象伝熱管60’内部に隙間なく充填部材66が詰められる。その後、補強対象伝熱管60’の端部をプラグ88によって封止してもよい。   When each filling member 66 is located in a predetermined reinforcing region 68 ', the wire 82A protruding from the heat transfer tube 60' to be reinforced is pulled to move only the first section 66A slightly. Thereby, the integral width (width in the tube radial direction) of the first section 66A and the second section 66B is expanded, and the first section 66A and the second section 66B are pressed against the tube wall of the heat transfer tube 60 'to be reinforced. Therefore, the filling member 66 is packed in the reinforcing heat transfer tube 60 ′ without any gap in the load transmission path. Thereafter, the end of the heat transfer tube 60 ′ to be reinforced may be sealed with a plug 88.

また、少なくとも一つの充填部材66(66−1,66−2,66−3,66−4)の位置を検出するための位置センサ87を取り付けてもよい。この位置センサ87からの検出信号に基づいてワイヤ82A及び82Bを移動させることによって、各充填部材66を所定の補強領域68’に適切に設置することができる。図示される例では、位置センサ87は、充填部材66の近傍のワイヤ80A,80Bに取り付けられている。また、図示される例では、全ての充填部材66−1,66−2,66−3,66−4に対して位置センサ87を取り付けているが、充填部材66−1,66−2,66−3,66−4間の距離を予め取得しておけば、位置センサ87は一つであってもよい。さらに、位置センサ87は、充填部材66を設置した後に取り外せるようにしてもよい。   Further, a position sensor 87 for detecting the position of at least one filling member 66 (66-1, 66-2, 66-3, 66-4) may be attached. By moving the wires 82 </ b> A and 82 </ b> B based on the detection signal from the position sensor 87, each filling member 66 can be appropriately installed in a predetermined reinforcing region 68 ′. In the illustrated example, the position sensor 87 is attached to the wires 80 </ b> A and 80 </ b> B in the vicinity of the filling member 66. In the illustrated example, the position sensors 87 are attached to all of the filling members 66-1, 66-2, 66-3, 66-4, but the filling members 66-1, 66-2, 66 are provided. If the distance between −3 and 66-4 is acquired in advance, the number of position sensors 87 may be one. Further, the position sensor 87 may be removable after the filling member 66 is installed.

なお、上述の説明では、充填部材66が2つのセクション66A,66Bによって構成される例を示したが、設置時に取扱いやすくするために、充填部材66は1つのセクションによって構成されてもよい。また、充填部材66を設置した後、補強対象伝熱管60’の端部をプラグ88によって封止せず、補強対象伝熱管60’の内部に水を流すようにしてもよい。   In the above description, the example in which the filling member 66 is configured by the two sections 66A and 66B has been described. However, in order to facilitate handling during installation, the filling member 66 may be configured by one section. In addition, after the filling member 66 is installed, the end portion of the reinforcement target heat transfer tube 60 ′ may not be sealed with the plug 88, and water may flow inside the reinforcement target heat transfer tube 60 ′.

図19は、充填部材66の他の構成例を示す側面図である。
同図に示す例において、充填部材66は、本体部90と、本体部90内に挿入される挿入部95と、を含む。
本体部90は、小径側が円錐台形状に形成され、大径側が円柱形状に形成されており、大径側の面に設けられた略円錐台形状の凹部91と、凹部91に連通する雌ねじ部92と、を有している。また、本体部90の大径側の外周には、管長方向に沿って延在するスリット93が設けられている。スリット93は、本体部90の周方向に複数設けられていてもよい。
挿入部95は、本体部90の凹部91に対応した形状の外周面を有する円錐台部96と、本体部90の雌ねじ部92に対応して形成された雄ねじ部97と、を有している。
FIG. 19 is a side view showing another configuration example of the filling member 66.
In the example shown in the figure, the filling member 66 includes a main body portion 90 and an insertion portion 95 inserted into the main body portion 90.
The main body portion 90 is formed in a truncated cone shape on the small diameter side and formed in a cylindrical shape on the large diameter side, and has a substantially truncated cone-shaped recess portion 91 provided on the surface on the large diameter side, and a female screw portion communicating with the recess portion 91. 92. A slit 93 extending along the tube length direction is provided on the outer periphery on the large diameter side of the main body 90. A plurality of slits 93 may be provided in the circumferential direction of the main body 90.
The insertion portion 95 includes a truncated cone portion 96 having an outer peripheral surface having a shape corresponding to the concave portion 91 of the main body portion 90, and a male screw portion 97 formed corresponding to the female screw portion 92 of the main body portion 90. .

