JP6492840B2 - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP6492840B2
JP6492840B2 JP2015059606A JP2015059606A JP6492840B2 JP 6492840 B2 JP6492840 B2 JP 6492840B2 JP 2015059606 A JP2015059606 A JP 2015059606A JP 2015059606 A JP2015059606 A JP 2015059606A JP 6492840 B2 JP6492840 B2 JP 6492840B2
Authority
JP
Japan
Prior art keywords
annular
groove
lubricating oil
inner ring
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015059606A
Other languages
Japanese (ja)
Other versions
JP2016180423A (en
Inventor
賢一 尾野
賢一 尾野
敦 長井
敦 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015059606A priority Critical patent/JP6492840B2/en
Publication of JP2016180423A publication Critical patent/JP2016180423A/en
Application granted granted Critical
Publication of JP6492840B2 publication Critical patent/JP6492840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7893Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a cage or integral therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、ころ軸受に関する。   The present invention relates to a roller bearing.

車両や工作機械等が備えている回転部の軸を支持するために、転がり軸受が用いられており、このような転がり軸受として、ころ軸受が知られている。ころ軸受は、内輪と、外輪と、これら内輪と外輪との間に設けられている複数のころと、これら複数のころを周方向に間隔をあけて保持している環状の保持器とを備えている。   Rolling bearings are used to support the shafts of rotating parts provided in vehicles, machine tools, and the like, and roller bearings are known as such rolling bearings. The roller bearing includes an inner ring, an outer ring, a plurality of rollers provided between the inner ring and the outer ring, and an annular cage that holds the plurality of rollers at intervals in the circumferential direction. ing.

一般に、ころ軸受は、玉軸受と比較して回転トルクが大きくなる傾向がある。ころ軸受のトルク損失は、主に、軌道輪(内輪、外輪)ところとの間における転がり粘性抵抗、軸受内部の潤滑油の撹拌抵抗、及び、ころの滑り摩擦抵抗の3つに大別される。これらの抵抗のうち、撹拌抵抗が全体の約3割を占めており、この撹拌抵抗を低減させる手段として、軸受内部に流入する潤滑油量を減らすための構成が提案されている(例えば、特許文献1参照)。   Generally, a roller bearing tends to have a larger rotational torque than a ball bearing. The torque loss of roller bearings is mainly divided into three categories: rolling viscosity resistance between the bearing rings (inner ring and outer ring), agitation resistance of lubricating oil inside the bearing, and sliding friction resistance of the rollers. . Among these resistances, the stirring resistance accounts for about 30% of the total, and as a means for reducing this stirring resistance, a configuration for reducing the amount of lubricating oil flowing into the bearing is proposed (for example, patents). Reference 1).

特許文献1には、図5に示すように、保持器91の小径側の環状部92を径方向内側に折り曲げ、この環状部92の折り曲げ部93と内輪95の端部の外周面96との間に形成される隙間を小さくし、ラビリンスを形成する点が開示されている。   In Patent Document 1, as shown in FIG. 5, the annular portion 92 on the small diameter side of the cage 91 is bent inward in the radial direction, and the bent portion 93 of the annular portion 92 and the outer peripheral surface 96 at the end of the inner ring 95 are formed. The point which makes the clearance gap formed in between small and forms a labyrinth is indicated.

特開2005−69421号公報JP 2005-69421 A

図5に示す円すいころ軸受90では、外輪97の内周面98が軸方向一方側(図5の左側)から他方側(図5の右側)に向かって拡径しており、円すいころ軸受90(内輪95)が回転すると、外輪97と内輪95との間を潤滑油が軸方向一方側から他方側(図5の場合、左側から右側)に向かって流れる作用(ポンプ作用)が生じる。この作用により、軸受外部の潤滑油が、軸方向一方側から軸受内部に流入する。   In the tapered roller bearing 90 shown in FIG. 5, the inner peripheral surface 98 of the outer ring 97 is enlarged in diameter from one axial side (left side in FIG. 5) to the other side (right side in FIG. 5). When the (inner ring 95) rotates, an action (pump action) occurs between the outer ring 97 and the inner ring 95 in which the lubricating oil flows from one axial side to the other side (in the case of FIG. 5, from the left side to the right side). By this action, the lubricating oil outside the bearing flows into the bearing from one side in the axial direction.

