JP6497247B2 - Method for producing cross-linked fluororesin powder - Google Patents

Method for producing cross-linked fluororesin powder Download PDF

Info

Publication number
JP6497247B2
JP6497247B2 JP2015138826A JP2015138826A JP6497247B2 JP 6497247 B2 JP6497247 B2 JP 6497247B2 JP 2015138826 A JP2015138826 A JP 2015138826A JP 2015138826 A JP2015138826 A JP 2015138826A JP 6497247 B2 JP6497247 B2 JP 6497247B2
Authority
JP
Japan
Prior art keywords
powder
fluororesin
particle size
average particle
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015138826A
Other languages
Japanese (ja)
Other versions
JP2017019930A (en
Inventor
大薗 和正
和正 大薗
草野 広男
広男 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015138826A priority Critical patent/JP6497247B2/en
Publication of JP2017019930A publication Critical patent/JP2017019930A/en
Application granted granted Critical
Publication of JP6497247B2 publication Critical patent/JP6497247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、架橋フッ素樹脂粉体の製造方法に関する。   The present invention relates to a method for producing a crosslinked fluororesin powder.

粉末状の架橋フッ素樹脂(架橋フッ素樹脂粉体)は、その優れた特性ゆえに、摺動体等の機械部品などの用途でその需要が増大している。   The demand for powdered cross-linked fluororesin (cross-linked fluororesin powder) is increasing due to its excellent characteristics in applications such as mechanical parts such as sliding bodies.

このような架橋フッ素樹脂粉体の製造方法としては、未架橋のフッ素樹脂粉体をマット状又はシート状に成形した後、低酸素の雰囲気ガス中でそのフッ素樹脂の融点を若干上回る温度に加熱した状態で所定量の放射線を照射して架橋させ、その後、常温まで冷却してから架橋フッ素樹脂シートを粉砕器で粉砕して所定粒径の架橋フッ素樹脂粉体を得る方法が知られている(例えば、特許文献1参照)。   As a method for producing such a crosslinked fluororesin powder, an uncrosslinked fluororesin powder is formed into a mat or sheet and then heated to a temperature slightly above the melting point of the fluororesin in a low oxygen atmosphere gas. In such a state, a method is known in which a predetermined amount of radiation is irradiated to cause crosslinking, and then cooled to room temperature, and then the crosslinked fluororesin sheet is pulverized with a pulverizer to obtain a crosslinked fluororesin powder having a predetermined particle size. (For example, refer to Patent Document 1).

特開2002−321216号公報JP 2002-321216 A

しかしながら、架橋後のフッ素樹脂は粘りが強くなっているため、従来の方法によれば、粉砕加工が難しく、特に微粉砕することは困難である。   However, since the cross-linked fluororesin has a high tenacity, it is difficult to pulverize by the conventional method, and it is particularly difficult to finely pulverize.

一方、架橋フッ素樹脂粉体の用途の多様化により、さらに微小な粒径(例えば平均粒径20μm以下)の架橋フッ素樹脂粉体が求められている。   On the other hand, with the diversification of applications of the cross-linked fluororesin powder, a cross-linked fluororesin powder having a finer particle size (for example, an average particle size of 20 μm or less) is required.

そこで、本発明の目的は、微小な粒径(例えば平均粒径20μm以下)の架橋フッ素樹脂粉体を得ることが可能な架橋フッ素樹脂粉体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a crosslinked fluororesin powder capable of obtaining a crosslinked fluororesin powder having a minute particle size (for example, an average particle size of 20 μm or less).

本発明は、上記目的を達成するために、下記の架橋フッ素樹脂粉体の製造方法を提供する。   In order to achieve the above object, the present invention provides the following method for producing a crosslinked fluororesin powder.

[1]第1の粉体としてのフッ素樹脂粉体と、前記フッ素樹脂粉体の架橋処理条件下においても前記フッ素樹脂粉体に融着しない第2の粉体とを混合して混合粉体とした後、前記混合粉体に対し架橋処理を行なう工程を備え、前記フッ素樹脂粉体は、脆化処理を施した後、粉砕処理を行なって得られたものである架橋フッ素樹脂粉体の製造方法。
[2]前記フッ素樹脂粉体は、結晶化熱量が40〜50J/gである前記[1]に記載の架橋フッ素樹脂粉体の製造方法。
[3]前記架橋処理を行なう工程の後、前記第1の粉体と前記第2の粉体とを分離する工程を備えた前記[1]又は前記[2]に記載の架橋フッ素樹脂粉体の製造方法。
[4]前記第2の粉体は、無機溶媒及び/又は有機溶媒に溶解する性質を有する前記[1]〜[3]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[5]前記第2の粉体は、磁性体である前記[1]〜[3]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[6]前記第2の粉体は、前記第1の粉体の比重の2倍以上又は1/2以下の比重を有する前記[1]〜[3]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[7]前記第2の粉体は、前記第1の粉体の平均粒径よりも小さい平均粒径を有し、前記第2の粉体の前記第1の粉体に対する混合比(体積比)は、(前記第2の粉体/前記第1の粉体)=2以上である前記[1]〜[6]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[8]前記第2の粉体は、前記第1の粉体の平均粒径よりも大きい平均粒径を有し、前記第2の粉体の前記第1の粉体に対する混合比(体積比)は、(前記第2の粉体/前記第1の粉体)=2以上である前記[1]〜[6]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[9]前記混合粉体は、架橋処理が行なわれる前に錠剤状に成形される前記[1]〜[8]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[10]前記フッ素樹脂粉体は、平均粒径10μm以下の粉体である前記[1]〜[9]のいずれか1つに記載の架橋フッ素樹脂粉体の製造方法。
[1] A mixed powder obtained by mixing a fluororesin powder as a first powder and a second powder that is not fused to the fluororesin powder even under a crosslinking treatment condition of the fluororesin powder. Then, the step of cross-linking the mixed powder is carried out, and the fluororesin powder is obtained by subjecting the cross-linked fluororesin powder to a brittleness treatment followed by a pulverization treatment. Production method.
[2] The method for producing a crosslinked fluororesin powder according to [1], wherein the fluororesin powder has a heat of crystallization of 40 to 50 J / g.
[3] The crosslinked fluororesin powder according to [1] or [2], further including a step of separating the first powder and the second powder after the step of performing the crosslinking treatment. Manufacturing method.
[4] The method for producing a crosslinked fluororesin powder according to any one of [1] to [3], wherein the second powder has a property of being dissolved in an inorganic solvent and / or an organic solvent.
[5] The method for producing a crosslinked fluororesin powder according to any one of [1] to [3], wherein the second powder is a magnetic substance.
[6] The crosslinked fluorine according to any one of [1] to [3], wherein the second powder has a specific gravity of not less than twice or not more than 1/2 of the specific gravity of the first powder. Manufacturing method of resin powder.
[7] The second powder has an average particle size smaller than the average particle size of the first powder, and a mixing ratio (volume ratio) of the second powder to the first powder. ) Is the method for producing a crosslinked fluororesin powder according to any one of [1] to [6], wherein (the second powder / the first powder) = 2 or more.
[8] The second powder has an average particle size larger than the average particle size of the first powder, and a mixing ratio (volume ratio) of the second powder to the first powder. ) Is the method for producing a crosslinked fluororesin powder according to any one of [1] to [6], wherein (the second powder / the first powder) = 2 or more.
[9] The method for producing a crosslinked fluororesin powder according to any one of [1] to [8], wherein the mixed powder is formed into a tablet shape before the crosslinking treatment.
[10] The method for producing a crosslinked fluororesin powder according to any one of [1] to [9], wherein the fluororesin powder is a powder having an average particle size of 10 μm or less.