上記構成においては、補強対象伝熱管60’内に充填部材66を挿入し、補強領域68’まで移動させた後、トルク伝達ワイヤ99によって挿入部95を周方向に回転させて、挿入部95の雄ねじ部97を本体部90の雌ねじ部92にねじ込む。このとき、挿入部95の円錐台部96が本体部90の凹部91に押し込まれ、スリット93が開いて本体部90が拡径する。これにより、本体部90の外周面が補強対象伝熱管60’の管壁に押し付けられ、荷重伝達経路において補強対象伝熱管60’内部に隙間なく充填部材66が詰められる。
なお、別の構成例として、本体部90と挿入部95とを、線膨張係数の異なる材料で形成し、温度変化によって本体部90の外周面が補強対象伝熱管60’の管壁に押し付けられるようにしてもよい。
In the above configuration, the filling member 66 is inserted into the heat transfer tube 60 ′ to be reinforced, moved to the reinforced region 68 ′, and then the insertion portion 95 is rotated in the circumferential direction by the torque transmission wire 99. The male screw portion 97 is screwed into the female screw portion 92 of the main body portion 90. At this time, the truncated cone portion 96 of the insertion portion 95 is pushed into the concave portion 91 of the main body portion 90, the slit 93 is opened, and the main body portion 90 is expanded in diameter. As a result, the outer peripheral surface of the main body 90 is pressed against the tube wall of the reinforcement target heat transfer tube 60 ', and the filling member 66 is packed in the load transfer path without any gaps in the reinforcement target heat transfer tube 60'.
As another configuration example, the main body 90 and the insertion portion 95 are formed of materials having different linear expansion coefficients, and the outer peripheral surface of the main body 90 is pressed against the tube wall of the heat transfer tube 60 ′ to be reinforced by temperature change. You may do it.

図20は、充填部材66のさらに他の構成例を示す側面図である。
同図に示す例において、充填部材66は、第1台座部101と、第1歯車部102と、第2台座部103と、第2歯車部104と、第3歯車部105と、を含む。
第1台座部101は、補強対象伝熱管60’の一側の内壁面に当接するように形成されており、第2台座部103は、第1台座部101が当接する内壁面に対向する他側の内壁面に当接するように形成されている。
第1歯車部102、第2歯車部104、及び第3歯車部105は、傘歯車によって構成される。第1歯車部102は、第1台座部101に回転可能に支持されている。第2歯車部104は、第2台座部103に回転可能に支持されている。第3歯車部105は、トルク伝達ワイヤ106に着脱自在に取り付けられ、第1歯車部102及び第2歯車部104に歯合するように設けられている。
FIG. 20 is a side view showing still another configuration example of the filling member 66.
In the example shown in the figure, the filling member 66 includes a first pedestal portion 101, a first gear portion 102, a second pedestal portion 103, a second gear portion 104, and a third gear portion 105.
The first pedestal portion 101 is formed so as to abut against the inner wall surface on one side of the heat transfer tube 60 ′ to be reinforced, and the second pedestal portion 103 is opposed to the inner wall surface with which the first pedestal portion 101 abuts. It forms so that it may contact | abut to the inner wall surface of the side.
The first gear portion 102, the second gear portion 104, and the third gear portion 105 are constituted by bevel gears. The first gear portion 102 is rotatably supported by the first pedestal portion 101. The second gear portion 104 is rotatably supported by the second pedestal portion 103. The third gear portion 105 is detachably attached to the torque transmission wire 106 and is provided so as to mesh with the first gear portion 102 and the second gear portion 104.

上記構成においては、補強対象伝熱管60’内に充填部材66を挿入し、補強領域68’まで移動させた後、トルク伝達ワイヤ106によって第3歯車部105を補強対象伝熱管60’の周方向に回転させる。これに伴って、第3歯車部105に歯合した第1歯車部102及び第2歯車部104が、図中矢印方向に回転する。なお、第1歯車部102及び第2歯車部104の回転によって第1台座部101及び第2台座部103が供回りしないように周り止め構造をさらに備えていてもよい。例えば、第1台座部101及び第2台座部103は逆回転となるため、第1台座部101及び第2台座部103の相対的な回転を阻止する構成であってもよいし、第1台座部101及び第2台座部103の補強対象伝熱管60’に接する面を摩擦面としてもよい。   In the above configuration, the filling member 66 is inserted into the reinforcement target heat transfer tube 60 ′ and moved to the reinforcement region 68 ′, and then the third gear portion 105 is moved by the torque transmission wire 106 in the circumferential direction of the reinforcement target heat transfer tube 60 ′. Rotate to Accordingly, the first gear portion 102 and the second gear portion 104 meshed with the third gear portion 105 rotate in the direction of the arrow in the drawing. Note that a rotation stop structure may be further provided so that the first pedestal portion 101 and the second pedestal portion 103 do not rotate due to the rotation of the first gear portion 102 and the second gear portion 104. For example, since the first pedestal portion 101 and the second pedestal portion 103 are reversely rotated, the first pedestal portion 101 and the second pedestal portion 103 may be configured to prevent relative rotation. It is good also considering the surface which touches the reinforcement object heat exchanger tube 60 'of the part 101 and the 2nd base part 103 as a friction surface.