軸受内部に流入した潤滑油は、前記撹拌抵抗を生じさせる。このため、軸受内部を通過する潤滑油が多くなると撹拌抵抗も増大し、この結果、ころ軸受90の回転トルク(回転抵抗)が増加する。   The lubricating oil that has flowed into the bearing causes the agitation resistance. For this reason, when the lubricating oil passing through the inside of the bearing increases, the stirring resistance also increases, and as a result, the rotational torque (rotational resistance) of the roller bearing 90 increases.

そこで、図5に示す円すいころ軸受90では、保持器91の環状部92が折り曲げ部93を有していることにより、この折り曲げ部93と内輪95の端部の外周面96との間からの潤滑油の流入を抑制し、撹拌抵抗を減少させている。しかし、軸受の回転トルクを低減するためには、撹拌抵抗をより一層減少させるのが望ましい。   Therefore, in the tapered roller bearing 90 shown in FIG. 5, the annular portion 92 of the retainer 91 has a bent portion 93, so that the bent portion 93 and the outer peripheral surface 96 at the end of the inner ring 95 are interposed from each other. The inflow of lubricating oil is suppressed and the stirring resistance is reduced. However, it is desirable to further reduce the stirring resistance in order to reduce the rotational torque of the bearing.

なお、前記のように軸受外部の潤滑油が外輪と内輪との間(軸受内部)に流入可能となるころ軸受は、図5に示すような円すいころ軸受90以外にもある。例えば、図示しないが、外輪の内周面や内輪の外周面のうち、軌道面以外の部分の形状(傾斜形状)によって、潤滑油が軸方向一方側から外輪と内輪との間に流入したり、保持器の回転に起因して、潤滑油が軸方向一方側から外輪と内輪との間に流入したりする場合がある。   As described above, there are roller bearings other than the tapered roller bearing 90 as shown in FIG. 5 that allow lubricating oil outside the bearing to flow between the outer ring and the inner ring (inside the bearing). For example, although not shown, lubricating oil may flow between the outer ring and the inner ring from one side in the axial direction due to the shape (inclined shape) of the inner ring surface of the outer ring and the outer ring surface of the inner ring other than the raceway surface. Due to the rotation of the cage, the lubricating oil may flow between the outer ring and the inner ring from one side in the axial direction.

そこで、本発明は、ころ軸受の回転トルクの更なる低減を目的とする。   Then, this invention aims at the further reduction of the rotational torque of a roller bearing.

本発明は、外輪と、内輪と、前記外輪と前記内輪との間に設けられている複数のころと、前記複数のころを周方向に間隔をあけて保持する環状の保持器と、を備え、前記外輪と前記内輪との間に潤滑油が軸方向一方側から流入可能となるころ軸受であって、前記保持器は、前記外輪の軸方向一方側の外輪端部と前記内輪の軸方向一方側の内輪端部との間に位置する環状部と、前記環状部から軸方向他方側に延びて設けられている複数の柱部と、を有し、前記環状部は、前記外輪端部の内周面に環状隙間を有して対向する外側の環状面、及び前記内輪端部の外周面に環状隙間を有して対向する内側の環状面を有し、前記外側の環状面及び前記内側の環状面の内の少なくとも一方に、前記保持器が一方向に回転すると前記環状隙間の潤滑油を軸方向一方側へ向かって流す溝形状を有する溝が形成されている。   The present invention includes an outer ring, an inner ring, a plurality of rollers provided between the outer ring and the inner ring, and an annular cage that holds the plurality of rollers at intervals in the circumferential direction. And a roller bearing that allows lubricating oil to flow from one side in the axial direction between the outer ring and the inner ring, wherein the cage includes an outer ring end on one side in the axial direction of the outer ring and an axial direction of the inner ring. An annular portion located between the inner ring end portion on one side and a plurality of column portions provided extending from the annular portion to the other side in the axial direction, wherein the annular portion is the outer ring end portion An outer annular surface facing the inner circumferential surface with an annular gap, and an inner annular surface facing the outer circumferential surface of the inner ring end portion with an annular clearance, the outer annular surface and the When the cage rotates in one direction on at least one of the inner annular surfaces, the lubricating oil in the annular gap is axially Meanwhile groove having a groove shape to flow toward the side is formed.