本発明によれば、微小な粒径(例えば平均粒径20μm以下)の架橋フッ素樹脂粉体を得ることが可能な架橋フッ素樹脂粉体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the crosslinked fluororesin powder which can obtain the crosslinked fluororesin powder of a micro particle size (for example, average particle diameter of 20 micrometers or less) can be provided.

本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における混合工程及び成形工程を示す概略図である。It is the schematic which shows the mixing process and shaping | molding process in the manufacturing method of the crosslinked fluororesin powder which concerns on embodiment of this invention. 本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における架橋処理工程を示す概略図である。It is the schematic which shows the crosslinking process process in the manufacturing method of the crosslinked fluororesin powder which concerns on embodiment of this invention. 本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における分離工程を示す概略図である。It is the schematic which shows the isolation | separation process in the manufacturing method of the crosslinked fluororesin powder which concerns on embodiment of this invention. 図1の混合工程に使用される脆化処理後のフッ素樹脂粉体について結晶化熱量の最適範囲を導くための試験結果を示すグラフである。It is a graph which shows the test result for deriving | leading-out the optimal range of crystallization calorie | heat amount about the fluororesin powder after the embrittlement process used for the mixing process of FIG. 本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における第1の粉体と第2の粉体の混合比を算出するための説明図であり、(a)は隣り合う第1の粉体を共通の第2の粉体で囲む場合であり、(b)は隣り合う第1の粉体を別々の第2の粉体で囲む場合である。It is explanatory drawing for calculating the mixing ratio of the 1st powder in the manufacturing method of the crosslinked fluororesin powder concerning an embodiment of the invention, and the 2nd powder, and (a) is the 1st adjoining This is a case where the powder is surrounded by a common second powder, and (b) is a case where the adjacent first powder is surrounded by different second powders.

以下、図を参照しつつ、本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法を説明する。   Hereinafter, a method for producing a crosslinked fluororesin powder according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における混合工程及び成形工程を示す概略図である。   FIG. 1 is a schematic view showing a mixing step and a molding step in a method for producing a crosslinked fluororesin powder according to an embodiment of the present invention.

本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法は、第1の粉体としてのフッ素樹脂粉体1と、フッ素樹脂粉体1の架橋処理条件下においてもフッ素樹脂粉体1に融着しない第2の粉体2とを混合して混合粉体3とした後、混合粉体3に対し架橋処理を行なう工程を備える。   The method for producing a crosslinked fluororesin powder according to an embodiment of the present invention includes a fluororesin powder 1 as a first powder and the fluororesin powder 1 even under the crosslinking treatment conditions of the fluororesin powder 1. After mixing with the 2nd powder 2 which is not melt | fused, it is set as the mixed powder 3, and the process which bridge | crosslinks with respect to the mixed powder 3 is provided.

(第1の粉体)
第1の粉体としてのフッ素樹脂粉体1は、未架橋のフッ素樹脂粉体であり、フッ素樹脂としては、特に限定されるものではないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等を用いることができる。ポリテトラフルオロエチレン(PTFE)を用いることが望ましい。2種以上を併用することもできる。
(First powder)
The fluororesin powder 1 as the first powder is an uncrosslinked fluororesin powder, and the fluororesin is not particularly limited. For example, polytetrafluoroethylene (PTFE), tetrafluoro An ethylene-perfluoroalkyl vinyl ether copolymer (PFA), a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), or the like can be used. It is desirable to use polytetrafluoroethylene (PTFE). Two or more kinds can be used in combination.

フッ素樹脂粉体1は、脆化処理を施した後、粉砕処理を行なって粒径を小さくしたものである。   The fluororesin powder 1 is obtained by carrying out an embrittlement treatment and then performing a pulverization treatment to reduce the particle size.

脆化処理としては、例えば、フッ素樹脂粉体(平均粒径20μmを超える原料)にγ線、電子線、X線、中性子線、高エネルギーイオン等の電離性放射線を常温、大気圧下で照射することが挙げられる。中でも、γ線照射が望ましい。照射線量及び照射時間は、0.1kGy〜10MGy、1〜100時間の範囲で適宜調整する。脆化処理後のフッ素樹脂粉体の結晶化熱量が40〜50J/gとなるように照射線量及び照射時間を調整することが、粉砕処理における良好な粉砕性と架橋処理後の優れた耐摩耗性とを両立できる点で望ましい。結晶化熱量は、JIS K 7121に準じて示差走査熱量計(DSC:Differential Scanning Calorimeter)により測定したものである。結晶化熱量が40〜50J/gとなるように調整することが最も好ましい。   As the embrittlement treatment, for example, fluororesin powder (raw material having an average particle size exceeding 20 μm) is irradiated with ionizing radiation such as γ-rays, electron beams, X-rays, neutron rays, and high-energy ions at room temperature and atmospheric pressure. To do. Among these, γ-ray irradiation is desirable. The irradiation dose and the irradiation time are appropriately adjusted in the range of 0.1 kGy to 10 MGy and 1 to 100 hours. It is possible to adjust the irradiation dose and irradiation time so that the heat of crystallization of the fluororesin powder after embrittlement is 40-50 J / g. It is desirable in that it can be compatible with sex. The amount of crystallization heat is measured by a differential scanning calorimeter (DSC) according to JIS K7121. Most preferably, the amount of crystallization heat is adjusted to 40 to 50 J / g.

結晶化熱量の上記好ましい範囲を導いた根拠の一例を図4に示す。図4は、図1の混合工程に使用される脆化処理後のフッ素樹脂粉体について結晶化熱量の最適範囲を導くための試験結果を示すグラフである。   An example of the basis for deriving the above preferable range of the amount of crystallization heat is shown in FIG. FIG. 4 is a graph showing test results for deriving the optimum range of crystallization heat amount for the fluororesin powder after embrittlement used in the mixing step of FIG.