以上説明したように、上述の実施形態によれば、地震等により伝熱管3の面外方向への揺れが発生したとき、伝熱管3の曲り部6は支持部材40,50,60に当接し、それ以上の変位が阻止されるので、曲り部6の変位を小さくとどめることができる。よって、伝熱管の曲り部における揺れを抑制でき、蒸気発生器1の耐震性を向上することができる。   As described above, according to the above-described embodiment, when the heat transfer tube 3 is shaken in the out-of-plane direction due to an earthquake or the like, the bent portion 6 of the heat transfer tube 3 contacts the support members 40, 50, 60. Since the further displacement is prevented, the displacement of the bent portion 6 can be kept small. Therefore, the vibration in the bent part of the heat transfer tube can be suppressed, and the earthquake resistance of the steam generator 1 can be improved.

また、上述の実施形態を、原子力プラントに適用することによって、以下の利点が得られる。ここで、一実施形態に係る原子力プラントは、一次冷却材を加熱するように構成された原子炉容器(例えば加圧水型原子炉)と、二次冷却材の蒸気によって駆動されるように構成された蒸気タービンと、上記実施形態に記載される蒸気発生器1と、を備える。
上記原子力プラントによれば、伝熱管3の曲り部6における揺れを抑制でき、蒸気発生器1の耐震性能を向上させることが可能であるため、信頼性の高い原子力プラントを提供できる。
Moreover, the following advantages are acquired by applying the above-mentioned embodiment to a nuclear power plant. Here, the nuclear power plant according to an embodiment is configured to be driven by a reactor vessel (eg, a pressurized water reactor) configured to heat the primary coolant and steam of the secondary coolant. A steam turbine and the steam generator 1 described in the above embodiment are provided.
According to the nuclear power plant, the vibration at the bent portion 6 of the heat transfer tube 3 can be suppressed, and the seismic performance of the steam generator 1 can be improved. Therefore, a highly reliable nuclear power plant can be provided.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。   The present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.

例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression that excludes the presence of the other constituent elements.

1 蒸気発生器
2 胴部
3 伝熱管
4 第1直管部
5 第2直管部
6 曲り部
7 管支持板
20 Uベンド部
21 第1保持部材
22 振止め部材
24 第2保持部材(ブリッジ)
25 規制部材
25a 凹部
31(31A,31B) 円環支持部
32(32A,32B) アーム状支持部
33 外筒支持部
40(40A,40B) 支持部材(仕切り板)
50(50A,50B) 支持部材(水平支持棒)
60(60A,60B), 支持部材(湾曲支持棒)
60’ 支持部材(補強対象伝熱管)
66(66−1,66−2,66−3,66−4) 充填部材
66A(66A,66A,66A,66A) 第1セクション
66B(66B,66B,66B,66B) 第2セクション
68,68’ 補強領域
70 規則配列
71 貫通孔
72(72A,72B) 配列欠陥部
80A,80B ワイヤ
DESCRIPTION OF SYMBOLS 1 Steam generator 2 Trunk part 3 Heat exchanger tube 4 1st straight pipe part 5 2nd straight pipe part 6 Bending part 7 Pipe support plate 20 U bend part 21 1st holding member 22 Anti-vibration member 24 2nd holding member (bridge)
25 Restriction member 25a Recess 31 (31A, 31B) Ring support portion 32 (32A, 32B) Arm-like support portion 33 Outer cylinder support portion 40 (40A, 40B) Support member (partition plate)
50 (50A, 50B) Support member (horizontal support bar)
60 (60A, 60B), support member (curved support bar)
60 'support member (heat transfer tube to be reinforced)
66 (66-1,66-2,66-3,66-4) filling member 66A (66A 1, 66A 2, 66A 3, 66A 4) first section 66B (66B 1, 66B 2, 66B 3, 66B 4 ) Second section 68, 68 'Reinforcement region 70 Regular arrangement 71 Through hole 72 (72A, 72B) Arrangement defect part 80A, 80B Wire

Claims (24)