本発明によれば、軸受が回転して保持器が回転すると、この保持器が有する軸方向一方側の環状部に形成されている前記溝によって、環状隙間の潤滑油を軸方向一方側へ向かって流すことができる。このため、軸方向一方側の軸受外部から軸受内部への潤滑油の流入を抑制することができ、撹拌抵抗を低下させ、ころ軸受の回転トルクを低減することが可能となる。   According to the present invention, when the bearing rotates and the cage rotates, the lubricating oil in the annular gap is directed toward the one axial side by the groove formed in the annular portion on the one axial side of the cage. Can be shed. For this reason, the inflow of lubricating oil from the outside of the bearing on one axial side to the inside of the bearing can be suppressed, the stirring resistance can be reduced, and the rotational torque of the roller bearing can be reduced.

また、前記溝は、前記環状部の軸方向一方側の側面において開口しているのが好ましい。この場合、保持器が一方向に回転することで環状隙間の潤滑油を軸方向一方側へ向かって流す前記溝の機能を高めることができる。   Moreover, it is preferable that the said groove | channel is opened in the side surface of the axial direction one side of the said annular part. In this case, the function of the groove that allows the lubricating oil in the annular gap to flow toward one side in the axial direction can be enhanced by rotating the cage in one direction.

また、保持器が一方向に回転することで、前記溝によって環状隙間の潤滑油を軸方向一方側へ向かって流すことができるが、回転が停止している状態では、このような作用は発生しない。
そこで、前記溝は、当該溝が形成されている前記環状面の内の軸方向他方側を除く領域に形成されているのが好ましく、この場合、前記溝は、当該溝が形成されている環状面を軸方向に貫通しない構成となる。このため、回転が停止している状態で、溝を通じて潤滑油が軸受内部に入りにくくすることができる。
In addition, when the cage rotates in one direction, the groove allows lubricating oil in the annular gap to flow toward one side in the axial direction, but such an action occurs when rotation is stopped. do not do.
Therefore, the groove is preferably formed in a region excluding the other side in the axial direction of the annular surface where the groove is formed. In this case, the groove is an annular shape where the groove is formed. The surface does not penetrate the surface in the axial direction. For this reason, it is possible to make it difficult for the lubricating oil to enter the bearing through the groove while the rotation is stopped.

本発明によれば、軸方向一方側の軸受外部から軸受内部への潤滑油の流入を抑制することができ、軸受内部の潤滑油量を減らすことで撹拌抵抗を低下させ、ころ軸受の回転トルクを低減することが可能となる。   According to the present invention, the inflow of lubricating oil from the outside of the bearing on one axial side to the inside of the bearing can be suppressed, the stirring resistance is reduced by reducing the amount of lubricating oil inside the bearing, and the rotational torque of the roller bearing Can be reduced.

ころ軸受の実施の一形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of a roller bearing. 小径環状部及びその周囲の拡大断面図である。It is an expanded sectional view of a small diameter annular part and its circumference. 小径環状部を径方向内側から見た図である。It is the figure which looked at the small diameter annular part from the radial inside. 小径環状部を径方向外側から見た図である。It is the figure which looked at the small diameter annular part from the radial direction outer side. 従来のころ軸受の縦断面図である。It is a longitudinal cross-sectional view of the conventional roller bearing.

〔軸受の全体構成〕
図1は、本発明のころ軸受の実施の一形態を示す縦断面図である。本実施形態のころ軸受は、円すいころ軸受1であり、この円すいころ軸受1は、外輪2と、この外輪2の径方向内側に設けられている内輪3と、これら外輪2と内輪3との間に設けられている複数の円すいころ4と、これら円すいころ4を保持している環状の保持器10とを備えている。そして、この円すいころ軸受1は潤滑油(オイル)によって潤滑される。
[Overall structure of bearing]
FIG. 1 is a longitudinal sectional view showing an embodiment of a roller bearing of the present invention. The roller bearing of the present embodiment is a tapered roller bearing 1, and the tapered roller bearing 1 includes an outer ring 2, an inner ring 3 provided radially inside the outer ring 2, and the outer ring 2 and the inner ring 3. A plurality of tapered rollers 4 provided therebetween, and an annular retainer 10 holding these tapered rollers 4 are provided. The tapered roller bearing 1 is lubricated with lubricating oil (oil).