図4のグラフにおける横軸は架橋処理前の脆化処理を施したPTFE粉体の結晶化熱量を示し、左の縦軸は架橋処理後のPTFE粉体の結晶化熱量を示し、右の縦軸は架橋処理前のPTFE粉体の脆化処理及び粉砕処理後の平均粒径を示す。但し、横軸で23J/gにおけるプロットは、脆化処理を施していないPTFE粉体についてのプロットである。また、脆化処理は、常温、大気圧下、10kGyのγ線を1〜100時間、照射することにより行ない、架橋処理は、340℃、無酸素雰囲気、電子線照射量100kGyにて行なった。横軸で右に行くほど照射時間が長く、粉体はより脆化されている。粉砕処理は、PTFE粉体をジェットミル(セイシン製、商品名:STJ-200)にて2〜4kg/時間で、微粉砕した。結晶化熱量は、DSCにより測定した。なお、PTFE粉体以外のフッ素樹脂粉体を用いても図4とほぼ同様の傾向を示す結果が得られた。   In the graph of FIG. 4, the horizontal axis indicates the heat of crystallization of the PTFE powder subjected to the embrittlement before the cross-linking treatment, the left vertical axis indicates the heat of crystallization of the PTFE powder after the cross-linking treatment, and the right vertical axis. An axis | shaft shows the average particle diameter after the embrittlement process of the PTFE powder before a crosslinking process, and a grinding | pulverization process. However, the plot at 23 J / g on the horizontal axis is a plot for PTFE powder not subjected to embrittlement treatment. The embrittlement treatment was performed by irradiating 10 kGy of γ rays for 1 to 100 hours at room temperature and atmospheric pressure, and the crosslinking treatment was performed at 340 ° C., an oxygen-free atmosphere, and an electron beam dose of 100 kGy. The irradiation time is longer as it goes to the right on the horizontal axis, and the powder becomes more brittle. In the pulverization treatment, PTFE powder was finely pulverized at 2 to 4 kg / hour with a jet mill (trade name: STJ-200, manufactured by Seishin). The amount of crystallization heat was measured by DSC. Even when a fluororesin powder other than the PTFE powder was used, a result showing a tendency similar to that in FIG. 4 was obtained.

粉砕処理後の平均粒径が約10μm以下となる結晶化熱量40J/g以上、かつ、架橋処理後の結晶化熱量が約35J/g以下となる結晶化熱量50J/g以下となる図4に示すXの範囲となるように脆化処理を行なうことで、粉砕処理における良好な粉砕性と架橋処理後の優れた耐摩耗性とを最も良く両立できる。粉砕処理後の平均粒径が約15μm以下となる結晶化熱量34J/g以上、かつ、架橋処理後の結晶化熱量が約40J/g以下となる結晶化熱量56J/g以下となるように脆化処理を行なうこととしても、粉砕処理における良好な粉砕性と架橋処理後の優れた耐摩耗性とをある程度、両立できる。また、粉砕処理後の平均粒径が約12μm以下となる結晶化熱量37J/g以上、かつ、架橋処理後の結晶化熱量が約37J/g以下となる結晶化熱量53J/g以下となるように脆化処理を行なうこととしてもよい。   FIG. 4 shows that the crystallization heat amount becomes 40 J / g or more when the average particle size after the pulverization treatment is about 10 μm or less, and the crystallization heat amount becomes about 35 J / g or less after the crosslinking treatment becomes about 35 J / g or less. By carrying out the embrittlement treatment so as to be in the range of X shown, it is possible to best balance both good pulverization properties in the pulverization treatment and excellent wear resistance after the crosslinking treatment. The brittleness is such that the crystallization heat quantity becomes 34 J / g or more at which the average particle size after the pulverization treatment is about 15 μm or less, and the crystallization heat quantity after the cross-linking treatment is about 56 J / g or less at which the crystallization heat quantity is about 40 J / g or less Even when the crystallization treatment is performed, both good pulverization property in the pulverization treatment and excellent wear resistance after the crosslinking treatment can be achieved to some extent. Further, the heat of crystallization is 37 J / g or more so that the average particle size after the pulverization is about 12 μm or less, and the heat of crystallization is 53 J / g or less so that the heat of crystallization after the crosslinking is about 37 J / g or less. Alternatively, embrittlement treatment may be performed.

脆化処理後の粉砕処理は、例えば、衝撃(ジェットミル法)やせん断(臼式法)により行なうことができる。粉砕処理は、これ以上、小径にはできなくなるまで続ける。フッ素樹脂粉体は、脆化処理により粉砕されやすくなっているため、粉砕処理により、好ましくは、平均粒径3〜15μmに、より好ましくは、平均粒径3〜12μmに、さらに好ましくは、平均粒径3〜10μmに微粉砕される。得られるフッ素樹脂粉体の平均粒径は、脆化処理条件によりほぼ決まる。   The pulverization treatment after the embrittlement treatment can be performed, for example, by impact (jet mill method) or shear (mortar method). The pulverization process is continued until the diameter can no longer be reduced. Since the fluororesin powder is easily pulverized by the embrittlement treatment, the pulverization treatment preferably has an average particle size of 3 to 15 μm, more preferably an average particle size of 3 to 12 μm, and even more preferably an average particle size. Finely pulverized to a particle size of 3-10 μm. The average particle diameter of the obtained fluororesin powder is almost determined by the embrittlement treatment conditions.

フッ素樹脂粉体1は、最終的に得たい粒径以下の粒径を有する粉体を使用することが望ましい。例えば、平均粒径20μm以下の架橋フッ素樹脂粉体が得たければ、平均粒径20μm以下のフッ素樹脂粉体を用いる。本実施の形態においては、平均粒径20μm以下のみならず、平均粒径15μm以下のフッ素樹脂粉体や、さらには平均粒径10μm以下のフッ素樹脂粉体であっても適用できる。下限は特に限定されるものではないが、例えば、平均粒径1μm以上のフッ素樹脂粉体を用いることができる。架橋処理後、平均粒径が多少、大きくなる場合が多いので、最終的に得たい平均粒径よりも小さい平均粒径のフッ素樹脂粉体を原料として使用することが望ましい。なお、本実施の形態において、平均粒径とは、粒径の累積分布において50%となる点の粒子径を言う。   As the fluororesin powder 1, it is desirable to use a powder having a particle size equal to or smaller than a particle size desired to be finally obtained. For example, if a crosslinked fluororesin powder having an average particle size of 20 μm or less is desired, a fluororesin powder having an average particle size of 20 μm or less is used. In the present embodiment, not only an average particle diameter of 20 μm or less, but also a fluororesin powder having an average particle diameter of 15 μm or less, or a fluororesin powder having an average particle diameter of 10 μm or less can be applied. Although a minimum is not specifically limited, For example, the fluororesin powder with an average particle diameter of 1 micrometer or more can be used. Since the average particle size is often somewhat larger after the crosslinking treatment, it is desirable to use, as a raw material, a fluororesin powder having an average particle size smaller than the average particle size desired to be finally obtained. In the present embodiment, the average particle diameter means a particle diameter at a point where the cumulative distribution of particle diameters is 50%.

