JP6497745B2 - Optical material, optical element, and method for changing refractive index of article - Google Patents

Optical material, optical element, and method for changing refractive index of article Download PDF

Info

Publication number
JP6497745B2
JP6497745B2 JP2015180389A JP2015180389A JP6497745B2 JP 6497745 B2 JP6497745 B2 JP 6497745B2 JP 2015180389 A JP2015180389 A JP 2015180389A JP 2015180389 A JP2015180389 A JP 2015180389A JP 6497745 B2 JP6497745 B2 JP 6497745B2
Authority
JP
Japan
Prior art keywords
general formula
group
refractive index
compound represented
oxygen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015180389A
Other languages
Japanese (ja)
Other versions
JP2017059277A (en
Inventor
亀山 敦
敦 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2015180389A priority Critical patent/JP6497745B2/en
Publication of JP2017059277A publication Critical patent/JP2017059277A/en
Application granted granted Critical
Publication of JP6497745B2 publication Critical patent/JP6497745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光学材料、光学素子、及び物品の屈折率を変化させる方法に関する。より具体的には、光照射を受けることで生じる構造変化により屈折率が大きくなる有機化合物を使用した、光学材料、そのような光学材料を含む光学素子、及び物品の屈折率を変化させる方法に関する。   The present invention relates to an optical material, an optical element, and a method for changing the refractive index of an article. More specifically, the present invention relates to an optical material, an optical element including such an optical material, and a method for changing the refractive index of an article using an organic compound whose refractive index is increased by a structural change caused by light irradiation. .

自身の屈折率を変化させる機能を有する材料は、高分子導波路や光スイッチのような光通信デバイスや、光ディスクのように高密度な記録容量を有する記録デバイス等の開発に有用である。近年、通信技術や情報技術の急激な発展に伴い、光信号を光のまま変換、加工することのできるデバイスの中核を担うこうした材料の開発が強く求められている。   A material having a function of changing its own refractive index is useful for developing an optical communication device such as a polymer waveguide or an optical switch, a recording device having a high recording capacity such as an optical disk, and the like. In recent years, with the rapid development of communication technology and information technology, there is a strong demand for the development of such materials that serve as the core of devices that can convert and process optical signals as light.

このような材料の一つとして、例えば、非特許文献1には、高分子中にフォトクロミック色素を分散させたものが提案されているが、フォトクロミック色素は光を吸収する性質があるとの観点や、デバイス作製のために十分な成膜性を確保する必要があるとの観点から、高分子中に分散させることのできるフォトクロミック色素の上限量が存在し、得られる屈折率変換性能には限界がある。   As one of such materials, for example, Non-Patent Document 1 proposes a material in which a photochromic dye is dispersed in a polymer. The photochromic dye has a property of absorbing light, From the viewpoint that it is necessary to ensure sufficient film formability for device production, there is an upper limit amount of the photochromic dye that can be dispersed in the polymer, and there is a limit to the obtained refractive index conversion performance. is there.

また、自身の屈折率を増加させる材料については数例しか知られておらず、例えば、非特許文献2には、ナフチルエステル化合物の光フリース転位反応を利用した屈折率変換材料が提案されている。しかし、この光フリース転位反応は、ナフチルエステル化合物の転化率は高いものの、屈折率の増加した転位生成物であるヒドロキシケトンの生成率は低く、屈折率の増加に寄与しない、脱炭酸によって生じた化合物が主生成物になるという問題を有する。この問題は、材料を実用化する上で大きな障害となる。   In addition, only a few examples of materials that increase the refractive index of itself are known. For example, Non-Patent Document 2 proposes a refractive index conversion material that utilizes the optical fleece rearrangement reaction of a naphthyl ester compound. . However, this photo-Fries rearrangement reaction was caused by decarboxylation, although the conversion rate of the naphthyl ester compound was high, but the generation rate of the hydroxyketone, a rearrangement product with an increased refractive index, was low and did not contribute to the increase in the refractive index The problem is that the compound becomes the main product. This problem is a major obstacle to putting the material into practical use.

Murase,S.;Shibata,K.;Miyashita,Y.;Horie,K.Polym.J.,2003,35,203−207.Murase, S .; Shibata, K .; Miyashita, Y .; Horie, K .; Polym. J. et al. 2003, 35, 203-207. Griesser,T.;Hofler,T.;Jakopic,G.;Belzik,M.;Kern,W.;Trimmel,G.J.Mater.Chem.,2009,19,4557−4565Griesser, T .; Hofler, T .; Jakopic, G .; Belzik, M .; Kern, W .; Trimmel, G .; J. et al. Mater. Chem. , 2009, 19, 4557-4565

本発明は、以上の状況に鑑みてなされたものであり、光照射を受けることによって屈折率が大きくなる特性を有する光学材料、及びそれを用いた光学素子を提供することを第1の目的とする。また、本発明は、光照射を受けることによって、屈折率が大きくなる特性を有する化合物を利用して物品の屈折率を変化させる方法を提供することを第2の目的とする。   The present invention has been made in view of the above situation, and it is a first object of the present invention to provide an optical material having a characteristic that a refractive index increases upon receiving light irradiation, and an optical element using the same. To do. The second object of the present invention is to provide a method for changing the refractive index of an article by using a compound having a characteristic that the refractive index increases upon receiving light irradiation.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下記一般式(1)で表す化合物が、紫外線の照射を受けた際にラジカル的な転位反応による構造変化を生じてC=Xで表される極性基(XはS又はOである。)を生成し、その屈折率が大きくなることを見出した。このような屈折率の変化は、次のような理由によりもたらされるものと考えられる。すなわち、有機化合物の屈折率nは、Rを分子屈折とし、Vを分子体積とすると、下記数式で表されるLorents−Lorenzの式に基づいて理解することができるが、上記構造変化をもたらす反応前後において分子体積(V)が殆ど変化しないとすると、屈折率は化合物がもつ官能基の分子屈折の変化に依存することになる。分子屈折は、化学構造中の原子団や官能基の原子屈折から予想することができ、大きな原子屈折を示す原子団や官能基が存在すると分子屈折は大きくなる。構造変化後に生じるカルボニル基(C=O)やチオカルボニル基(C=S)中に含まれる酸素原子や硫黄原子は、そのような構造変化を生じる前よりも大きな原子屈折を持つので、上記のような構造変化でこれらの極性基を生じると分子全体の屈折率が大きくなることになる。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the compound represented by the following general formula (1) undergoes a structural change due to radical rearrangement reaction when irradiated with ultraviolet rays, resulting in C It was found that a polar group represented by = X 1 (X 1 is S or O) was generated, and the refractive index thereof was increased. Such a change in refractive index is considered to be caused by the following reason. That is, the refractive index n of an organic compound can be understood based on the Lorents-Lorenz equation represented by the following equation, where R is molecular refraction and V is molecular volume. If the molecular volume (V) hardly changes before and after, the refractive index depends on the change in molecular refraction of the functional group of the compound. Molecular refraction can be predicted from atomic refraction of atomic groups and functional groups in the chemical structure, and molecular refraction increases when there are atomic groups and functional groups exhibiting large atomic refraction. Since the oxygen atom and sulfur atom contained in the carbonyl group (C═O) and thiocarbonyl group (C═S) generated after the structural change have larger atomic refraction than before the structural change occurs, When these polar groups are generated by such a structural change, the refractive index of the whole molecule increases.

本発明は以上のような知見により完成されたものであり、具体的には以下のようなものを提供する。   The present invention has been completed based on the above findings, and specifically provides the following.

(1)本発明は、光照射を受けることで構造変化を生じる下記一般式(1)で表される化合物を含み、その構造変化により屈折率が大きくなることを特徴とする光学材料である。
(上記一般式(1)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Aで表される環構造は芳香環であり、Arは置換されていてもよいアリール基である。)
(1) The present invention is an optical material including a compound represented by the following general formula (1) that undergoes a structural change upon receiving light irradiation, and has a refractive index that is increased by the structural change.
(In the general formula (1), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, the ring structure represented by A is an aromatic ring, and Ar is substituted. An aryl group which may be

上記一般式(1)で表される化合物は、下記一般式(2)で表される化合物であることが好ましい。
(上記一般式(2)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Arは置換されていてもよいアリール基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数である。)
The compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
(In the general formula (2), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, Ar is an optionally substituted aryl group, and R 1 is Each independently represents a monovalent organic group, and n is an integer of 0 to 4.)

上記一般式(1)又は(2)で表される化合物は、下記一般式(3)で表される化合物であることが好ましい。
(上記一般式(3)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Rはそれぞれ独立に一価の有機基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数であり、mは0〜5の整数である。)
The compound represented by the general formula (1) or (2) is preferably a compound represented by the following general formula (3).
(In the above general formula (3), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, R 1 is each independently a monovalent organic group, R 2 Are each independently a monovalent organic group, n is an integer of 0 to 4, and m is an integer of 0 to 5.)

(2)また、本発明は、上記の光学材料を、光照射を受けることにより屈折率を変化させる部材として含む光学素子でもある。   (2) Moreover, this invention is also an optical element which contains said optical material as a member which changes a refractive index by receiving light irradiation.