伝熱管内を流れる流体との熱交換によって蒸気を生成するための蒸気発生器であって、
前記流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、
前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材と、を備え、
曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記規則配列は、前記面内方向に沿った少なくとも一列において前記伝熱管が存在しない配列欠陥部を含み、
前記支持部材は、前記配列欠陥部に設けられており、
前記支持部材は、前記管支持板に固定され、複数の前記曲り部の間において前記面内方向に沿って設けられた少なくとも一枚の仕切り板を含み、
前記複数の伝熱管の前記曲り部によって前記管支持板の上方に形成される半球形状のUベンド部の外形に沿って設けられた保持部材と、
前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記保持部材から前記Uベンド部の前記半球形状の径方向における内側に向かって延在する複数の振止め部材と、をさらに備え、
前記仕切り板は、前記複数の振止め部材によって両側から挟まれており、
前記仕切り板は、前記Uベンド部の前記外形に沿った円弧状の縁部を有し、
前記縁部は、前記保持部材に固定される
ことを特徴とする蒸気発生器。
A steam generator for generating steam by heat exchange with a fluid flowing in a heat transfer pipe,
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bend located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes each having a portion;
A tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted;
A support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction orthogonal to a plane including the bent portion,
The plurality of heat transfer tubes such that a plurality of the bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and a plurality of the bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion pass are arranged according to a regular arrangement in a top view of the pipe support plate,
It said regular sequence comprises a sequence defect portion in which the heat transfer tubes are not present in at least one row along the plane Direction,
The support member is provided in the alignment defect portion ,
The support member includes at least one partition plate fixed to the tube support plate and provided along the in-plane direction between the plurality of bent portions.
A holding member provided along the outer shape of a hemispherical U-bend portion formed above the tube support plate by the bent portions of the plurality of heat transfer tubes;
A plurality of anti-vibration members provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction and extending inward in the radial direction of the hemispherical shape of the U-bend portion from the holding member; Further comprising
The partition plate is sandwiched from both sides by the plurality of anti-vibration members,
The partition plate has an arc-shaped edge along the outer shape of the U-bend portion,
The steam generator, wherein the edge is fixed to the holding member .
前記蒸気発生器の内壁に支持され、且つ、前記Uベンド部を囲む円環支持部をさらに備え、
前記円環支持部に設けた凹部に前記仕切り板の縁部が遊嵌されていることを特徴とする請求項に記載の蒸気発生器。
An annular support portion supported on the inner wall of the steam generator and surrounding the U-bend portion;
Steam generator according to claim 1, characterized in that the edge of the partition plate in a recess provided in said annular support portion is loosely fitted.
前記仕切り板には、少なくとも一つの開口が設けられていることを特徴とする請求項1又は2に記載の蒸気発生器。 The steam generator according to claim 1 or 2 , wherein at least one opening is provided in the partition plate. 前記開口は、開口径が最小となるオリフィス部を有することを特徴とする請求項に記載の蒸気発生器。 The steam generator according to claim 3 , wherein the opening has an orifice portion having a minimum opening diameter. 前記少なくとも一枚の仕切り板は、前記面外方向に並ぶように前記面内方向に沿って設けられた複数の仕切り板を含むことを特徴とする請求項1乃至4の何れか一項に記載の蒸気発生器。 Wherein the at least one partition plate, according to any one of claims 1 to 4, characterized in that it comprises a plurality of partition plates provided along the plane direction so as to be aligned in the out of plane direction Steam generator. 伝熱管内を流れる流体との熱交換によって蒸気を生成するための蒸気発生器であって、
前記流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、
前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材と、を備え、
曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記規則配列は、前記面内方向に沿った少なくとも一列において前記伝熱管が存在しない配列欠陥部を含み、
前記支持部材は、前記配列欠陥部に設けられており、
前記支持部材は、前記面内方向に沿って設けられ、且つ、前記曲り部よりも剛性が高い少なくとも一本の湾曲支持棒を含むことを特徴とする蒸気発生器。
A steam generator for generating steam by heat exchange with a fluid flowing in a heat transfer pipe,
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bend located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes each having a portion;
A tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted;
A support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction orthogonal to a plane including the bent portion,
The plurality of heat transfer tubes such that a plurality of the bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and a plurality of the bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion pass are arranged according to a regular arrangement in a top view of the pipe support plate,
The regular arrangement includes an arrangement defect portion in which the heat transfer tubes do not exist in at least one row along the in-plane direction,
The support member is provided in the alignment defect portion,
The support member is provided along the plane direction, and, steam generator you wherein a rigidity than the bent portion comprises a high least one curved support bars.
前記湾曲支持棒は、前記伝熱管と同一の直径を有し、且つ、中実であることを特徴とする請求項に記載の蒸気発生器。 The steam generator according to claim 6 , wherein the curved support rod has the same diameter as the heat transfer tube and is solid. 前記伝熱管よりも管厚又は管径が大きい少なくとも一本の高剛性伝熱管をさらに備え、
前記湾曲支持棒は、前記高剛性伝熱管の曲り部であることを特徴とする請求項に記載の蒸気発生器。
Further comprising at least one high-rigidity heat transfer tube having a tube thickness or a tube diameter larger than that of the heat transfer tube,
The steam generator according to claim 6 , wherein the curved support rod is a bent portion of the high-rigidity heat transfer tube.
複数の前記湾曲支持棒が、互いに連結されたことを特徴とする請求項6乃至8の何れか一項に記載の蒸気発生器。 The steam generator according to any one of claims 6 to 8 , wherein the plurality of curved support rods are connected to each other. 前記複数の伝熱管の前記曲り部が、前記管支持板の上方において半球形状のUベンド部を形成しており、
前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記Uベンド部の前記半球形状の径方向に沿って延在する複数の振止め部材と、をさらに備え、
前記湾曲支持棒は、
前記平面に平行な面内に設けられる中空湾曲管部と、
少なくとも、前記面外方向から視たときに前記振止め部材と交差する前記中空湾曲管部の補強領域において、前記中空湾曲管部の内部に設けられる充填部材と、
を含むことを特徴とする請求項6、8、又は9に記載の蒸気発生器。