内輪3は、軸受鋼や機械構造用鋼等を用いて形成された環状の部材であり、その外周には、複数の円すいころ4が転動するテーパー状の内輪軌道面3aが形成されている。また、内輪3は、内輪軌道面3aの軸方向一方側(図1では左側)に設けられ径方向外側に突出する小鍔部5と、内輪軌道面3aの軸方向他方側(図1では右側)に設けられ径方向外側に突出する大鍔部6とを有している。   The inner ring 3 is an annular member formed using bearing steel, machine structural steel or the like, and a tapered inner ring raceway surface 3a on which a plurality of tapered rollers 4 roll is formed on the outer periphery thereof. . Further, the inner ring 3 includes a small flange portion 5 provided on one axial side of the inner ring raceway surface 3a (left side in FIG. 1) and protruding radially outward, and the other axial side of the inner ring raceway surface 3a (right side in FIG. 1). ) And a large collar portion 6 protruding outward in the radial direction.

外輪2も、内輪3と同様、軸受鋼や機械構造用鋼等を用いて形成された環状の部材であり、その内周には、内輪軌道面3aに対向し複数の円すいころ4が転動するテーパー状の外輪軌道面2aが形成されている。   Similarly to the inner ring 3, the outer ring 2 is also an annular member formed using bearing steel, machine structural steel, or the like, and a plurality of tapered rollers 4 are opposed to the inner ring raceway surface 3a on its inner periphery. A tapered outer ring raceway surface 2a is formed.

円すいころ4は、軸受鋼等を用いて形成された部材であり、内輪軌道面3aと外輪軌道面2aとを転動する。円すいころ4は、軸方向一方側に直径の小さい小端面4aを有し、軸方向他方側に直径の大きい大端面4bを有している。この大端面4bは、内輪3の大鍔部6の鍔面7と摺接する。   The tapered roller 4 is a member formed using bearing steel or the like, and rolls between the inner ring raceway surface 3a and the outer ring raceway surface 2a. The tapered roller 4 has a small end surface 4a having a small diameter on one side in the axial direction, and a large end surface 4b having a large diameter on the other side in the axial direction. The large end surface 4 b is in sliding contact with the flange surface 7 of the large flange portion 6 of the inner ring 3.

保持器10は、軸方向一方側の小径環状部11、軸方向他方側の大径環状部12、及び周方向に間隔をあけて設けられている複数の柱部13を有している。小径環状部11と大径環状部12とは円環状であり、軸方向に所定間隔離れて設けられている。柱部13は、小径環状部11から軸方向他方側に延びて設けられ大径環状部12と繋がっている。つまり、柱部13は、環状部11,12を連結している。両環状部11,12の間であって周方向で隣り合う二つの柱部13,13の間に形成される空間が、円すいころ4を収容(保持)するポケット14となる。本実施形態の保持器10は、樹脂製(合成樹脂製)であり、射出成形によって成形することができる。   The cage 10 includes a small-diameter annular portion 11 on one side in the axial direction, a large-diameter annular portion 12 on the other side in the axial direction, and a plurality of column portions 13 provided at intervals in the circumferential direction. The small-diameter annular portion 11 and the large-diameter annular portion 12 are annular and are provided at predetermined intervals in the axial direction. The column portion 13 extends from the small-diameter annular portion 11 to the other side in the axial direction and is connected to the large-diameter annular portion 12. That is, the column part 13 connects the annular parts 11 and 12. A space formed between the two column portions 13 and 13 between the annular portions 11 and 12 and adjacent in the circumferential direction serves as a pocket 14 that houses (holds) the tapered roller 4. The cage 10 of this embodiment is made of resin (made of synthetic resin) and can be molded by injection molding.

保持器10は、内輪3と外輪2との間に形成されている環状空間(以下、軸受内部ともいう)に設けられており、各ポケット14に一つの円すいころ4を収容し、複数の円すいころ4を周方向に等しい間隔をあけて配置し保持している。
本実施形態の小径環状部11は、外輪2の軸方向一方側の端部8(以下、外輪端部8ともいう。)と、内輪3の軸方向一方側の端部である小鍔部5(以下、内輪端部5ともいう。)との間に位置している。
The cage 10 is provided in an annular space (hereinafter also referred to as a bearing interior) formed between the inner ring 3 and the outer ring 2, and stores one tapered roller 4 in each pocket 14, and includes a plurality of tapered rollers. The rollers 4 are arranged and held at equal intervals in the circumferential direction.
The small-diameter annular portion 11 of the present embodiment includes an end portion 8 on one side in the axial direction of the outer ring 2 (hereinafter also referred to as an outer ring end portion 8) and a small flange portion 5 that is an end portion on one side in the axial direction of the inner ring 3 (Hereinafter also referred to as inner ring end 5).