(第2の粉体)
第2の粉体2は、フッ素樹脂粉体1の架橋処理条件下においてもフッ素樹脂粉体1に融着しない特性を有する。これにより、後述する分離工程において、フッ素樹脂粉体1と第2の粉体2とを容易に分離することが可能となる。具体的には、架橋温度でも安定でフッ素樹脂粉体1に融着しない耐熱性、及び架橋の際の放射線下でも安定でフッ素樹脂粉体1に融着・架橋しない耐放射線性を有する。
(Second powder)
The second powder 2 has a characteristic of not being fused to the fluororesin powder 1 even under the crosslinking treatment conditions of the fluororesin powder 1. Thereby, it becomes possible to easily separate the fluororesin powder 1 and the second powder 2 in the separation step described later. Specifically, it has heat resistance that is stable even at a crosslinking temperature and not fused to the fluororesin powder 1, and radiation resistance that is stable even under radiation during crosslinking and does not fuse and crosslink to the fluororesin powder 1.

架橋処理時に第2の粉体2が存在することにより、フッ素樹脂粉体1の粒子同士が融着や架橋するのを抑制できるため、架橋後の架橋フッ素樹脂粉体1Aの平均粒子径が大きくなるのを抑制できる。   Since the second powder 2 is present during the crosslinking treatment, it is possible to prevent the particles of the fluororesin powder 1 from being fused or cross-linked, so that the average particle size of the cross-linked cross-linked fluororesin powder 1A is large. Can be suppressed.

第2の粉体2としては、例えば、無機溶媒及び/又は有機溶媒に溶解する性質を有する粉体、磁性粉体、第1の粉体1の比重の2倍以上又は1/2以下の比重を有する粉体が好ましい。   As the second powder 2, for example, a powder having a property of being dissolved in an inorganic solvent and / or an organic solvent, a magnetic powder, and a specific gravity of not less than twice or less than ½ of the specific gravity of the first powder 1. A powder having is preferred.

無機溶媒及び/又は有機溶媒に溶解する性質を有する粉体としては、例えば、水やアルコール等に溶解する塩粒(以下、塩と表記する)や硫酸ナトリウム、フッ化水素酸等に溶解するシリカ粉が好適である。   Examples of the powder having the property of being dissolved in an inorganic solvent and / or an organic solvent include, for example, salt particles (hereinafter referred to as salts) that dissolve in water, alcohol, etc., silica that dissolves in sodium sulfate, hydrofluoric acid, and the like Powder is preferred.

磁性粉体(強磁性粉体)としては、例えば、フェライト粉や鉄粉が好適である。   As the magnetic powder (ferromagnetic powder), for example, ferrite powder and iron powder are suitable.

第1の粉体1の比重の2倍以上又は1/2以下の比重を有する粉体としては、例えば、鉄粉や塩が好適である。   As the powder having a specific gravity of not less than twice or not more than 1/2 of the specific gravity of the first powder 1, for example, iron powder and salt are suitable.

(混合工程)
本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法においては、まず、図1(左図、中央図)に示されるように、第1の粉体としてのフッ素樹脂粉体1と、第2の粉体2とを混合して混合粉体3とする。
(Mixing process)
In the method for producing a crosslinked fluororesin powder according to an embodiment of the present invention, first, as shown in FIG. 1 (left figure, center figure), fluororesin powder 1 as a first powder, The second powder 2 is mixed to obtain a mixed powder 3.

混合状態としては、フッ素樹脂粉体1の個々の粒子の周囲を第2の粉体2が囲み、フッ素樹脂粉体1の粒子同士が出来る限り接しないようにすることが望ましい。   As a mixed state, it is desirable that the second powder 2 surrounds the individual particles of the fluororesin powder 1 so that the particles of the fluororesin powder 1 are not in contact with each other as much as possible.

そのために、第2の粉体2が第1の粉体1の平均粒径よりも小さい平均粒径を有する場合には、第2の粉体2の第1の粉体1に対する混合比(体積比)を(第2の粉体/第1の粉体)=2以上とすることが望ましく、4以上とすることがより望ましい。一方、第2の粉体2が第1の粉体1の平均粒径よりも大きい平均粒径を有する場合には、第2の粉体2の第1の粉体1に対する混合比(体積比)は、(第2の粉体/第1の粉体)=2以上とすることが望ましく、8以上とすることがより望ましい。   Therefore, when the second powder 2 has an average particle size smaller than the average particle size of the first powder 1, the mixing ratio (volume) of the second powder 2 to the first powder 1. The ratio is preferably (second powder / first powder) = 2 or more, more preferably 4 or more. On the other hand, when the second powder 2 has an average particle size larger than the average particle size of the first powder 1, the mixing ratio (volume ratio) of the second powder 2 to the first powder 1 is determined. ) Is preferably (second powder / first powder) = 2 or more, more preferably 8 or more.

例えば、第1の粉体1として平均粒径3μmのPTFE粉体を用い、第2の粉体2として平均粒径1μmの塩を使用した場合を例に、図5を参照して説明する。   For example, a case where PTFE powder having an average particle diameter of 3 μm is used as the first powder 1 and a salt having an average particle diameter of 1 μm is used as the second powder 2 will be described with reference to FIG.

図5は、本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における第1の粉体と第2の粉体の混合比を算出するための説明図である。図中の点線の4角形は、混合粉体の1ユニットを示す。   FIG. 5 is an explanatory diagram for calculating the mixing ratio of the first powder and the second powder in the method for producing a crosslinked fluororesin powder according to the embodiment of the present invention. The dotted quadrilateral in the figure represents one unit of the mixed powder.

図5(a)は隣り合う第1の粉体を共通の第2の粉体で囲む場合であり、この場合において立方体充填モデルで考えると、体積比は、第1の粉体1:第2の粉体=1:3.6となる。したがって、個々の第1の粉体の全周が第2の粉体で囲まれる理想形態とするには、第2の粉体を第1の粉体1の3.6倍以上(体積比)となるように混合する。   FIG. 5A shows a case in which adjacent first powders are surrounded by a common second powder. In this case, considering the cubic filling model, the volume ratio is as follows. Of powder = 1: 3.6. Therefore, in order to obtain an ideal form in which the entire circumference of each first powder is surrounded by the second powder, the second powder is 3.6 times or more (volume ratio) of the first powder 1. Mix so that

図5(b)は隣り合う第1の粉体を別々の第2の粉体で囲む場合であり、この場合において立方体充填モデルで考えると、体積比は、第1の粉体1:第2の粉体=1:8となる。したがって、個々の第1の粉体の全周が第2の粉体で囲まれる理想形態とするには、第2の粉体を第1の粉体1の8倍以上(体積比)となるように混合する。   FIG. 5B shows a case where adjacent first powders are surrounded by separate second powders. In this case, considering a cubic filling model, the volume ratio is as follows. Powder = 1: 8. Therefore, in order to obtain an ideal form in which the entire circumference of each individual first powder is surrounded by the second powder, the second powder is 8 times or more (volume ratio) of the first powder 1. Mix like so.