The bent portions of the plurality of heat transfer tubes form a hemispherical U-bend portion above the tube support plate;
A plurality of bracing members provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction and extending along the radial direction of the hemispherical shape of the U-bend portion;
The curved support rod is
A hollow curved pipe provided in a plane parallel to the plane;
At least in a reinforcing region of the hollow curved tube portion that intersects the anti-vibration member when viewed from the out-of-plane direction, a filling member provided inside the hollow curved tube portion;
The steam generator according to claim 6, 8, or 9 .
複数の前記湾曲支持棒と複数の前記振止め部材とが、前記面外方向において交互に配列され、
前記面外方向に並んだ前記中空湾曲管部の前記補強領域、該補強領域内の前記充填部材、および、前記振止め部材によって、前記Uベンド部を前記面外方向に貫通する荷重伝達経路が形成されていることを特徴とする請求項10に記載の蒸気発生器。
A plurality of the curved support rods and a plurality of the bracing members are alternately arranged in the out-of-plane direction,
A load transmission path that penetrates the U-bend portion in the out-of-plane direction by the reinforcing region of the hollow curved tube portions arranged in the out-of-plane direction, the filling member in the reinforcing region, and the anti-vibration member. The steam generator according to claim 10 , wherein the steam generator is formed.
前記蒸気発生器の内壁に支持され、且つ、前記Uベンド部を囲む円環支持部をさらに備え、
前記荷重伝達経路の両端において前記湾曲支持棒又は前記振止め部材が、前記円環支持部に設けた凹部に遊嵌されていることを特徴とする請求項11に記載の蒸気発生器。
An annular support portion supported on the inner wall of the steam generator and surrounding the U-bend portion;
The steam generator according to claim 11 , wherein the curved support rod or the anti-vibration member is loosely fitted in a recess provided in the annular support portion at both ends of the load transmission path.
前記充填部材は、前記中空湾曲管部の前記補強領域及び該補強領域の両側に位置する一対の前記振止め部材を含む前記中空湾曲管部の管長方向に沿った断面内に設けられた複数のセクションによって構成されることを特徴とする請求項10乃至12の何れか一項に記載の蒸気発生器。 The filling member includes a plurality of sections provided in a cross section along the tube length direction of the hollow curved tube portion including the reinforcing region of the hollow curved tube portion and a pair of the anti-vibration members located on both sides of the reinforcing region. The steam generator according to any one of claims 10 to 12 , wherein the steam generator is constituted by a section. 前記湾曲支持棒は、一部の前記伝熱管の内部に前記充填部材を設置することで形成されたことを特徴とする請求項10乃至13の何れか一項に記載の蒸気発生器。 The steam generator according to any one of claims 10 to 13 , wherein the curved support rod is formed by installing the filling member inside a part of the heat transfer tubes. 伝熱管内を流れる流体との熱交換によって蒸気を生成するための蒸気発生器であって、
前記流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、
前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材と、を備え、
曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記規則配列は、前記面外方向に沿った少なくとも一列において前記伝熱管が存在しない配列欠陥部を含み、
前記支持部材は、前記配列欠陥部に設けられており、
前記支持部材は、前記面外方向に沿って水平方向に延在し、前記蒸気発生器の内壁に両端が支持される少なくとも一本の水平支持棒を含むことを特徴とする蒸気発生器。
A steam generator for generating steam by heat exchange with a fluid flowing in a heat transfer pipe,
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bend located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes each having a portion;
A tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted;
A support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction orthogonal to a plane including the bent portion,
The plurality of heat transfer tubes such that a plurality of the bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and a plurality of the bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion pass are arranged according to a regular arrangement in a top view of the pipe support plate,
The regular arrangement includes an arrangement defect portion in which the heat transfer tubes do not exist in at least one row along the out-of-plane direction,
The support member is provided in the alignment defect portion,
Said support member extends in a horizontal direction along the surface outward direction, steam generated across the inner wall of the steam generator you comprising a horizontal supporting bar of the at least one supported vessel.
伝熱管内を流れる流体との熱交換によって蒸気を生成するための蒸気発生器であって、
前記流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、
前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材と、を備え、
曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記規則配列は、前記面内方向又は前記面外方向に沿った少なくとも一列において前記伝熱管が存在しない配列欠陥部を含み、
前記支持部材は、前記配列欠陥部に設けられており、
前記支持部材は、前記面外方向または前記面内方向に沿って水平方向に延在し、前記蒸気発生器の内壁に両端が支持される少なくとも一本の水平支持棒を含み、
前記蒸気発生器の内壁に支持され、且つ、前記複数の伝熱管の前記曲り部によって前記管支持板の上方に形成される半球形状のUベンド部を囲む円環支持部をさらに備え、
前記少なくとも一本の水平支持棒の前記両端は、前記円環支持部によって支持されていることを特徴とする蒸気発生器。
A steam generator for generating steam by heat exchange with a fluid flowing in a heat transfer pipe,
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bend located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes each having a portion;
A tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted;
A support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction orthogonal to a plane including the bent portion,
The plurality of heat transfer tubes such that a plurality of the bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and a plurality of the bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion pass are arranged according to a regular arrangement in a top view of the pipe support plate,
The regular arrangement includes an arrangement defect portion in which the heat transfer tubes do not exist in at least one row along the in-plane direction or the out-of-plane direction,
The support member is provided in the alignment defect portion,
The support member includes at least one horizontal support bar that extends in the horizontal direction along the out-of-plane direction or the in-plane direction and is supported at both ends by the inner wall of the steam generator;
An annular support portion that is supported on the inner wall of the steam generator and surrounds a hemispherical U-bend portion formed above the tube support plate by the bent portions of the plurality of heat transfer tubes;