(3)また、本発明は、光照射を受けることにより生じる構造変化により屈折率が大きくなる下記一般式(1)で表される化合物を利用して物品の屈折率を変化させる方法でもある。
(上記一般式(1)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Aで表される環構造は芳香環であり、Arは置換されていてもよいアリール基である。)
(3) Moreover, this invention is also a method of changing the refractive index of articles | goods using the compound represented by following General formula (1) from which a refractive index becomes large by the structural change which arises by receiving light irradiation.
(In the general formula (1), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, the ring structure represented by A is an aromatic ring, and Ar is substituted. An aryl group which may be

上記一般式(1)で表される化合物は、下記一般式(2)で表される化合物であることが好ましい。
(上記一般式(2)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Arは置換されていてもよいアリール基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数である。)
The compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
(In the general formula (2), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, Ar is an optionally substituted aryl group, and R 1 is Each independently represents a monovalent organic group, and n is an integer of 0 to 4.)

上記一般式(1)又は(2)で表される化合物は、下記一般式(3)で表される化合物であることが好ましい。
(上記一般式(3)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Rはそれぞれ独立に一価の有機基、ハロゲン原子、アルコキシ基、チオアルキル基、N−置換アミド基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数であり、mは0〜5の整数である。)
The compound represented by the general formula (1) or (2) is preferably a compound represented by the following general formula (3).
(In the general formula (3), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, and each R 1 is independently a monovalent organic group, a halogen atom, or an alkoxy. A group, a thioalkyl group, and an N-substituted amide group, each R 2 is independently a monovalent organic group, n is an integer of 0 to 4, and m is an integer of 0 to 5.)

本発明によれば、第1には、光照射を受けることによって屈折率が大きくなる特性を有する光学材料、及びそれを用いた光学素子が提供される。また、本発明によれば、第2には、光照射を受けることによって、屈折率が大きくなる特性を有する化合物を利用して物品の屈折率を変化させる方法が提供される。   According to the present invention, firstly, there is provided an optical material having a characteristic that a refractive index increases upon receiving light irradiation, and an optical element using the same. In addition, according to the present invention, secondly, there is provided a method of changing the refractive index of an article by using a compound having a characteristic that the refractive index increases upon receiving light irradiation.

図1は、poly−1a及び1bの各フィルムに対して波長280nmの紫外線を照射した際の時間経過に伴う吸収波長の変化を示すスペクトルであり、図1(a)は、poly−1aのフィルムについてのスペクトル変化であり、図1(b)は、poly−1bのフィルムについてのスペクトル変化である。FIG. 1 is a spectrum showing a change in absorption wavelength over time when ultraviolet rays having a wavelength of 280 nm are irradiated on the poly-1a and 1b films, and FIG. 1 (a) is a poly-1a film. Fig. 1 (b) shows the spectrum change for the poly-1b film. 図2は、poly−1a及び1bの各フィルムについて、波長280nmの紫外線を60分間にわたって照射した際の赤外吸収の変化を示すスペクトルであり、図2(a)は、poly−1aのフィルムにおけるFT−IRスペクトルの変化を示し、図2(b)は、poly−1bのフィルムにおけるFT−IRスペクトルの変化を示す。FIG. 2 is a spectrum showing a change in infrared absorption when ultraviolet rays having a wavelength of 280 nm are irradiated for 60 minutes for each of the poly-1a and 1b films, and FIG. 2 (a) is a graph of the poly-1a film. The change of FT-IR spectrum is shown, FIG.2 (b) shows the change of FT-IR spectrum in the film of poly-1b.

以下、本発明の一実施形態について、光学材料、光学素子、及び物品の屈折率を向上させる方法の順に説明する。   Hereinafter, an embodiment of the present invention will be described in the order of an optical material, an optical element, and a method for improving the refractive index of an article.

<光学材料>
本発明の光学材料は、光照射を受けることで生じる構造変化により屈折率が大きくなる有機化合物を含む。このため、本発明の光学材料は、光照射を受けることにより屈折率が大きくなる特性を備える。本発明の光学材料で用いられる上記有機化合物は、下記一般式(1)で表される。
<Optical material>
The optical material of the present invention contains an organic compound whose refractive index is increased by a structural change caused by light irradiation. For this reason, the optical material of this invention is equipped with the characteristic that a refractive index becomes large by receiving light irradiation. The organic compound used in the optical material of the present invention is represented by the following general formula (1).

上記一般式(1)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Aで表される環構造は芳香環であり、Arは置換されていてもよいアリール基である。 In the general formula (1), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, the ring structure represented by A is an aromatic ring, and Ar is substituted. An aryl group that may be present.

上記一般式(1)においてAで表される芳香環は、芳香族性を備えた環構造であり、単環であってもよいし、複数の環が縮合した縮合多環であってもよい。このような芳香環としては、ベンゼン環、ピリジン環、ピラン環、チオフェン環、ナフタレン環、キノリン環、イソキノリン環、カルバゾール環、アクリジン環、アントラセン環、フルオレン環、フェナレン環、フェナントレン環、ピレン環等を挙げることができる。   In the general formula (1), the aromatic ring represented by A is a ring structure having aromaticity, and may be a single ring or a condensed polycycle in which a plurality of rings are condensed. . Examples of such aromatic rings include benzene ring, pyridine ring, pyran ring, thiophene ring, naphthalene ring, quinoline ring, isoquinoline ring, carbazole ring, acridine ring, anthracene ring, fluorene ring, phenalene ring, phenanthrene ring, pyrene ring, etc. Can be mentioned.

上記一般式(1)においてArで表されるアリール基は芳香族基であればよく、このような芳香族基としては、フェニル基、ナフチル基、ピリジル基、ピラニル基、チオフェニル基、ナフチル基、キノリル基、イソキノリル基、カルバゾリル基、アクリジリル基、アントラセニル基、フルオレニル基、フェナレニル基、フェナントレニル基、ピレニル基等を挙げることができる。なお、これらの芳香族基は1又は複数の一価の有機基によって置換されていてもよい。このような一価の有機基としては、通常の有機化合物における一価の置換基を挙げることができ、これにはハロゲン原子等、炭素を含まない置換基も含まれる。このような有機基の一例として、水素原子が置換されてもよい主鎖の炭素数1〜8のアルキル基、ビニル基、アリル基、アリール基、炭素数1〜8のアルキルオキシ基、炭素数1〜8のチオアルキル基、ハロゲン原子等を挙げることができる。なお、上記一般式(1)で表される化合物は、低分子化合物であってもよいし、高分子化合物であってもよい。上記一般式(1)で表される化合物が高分子化合物である場合、上記一価の有機基はポリマーの主鎖若しくは側鎖そのもの、又はこれらに結合する基となる。   The aryl group represented by Ar in the general formula (1) may be an aromatic group, and examples of such an aromatic group include a phenyl group, a naphthyl group, a pyridyl group, a pyranyl group, a thiophenyl group, a naphthyl group, A quinolyl group, an isoquinolyl group, a carbazolyl group, an acridylyl group, an anthracenyl group, a fluorenyl group, a phenalenyl group, a phenanthrenyl group, a pyrenyl group, and the like can be given. In addition, these aromatic groups may be substituted with one or more monovalent organic groups. Examples of such a monovalent organic group include a monovalent substituent in a normal organic compound, and this includes a substituent not containing carbon such as a halogen atom. As an example of such an organic group, an alkyl group having 1 to 8 carbon atoms, a vinyl group, an allyl group, an aryl group, an alkyloxy group having 1 to 8 carbon atoms, or a carbon number in the main chain which may be substituted with a hydrogen atom A 1-8 thioalkyl group, a halogen atom, etc. can be mentioned. The compound represented by the general formula (1) may be a low molecular compound or a high molecular compound. When the compound represented by the general formula (1) is a polymer compound, the monovalent organic group is a main chain or side chain of the polymer itself or a group bonded to these.

上記一般式(1)で表される化合物は、光照射を受けることにより、転位反応を生じてC=Xという基を分子内に生成する。この基を生成することにより、この化合物の分子屈折が大きくなり、屈折率が増加する。光照射に用いる光は、上記一般式(1)で表される化合物が吸収することのできる波長のものが用いられ、典型的な例としては紫外線が挙げられる。次に、この転位反応について説明する。 When the compound represented by the general formula (1) is irradiated with light, a rearrangement reaction occurs to generate a group C═X 1 in the molecule. By generating this group, the molecular refraction of this compound increases and the refractive index increases. The light used for the light irradiation has a wavelength that can be absorbed by the compound represented by the general formula (1), and a typical example is ultraviolet light. Next, this rearrangement reaction will be described.

以下の説明では、理解を容易にするために、上記一般式(1)におけるA環をベンゼン環とし、Xを硫黄原子とし、Arをポリスチレンとしたものを例示するが、本発明で用いられる上記一般式(1)の化合物はこれに限定されるものではない。この例示のポリマーに紫外線を照射すると、下記の化学反応式に示す転位反応を生じる。なお、以下の説明で例示するポリマーは、上記一般式(1)におけるArをスチリル基とした化合物を合成し、これを常法によってラジカル重合させることによって得ることができる。 In the following description, in order to facilitate understanding, an example in which the A ring in the general formula (1) is a benzene ring, X 1 is a sulfur atom, and Ar is polystyrene, is used in the present invention. The compound of the general formula (1) is not limited to this. When this exemplified polymer is irradiated with ultraviolet light, a rearrangement reaction shown in the following chemical reaction formula occurs. In addition, the polymer illustrated in the following description can be obtained by synthesizing a compound in which Ar in the general formula (1) is a styryl group and radically polymerizing the compound by a conventional method.