図1に示す円すいころ軸受1では、外輪2の内周面(外輪軌道面2a)が、軸方向一方側から他方側に向かって拡径している。このため、円すいころ軸受1(本実施形態では内輪3)が回転すると、内輪3と外輪2との間に形成されている環状空間を潤滑油が軸方向一方側から他方側に向かって流れる作用(ポンプ作用)が生じる。このような円すいころ軸受1の回転に伴うポンプ作用により、軸受外部の潤滑油が、軸方向一方側から、外輪2と内輪3との間の環状空間(軸受内部)に流入可能となり、流入した潤滑油は、軸方向他方側から流出する。つまり、潤滑油が軸受内部を通過する。以上より、図1に示す円すいころ軸受1では、軸方向一方側が潤滑油の流入側となり、軸方向他方側が潤滑油の流出側となる。   In the tapered roller bearing 1 shown in FIG. 1, the inner peripheral surface (outer ring raceway surface 2a) of the outer ring 2 is expanded in diameter from one side in the axial direction to the other side. For this reason, when the tapered roller bearing 1 (in this embodiment, the inner ring 3) rotates, the lubricating oil flows in an annular space formed between the inner ring 3 and the outer ring 2 from one side in the axial direction toward the other side. (Pump action) occurs. Due to the pump action associated with the rotation of the tapered roller bearing 1, lubricating oil outside the bearing can flow into the annular space (inside the bearing) between the outer ring 2 and the inner ring 3 from one side in the axial direction. Lubricating oil flows out from the other side in the axial direction. That is, the lubricating oil passes through the inside of the bearing. From the above, in the tapered roller bearing 1 shown in FIG. 1, one side in the axial direction is the inflow side of the lubricating oil, and the other side in the axial direction is the outflow side of the lubricating oil.

図2は、保持器10の小径環状部11及びその周囲の拡大断面図である。小径環状部11は、外輪端部8の内周面21に環状隙間A1を有して対向する外側の環状面(以下、外環状面31という。)を有している。また、この小径環状部11は、内輪端部5の外周面22に環状隙間A2を有して対向する内側の環状面(以下、内環状面32という。)を有している。本実施形態では、外輪端部8の内周面21及び小径環状部11の外環状面31は、円すいころ軸受1の中心線C(図1参照)を中心とするストレート形状の円筒面からなり、また、内輪端部5の外周面22及び小径環状部11の内環状面32は、前記中心線C(図1参照)を中心とするストレート形状の円筒面からなる。   FIG. 2 is an enlarged cross-sectional view of the small-diameter annular portion 11 of the cage 10 and its surroundings. The small-diameter annular portion 11 has an outer annular surface (hereinafter referred to as an outer annular surface 31) facing the inner circumferential surface 21 of the outer ring end portion 8 with an annular gap A <b> 1. The small-diameter annular portion 11 has an inner annular surface (hereinafter, referred to as an inner annular surface 32) facing the outer peripheral surface 22 of the inner ring end portion 5 with an annular gap A 2. In the present embodiment, the inner peripheral surface 21 of the outer ring end 8 and the outer annular surface 31 of the small-diameter annular portion 11 are formed of a straight cylindrical surface centered on the center line C (see FIG. 1) of the tapered roller bearing 1. In addition, the outer peripheral surface 22 of the inner ring end 5 and the inner annular surface 32 of the small-diameter annular portion 11 are formed of a straight cylindrical surface centered on the center line C (see FIG. 1).