図5(b)に示す実施形態の場合の方が図5(a)に示す実施形態の場合よりも、フッ素樹脂粉体1の粒子同士が架橋時に融着・架橋する割合が少なくできるので、使用原料の平均粒径に近い平均粒径の架橋フッ素樹脂粉体を得たい場合には、第2の粉体を第1の粉体1の8倍以上(体積比)となるように混合すると良い。一方、生産効率を優先させる場合には、第2の粉体を第1の粉体1の3〜4倍程度(体積比)となるように混合すると良い。   In the case of the embodiment shown in FIG. 5 (b), the proportion of the fluororesin powder particles 1 fused and cross-linked at the time of cross-linking can be reduced compared to the case of the embodiment shown in FIG. 5 (a). When it is desired to obtain a cross-linked fluororesin powder having an average particle diameter close to the average particle diameter of the raw material used, the second powder is mixed so as to be 8 times or more (volume ratio) of the first powder 1. good. On the other hand, when giving priority to production efficiency, the second powder may be mixed so as to be about 3 to 4 times (volume ratio) of the first powder 1.

(成形工程)
続いて、図1(右図)に示されるように、打錠機10を用いて、架橋処理が行なわれる前に混合粉体3を錠剤状に成形することが好ましい。錠剤状の混合粉体3Aとすることにより、粉体の取り扱いが簡便となり、架橋装置に連続的に投入できるため、生産性が上がる。成形方法は特に限定されない。造粒機などを使用しても良い。
(Molding process)
Subsequently, as shown in FIG. 1 (right figure), it is preferable to use the tableting machine 10 to form the mixed powder 3 into a tablet before the crosslinking treatment is performed. By using the tablet-like mixed powder 3A, the handling of the powder becomes simple and can be continuously put into the crosslinking apparatus, so that the productivity is improved. The molding method is not particularly limited. A granulator or the like may be used.

本実施の形態における錠剤状には、医薬品でよく見られる錠剤の形態(円柱状、円盤状、ラグビーボール状)のみならず、錠剤の中央に穴が開いたトローチ状(リング状)や角柱状も含まれる。上部から放射線照射する場合、厚みが大きすぎると架橋処理に時間がかかるため、厚さ(高さ)1mm以下程度とすることが好ましい。   The tablet form in the present embodiment includes not only the tablet form (columnar, disk-like, rugby ball-like) often found in pharmaceutical products, but also a troche-like (ring-like) with a hole in the center of the tablet or a prismatic shape. Is also included. When irradiating from the top, if the thickness is too large, it takes time for the crosslinking treatment, so it is preferable to set the thickness (height) to about 1 mm or less.

(架橋処理工程)
その後、例えば図2に示されるような架橋装置を用いて、混合粉体3に対し架橋処理を行なう。
(Crosslinking process)
Thereafter, the mixed powder 3 is subjected to a crosslinking treatment using, for example, a crosslinking apparatus as shown in FIG.

図2は、本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における架橋処理工程を示す概略図である。   FIG. 2 is a schematic view showing a crosslinking treatment step in the method for producing a crosslinked fluororesin powder according to the embodiment of the present invention.

錠剤状の混合粉体3Aは、ベルトコンベア11で電子線照射装置12を有する作業容器13内へ次々と運びこまれ、電子線を照射された後、ベルトコンベア11で作業容器13外へ搬出される。これにより、錠剤状の架橋混合粉体3Bが得られる。   The tablet-like mixed powder 3 </ b> A is successively carried into the work container 13 having the electron beam irradiation device 12 by the belt conveyor 11, irradiated with the electron beam, and then carried out of the work container 13 by the belt conveyor 11. The Thereby, tablet-like crosslinked mixed powder 3B is obtained.

架橋処理条件としては、無酸素雰囲気又は500ppm以下程度の低酸素雰囲気で、フッ素樹脂粉体1の融点以上に加熱された状態で電離性放射線を照射線量0.1kGy〜10MGyの範囲で照射することが望ましい。電離性放射線としては、γ線、電子線、X線、中性子線、高エネルギーイオン等が使用できるが、電子線が好ましい。   As a crosslinking treatment condition, an ionizing radiation is irradiated in an irradiation dose range of 0.1 kGy to 10 MGy in an oxygen-free atmosphere or a low-oxygen atmosphere of about 500 ppm or less while being heated above the melting point of the fluororesin powder 1. Is desirable. As ionizing radiation, γ-rays, electron beams, X-rays, neutron beams, high-energy ions and the like can be used, but electron beams are preferable.

例えば、フッ素樹脂としてPTFEを使用する場合には、この材料の結晶融点である327℃よりも高い温度にフッ素樹脂粉体1を加熱した状態で電離性放射線を照射することが望ましい。また、PFAやFEPを使用する場合には、前者が300〜315℃、後者が260〜275℃に特定される結晶融点よりも高い温度に加熱して、放射線を照射することが望ましい。但し、過度の加熱は、逆に分子主鎖の切断と分解を招くようになるので、加熱温度はフッ素樹脂の結晶融点よりも10〜30℃高い範囲内に抑えるべきである。   For example, when PTFE is used as the fluororesin, it is desirable to irradiate ionizing radiation while the fluororesin powder 1 is heated to a temperature higher than 327 ° C. which is the crystal melting point of this material. Moreover, when using PFA and FEP, it is desirable to irradiate with radiation by heating to a temperature higher than the crystal melting point specified by 300 to 315 ° C. for the former and 260 to 275 ° C. for the latter. However, excessive heating leads to the cleavage and decomposition of the molecular main chain, so the heating temperature should be kept within a range of 10 to 30 ° C. higher than the crystalline melting point of the fluororesin.

(分離工程)
架橋処理工程の後、第1の粉体1と第2の粉体2とを分離する工程を経ることにより、架橋フッ素樹脂粉体1Aが得られる。
(Separation process)
After the cross-linking treatment step, a cross-linked fluororesin powder 1A is obtained through a step of separating the first powder 1 and the second powder 2.

図3は、本発明の実施の形態に係る架橋フッ素樹脂粉体の製造方法における分離工程を示す概略図であり、第2の粉体2として無機溶媒及び/又は有機溶媒に溶解する性質を有する粉体(例えば、塩や、硫酸ナトリウム)を用いた場合の実施形態を示す。分かりやすくするため、1つの錠剤状の架橋混合粉体3Bのみを拡大して示した。   FIG. 3 is a schematic view showing a separation step in the method for producing a crosslinked fluororesin powder according to an embodiment of the present invention, and has the property of being dissolved in an inorganic solvent and / or an organic solvent as the second powder 2. An embodiment in the case of using a powder (for example, a salt or sodium sulfate) is shown. For ease of understanding, only one tablet-like crosslinked mixed powder 3B is shown in an enlarged manner.