Wherein the ends of at least one of the horizontal support bar, steam generator you characterized in that it is supported by the annular supporting portion.
一次冷却材を加熱するように構成された原子炉容器と、
二次冷却材の蒸気によって駆動されるように構成された蒸気タービンと、
前記一次冷却材との熱交換によって前記二次冷却材の前記蒸気を発生させるように構成された請求項1乃至16の何れか一項に記載の蒸気発生器と、
を備えることを特徴とする原子力プラント。
A reactor vessel configured to heat the primary coolant;
A steam turbine configured to be driven by the steam of the secondary coolant;
The steam generator according to any one of claims 1 to 16 , wherein the steam generator is configured to generate the steam of the secondary coolant by heat exchange with the primary coolant.
A nuclear plant characterized by comprising:
流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、を有し、前記伝熱管内を流れる前記流体との熱交換によって蒸気を生成するための蒸気発生器の耐震補強方法であって、
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材を前記蒸気発生器に設置する設置ステップを備え、
前記蒸気発生器では、曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、
前記設置ステップでは、
前記規則配列のうち前記面内方向に沿った少なくとも一列において、前記伝熱管に替えて、前記面内方向に沿って設けられ、且つ、前記曲り部よりも剛性が高い少なくとも一本の湾曲支持棒を前記支持部材として設置する
ことを特徴とする蒸気発生器の耐震補強方法。
A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bent portion located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes, and a tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted. A method for seismic reinforcement of a steam generator for generating steam by heat exchange with the fluid flowing in the heat transfer pipe,
An installation step of installing in the steam generator a support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction perpendicular to the plane including the bent portion;
In the steam generator, the plurality of bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and the plurality of bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion of the plurality of heat transfer tubes pass are arranged according to a regular arrangement in a top view of the tube support plate,
In the installation step,
In at least one row along the Direction within the plane of the ordered array, instead of the heat transfer tube, arranged along the plane direction, and said at least one stiffer than curved portion curved support A method for seismic reinforcement of a steam generator, characterized in that a rod is installed as the support member.
前記設置ステップでは、前記複数の伝熱管のうち一部である補強対象伝熱管の内部に充填部材を設けることで前記湾曲支持棒を形成することを特徴とする請求項18に記載の蒸気発生器の耐震補強方法。 19. The steam generator according to claim 18 , wherein, in the installation step, the curved support rod is formed by providing a filling member inside a heat transfer tube to be reinforced that is a part of the plurality of heat transfer tubes. Seismic reinforcement method. 前記複数の伝熱管の前記曲り部が、前記管支持板の上方において半球形状のUベンド部を形成しており、
前記蒸気発生器は、前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記Uベンド部の前記半球形状の径方向に沿って延在する複数の振止め部材をさらに有し、
前記設置ステップでは、
前記面外方向から視たときに前記振止め部材と交差する前記補強対象伝熱管の補強領域において、前記補強対象伝熱管の内部に前記充填部材を設ける
ことを特徴とする請求項19に記載の蒸気発生器の耐震補強方法。
The bent portions of the plurality of heat transfer tubes form a hemispherical U-bend portion above the tube support plate;
The steam generator is provided between the bent portion of the heat transfer tubes that are adjacent in the out of plane direction, a plurality of vibration stopper member extending along the radial direction of the hemispherical shape of the U-bend portion In addition,
In the installation step,
In reinforcing the region of the reinforcement subject heat transfer tube intersecting the vibration preventing member when viewed from the surface outward, according to claim 19, characterized in that providing the filling member to the inside of the reinforcing target heat transfer tube Seismic reinforcement method for steam generators.
複数の前記湾曲支持棒と複数の前記振止め部材とが、前記面外方向において交互に配列されており、
前記設置ステップでは、前記面外方向に並んだ前記補強対象伝熱管の前記補強領域、該補強領域内の前記充填部材、および、前記振止め部材によって、前記Uベンド部を前記面外方向に貫通する荷重伝達経路を形成することを特徴とする請求項20に記載の蒸気発生器の耐震補強方法。
A plurality of the curved support rods and a plurality of the bracing members are alternately arranged in the out-of-plane direction;
In the installation step, the U-bend portion is penetrated in the out-of-plane direction by the reinforcement region of the heat transfer tubes to be reinforced arranged in the out-of-plane direction, the filling member in the reinforcement region, and the anti-vibration member. 21. The method for seismic reinforcement of a steam generator according to claim 20 , wherein a load transmission path is formed.
流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、を有し、前記伝熱管内を流れる前記流体との熱交換によって蒸気を生成するための蒸気発生器の耐震補強方法であって、A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bent portion located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes, and a tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted. A method for seismic reinforcement of a steam generator for generating steam by heat exchange with the fluid flowing in the heat transfer pipe,
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材を前記蒸気発生器に設置する設置ステップを備え、An installation step of installing in the steam generator a support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction perpendicular to the plane including the bent portion;
前記蒸気発生器では、曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、In the steam generator, the plurality of bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and the plurality of bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion of the plurality of heat transfer tubes pass are arranged according to a regular arrangement in a top view of the tube support plate,
前記複数の伝熱管の前記曲り部が、前記管支持板の上方において半球形状のUベンド部を形成しており、The bent portions of the plurality of heat transfer tubes form a hemispherical U-bend portion above the tube support plate;
前記蒸気発生器は、The steam generator
前記複数の伝熱管の前記曲り部によって前記管支持板の上方に形成される半球形状のUベンド部の外形に沿って設けられた保持部材と、A holding member provided along the outer shape of a hemispherical U-bend portion formed above the tube support plate by the bent portions of the plurality of heat transfer tubes;