上記化学反応式において、左辺に示す化合物(S−ベンジル体)に紫外線を照射すると、炭素−硫黄結合間で均一開裂がおき、炭素ラジカル(C・)と硫黄ラジカル(S・)がそれぞれ生成する。前者のラジカルはベンジルラジカルでありベンゼン環における共鳴効果により安定化され、後者のラジカルは芳香族複素環による共鳴効果により安定化されるので、いずれのラジカルもある程度の寿命を持ち、上記化学反応式における右辺に向けて転位反応を生じてN−ベンジル体を生じる。つまり、上記一般式(1)におけるArがアリール基であり、A環が芳香環でありさえすれば、いずれのラジカルについても共鳴構造を書くことができて安定化されるので、Arはどのようなアリール基でもよく、A環はどのような芳香環であってもよいことになる。転位反応の結果生じた、右辺に示すN−ベンジル体の化合物は、原子屈折の大きなC=S結合を備えるので、既に述べたように、転位前のS−ベンジル体の化合物よりも大きな屈折率を示すようになる。   In the above chemical reaction formula, when the compound (S-benzyl compound) shown on the left side is irradiated with ultraviolet rays, uniform cleavage occurs between carbon-sulfur bonds, and carbon radicals (C.) and sulfur radicals (S.) are generated. . The former radical is a benzyl radical, which is stabilized by the resonance effect in the benzene ring, and the latter radical is stabilized by the resonance effect by the aromatic heterocycle, so that both radicals have a certain lifetime and the above chemical reaction formula A rearrangement reaction is caused toward the right side of the N-benzyl compound. In other words, as long as Ar in the above general formula (1) is an aryl group and the A ring is an aromatic ring, the resonance structure can be written for any radical and stabilized. Any aryl group may be used, and the A ring may be any aromatic ring. The N-benzyl compound shown on the right side resulting from the rearrangement reaction has a C = S bond having a large atomic refraction, and as described above, the refractive index is higher than that of the S-benzyl compound before the rearrangement. Will come to show.

上記一般式(1)で表される化合物のより具体的な例として、下記一般式(2)で表される化合物を挙げることができる。   More specific examples of the compound represented by the general formula (1) include a compound represented by the following general formula (2).

上記一般式(2)中、X、X及びArは上記一般式(1)におけるものと同様であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数である。このような一価の有機基としては、通常の有機化合物における一価の置換基を挙げることができ、これにはハロゲン原子等、炭素を含まない置換基も含まれる。このような有機基の一例として、水素原子が置換されてもよい主鎖の炭素数1〜8のアルキル基、ビニル基、アリル基、アリール基、炭素数1〜8のアルキルオキシ基、炭素数1〜8のチオアルキル基、ハロゲン原子等を挙げることができる。 In the general formula (2), X 1 , X 2 and Ar are the same as those in the general formula (1), R 1 is each independently a monovalent organic group, and n is an integer of 0 to 4. It is. Examples of such a monovalent organic group include a monovalent substituent in a normal organic compound, and this includes a substituent not containing carbon such as a halogen atom. As an example of such an organic group, an alkyl group having 1 to 8 carbon atoms, a vinyl group, an allyl group, an aryl group, an alkyloxy group having 1 to 8 carbon atoms, or a carbon number in the main chain which may be substituted with a hydrogen atom A 1-8 thioalkyl group, a halogen atom, etc. can be mentioned.

上記一般式(1)又は(2)で表される化合物のより具体的な例として、下記一般式(3)で表される化合物を挙げることができる。   Specific examples of the compound represented by the general formula (1) or (2) include a compound represented by the following general formula (3).

上記一般式(3)中、X、X、R及びnは上記一般式(2)におけるものと同様であり、Rはそれぞれ独立に一価の有機基であり、mは0〜5の整数である。このような一価の有機基としては、通常の有機化合物における一価の置換基を挙げることができ、これにはハロゲン原子等、炭素を含まない置換基も含まれる。このような有機基の一例として、水素原子が置換されてもよい主鎖の炭素数1〜8のアルキル基、ビニル基、アリル基、アリール基、炭素数1〜8のアルキルオキシ基、炭素数1〜8のチオアルキル基、ハロゲン原子等を挙げることができる。また、上記一般式(1)についての説明でも述べたように、Rは、ポリマーの主鎖若しくは側鎖そのもの、又はこれらに結合する基であってもよい。この場合、上記一般式(3)で表される化合物はポリマーとなる。さらには、一価の有機基であるRは、カリックスアレーンやカリックスレゾルシンアレーンを含む基であってもよい。この場合、カリックスアレーンやカリックスレゾルシンアレーンの持つ独特な立体構造に基づく、独特な機能を発現することが期待される。さらに、一価の有機基であるRは、シルセスキオキシル基を含む一価の基であってもよい。この場合、シルセスキオキサンの有する独特な立体構造に基づく、独特な機能を発現することが期待される。なお、「シルセスキオキシル基を含む一価の基」とは、当該一価の基がシルセスキオキサン構造を有するということを意味する。 In the general formula (3), X 1 , X 2 , R 1 and n are the same as those in the general formula (2), R 2 is each independently a monovalent organic group, and m is 0 to 0. It is an integer of 5. Examples of such a monovalent organic group include a monovalent substituent in a normal organic compound, and this includes a substituent not containing carbon such as a halogen atom. As an example of such an organic group, an alkyl group having 1 to 8 carbon atoms, a vinyl group, an allyl group, an aryl group, an alkyloxy group having 1 to 8 carbon atoms, or a carbon number in the main chain which may be substituted with a hydrogen atom A 1-8 thioalkyl group, a halogen atom, etc. can be mentioned. Further, as described in the explanation of the general formula (1), R 2 may be a main chain or a side chain of the polymer itself, or a group bonded to these. In this case, the compound represented by the general formula (3) is a polymer. Furthermore, R 2 which is a monovalent organic group may be a group containing calixarene or calixresorcinarene. In this case, it is expected that a unique function based on a unique three-dimensional structure possessed by calixarene or calixresorcinarene is expressed. Furthermore, R 2 which is a monovalent organic group may be a monovalent group including a silsesquioxyl group. In this case, it is expected to express a unique function based on the unique three-dimensional structure of silsesquioxane. The “monovalent group containing a silsesquioxyl group” means that the monovalent group has a silsesquioxane structure.

次に、上記一般式(1)で表される化合物(以下、単に「上記有機化合物」とも呼ぶ。)を含む光学材料の製法について説明する。上記有機化合物を含む光学材料の製法としては、光学材料を構成するための基材に上記有機化合物を添加する方法、上記有機化合物に重合性基を導入した重合性前駆体を重合させ、上記有機化合物自体を光学材料とする方法、光学材料を構成するための基材に上記重合性前駆体を塗布し重合させる方法等が例示できる。なお、結果として上記有機化合物が光学材料に含まれていればよいので、これ以外の方法で本発明の光学材料を作製してもよい。   Next, a method for producing an optical material containing the compound represented by the general formula (1) (hereinafter also simply referred to as “the organic compound”) will be described. As a method for producing the optical material containing the organic compound, a method of adding the organic compound to a base material for constituting the optical material, a polymerizable precursor having a polymerizable group introduced into the organic compound, and the organic compound is polymerized. Examples thereof include a method using the compound itself as an optical material, and a method in which the polymerizable precursor is applied to a base material for constituting the optical material and polymerized. Note that, as a result, the organic compound only needs to be contained in the optical material, and therefore the optical material of the present invention may be produced by other methods.

まず、光学材料を構成するための基材に上記有機化合物を添加する方法から説明する。この方法では、樹脂やガラス等の基材に上記有機化合物を添加し混合することにより、光学材料が製造される。   First, the method for adding the organic compound to the base material for constituting the optical material will be described. In this method, an optical material is produced by adding and mixing the organic compound to a substrate such as resin or glass.

基材としては、光学材料を構成する際に使用される公知のものを特に制限なく使用することができる。このような基材としては、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、ガラス、ポリカーボネート、ポリスチレンが例示されるが限定されない。これらの基材に上記有機化合物を添加し混合するには、公知の手段を適宜使用すればよい。   As a base material, the well-known thing used when comprising an optical material can be especially used without a restriction | limiting. Examples of such a substrate include, but are not limited to, acrylic resin, methacrylic resin, epoxy resin, glass, polycarbonate, and polystyrene. In order to add and mix the organic compound to these substrates, known means may be used as appropriate.