水20を入れた容器21に錠剤状の架橋混合粉体3Bを投入すると、第2の粉体2が徐々に水に溶解する(図3の上図及び中央図)。次に本水溶液を濾過器22に掛けて濾過すると、第2の粉体2は水溶液中に溶けているので、濾過器22を通過し容器23へ排出され、濾過器22には最終的に架橋フッ素樹脂粉体1Aのみが残る(図3の下図)。最後に架橋フッ素樹脂粉体に付着している水分を乾燥することで所望の平均粒径を有する架橋フッ素樹脂粉体1Aを得ることができる(図3の下図)。   When the tablet-like cross-linked mixed powder 3B is put into a container 21 containing water 20, the second powder 2 is gradually dissolved in water (upper view and central view in FIG. 3). Next, when this aqueous solution is filtered through the filter 22, the second powder 2 is dissolved in the aqueous solution, so that it passes through the filter 22 and is discharged to the container 23. Only the fluororesin powder 1A remains (lower figure in FIG. 3). Finally, by drying the water adhering to the cross-linked fluororesin powder, a cross-linked fluororesin powder 1A having a desired average particle diameter can be obtained (lower diagram in FIG. 3).

フッ素樹脂粉体の粒子同士が一部、融着・架橋することで、所望の平均粒径よりも大きな粒径になってしまっている場合には、粉砕することで所望の平均粒径を有する架橋フッ素樹脂粉体1Aを得ることができる。この場合、フッ素樹脂粉体の粒子同士の一部が融着・架橋しているとしても、架橋時に第2の粉体2が障壁として機能していたことにより、第2の粉体2を存在させずに架橋させた場合に比べて微粉砕しやすい状態の架橋フッ素樹脂粉体1Aが得られているため、微粉砕が可能である。   If the fluororesin powder particles are partly fused and cross-linked, resulting in a particle size larger than the desired average particle size, the desired average particle size is obtained by grinding. Cross-linked fluororesin powder 1A can be obtained. In this case, even if some of the particles of the fluororesin powder are fused and crosslinked, the second powder 2 exists as a result of the second powder 2 functioning as a barrier at the time of crosslinking. Since the cross-linked fluororesin powder 1A is more easily pulverized than the case where it is cross-linked without pulverization, it can be pulverized.

第2の粉体2として磁性粉体(例えば、フェライト粉)を用いた場合には、磁石等を用いて、錠剤状の架橋混合粉体3Bから第2の粉体2を分離でき、架橋フッ素樹脂粉体1Aを得ることができる。   When magnetic powder (for example, ferrite powder) is used as the second powder 2, the second powder 2 can be separated from the tablet-like crosslinked mixed powder 3B by using a magnet or the like, and the crosslinked fluorine. Resin powder 1A can be obtained.

第2の粉体2として第1の粉体1の比重の2倍以上又は1/2以下の比重を有する粉体を用いた場合には、風力分離や振動分離等の方法により、或いは、乾式比重選別装置などを用いて、錠剤状の架橋混合粉体3Bから第2の粉体2を分離でき、架橋フッ素樹脂粉体1Aを得ることができる。   When a powder having a specific gravity of not less than twice or not more than ½ of the specific gravity of the first powder 1 is used as the second powder 2, a method such as wind separation or vibration separation, or a dry type The second powder 2 can be separated from the tablet-like cross-linked mixed powder 3B using a specific gravity sorter or the like, and the cross-linked fluororesin powder 1A can be obtained.

第1の粉体1と第2の粉体2とを分離する必要がない場合には、本工程は省略できる。   If it is not necessary to separate the first powder 1 and the second powder 2, this step can be omitted.

〔本発明の実施の形態の効果〕
本発明の実施の形態によれば、従来困難であった微小な粒径(平均粒径20μm以下、特に平均粒径10μm以下)の架橋フッ素樹脂粉体を得ることが可能な架橋フッ素樹脂粉体の製造方法を提供することができる。また、本実施の形態によれば、大粒径から微小粒径まで種々の粒径の架橋フッ素樹脂粉体を製造することが可能である。
[Effect of the embodiment of the present invention]
According to the embodiment of the present invention, a cross-linked fluororesin powder capable of obtaining a cross-linked fluororesin powder having a fine particle size (average particle size of 20 μm or less, particularly average particle size of 10 μm or less), which has been difficult in the past, has been obtained. The manufacturing method of can be provided. Moreover, according to this Embodiment, it is possible to manufacture the cross-linked fluororesin powder having various particle sizes from a large particle size to a minute particle size.

本発明の実施の形態(特に結晶化熱量が40〜50J/gのフッ素樹脂粉体を使用する場合)によれば、微小な粒径であり、かつ耐摩耗性に優れる架橋フッ素樹脂粉体を得ることが可能な架橋フッ素樹脂粉体の製造方法を提供することができる。   According to the embodiment of the present invention (especially when a fluororesin powder having a crystallization heat quantity of 40 to 50 J / g is used), a crosslinked fluororesin powder having a fine particle size and excellent wear resistance is obtained. A method for producing a obtainable crosslinked fluororesin powder can be provided.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

第1の粉体1として平均粒径3.4μmのPTFE粉体(株式会社セイシン企業製、商品名:TFW−3000F)(参考例1,2、比較例1)及び結晶化熱量45J/g、平均粒径6.5μmのPTFE粉体(実施例1)を用い、第2の粉体2として平均粒径1μmの塩を使用して、上記本発明の実施の形態に従い、架橋フッ素樹脂粉体を製造した。なお、実施例1のPTFE粉体は、平均粒径25μmのPTFE粉体(株式会社セイシン企業製、商品名:TFW−500)に対してγ線を100kGy、10時間照射した後、ジェットミルにて微粉砕することにより得たものである。また、塩は、市販の食塩(食塩事業センター製)を1μmまで乾式粉砕法(ハンマーミルを使用したが、ジェットミル等を使用してもよい)で粉砕した物を使用した。   PTFE powder having an average particle size of 3.4 μm as the first powder 1 (trade name: TFW-3000F, manufactured by Seishin Enterprise Co., Ltd.) (Reference Examples 1, 2 and Comparative Example 1), and crystallization calorie 45 J / g, Using a PTFE powder (Example 1) having an average particle diameter of 6.5 μm and using a salt having an average particle diameter of 1 μm as the second powder 2, the crosslinked fluororesin powder according to the embodiment of the present invention. Manufactured. The PTFE powder of Example 1 was irradiated with γ rays at 100 kGy for 10 hours on a PTFE powder having an average particle size of 25 μm (trade name: TFW-500, manufactured by Seishin Enterprise Co., Ltd.), and then applied to a jet mill. And obtained by pulverization. The salt used was a product obtained by pulverizing commercially available salt (manufactured by Salt Business Center) to 1 μm by a dry pulverization method (a hammer mill was used but a jet mill or the like may be used).