外輪端部8の内周面21と外環状面31とは接近しており、径方向外側の環状隙間A1の径方向寸法は微小(例えば、半径で1.5mm未満)となるように設定されている。これにより、軸方向一方側の軸受外部に存在する潤滑油が、環状隙間A1を通じて軸受内部に流入するのを抑制することができる。
また、内輪端部5の外周面22と内環状面32とは接近しており、径方向内側の環状隙間A2の径方向寸法は微小(例えば、半径で1.5mm未満)となるように設定されている。これにより、軸方向一方側の軸受外部に存在する潤滑油が、環状隙間A2を通じて軸受内部に流入するのを抑制することができる。
以上より、内輪端部5と外輪端部8との間には環状開口部が形成されるが、小径環状部11は、この環状開口部を内輪端部5及び外輪端部8それぞれとの間で微小な環状隙間A1,A2をあけて塞ぐ構成となっている。
The inner peripheral surface 21 and the outer annular surface 31 of the outer ring end 8 are close to each other, and the radial dimension of the radially outer annular gap A1 is set to be very small (for example, less than 1.5 mm in radius). ing. Thereby, it can suppress that the lubricating oil which exists outside the bearing of the axial direction one side flows in into a bearing through annular clearance A1.
Further, the outer peripheral surface 22 and the inner annular surface 32 of the inner ring end 5 are close to each other, and the radial dimension of the annular gap A2 on the radially inner side is set to be very small (for example, less than 1.5 mm in radius). Has been. Thereby, it can suppress that the lubricating oil which exists outside the bearing of the axial direction one side flows in into a bearing through annular clearance A2.
As described above, an annular opening is formed between the inner ring end 5 and the outer ring end 8, and the small-diameter annular portion 11 is formed between the inner ring end 5 and the outer ring end 8. Thus, a small annular gap A1, A2 is opened and closed.

このように、環状隙間A1,A2を微小隙間とすることで、軸受内部に流入する潤滑油量を抑制し、軸受回転時における円すいころ4の撹拌抵抗を低減することができるが、本実施形態の円すいころ軸受1では、この撹拌抵抗を更に低減するために、小径環状部11には溝41,42(図3及び図4参照)が形成されている。   As described above, by setting the annular gaps A1 and A2 to be minute gaps, the amount of lubricating oil flowing into the bearing can be suppressed and the stirring resistance of the tapered roller 4 during the rotation of the bearing can be reduced. In the tapered roller bearing 1, grooves 41 and 42 (see FIGS. 3 and 4) are formed in the small diameter annular portion 11 in order to further reduce the stirring resistance.

図3は、小径環状部11を径方向内側から見た図である。図3に示す矢印Rは、保持器10の回転方向を示している。小径環状部11が有する内環状面32には、複数の溝42が形成されている。各溝42は同じ溝形状であり、周方向(回転方向)に沿って等間隔で配置されている。各溝42は、保持器10が一方向(矢印R方向)に回転すると、図2に示す環状隙間A2に存在する潤滑油を、軸方向一方側へ向かって流す(排出する)溝形状を有している。   FIG. 3 is a view of the small-diameter annular portion 11 as viewed from the inside in the radial direction. An arrow R shown in FIG. 3 indicates the rotation direction of the cage 10. A plurality of grooves 42 are formed in the inner annular surface 32 of the small diameter annular portion 11. Each groove 42 has the same groove shape and is arranged at equal intervals along the circumferential direction (rotation direction). Each groove 42 has a groove shape that causes the lubricating oil present in the annular gap A2 shown in FIG. 2 to flow (discharge) toward the one side in the axial direction when the cage 10 rotates in one direction (arrow R direction). doing.

溝42について具体的に説明する。溝42は、円すいころ軸受1の中心線C(図1参照)に平行であって内環状面32上に存在する仮想線L2に対して傾斜した溝形状を有している。図3において、仮想線L2に対する溝42の長手方向(溝長手方向)の傾斜角度を「α2」で示している。溝42は、軸方向一方側から他方側に向かうにしたがって、保持器10の回転方向(矢印R方向)に向かうように傾斜している。   The groove 42 will be specifically described. The groove 42 has a groove shape that is parallel to the center line C (see FIG. 1) of the tapered roller bearing 1 and is inclined with respect to a virtual line L <b> 2 that exists on the inner annular surface 32. In FIG. 3, the inclination angle in the longitudinal direction (groove longitudinal direction) of the groove 42 with respect to the virtual line L2 is indicated by “α2”. The groove 42 is inclined so as to be directed in the rotation direction (arrow R direction) of the cage 10 from the one side in the axial direction toward the other side.