また、重合することにより基材となる「基材の前駆体」に上記有機化合物を添加して重
合性の組成物を作製し、得られた重合性の組成物を重合硬化させたり、得られた重合性の
組成物を他の基材に塗布して重合させたりする方法によって光学材料を作製してもよい。
このような用途に使用される基材の前駆体としては、公知の(メタ)アクリルモノマー及
び/又はオリゴマーに重合開始剤を添加したものや、公知のエポキシ樹脂に硬化剤又は重
合開始剤を添加したものが例示される。
In addition, the above organic compound is added to a “base material precursor” that becomes a base material by polymerization to prepare a polymerizable composition, and the obtained polymerizable composition is polymerized and cured. The optical material may be produced by a method in which the polymerizable composition is applied to another substrate and polymerized.
As a precursor of the base material used for such applications, a known (meth) acrylic monomer and / or oligomer is added with a polymerization initiator, or a known epoxy resin is added with a curing agent or a polymerization initiator. This is illustrated.

次に、上記有機化合物に重合性基を導入した重合性前駆体を重合させ、上記有機化合物自体を光学材料とする方法について説明する。このような用途に使用される重合性前駆体としては、例えば、上記一般式(1)又は(2)におけるArが重合性の置換基を備えるものや、上記一般式(3)におけるRが重合性の置換基であるものが挙げられる。重合性の置換基としては、エチレン性の不飽和結合を有する置換基やエポキシ基を有する置換基が挙げられ、具体的には、ビニル基、スチリル基、アリル基、(メタ)アクリロイルオキシメチル基、メチル(メタ)アクリロイルオキシメチル基、エポキシ基、グリシジル基、オキセタニル基、チオエポキシ基、チオオキセタニル基等が挙げられる。なお、このような重合性前駆体やそれを重合させた重合体も、上記一般式(1)で表される化合物の一形態である。 Next, a method for polymerizing a polymerizable precursor having a polymerizable group introduced into the organic compound and using the organic compound itself as an optical material will be described. Examples of the polymerizable precursor used for such applications include those in which Ar in the above general formula (1) or (2) has a polymerizable substituent, and R 2 in the above general formula (3). What is a polymerizable substituent is mentioned. Examples of the polymerizable substituent include a substituent having an ethylenically unsaturated bond and a substituent having an epoxy group, and specifically, a vinyl group, a styryl group, an allyl group, and a (meth) acryloyloxymethyl group. Methyl (meth) acryloyloxymethyl group, epoxy group, glycidyl group, oxetanyl group, thioepoxy group, thiooxetanyl group and the like. Such a polymerizable precursor and a polymer obtained by polymerizing the polymerizable precursor are also one form of the compound represented by the general formula (1).

重合性前駆体を重合させて光学材料とするには、重合性前駆体に公知の重合開始剤又は硬化剤を添加して、重合又は硬化させればよい。このような例として、上記一般式(1)におけるArとしてスチリル基を導入した化合物(mono−1a)の重合反応を下記の化学反応式で示す。この反応では、ラジカル重合開始剤を用いてスチリル基に含まれるビニル基を重合させている。これにより、上記一般式(1)で表される構造が側鎖となる線状の重合体(poly−1a)が得られる。この重合体は、上記一般式(1)のArが重合体の主鎖に結合したフェニレン基となり、Arが一価の有機基(すなわち重合体の主鎖からの結合子)で置換されていることになる。すなわち、この重合体は上記一般式(1)の一例となる。下記化学反応式におけるV−70とは、和光純薬工業株式会社製より市販されているアゾ系のラジカル重合開始剤(2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル))である。   In order to polymerize the polymerizable precursor to obtain an optical material, a known polymerization initiator or curing agent may be added to the polymerizable precursor and polymerized or cured. As such an example, a polymerization reaction of a compound (mono-1a) having a styryl group introduced as Ar in the general formula (1) is represented by the following chemical reaction formula. In this reaction, a vinyl group contained in a styryl group is polymerized using a radical polymerization initiator. Thereby, a linear polymer (poly-1a) in which the structure represented by the general formula (1) is a side chain is obtained. In this polymer, Ar in the general formula (1) becomes a phenylene group bonded to the main chain of the polymer, and Ar is substituted with a monovalent organic group (that is, a binder from the main chain of the polymer). It will be. That is, this polymer is an example of the general formula (1). V-70 in the following chemical reaction formula is an azo radical polymerization initiator (2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) commercially available from Wako Pure Chemical Industries, Ltd. ).

(上記化学反応式におけるpoly−1aの一般式中、nは2以上の整数である。) (In the general formula of poly-1a in the above chemical reaction formula, n is an integer of 2 or more.)

また、上記一般式(1)におけるArがビニル基で置換された化合物に紫外線を照射して、光ラジカル重合を行うこともできる。この場合、枝分かれの多い、多分岐高分子が得られる。このような一例として、Arがビニル基で置換された化合物(mono−1a)に280nm付近の光を照射したときの化学反応を下記に示す。これらのことから、上記一般式(1)におけるArがビニル基で置換された化合物は、重合方法を選択することにより、1つの化合物から線状高分子と多分岐高分子とを作り分けられることが理解できる。   Moreover, photoradical polymerization can also be performed by irradiating the compound in which Ar in the general formula (1) is substituted with a vinyl group with ultraviolet rays. In this case, a multibranched polymer with many branches is obtained. As an example of this, the chemical reaction when the compound (mono-1a) in which Ar is substituted with a vinyl group is irradiated with light near 280 nm is shown below. From these facts, the compound in which Ar in the general formula (1) is substituted with a vinyl group can be made into a linear polymer and a hyperbranched polymer from one compound by selecting a polymerization method. Can understand.

上記の化学反応式は、一般式を用いて下記のように書き換えることもできる。
(上記化学反応式におけるpoly−2(1)の一般式中、m及びnは、それぞれ独立に1以上の整数である。)
The above chemical reaction formula can also be rewritten as follows using a general formula.
(In the general formula of poly-2 (1) in the above chemical reaction formula, m and n are each independently an integer of 1 or more.)

この光重合反応の推定反応機構を下記に示す。まず、mono−1のTB基が光により均一開裂し、ベンジルラジカルと芳香族複素環の硫黄ラジカルを発生させる。この時点では、これら2種類のラジカル種は溶媒のかごの中にあり、可逆的に再結合する(元に戻る過程)か、溶媒のかごの外に拡散する。拡散したベンジルラジカルは、他のmono−1のビニル基に付加し、その付加体のスチリルラジカルを生成させる。これが芳香族複素環の硫黄ラジカルに付加すると、見かけ上、mono−1の二量体が生成する。さらに、この二量体のTB基部分に光均一開裂が起これば、前述の2種類のラジカル種の生成、及びその後のmono−1との反応が連鎖的に進行する、いわゆる光イニファーター様式で重合反応が進行する。その結果、多くの分岐構造を有する多分岐高分子が生成すると考えられる。   The estimated reaction mechanism of this photopolymerization reaction is shown below. First, the TB group of mono-1 is cleaved uniformly by light to generate a benzyl radical and an aromatic heterocyclic sulfur radical. At this point, these two radical species are in the solvent cage and reversibly recombine (the process of returning) or diffuse out of the solvent cage. The diffused benzyl radical is added to the vinyl group of other mono-1, and the adduct styryl radical is generated. When this is added to the sulfur radical of the aromatic heterocyclic ring, an apparent mono-1 dimer is formed. Furthermore, when photo-uniform cleavage occurs in the TB group portion of this dimer, the so-called photo-iniferter mode in which the generation of the above-mentioned two kinds of radical species and the subsequent reaction with mono-1 proceed in a chain manner. The polymerization reaction proceeds. As a result, it is considered that a multi-branched polymer having many branched structures is generated.

(上記化学反応式におけるpoly−2(1)の一般式中、m及びnは、それぞれ独立に1以上の整数である。) (In the general formula of poly-2 (1) in the above chemical reaction formula, m and n are each independently an integer of 1 or more.)

この光重合で生成した多分岐高分子の末端基は、mono−1a由来のTB基、すなわちS−ベンジル体であることが確認されている。このことは、光重合の間、上述のような芳香族複素環部分のS−ベンジル体からN−ベンジル体への転位が起こらないことを意味する。その理由は必ずしも明らかではないが、溶液のような液相中では、ラジカルが溶媒のかごの中で転位反応を生じるよりも前に溶媒のかごの外へ拡散できるために上記のような重合反応が優勢であるのに対して、光学材料のような固相中では、ラジカルが物質中へ拡散せずに固相のマトリックスの中に留まるために分子内での転位反応が優勢であるためと推察される。   It has been confirmed that the terminal group of the multi-branched polymer produced by this photopolymerization is a mono group derived from mono-1a, that is, an S-benzyl compound. This means that the rearrangement of the aromatic heterocyclic moiety as described above from the S-benzyl body to the N-benzyl body does not occur during photopolymerization. The reason for this is not always clear, but in a liquid phase such as a solution, the radical can diffuse out of the solvent cage before it undergoes a rearrangement reaction in the solvent cage. In contrast, in a solid phase such as an optical material, radicals do not diffuse into the substance but remain in the solid phase matrix, so the intramolecular rearrangement reaction is dominant. Inferred.