前記面外方向において隣接する前記伝熱管の前記曲り部の間において設けられ、前記保持部材から前記Uベンド部の前記半球形状の径方向における内側に向かって延在する複数の振止め部材と、A plurality of anti-vibration members provided between the bent portions of the heat transfer tubes adjacent in the out-of-plane direction and extending inward in the radial direction of the hemispherical shape of the U-bend portion from the holding member;
を有し、Have
前記設置ステップでは、In the installation step,
前記規則配列のうち前記面内方向に沿った少なくとも一列において、前記伝熱管に替えて、複数の前記曲り部の間において前記面内方向に沿って延在する前記支持部材としての仕切り板を前記管支持板に固定するとともに、In at least one row along the in-plane direction of the regular array, a partition plate as the support member extending along the in-plane direction between the plurality of bent portions instead of the heat transfer tube While fixing to the tube support plate,
前記複数の振止め部材によって前記仕切り板を両側から挟んだ状態で、前記Uベンド部の前記外形に沿った円弧状の前記仕切り板の縁部を前記保持部材に固定するAn edge of the arc-shaped partition plate along the outer shape of the U-bend portion is fixed to the holding member in a state where the partition plate is sandwiched from both sides by the plurality of anti-vibration members.
ことを特徴とする蒸気発生器の耐震補強方法。A method for seismic reinforcement of steam generators.
流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、を有し、前記伝熱管内を流れる前記流体との熱交換によって蒸気を生成するための蒸気発生器の耐震補強方法であって、A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bent portion located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes, and a tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted. A method for seismic reinforcement of a steam generator for generating steam by heat exchange with the fluid flowing in the heat transfer pipe,
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材を前記蒸気発生器に設置する設置ステップを備え、An installation step of installing in the steam generator a support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction perpendicular to the plane including the bent portion;
前記蒸気発生器では、曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、In the steam generator, the plurality of bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and the plurality of bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion of the plurality of heat transfer tubes pass are arranged according to a regular arrangement in a top view of the tube support plate,
前記設置ステップでは、In the installation step,
前記規則配列のうち前記面外方向に沿った少なくとも一列において、前記伝熱管に替えて、前記面外方向に沿って水平方向に延在し、前記蒸気発生器の内壁に両端が支持される少なくとも一本の水平支持棒を前記支持部材として設置するIn at least one row along the out-of-plane direction of the regular array, instead of the heat transfer tube, it extends in the horizontal direction along the out-of-plane direction, and at least both ends are supported by the inner wall of the steam generator. One horizontal support rod is installed as the support member
ことを特徴とする蒸気発生器の耐震補強方法。A method for seismic reinforcement of steam generators.
流体の入口側に位置する第1直管部と、前記流体の出口側に位置する第2直管部と、前記第1直管部と前記第2直管部との間に位置する曲り部と、をそれぞれ有する複数の伝熱管と、前記複数の伝熱管の前記第1直管部及び前記第2直管部が挿通される複数の貫通孔が形成された管支持板と、を有し、前記伝熱管内を流れる前記流体との熱交換によって蒸気を生成するための蒸気発生器の耐震補強方法であって、A first straight pipe portion located on the fluid inlet side; a second straight pipe portion located on the fluid outlet side; and a bent portion located between the first straight pipe portion and the second straight pipe portion. A plurality of heat transfer tubes, and a tube support plate formed with a plurality of through holes through which the first straight tube portion and the second straight tube portion of the plurality of heat transfer tubes are inserted. A method for seismic reinforcement of a steam generator for generating steam by heat exchange with the fluid flowing in the heat transfer pipe,
前記曲り部を含む平面に直交する面外方向への前記複数の伝熱管の動きを規制するための支持部材を前記蒸気発生器に設置する設置ステップを備え、An installation step of installing in the steam generator a support member for restricting movement of the plurality of heat transfer tubes in an out-of-plane direction perpendicular to the plane including the bent portion;
前記蒸気発生器では、曲率半径が異なる複数の前記曲り部が前記平面に平行な面内方向に沿って並び、且つ、曲率半径が同一の複数の前記曲り部が前記面外方向に並ぶように、前記複数の伝熱管の前記第1直管部及び前記第2直管部の通過する前記複数の貫通孔が前記管支持板の上面視において規則配列に従って配列されており、In the steam generator, the plurality of bent portions having different curvature radii are arranged along an in-plane direction parallel to the plane, and the plurality of bent portions having the same curvature radius are arranged in the out-of-plane direction. The plurality of through-holes through which the first straight pipe portion and the second straight pipe portion of the plurality of heat transfer tubes pass are arranged according to a regular arrangement in a top view of the tube support plate,
前記蒸気発生器は、前記蒸気発生器の内壁に支持され、且つ、前記複数の伝熱管の前記曲り部によって前記管支持板の上方に形成される半球形状のUベンド部を囲む円環支持部をさらに有し、The steam generator is supported by an inner wall of the steam generator, and an annular support portion surrounding a hemispherical U-bend portion formed above the tube support plate by the bent portions of the plurality of heat transfer tubes. Further comprising
前記設置ステップでは、In the installation step,
前記規則配列のうち前記面外方向又は前記面内方向に沿った少なくとも一列において、前記伝熱管に替えて、前記面外方向又は前記面内方向に沿って水平方向に延在する前記支持部材としての少なくとも一本の水平支持棒を配置し、As the support member that extends in the horizontal direction along the out-of-plane direction or the in-plane direction instead of the heat transfer tube in at least one row along the out-of-plane direction or the in-plane direction of the regular array. At least one horizontal support bar
前記円環支持部によって前記水平支持棒の両端を支持させるBoth ends of the horizontal support rod are supported by the annular support portion.
ことを特徴とする蒸気発生器の耐震補強方法。A method for seismic reinforcement of steam generators.
JP2015043057A 2015-03-05 2015-03-05 Steam generator, nuclear power plant, and seismic reinforcement method for steam generator Active JP6499478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043057A JP6499478B2 (en) 2015-03-05 2015-03-05 Steam generator, nuclear power plant, and seismic reinforcement method for steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043057A JP6499478B2 (en) 2015-03-05 2015-03-05 Steam generator, nuclear power plant, and seismic reinforcement method for steam generator