この溝42が内環状面32に形成されていることで、保持器10が一方向(矢印R方向)に回転すると、図2に示す環状隙間A2に存在する潤滑油は、溝42に沿って流れるが、この溝42に沿って流れる際に、軸方向一方側、つまり、軸受外部側へ流れる成分をこの潤滑油に生じさせる。
なお、この溝42は、保持器10の回転により環状隙間A2の潤滑油を軸方向一方側へ流す(押し出す)作用を生じさせればよく、図3に示す溝42は、全体として直線状の溝であるが、湾曲していてもよい。溝42を湾曲させる場合、矢印R方向と反対の方向に凸となるように湾曲させる。
Since the groove 42 is formed in the inner annular surface 32, when the cage 10 rotates in one direction (arrow R direction), the lubricating oil present in the annular gap A2 shown in FIG. When flowing along the groove 42, a component that flows to one side in the axial direction, that is, the outside of the bearing is generated in the lubricating oil.
The groove 42 only needs to cause an action of flowing (extruding) the lubricating oil in the annular gap A2 to one side in the axial direction by the rotation of the cage 10, and the groove 42 shown in FIG. Although it is a groove, it may be curved. When the groove 42 is bent, the groove 42 is bent so as to protrude in the direction opposite to the arrow R direction.

また、図3に示すように、溝42は、小径環状部11の軸方向一方側の側面33において開口している。つまり、溝42の軸方向一方側の端部42aは、小径環状部11の側面33上に位置している。
これに対して、溝42の軸方向他方側の端部42bは、小径環状部11の軸方向他方側の側面34において開口していない。つまり、溝42は、小径環状部11の内環状面32を貫通しておらず、内環状面32の内の軸方向他方側の端部35を除く領域K2に形成されている。なお、前記側面34はポケット面となる。
Further, as shown in FIG. 3, the groove 42 is opened on the side surface 33 on one side in the axial direction of the small-diameter annular portion 11. That is, the end portion 42 a on the one axial side of the groove 42 is located on the side surface 33 of the small-diameter annular portion 11.
On the other hand, the end portion 42 b on the other axial side of the groove 42 is not open on the side surface 34 on the other axial side of the small-diameter annular portion 11. That is, the groove 42 does not penetrate the inner annular surface 32 of the small-diameter annular portion 11 and is formed in the region K2 excluding the end portion 35 on the other axial side of the inner annular surface 32. The side surface 34 becomes a pocket surface.

図4は、小径環状部11を径方向外側から見た図である。図4に示す矢印Rは、保持器10の回転方向を示している。小径環状部11が有する外環状面31には、複数の溝41が形成されている。各溝41は同じ溝形状であり、周方向(回転方向)に沿って等間隔で配置されている。各溝41は、保持器10が一方向(矢印R方向)に回転すると、図2に示す環状隙間A1に存在する潤滑油を、軸方向一方側へ向かって流す(排出する)溝形状を有している。   FIG. 4 is a view of the small-diameter annular portion 11 as viewed from the outside in the radial direction. An arrow R shown in FIG. 4 indicates the rotation direction of the cage 10. A plurality of grooves 41 are formed in the outer annular surface 31 of the small-diameter annular portion 11. Each groove | channel 41 is the same groove | channel shape, and is arrange | positioned at equal intervals along the circumferential direction (rotation direction). Each groove 41 has a groove shape that causes the lubricating oil present in the annular gap A1 shown in FIG. 2 to flow (discharge) toward the one side in the axial direction when the cage 10 rotates in one direction (arrow R direction). doing.

溝41について具体的に説明する。溝41は、円すいころ軸受1の中心線C(図1参照)に平行であって外環状面31上に存在する仮想線L1に対して傾斜した溝形状を有している。図4において、仮想線L1に対する溝41の長手方向(溝長手方向)の傾斜角度を「α1」で示している。溝41は、軸方向一方側から他方側に向かうにしたがって、保持器10の回転方向(矢印R方向)に向かうように傾斜している。   The groove 41 will be specifically described. The groove 41 has a groove shape that is parallel to the center line C (see FIG. 1) of the tapered roller bearing 1 and is inclined with respect to a virtual line L <b> 1 that exists on the outer annular surface 31. In FIG. 4, the inclination angle in the longitudinal direction (groove longitudinal direction) of the groove 41 with respect to the virtual line L1 is indicated by “α1”. The groove 41 is inclined so as to be directed in the rotation direction (arrow R direction) of the cage 10 from the one side in the axial direction toward the other side.