なお、mono−1aを光重合させて多分岐高分子を合成するに際しては、例えば、上記一般式(1)におけるArがp−メトキシフェニル基である下記化合物を共存させることにより、得られる高分子の重合度や分岐の程度を調節することもできる。   In addition, when synthesizing a hyperbranched polymer by photopolymerizing mono-1a, for example, a polymer obtained by coexisting the following compound in which Ar in the general formula (1) is a p-methoxyphenyl group The degree of polymerization and the degree of branching can also be adjusted.

最後に、光学材料を構成するための基材に重合性前駆体を塗布し重合させる方法について説明する。これは、既に説明した光学材料を構成するための基材に、上記重合性前駆体と重合開始剤との混合物を塗布し重合させることにより、上記一般式(1)で表される化合物の膜を基材に形成させる方法である。   Finally, a method for applying a polymerizable precursor to a base material for constituting an optical material and polymerizing it will be described. This is because the film of the compound represented by the general formula (1) is obtained by applying a polymer of the polymerizable precursor and the polymerization initiator to the base material for constituting the optical material described above and polymerizing the mixture. Is formed on a substrate.

なお、この方法は、基材の表面に上記有機化合物の膜を形成させるものであってもよいし、複数に分割された基材の接合面に上記有機化合物の膜を形成させるものであってもよい。後者の場合、複数に分割された基材の接合面に上記重合性前駆体と重合開始剤との混合物を塗布し、これらの基材を接合させてから重合性前駆体を重合させればよい。この場合、重合性前駆体は、基材を接合させるための接着剤としても機能することになる。   In this method, the organic compound film may be formed on the surface of the base material, or the organic compound film may be formed on the joint surface of the base material divided into a plurality of parts. Also good. In the latter case, a mixture of the polymerizable precursor and the polymerization initiator is applied to the joint surface of the base material divided into a plurality of parts, and the base material is polymerized after joining the base materials. . In this case, the polymerizable precursor also functions as an adhesive for joining the base materials.

<光学素子>
上記光学材料から作製された光学素子も本発明の一つである。このような光学素子は、光照射によって屈折率を増加させる能力を有するので、光照射をトリガーとして屈折率を変化させることが求められる用途に好ましく使用される。このような光学素子としては、高分子導波路や光スイッチ等の光通信デバイスや、光ディスクのように高密度な記録容量を有する記録デバイスや、光情報の伝達デバイス、変換デバイス等が挙げられる。
<Optical element>
An optical element manufactured from the optical material is also one aspect of the present invention. Since such an optical element has the ability to increase the refractive index by light irradiation, it is preferably used in applications where it is required to change the refractive index using light irradiation as a trigger. Examples of such optical elements include optical communication devices such as polymer waveguides and optical switches, recording devices having a high recording capacity such as optical disks, optical information transmission devices, conversion devices, and the like.

<物品の屈折率を向上させる方法>
以上の通り、本発明の光学材料及び光学素子について説明したが、本発明は、光照射により生じる構造変化により屈折率が大きくなる下記一般式(1)で表される化合物を利用して、物品の屈折率を変化させるという点に特徴を有するものである。このような観点から、光照射により生じる構造変化により屈折率が大きくなる下記一般式(1)で表される化合物を利用して、物品の屈折率を変化させる方法も本発明の一つである。なお、下記一般式(1)で表される化合物については既に説明した通りであるので、ここでの説明を省略する。
<Method for improving refractive index of article>
As described above, the optical material and the optical element of the present invention have been described. However, the present invention uses a compound represented by the following general formula (1) whose refractive index increases due to a structural change caused by light irradiation. This is characterized in that the refractive index of the film is changed. From such a viewpoint, a method of changing the refractive index of an article using a compound represented by the following general formula (1) whose refractive index increases due to a structural change caused by light irradiation is also one aspect of the present invention. . In addition, since it is as having already demonstrated about the compound represented by following General formula (1), description here is abbreviate | omitted.

(上記一般式(1)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Aで表される環構造は芳香環であり、Arは置換されていてもよいアリール基である。) (In the general formula (1), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, the ring structure represented by A is an aromatic ring, and Ar is substituted. An aryl group which may be

また、これも既に述べたように、上記一般式(1)で表される化合物のより具体的な一例として、下記一般式(2)の化合物を挙げることができる。   Further, as already described, as a more specific example of the compound represented by the general formula (1), a compound represented by the following general formula (2) can be exemplified.

(上記一般式(2)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Arは置換されていてもよいアリール基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数である。) (In the general formula (2), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, Ar is an optionally substituted aryl group, and R 1 is Each independently represents a monovalent organic group, and n is an integer of 0 to 4.)

また、これも既に述べたように、上記一般式(1)又は(2)で表される化合物のさらに具体的な一例として、下記一般式(3)の化合物を挙げることができる。   In addition, as described above, as a more specific example of the compound represented by the general formula (1) or (2), a compound represented by the following general formula (3) can be given.

(上記一般式(3)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Rはそれぞれ独立に一価の有機基、ハロゲン原子、アルコキシ基、チオアルキル基、N−置換アミド基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数であり、mは0〜5の整数である。) (In the general formula (3), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, and each R 1 is independently a monovalent organic group, a halogen atom, or an alkoxy. A group, a thioalkyl group, and an N-substituted amide group, each R 2 is independently a monovalent organic group, n is an integer of 0 to 4, and m is an integer of 0 to 5.)

屈折率を変化させる物品としては特に限定されず、また、当該物品に対して本発明で使用される有機化合物を適用する手段も特に限定されない。つまり、本発明で使用される有機化合物が何らかの物品に対して適用され、それによりその物品が屈折率を変化させる能力を獲得する方法であれば、本発明の範囲に含まれる。これらについては、上記で詳細に説明した通りであるので、ここでの説明を省略する。   The article for changing the refractive index is not particularly limited, and the means for applying the organic compound used in the present invention to the article is not particularly limited. In other words, any organic compound used in the present invention can be applied to any article, thereby obtaining the ability of the article to change the refractive index, and is included in the scope of the present invention. Since these are as described in detail above, description thereof is omitted here.

以下、実施例を挙げることにより本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example at all.

・2−(4−メトキシベンジル)チオベンズオキサゾール(4MBTO)の合成
Synthesis of 2- (4-methoxybenzyl) thiobenzoxazole (4MBTO)

滴下ロートを備え、窒素気流下の200mLの三口フラスコに2−メルカプトベンズオキサゾール4.84g(32mmol)、テトラヒドロフラン(THF)24mL、及びトリエチルアミン(TEA)4.4mL(32mmol)を入れ、撹拌した後に、滴下ロートを用いて4−メトキシベンジルクロリド5.01g(32mmol)のTHF溶液(8mL)をゆっくりと滴下した。その後、反応溶液を室温で24時間撹拌した。反応後、反応溶液を水750mL中に投入し、固体を析出させた。析出した固体を吸引濾過し、85℃のエタノールで溶解してから水を加えて冷却して固体を析出させ、これを吸引濾過することで淡黄色固体の2−(4−メトキシベンジル)チオベンズオキサゾール(4MBTO)を得た(収量3.70g、収率79%)。
FT−IR(KBr,cm−1):2970(Ar−H),2841(Al−H),1608,1512(C=C環伸縮),1242(C−O−C逆対称伸縮),1131(C−H芳香族面外変角)
H−NMR(500MHz,CDCl,TMS):δ(ppm)7.62(d,J=9.5Hz,0.97H),7.44(d,J=9.0Hz,1.01H),7.37(d,J=9.0Hz,2.00H),7.26(m,2.67H),6.86(d,J=8.5Hz,2.00H),4.53(s,2.07H,Hd),3.82(s,3.08H)
13C−NMR(500MHz,CDCl,TMS):δ(ppm)164.59,159.18,151.68,141.69,130.21,127.53,124.20,123.82,118.29,114.04,109.78,55.13,36.09
A 200 mL three-necked flask equipped with a dropping funnel was charged with 4.84 g (32 mmol) of 2-mercaptobenzoxazole, 24 mL of tetrahydrofuran (THF), and 4.4 mL (32 mmol) of triethylamine (TEA) and stirred. Using a dropping funnel, a THF solution (8 mL) of 5.01 g (32 mmol) of 4-methoxybenzyl chloride was slowly added dropwise. Thereafter, the reaction solution was stirred at room temperature for 24 hours. After the reaction, the reaction solution was poured into 750 mL of water to precipitate a solid. The precipitated solid was suction filtered, dissolved in ethanol at 85 ° C., water was added and cooled to precipitate a solid, which was filtered by suction to give a pale yellow solid 2- (4-methoxybenzyl) thiobenz Oxazole (4MBTO) was obtained (yield 3.70 g, 79% yield).
FT-IR (KBr, cm −1 ): 2970 (Ar—H), 2841 (Al—H), 1608, 1512 (C═C ring stretching), 1242 (C—O—C reverse symmetrical stretching), 1131 ( CH aromatic out-of-plane variable angle)
1 H-NMR (500 MHz, CDCl 3 , TMS): δ (ppm) 7.62 (d, J = 9.5 Hz, 0.97H), 7.44 (d, J = 9.0 Hz, 1.01H) 7.37 (d, J = 9.0 Hz, 2.00 H), 7.26 (m, 2.67 H), 6.86 (d, J = 8.5 Hz, 2.00 H), 4.53 ( s, 2.07H, Hd), 3.82 (s, 3.08H)
13 C-NMR (500 MHz, CDCl 3 , TMS): δ (ppm) 164.59, 159.18, 151.68, 141.69, 130.21, 127.53, 124.20, 123.82, 118 29, 114.04, 109.78, 55.13, 36.09