参考例1では、第1の粉体1(PTFE粉体)と第2の粉体2(塩)の混合比(体積比)が前者:後者=1:3.6となるように、PTFE粉体1質量部及び塩1.8質量部を混合して混合粉体とし、錠剤状に成形した後、架橋処理を行なった(340℃、無酸素雰囲気、電子線照射量100kGy)。   In Reference Example 1, PTFE powder was used so that the mixing ratio (volume ratio) of the first powder 1 (PTFE powder) and the second powder 2 (salt) was the former: the latter = 1: 3.6. 1 part by mass of the body and 1.8 parts by mass of salt were mixed to obtain a mixed powder, which was formed into a tablet and then subjected to crosslinking treatment (340 ° C., oxygen-free atmosphere, electron beam irradiation dose of 100 kGy).

参考例2では、第1の粉体1(PTFE粉体)と第2の粉体2(塩)の混合比(体積比)が前者:後者=1:8となるように、PTFE粉体1質量部及び塩4質量部を混合して混合粉体とし、錠剤状に成形した後、架橋処理を行なった(340℃、無酸素雰囲気、電子線照射量100kGy)。   In Reference Example 2, the PTFE powder 1 so that the mixing ratio (volume ratio) of the first powder 1 (PTFE powder) and the second powder 2 (salt) is the former: the latter = 1: 8. Mass parts and 4 parts by mass of salt were mixed to form a mixed powder, formed into a tablet, and then subjected to crosslinking treatment (340 ° C., oxygen-free atmosphere, electron beam irradiation dose of 100 kGy).

実施例1では、第1の粉体1(PTFE粉体)と第2の粉体2(塩)の混合比(体積比)が前者:後者=1:12となるように、PTFE粉体1質量部及び塩6質量部を混合して混合粉体とし、錠剤状に成形した後、架橋処理を行なった(340℃、無酸素雰囲気、電子線照射量100kGy)。   In Example 1, the PTFE powder 1 was used so that the mixing ratio (volume ratio) of the first powder 1 (PTFE powder) and the second powder 2 (salt) was the former: the latter = 1: 12. Mass parts and 6 parts by mass of salt were mixed to obtain a mixed powder, which was formed into a tablet shape and then subjected to crosslinking treatment (340 ° C., oxygen-free atmosphere, electron beam irradiation dose 100 kGy).

架橋後、錠剤状の混合粉体をアルコールに投入し、第2の粉体2(塩)をアルコールに溶解させ、架橋フッ素樹脂粉体がアルコール溶液中に分散された状態で架橋フッ素樹脂粉体の粒径分布をSEISHIN LMS−30により測定した。原料のPTFE粉体についても同様に測定した。結果を表1〜2に示す。表1〜2中、D(10%)は粒径の累積分布において10%となる点の粒子径、D(50%)は粒径の累積分布において50%となる点の粒子径(平均粒径)、D(90%)は粒径の累積分布において90%となる点の粒子径を示す。   After cross-linking, the tablet-like mixed powder is put into alcohol, the second powder 2 (salt) is dissolved in alcohol, and the cross-linked fluoro resin powder is dispersed in the alcohol solution. The particle size distribution was measured by SEISHIN LMS-30. It measured similarly about the raw material PTFE powder. The results are shown in Tables 1-2. In Tables 1 and 2, D (10%) is the particle diameter at a point where the cumulative distribution of particle diameters is 10%, and D (50%) is the particle diameter at which the particle diameter is 50% (average particle diameter). (Diameter) and D (90%) indicate the particle diameter at the point where the cumulative distribution of particle diameters is 90%.

第2の粉体を混合せずに、第1の粉体1(PTFE粉体)のみを錠剤状に成形した後、架橋処理を行った(340℃、無酸素雰囲気、電子線照射量100kGy)比較例1では、第1の粉体同士が溶融一体化してしまうので、粉体は得られない。一体化した溶融物を粉砕加工した一例を表3に示す。   Without mixing the second powder, only the first powder 1 (PTFE powder) was formed into a tablet and then subjected to crosslinking treatment (340 ° C., oxygen-free atmosphere, electron beam irradiation dose 100 kGy). In Comparative Example 1, since the first powders are fused and integrated, no powder can be obtained. An example of pulverizing the integrated melt is shown in Table 3.

表1〜3より分かる通り、参考例1,2及び実施例1では、微小な粒径(平均粒径20μm以下)の架橋フッ素樹脂粉体が得られたが、比較例1では、参考例と同じPTFE粉体を用いたにもかかわらず、平均粒径20μmを超える架橋フッ素樹脂粉体となった。また、比較例1の架橋フッ素樹脂粉体は、さらに小さな粒径に微粉砕することが参考例及び実施例の架橋フッ素樹脂粉体に比べて困難であった。   As can be seen from Tables 1 to 3, in Reference Examples 1 and 2 and Example 1, a crosslinked fluororesin powder having a fine particle size (average particle size of 20 μm or less) was obtained. Despite the use of the same PTFE powder, a crosslinked fluororesin powder having an average particle size exceeding 20 μm was obtained. Moreover, it was difficult for the cross-linked fluororesin powder of Comparative Example 1 to be finely pulverized to a smaller particle size as compared with the cross-linked fluororesin powders of Reference Examples and Examples.

なお、本発明は、上記実施の形態及び実施例に限定されず種々に変形実施が可能である。   In addition, this invention is not limited to the said embodiment and Example, A various deformation | transformation implementation is possible.

1:第1の粉体(フッ素樹脂粉体)、1A:架橋フッ素樹脂粉体
2:第2の粉体、3:混合粉体
3A:錠剤状の混合粉体、3B:錠剤状の架橋混合粉体
10:打錠機
11:ベルトコンベア、12:電子線照射装置、13:作業容器
20:水、20A:水溶液、21、23:容器、22:濾過器
1: 1st powder (fluororesin powder), 1A: crosslinked fluororesin powder 2: second powder, 3: mixed powder 3A: mixed powder in tablet form, 3B: crosslinked mixed in tablet form Powder 10: Tableting machine 11: Belt conveyor, 12: Electron beam irradiation device, 13: Work container 20: Water, 20A: Aqueous solution, 21, 23: Container, 22: Filter

Claims (10)