Publications (2)

Publication Number Publication Date
JP2016161266A JP2016161266A (en) 2016-09-05
JP6499478B2 true JP6499478B2 (en) 2019-04-10

Family

ID=56846653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043057A Active JP6499478B2 (en) 2015-03-05 2015-03-05 Steam generator, nuclear power plant, and seismic reinforcement method for steam generator

Country Status (1)

Country Link
JP (1) JP6499478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047601A (en) * 2019-05-22 2019-07-23 上海核工程研究设计院有限公司 A kind of U-shaped heat-transfer pipe single tube dynamic property tester of nuclear power plant's vertical steam generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072786A (en) * 1990-07-27 1991-12-17 Electric Power Research Institute, Inc. Anti-vibration support of U-bend flow tubes in a nuclear steam generator
FR2709174B1 (en) * 1993-08-20 1995-11-17 Framatome Sa Heat exchanger comprising means for holding anti-vibration bars inserted between the tubes of the heat exchanger bundle.
JP5901244B2 (en) * 2011-11-18 2016-04-06 三菱重工業株式会社 Steam generator
JP2014006165A (en) * 2012-06-25 2014-01-16 Mitsubishi Heavy Ind Ltd Vibration suppressing device for heat transfer tube and steam generator

Also Published As

Publication number Publication date
JP2016161266A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6453343B2 (en) Steam generator tube support
JP5427375B2 (en) U-tube support with protrusion
CN101944395B (en) Nuclear fuel assembly support grid
JP6463691B2 (en) Fuel rod support insert for spacer grid of nuclear fuel assembly, spacer grid, and nuclear fuel assembly
JP6657523B2 (en) Steam generator with inclined tube sheet
EP3050063B1 (en) Steam generator and method of securing tubes within a steam generator against vibration
EP2960614B1 (en) Device and method for suppressing vibration of heat transfer tube, and steam generator
JP2004003982A (en) Nuclear reactor equipped with improved grid
JP2010071978A (en) Tube support system for nuclear steam generator
JP6499478B2 (en) Steam generator, nuclear power plant, and seismic reinforcement method for steam generator
US20090178779A1 (en) Heat exchanger
JP6298939B2 (en) Reactor support structure
FI126040B (en) Particle separator and fluidized bed reactor that can be connected to a fluidized bed reactor
JP2011501174A5 (en)
JP5901244B2 (en) Steam generator
US20180033500A1 (en) Externally integrated once-through steam generator type small modular reactor
JPWO2014076811A1 (en) Natural circulation boiling water reactor and its chimney
US20160163402A1 (en) Nuclear fuel assembly support grid
WO2013002118A1 (en) Steam generator
JP5885949B2 (en) Steam generator
KR102124721B1 (en) Floor-supported boiler
JP5901266B2 (en) Steam generator
WO2014050259A1 (en) Steam generator and assembly method for steam generator
US20160012923A1 (en) Nuclear reactor shroud
JP2016084971A (en) Steam generator and heat transfer pipe support method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6499478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150