・2−(4−ビニルベンジル)チオベンゾチアゾール(mono−1b)の合成
Synthesis of 2- (4-vinylbenzyl) thiobenzothiazole (mono-1b)

滴下ロートを備え、窒素気流下の200mLの三口フラスコに2−メルカプトベンズチアゾール5.35g(32mmol)、THF24mL、及びTEA4.4mL(32mmol)を入れ、撹拌した後に、滴下ロートを用いて4−クロロメチルスチレン4.88g(32mmol)のTHF溶液(8mL)をゆっくりと滴下した。その後、反応溶液を室温で24時間撹拌した。反応後、反応溶液を水750mL中に投入し、固体を析出させた。析出した固体を吸引濾過し、85℃のエタノールで溶解してから冷却して固体を析出させ、これを吸引濾過することで白色固体の2−(4−ビニルベンジル)チオベンゾチアゾール(mono−1b)を得た(収量3.62g、収率57%)。
FT−IR(KBr,cm−1):3052(Ar−H),3000,2928(Al−H),1625(ビニル基C=C),1509,1455(C=C環伸縮)
H−NMR(500MHz,CDCl,TMS):δ(ppm)7.88(d,J=8.0Hz,0.95H),7.73(d,J=8.5Hz,0.94H),7.30(m,6.53H),6.67(d,J=14.5Hz,0.92H),5.72(d,J=8.5Hz,0.95H),5.22(d,J=10.5Hz,0.94H),4.57(s,2.00H)
A 200 mL three-necked flask equipped with a dropping funnel was charged with 5.35 g (32 mmol) of 2-mercaptobenzthiazole, 24 mL of THF, and 4.4 mL (32 mmol) of TEA, stirred, and then 4-chloro using the dropping funnel. A THF solution (8 mL) of 4.88 g (32 mmol) of methylstyrene was slowly added dropwise. Thereafter, the reaction solution was stirred at room temperature for 24 hours. After the reaction, the reaction solution was poured into 750 mL of water to precipitate a solid. The precipitated solid was subjected to suction filtration, dissolved in ethanol at 85 ° C. and then cooled to precipitate a solid, which was subjected to suction filtration to give a white solid 2- (4-vinylbenzyl) thiobenzothiazole (mono-1b). (Yield 3.62 g, 57% yield).
FT-IR (KBr, cm −1 ): 3052 (Ar—H), 3000, 2928 (Al—H), 1625 (vinyl group C═C), 1509, 1455 (C═C ring expansion and contraction)
1 H-NMR (500 MHz, CDCl 3 , TMS): δ (ppm) 7.88 (d, J = 8.0 Hz, 0.95H), 7.73 (d, J = 8.5 Hz, 0.94H) , 7.30 (m, 6.53H), 6.67 (d, J = 14.5 Hz, 0.92H), 5.72 (d, J = 8.5 Hz, 0.95H), 5.22 ( d, J = 10.5 Hz, 0.94H), 4.57 (s, 2.00H)

・p−(2−ベンズオキサゾリル)チオメチルスチレン(mono−1a)の合成
Synthesis of p- (2-benzoxazolyl) thiomethylstyrene (mono-1a)

滴下ロートを備え、窒素気流下の200mLの三口フラスコに2−メルカプトベンズオキサゾール4.84g(32mmol)、THF24mL、及びTEA4.4mL(32mmol)を入れ、撹拌した後に、滴下ロートを用いて4−クロロメチルスチレン4.88g(32mmol)のTHF溶液(8mL)をゆっくりと滴下した。その後、反応溶液を室温で24時間撹拌した。反応後、反応溶液を水750mL中に投入し、固体を析出させた。析出した固体を吸引濾過し、75℃のメタノールで溶解してから冷却して固体を析出させ、これを吸引濾過することで白色固体のp−(2−ベンズオキサゾリル)チオメチルスチレン(mono−1a)を得た(収量3.23g、収率61%)。
FT−IR(KBr,cm−1):3049(Ar−H),2930(Al−H),1629(ビニル基C=C),1501,1457(C=C環伸縮),1140(C−H芳香族面外変角)
H−NMR(500MHz,CDCl,TMS):δ(ppm)7.62(d,J=9.0Hz,1.00H),7.43(t,J=8.5Hz,3.09H),7.38(d,J=8.5Hz,2.10H),7.29(t,J=8.3Hz,1.06H),7.25(t,J=8.5Hz,2.03H),6.68(d,J=14.3Hz,1.02H),5.73(d,J=17.5Hz,1.07H),5.25(d,J=11.0Hz,1.06H),4.55(s,2.14H)
A 200 mL three-necked flask equipped with a dropping funnel was charged with 4.84 g (32 mmol) of 2-mercaptobenzoxazole, 24 mL of THF, and 4.4 mL (32 mmol) of TEA, stirred, and then 4-chloro using the dropping funnel. A THF solution (8 mL) of 4.88 g (32 mmol) of methylstyrene was slowly added dropwise. Thereafter, the reaction solution was stirred at room temperature for 24 hours. After the reaction, the reaction solution was poured into 750 mL of water to precipitate a solid. The precipitated solid was subjected to suction filtration, dissolved in methanol at 75 ° C., and then cooled to precipitate a solid, which was subjected to suction filtration to give a white solid of p- (2-benzoxazolyl) thiomethylstyrene (mono). -1a) was obtained (yield 3.23 g, 61% yield).
FT-IR (KBr, cm −1 ): 3049 (Ar—H), 2930 (Al—H), 1629 (vinyl group C═C), 1501, 1457 (C═C ring expansion and contraction), 1140 (C—H) Aromatic out-of-plane variable angle)
1 H-NMR (500 MHz, CDCl 3 , TMS): δ (ppm) 7.62 (d, J = 9.0 Hz, 1.00H), 7.43 (t, J = 8.5 Hz, 3.09H) 7.38 (d, J = 8.5 Hz, 2.10H), 7.29 (t, J = 8.3 Hz, 1.06H), 7.25 (t, J = 8.5 Hz, 2.03H) ), 6.68 (d, J = 14.3 Hz, 1.02H), 5.73 (d, J = 17.5 Hz, 1.07H), 5.25 (d, J = 11.0 Hz, 1. 06H), 4.55 (s, 2.14H)

・p−(2−ベンズオキサゾリル)チオメチルスチレンの熱重合(poly−1a)
-Thermal polymerization of p- (2-benzoxazolyl) thiomethylstyrene (poly-1a)

重合反応管にmono−1a 0.57g(2.14mmol)、和光純薬株式会社製より市販されているアゾ系のラジカル重合開始剤V−70(2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)0.0123g(0.04mmol)、及び1,4−ジオキサン4.2mLを入れ、撹拌した。この溶液を凍結脱気した後に、30℃のオイルバスで18時間反応させた。反応後、反応溶液を水300mL中に投入して固体を析出させ、得られた固体を少量のTHFで溶解させ、メタノール250mL中に投入して再沈殿させた。析出した固体を吸引濾過することで白色固体のpoly−1aを得た(収量0.091g、収率91%)。
GPC(THF):Mn=12000,Mw=21000,Mw/Mn=1.8
FT−IR(KBr,cm−1):2923(Ar−H),2851(Al−H),1603(ビニル基C=C),1452(C=C環伸縮),1130(C−H芳香族面外変角)
H−NMR(500MHz,CDCl,TMS):δ(ppm)7.47(s,1.00H),7.10(m,6.18H),6.34(m,1.98H),4.40(s,2.00H),1.25(m,4.86H)
Mono-1a 0.57 g (2.14 mmol) in a polymerization reaction tube, an azo radical polymerization initiator V-70 (2,2′-azobis (4-methoxy-2) commercially available from Wako Pure Chemical Industries, Ltd. , 4-Dimethylvaleronitrile), 0.0123 g (0.04 mmol), and 4.2 mL of 1,4-dioxane were added and stirred, and this solution was freeze degassed and then reacted in an oil bath at 30 ° C. for 18 hours. After the reaction, the reaction solution was poured into 300 mL of water to precipitate a solid, and the obtained solid was dissolved in a small amount of THF and then re-precipitated into 250 mL of methanol. As a result, poly-1a was obtained as a white solid (yield 0.091 g, yield 91%).
GPC (THF): Mn = 12000, Mw = 21000, Mw / Mn = 1.8
FT-IR (KBr, cm −1 ): 2923 (Ar—H), 2851 (Al—H), 1603 (vinyl group C═C), 1452 (C═C ring expansion and contraction), 1130 (C—H aromatic) Out-of-plane deflection)
1 H-NMR (500 MHz, CDCl 3 , TMS): δ (ppm) 7.47 (s, 1.00H), 7.10 (m, 6.18H), 6.34 (m, 1.98H), 4.40 (s, 2.00H), 1.25 (m, 4.86H)

・2−(4−ビニルベンジル)チオベンゾチアゾールの熱重合(poly−1b)
-Thermal polymerization of 2- (4-vinylbenzyl) thiobenzothiazole (poly-1b)