第1の粉体としてのフッ素樹脂粉体と、前記フッ素樹脂粉体の架橋処理条件下においても前記フッ素樹脂粉体に融着しない第2の粉体とを混合して混合粉体とした後、前記混合粉体に対し架橋処理を行なう工程を備え、
前記フッ素樹脂粉体は、電離性放射線を常温、大気圧下で照射した後、粉砕処理を行なって得られたものである架橋フッ素樹脂粉体の製造方法。
After mixing the fluororesin powder as the first powder with the second powder that is not fused to the fluororesin powder even under the cross-linking conditions of the fluororesin powder, a mixed powder is obtained. And a step of performing a crosslinking treatment on the mixed powder,
The said fluororesin powder is a manufacturing method of the crosslinked fluororesin powder which is obtained by irradiating ionizing radiation at normal temperature and atmospheric pressure , and then pulverizing.
前記フッ素樹脂粉体は、結晶化熱量が40〜50J/gである請求項1に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to claim 1, wherein the fluororesin powder has a crystallization heat amount of 40 to 50 J / g. 前記架橋処理を行なう工程の後、前記第1の粉体と前記第2の粉体とを分離する工程を備えた請求項1又は請求項2に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to claim 1 or 2, further comprising a step of separating the first powder and the second powder after the step of performing the crosslinking treatment. 前記第2の粉体は、無機溶媒及び/又は有機溶媒に溶解する性質を有する請求項1〜3のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to any one of claims 1 to 3, wherein the second powder has a property of being dissolved in an inorganic solvent and / or an organic solvent. 前記第2の粉体は、磁性体である請求項1〜3のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to any one of claims 1 to 3, wherein the second powder is a magnetic substance. 前記第2の粉体は、前記第1の粉体の比重の2倍以上又は1/2以下の比重を有する請求項1〜3のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to any one of claims 1 to 3, wherein the second powder has a specific gravity of not less than twice or not more than 1/2 of the specific gravity of the first powder. . 前記第2の粉体は、前記第1の粉体の平均粒径よりも小さい平均粒径を有し、前記第2の粉体の前記第1の粉体に対する混合比(体積比)は、(前記第2の粉体/前記第1の粉体)=2以上である請求項1〜6のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The second powder has an average particle size smaller than the average particle size of the first powder, and the mixing ratio (volume ratio) of the second powder to the first powder is: (The second powder / the first powder) = 2 or more. The method for producing a crosslinked fluororesin powder according to any one of claims 1 to 6. 前記第2の粉体は、前記第1の粉体の平均粒径よりも大きい平均粒径を有し、前記第2の粉体の前記第1の粉体に対する混合比(体積比)は、(前記第2の粉体/前記第1の粉体)=2以上である請求項1〜6のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The second powder has an average particle size larger than the average particle size of the first powder, and the mixing ratio (volume ratio) of the second powder to the first powder is: (The second powder / the first powder) = 2 or more. The method for producing a crosslinked fluororesin powder according to any one of claims 1 to 6. 前記混合粉体は、架橋処理が行なわれる前に錠剤状に成形される請求項1〜8のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to any one of claims 1 to 8, wherein the mixed powder is formed into a tablet shape before the crosslinking treatment. 前記フッ素樹脂粉体は、平均粒径10μm以下の粉体である請求項1〜9のいずれか1項に記載の架橋フッ素樹脂粉体の製造方法。   The method for producing a crosslinked fluororesin powder according to claim 1, wherein the fluororesin powder is a powder having an average particle size of 10 μm or less.
JP2015138826A 2015-07-10 2015-07-10 Method for producing cross-linked fluororesin powder Active JP6497247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138826A JP6497247B2 (en) 2015-07-10 2015-07-10 Method for producing cross-linked fluororesin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138826A JP6497247B2 (en) 2015-07-10 2015-07-10 Method for producing cross-linked fluororesin powder

Publications (2)

Publication Number Publication Date
JP2017019930A JP2017019930A (en) 2017-01-26
JP6497247B2 true JP6497247B2 (en) 2019-04-10

Family

ID=57887555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138826A Active JP6497247B2 (en) 2015-07-10 2015-07-10 Method for producing cross-linked fluororesin powder

Country Status (1)

Country Link
JP (1) JP6497247B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798306B (en) * 2017-12-07 2023-04-11 日商Agc股份有限公司 Method for producing powder, powder coating and laminate
JP7159653B2 (en) * 2018-07-06 2022-10-25 日立金属株式会社 Method for producing fluororesin powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637520B2 (en) * 1988-11-21 1997-08-06 大阪瓦斯株式会社 Manufacturing method of fluororesin fine powder
JP2802376B2 (en) * 1990-08-07 1998-09-24 住友重機械工業株式会社 Method for pulverizing polymer
JP3672428B2 (en) * 1997-03-17 2005-07-20 日立電線株式会社   Modified fluoroplastic molding
JP3642003B2 (en) * 2000-05-22 2005-04-27 日立電線株式会社 Method for producing powdered crosslinked polytetrafluoroethylene

Also Published As

Publication number Publication date
JP2017019930A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
CN107405685B (en) The manufacturing method and sintered article of titanium class powder, ingot casting
JP6497247B2 (en) Method for producing cross-linked fluororesin powder
JP2017514784A5 (en)
JP2017522251A5 (en)
RU2020131061A (en) METHOD FOR MANUFACTURING BARRELS FROM BRASS WITHOUT AN ADMINISTRATION OF LEAD OR WITH LOW CONTENT OF LEAD AND BILLETS MADE USING THIS METHOD
JP6471545B2 (en) Method for producing cross-linked fluororesin powder
JP2008088041A (en) Talc fine powder and its production method
JP2020083851A (en) Method for producing aloe extract
JP2016500401A (en) Method for producing thermoplastic polymer powder
RU2018147438A (en) PRODUCTION OF GRANULES WITH ROUND PARTICLES FOR PRODUCTION OF IMPLANTS OR INSTRUMENTS
JP6481045B2 (en) Densification method of poly (arylene ether ketone) powder
KR101510852B1 (en) Method for manufacturing powder of ruthenium-chromium with rf plasma process
Tkac et al. Dissolution of sintered Mo disks
KR20160039611A (en) Method for producing electrode film for electric double layer capacitors
Zhang et al. Functions of magnetic nanoparticles in selective laser sintering (SLS) 3D printing of pharmaceutical dosage forms
JP2006336042A (en) Metal powder, and method for producing the same
JP2019188668A (en) Polymer powder and method of preparing the same
JP2017535643A (en) Process for increasing the density of polymer flakes and powders
US10213834B2 (en) Method of fabricating an article for magnetic heat exchanger
JP2017008393A (en) Iron-based sintered alloy and manufacturing method therefor
JP6809371B2 (en) L10-FeNi magnetic powder and bond magnet
WO2019124325A1 (en) Titanium powder and method for producing same
KR102098732B1 (en) Method for manufacturing magnetic powder from rare earth magnet scrap
JP2003287590A (en) Radiation shield material
US3278655A (en) Method for sphering refractory oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6497247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350