重合反応管にmono−1b 0.61g(2.14mmol)、上記V−70 0.0123g(0.04mmol)、及び1,4−ジオキサン4.2mLを入れ、撹拌した。この溶液を凍結脱気した後に、30℃のオイルバスで18時間反応させた。反応後、反応溶液を水300mL中に投入して固体を析出させ、得られた固体を少量のTHFで溶解させ、メタノール250mL中に投入して再沈殿させた。析出した固体を吸引濾過することで白色固体のpoly−1bを得た(収量0.34g、収率56%)。
GPC(THF):Mn=12000,Mw=24000,Mw/Mn=2.0
Mono-1b 0.61g (2.14mmol), said V-70 0.0123g (0.04mmol), and 1, 4- dioxane 4.2mL were put into the polymerization reaction tube, and it stirred. This solution was freeze degassed and then reacted in an oil bath at 30 ° C. for 18 hours. After the reaction, the reaction solution was poured into 300 mL of water to precipitate a solid, and the obtained solid was dissolved in a small amount of THF, and then poured into 250 mL of methanol for reprecipitation. The precipitated solid was subjected to suction filtration to obtain white solid poly-1b (yield 0.34 g, yield 56%).
GPC (THF): Mn = 12000, Mw = 24000, Mw / Mn = 2.0

・p−(2−ベンズオキサゾリル)チオメチルスチレンの熱重合(poly−2(2))
-Thermal polymerization of p- (2-benzoxazolyl) thiomethylstyrene (poly-2 (2))

光反応容器にmono−1 0.668g(2.5mmol)、上記4MBTO 0.0136g(0.05mmol)、及びTHF6mLを入れ、撹拌した。この溶液を窒素でバブリングした後に、室温で5時間反応させた。反応溶液を減圧留去した後に残渣をジエチルエーテル300mL中に投入し、再沈殿させた。析出した固体を吸引濾過することで淡黄色固体のpoly−2(2)を得た(収量0.24g、収率35%)。
GPC(THF):Mn=9200,Mw=81900,Mw/Mn=8.86
FT−IR(KBr,cm−1):2922(Ar−H),1601(ビニル基C=C),1452(C=C環伸縮),1129(C−H芳香族面外変角)
H−NMR(500MHz,CDCl,TMS):δ(ppm)7.52−6.39(m,9.56H),4.45(s,2.00H),1.84−1.17(m,5.53H)
Mono-1 0.668 g (2.5 mmol), the above 4MBTO 0.0136 g (0.05 mmol), and THF 6 mL were placed in a photoreaction vessel and stirred. The solution was bubbled with nitrogen and allowed to react for 5 hours at room temperature. After the reaction solution was distilled off under reduced pressure, the residue was put into 300 mL of diethyl ether and reprecipitated. The precipitated solid was subjected to suction filtration to obtain poly-2 (2) as a pale yellow solid (yield 0.24 g, yield 35%).
GPC (THF): Mn = 9200, Mw = 81900, Mw / Mn = 8.86
FT-IR (KBr, cm −1 ): 2922 (Ar—H), 1601 (vinyl group C═C), 1452 (C═C ring expansion / contraction), 1129 (C—H aromatic out-of-plane variable angle)
1 H-NMR (500 MHz, CDCl 3 , TMS): δ (ppm) 7.52 to 6.39 (m, 9.56 H), 4.45 (s, 2.00 H), 1.84 to 1.17 (M, 5.53H)

上記のように、poly−2(2)は、mono−1aに紫外線を照射して合成された高分子化合物であるが、FT−IRの測定結果からはC=S結合の生成を意味する、1400〜1380cm−1付近の吸収を示すデータが得られなかった。このことから、poly−2(2)では、紫外線照射による重合反応の過程でN−ベンジル体への転位は生じておらず、得られたポリマーではS−ベンジル体構造が維持されていることが示唆された。 As described above, poly-2 (2) is a polymer compound synthesized by irradiating mono-1a with ultraviolet rays, but from the measurement result of FT-IR, it means generation of a C = S bond. Data showing absorption around 1400 to 1380 cm −1 were not obtained. From this, in poly-2 (2), the rearrangement to the N-benzyl body did not occur in the process of the polymerization reaction by ultraviolet irradiation, and the S-benzyl body structure was maintained in the obtained polymer. It was suggested.

[光に対する応答性試験]
上記の手順で得られたpoly−1a及び1bのそれぞれについて、アニソールをキャスト溶媒として、フィルム膜厚が約35nmとなるように石英基板上キャストしてフィルムを形成させた。得られたフィルムのそれぞれに対して、60分間にわたって280nmの紫外線を照射して吸収波長の変化を観察した。なお、照射した紫外線の照度はいずれも1.1mW/cmとした。得られたスペクトルの変化を図1に示す。図1は、poly−1a及び1bの各フィルムに対して波長280nmの紫外線を照射した際の時間経過に伴う吸収波長の変化を示すスペクトルであり、図1(a)は、poly−1aのフィルムについてのスペクトル変化であり、図1(b)は、poly−1bのフィルムについてのスペクトル変化である。
[Response test to light]
Each of poly-1a and 1b obtained by the above procedure was cast on a quartz substrate so that the film thickness was about 35 nm using anisole as a casting solvent to form a film. Each of the obtained films was irradiated with ultraviolet rays of 280 nm for 60 minutes, and the change in absorption wavelength was observed. Note that the illuminance of the irradiated ultraviolet rays was 1.1 mW / cm 2 . The resulting spectrum change is shown in FIG. FIG. 1 is a spectrum showing a change in absorption wavelength over time when ultraviolet rays having a wavelength of 280 nm are irradiated on the poly-1a and 1b films, and FIG. 1 (a) is a poly-1a film. Fig. 1 (b) shows the spectrum change for the poly-1b film.

図1(a)に示すように、poly−1aのフィルムでは光照射により280nmの吸光度が減少し、310nm付近の吸光度が増加した。また、図1(b)に示すように、poly−1bのフィルムでは光照射により286nmの吸光度が減少し、335nmの吸光度が増加した。また、poly−1aのスペクトル変化では293nmに等吸収点が見られ、poly−1bのスペクトル変化では313nmに等吸収点が確認された。このことから、光照射に伴い、poly−1aとpoly−1bのフィルム内ではそれぞれ単一な光化学反応が進行したことが示唆された。   As shown in FIG. 1A, in the poly-1a film, the absorbance at 280 nm was decreased by light irradiation, and the absorbance near 310 nm was increased. Further, as shown in FIG. 1B, in the poly-1b film, the absorbance at 286 nm decreased and the absorbance at 335 nm increased by light irradiation. Further, in the poly-1a spectrum change, an isosbestic point was observed at 293 nm, and in poly-1b spectrum change, an isosbestic point was confirmed at 313 nm. From this, it was suggested that a single photochemical reaction proceeded in the poly-1a and poly-1b films with light irradiation.

また、poly−1a及び1bのそれぞれのフィルムについて、光照射前後におけるFT−IRスペクトルの変化を測定した。その結果を図2に示す。図2は、poly−1a及び1bの各フィルムについて、波長280nmの紫外線を60分間にわたって照射した際の赤外吸収の変化を示すスペクトルであり、図2(a)は、poly−1aのフィルムにおけるFT−IRスペクトルの変化を示し、図2(b)は、poly−1bのフィルムにおけるFT−IRスペクトルの変化を示す。   Moreover, about each film of poly-1a and 1b, the change of the FT-IR spectrum before and behind light irradiation was measured. The result is shown in FIG. FIG. 2 is a spectrum showing a change in infrared absorption when ultraviolet rays having a wavelength of 280 nm are irradiated for 60 minutes for each of the poly-1a and 1b films, and FIG. 2 (a) is a graph of the poly-1a film. The change of FT-IR spectrum is shown, FIG.2 (b) shows the change of FT-IR spectrum in the film of poly-1b.

図2(a)及び(b)に示すように、poly−1a及び1bのそれぞれについて、光照射後にはC=S結合の振動を示す赤外吸収が1400〜1380cm−1付近に観察された。このC=S結合は、芳香族複素環のベンジル基への結合形態がS−ベンジル体からN−ベンジル体へ転位した際に生じるものである。このことから、いずれのポリマーについてもS−ベンジル体からN−ベンジル体への転位反応を生じたことが示唆された。 As shown in FIGS. 2A and 2B, for each of poly-1a and 1b, infrared absorption indicating vibration of C═S bond was observed in the vicinity of 1400 to 1380 cm −1 after light irradiation. This C═S bond is generated when the bond form of the aromatic heterocyclic ring to the benzyl group is rearranged from the S-benzyl form to the N-benzyl form. From this, it was suggested that the rearrangement reaction from the S-benzyl body to the N-benzyl body occurred in any of the polymers.

[光刺激による高分子フィルムの屈折率変化]
poly−1a及び1bのそれぞれについて、膜厚0.1μmのキャストフィルムを調製した。これらのフィルムのそれぞれについて、280nmの紫外線を30分間光照射し、その前後の屈折率をエリプソンメーターで測定した。表1にその測定結果を示す。光照射により、poly−1aのフィルムの屈折率は0.0073増加した。また、同様の光照射により、poly−1bのフィルムの屈折率は0.0071増加した。先の実験で明らかになった、光によるS−ベンジル体からN−ベンジル体への構造変化とLorentz−Lorenzの式に基づいて考えると、転位後に芳香族複素環の構造中にC=S基が新しく生成することにより、化合物の分子屈折が大きくなり、その結果高分子フィルムの屈折率が大きくなったものと推察された。
[Change in refractive index of polymer film by light stimulation]
A cast film having a thickness of 0.1 μm was prepared for each of poly-1a and 1b. Each of these films was irradiated with ultraviolet rays of 280 nm for 30 minutes, and the refractive index before and after the irradiation was measured with an ellipsometer. Table 1 shows the measurement results. The refractive index of the poly-1a film increased by 0.0073 by light irradiation. Moreover, the refractive index of the film of poly-1b increased by 0.0071 by the same light irradiation. Considering the structural change from S-benzyl to N-benzyl by light and the Lorentz-Lorenz formula, which was clarified in the previous experiment, the C = S group in the structure of the aromatic heterocycle after rearrangement As a result, the molecular refraction of the compound increased, and as a result, the refractive index of the polymer film increased.

Claims (7)

光照射を受けることで構造変化を生じる下記一般式(1)で表される化合物を含み、その構造変化により屈折率が大きくなることを特徴とする光学材料。
(上記一般式(1)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Aで表される環構造は芳香環であり、Arは置換されていてもよいアリール基である。)
An optical material comprising a compound represented by the following general formula (1) that undergoes a structural change upon receiving light irradiation, and having a refractive index increased by the structural change.
(In the general formula (1), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, the ring structure represented by A is an aromatic ring, and Ar is substituted. An aryl group which may be
前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である請求項1記載の光学材料。
(上記一般式(2)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Arは置換されていてもよいアリール基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数である。)
The optical material according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
(In the general formula (2), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, Ar is an optionally substituted aryl group, and R 1 is Each independently represents a monovalent organic group, and n is an integer of 0 to 4.)
前記一般式(1)又は(2)で表される化合物が下記一般式(3)で表される化合物である請求項1又は2記載の光学材料。
(上記一般式(3)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Rはそれぞれ独立に一価の有機基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数であり、mは0〜5の整数である。)
The optical material according to claim 1 or 2, wherein the compound represented by the general formula (1) or (2) is a compound represented by the following general formula (3).
(In the above general formula (3), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, R 1 is each independently a monovalent organic group, R 2 Are each independently a monovalent organic group, n is an integer of 0 to 4, and m is an integer of 0 to 5.)
請求項1〜3のいずれか1項記載の光学材料を、光照射を受けることにより屈折率を変化させる部材として含む光学素子。   The optical element which contains the optical material of any one of Claims 1-3 as a member which changes a refractive index by receiving light irradiation. 光照射を受けることにより生じる構造変化により屈折率が大きくなる下記一般式(1)で表される化合物を利用して物品の屈折率を変化させる方法。
(上記一般式(1)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Aで表される環構造は芳香環であり、Arは置換されていてもよいアリール基である。)
A method of changing the refractive index of an article using a compound represented by the following general formula (1) in which the refractive index is increased by a structural change caused by light irradiation.
(In the general formula (1), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, the ring structure represented by A is an aromatic ring, and Ar is substituted. An aryl group which may be
前記一般式(1)で表される化合物が下記一般式(2)で表される化合物である請求項5記載の方法。
(上記一般式(2)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Arは置換されていてもよいアリール基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数である。)
The method according to claim 5, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
(In the general formula (2), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, Ar is an optionally substituted aryl group, and R 1 is Each independently represents a monovalent organic group, and n is an integer of 0 to 4.)
前記一般式(1)又は(2)で表される化合物が下記一般式(3)で表される化合物である請求項5又は6記載の方法。
(上記一般式(3)中、Xは硫黄原子又は酸素原子であり、Xは硫黄原子、酸素原子又は>NHであり、Rはそれぞれ独立に一価の有機基、ハロゲン原子、アルコキシ基、チオアルキル基、N−置換アミド基であり、Rはそれぞれ独立に一価の有機基であり、nは0〜4の整数であり、mは0〜5の整数である。)
The method according to claim 5 or 6, wherein the compound represented by the general formula (1) or (2) is a compound represented by the following general formula (3).
(In the general formula (3), X 1 is a sulfur atom or an oxygen atom, X 2 is a sulfur atom, an oxygen atom or> NH, and each R 1 is independently a monovalent organic group, a halogen atom, or an alkoxy. A group, a thioalkyl group, and an N-substituted amide group, each R 2 is independently a monovalent organic group, n is an integer of 0 to 4, and m is an integer of 0 to 5.)
JP2015180389A 2015-09-14 2015-09-14 Optical material, optical element, and method for changing refractive index of article Active JP6497745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015180389A JP6497745B2 (en) 2015-09-14 2015-09-14 Optical material, optical element, and method for changing refractive index of article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015180389A JP6497745B2 (en) 2015-09-14 2015-09-14 Optical material, optical element, and method for changing refractive index of article

Publications (2)

Publication Number Publication Date
JP2017059277A JP2017059277A (en) 2017-03-23
JP6497745B2 true JP6497745B2 (en) 2019-04-10

Family

ID=58390591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015180389A Active JP6497745B2 (en) 2015-09-14 2015-09-14 Optical material, optical element, and method for changing refractive index of article

Country Status (1)

Country Link
JP (1) JP6497745B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516021B2 (en) * 1991-02-27 2004-04-05 Tdk株式会社 Optical recording medium
JP3565516B2 (en) * 1993-07-14 2004-09-15 日本曹達株式会社 New onium salt compound and polymerization initiator
JP2004164717A (en) * 2002-11-11 2004-06-10 Tdk Corp Method for manufacturing optical recording disk, and the optical recording disk
JP2009086299A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Two-photon absorption recording medium containing dye having polymerizable group

Also Published As

Publication number Publication date
JP2017059277A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
Chu et al. Fast living polymerization and helix-sense-selective polymerization of diazoacetates using air-stable palladium (II) catalysts
KR101307494B1 (en) Compound having photoreactive group, photoreactive polymer and alignment layer comprising the same
Matsumoto et al. Stereospecific polymerization of dialkyl muconates through free radical polymerization: isotropic polymerization and topochemical polymerization
Dong et al. A new route to hyperbranched macromolecules: syntheses of photosensitive poly (aroylarylene) s via 1, 3, 5-regioselective polycyclotrimerization of bis (aroylacetylene) s
JP5240798B2 (en) Refractive index improver, and resin composition, polymerization or curable composition and optical material containing the same
Mori et al. Controlled synthesis of poly (N-ethyl-3-vinylcarbazole) and block copolymers via RAFT polymerization
Radl et al. New strategies towards reversible and mendable epoxy based materials employing [4πs+ 4πs] photocycloaddition and thermal cycloreversion of pendant anthracene groups
Nakabayashi et al. RAFT polymerization of S-vinyl sulfide derivatives and synthesis of block copolymers having two distinct optoelectronic functionalities
JP5759542B2 (en) Photoreactive norbornene copolymer, method for producing the same, and alignment film including the same
Du et al. Catalyst-free click polymerization of thiol and activated internal alkynes: a facile strategy toward functional poly (β-thioacrylate) s
TWI310385B (en) Organic bismuth compound, preparing method thereof, living radical polymerization initiator, polymer preparation and polymer using the same
Chiba et al. Synthesis and radical ring‐opening polymerization of adamantane‐containing bifunctional vinylcyclopropane undergoing volume expansion on polymerization
Wang et al. C (sp3)–H Polyamination of Internal Alkynes toward Regio-and Stereoregular Functional Poly (allylic tertiary amine) s
Brand et al. Functionalized hexa-peri-hexabenzocoronenes: stable supramolecular order by polymerization in the discotic mesophase
KR101094551B1 (en) Photorefractive index modulating polymer composition, hologram recording material and method of refractive index control
JP5877507B2 (en) Curing composition having resistance to curing shrinkage, cured product obtained by curing said curable composition, and method
US11834442B2 (en) Mechanical regulation of photoswitching
JP6497745B2 (en) Optical material, optical element, and method for changing refractive index of article
Sugiyama et al. Free radical ring-opening polymerization of 1, 1-bis [(1-adamantyloxy) carbonyl]-2-vinylcyclopropane
CN105579423B (en) Cyclic olefins and photoreactive polymer with photoreactive group
Liu et al. Thiol‐Michael coupling and ring‐opening metathesis polymerization: facile access to functional exo‐7‐oxanorbornene dendron macromonomers
KR101719686B1 (en) Photoreactive copolymer and alignment layer comprising the same
Pitchaimari et al. Studies on thermal degradation kinetics of thermal and UV cured N-(4-hydroxy phenyl) maleimide derivatives
KR101205476B1 (en) Maleimide compound having photoreactive group and photoreactive polymer
Spiliopoulos et al. Synthesis of methacrylic monomers bearing stilbenoid chromophore and their free-radical polymerization to give luminescent polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6497745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250