この溝41が外環状面31に形成されていることで、保持器10が一方向(矢印R方向)に回転すると、図2に示す環状隙間A1に存在する潤滑油は、溝41に沿って流れるが、この溝41に沿って流れる際に、軸方向一方側、つまり、軸受外部側へ流れる成分をこの潤滑油に生じさせる。
なお、この溝41は、保持器10の回転により環状隙間A1の潤滑油を軸方向一方側へ流す(押し出す)作用を生じさせればよく、図4に示す溝41は、全体として直線状の溝であるが、湾曲していてもよい。溝41を湾曲させる場合、矢印R方向と反対の方向に凸となるように湾曲させる。
Since the groove 41 is formed in the outer annular surface 31, when the cage 10 rotates in one direction (arrow R direction), the lubricating oil present in the annular gap A <b> 1 shown in FIG. When flowing along the groove 41, a component that flows to one side in the axial direction, that is, the outside of the bearing is generated in the lubricating oil.
The groove 41 only needs to cause an action of flowing (extruding) the lubricating oil in the annular gap A1 to one side in the axial direction by the rotation of the cage 10, and the groove 41 shown in FIG. Although it is a groove, it may be curved. When the groove 41 is curved, it is curved so as to be convex in the direction opposite to the arrow R direction.

また、図4に示すように、溝41は、小径環状部11の軸方向一方側の側面33において開口している。つまり、溝41の軸方向一方側の端部41aは、小径環状部11の側面33上に位置している。
これに対して、溝41の軸方向他方側の端部41bは、小径環状部11の軸方向他方側の側面34において開口していない。つまり、溝41は、小径環状部11の外環状面31を貫通しておらず、外環状面31の内の軸方向他方側の端部36を除く領域K1に形成されている。
As shown in FIG. 4, the groove 41 is open on the side surface 33 on one side in the axial direction of the small-diameter annular portion 11. That is, the end portion 41 a on one axial side of the groove 41 is located on the side surface 33 of the small-diameter annular portion 11.
On the other hand, the end portion 41 b on the other axial side of the groove 41 is not open on the side surface 34 on the other axial side of the small-diameter annular portion 11. That is, the groove 41 does not penetrate the outer annular surface 31 of the small-diameter annular portion 11 and is formed in the region K1 excluding the end 36 on the other axial side of the outer annular surface 31.

以上の構成を備えている円すいころ軸受1によれば、内輪3が回転して保持器10が回転すると、この保持器10が有する軸方向一方側の小径環状部11の内環状面32(図3参照)に形成されている溝42によって、環状隙間A2の潤滑油を軸方向一方側へ向かって流すことができ、また、これと共に、小径環状部11の外環状面31(図4参照)に形成されている溝41によって、環状隙間A1の潤滑油を軸方向一方側へ向かって流すことができる。このため、軸方向一方側の軸受外部から、小径環状部11の径方向内側及び径方向外側を通じて、軸受内部へ潤滑油が流入するのを抑制することができ、軸受内部の潤滑油量を減らすことで撹拌抵抗を低下させ、円すいころ軸受1の回転トルクを低減することが可能となる。   According to the tapered roller bearing 1 having the above configuration, when the inner ring 3 rotates and the cage 10 rotates, the inner annular surface 32 of the small-diameter annular portion 11 on one side in the axial direction of the cage 10 (see FIG. 3)), the lubricating oil in the annular gap A2 can be flowed toward one side in the axial direction, and at the same time, the outer annular surface 31 of the small-diameter annular portion 11 (see FIG. 4). Due to the groove 41 formed in, the lubricating oil in the annular gap A1 can flow toward one side in the axial direction. For this reason, it is possible to prevent the lubricating oil from flowing into the bearing from the outside of the bearing on one axial side through the radially inner side and the radially outer side of the small-diameter annular portion 11, thereby reducing the amount of lubricating oil inside the bearing. Thus, the stirring resistance can be reduced, and the rotational torque of the tapered roller bearing 1 can be reduced.

また、本実施形態では、溝41,42は、小径環状部11の軸方向一方側の側面33において開口していることから、保持器10が矢印R方向に回転することで環状隙間A1,A2の潤滑油を軸方向一方側へ向かって流す機能を高めることができる。   Moreover, in this embodiment, since the grooves 41 and 42 are opened on the side surface 33 on one axial side of the small-diameter annular portion 11, the annular gaps A1 and A2 are obtained when the cage 10 rotates in the arrow R direction. The function of flowing the lubricating oil toward one side in the axial direction can be enhanced.

このように、保持器10が矢印R方向に回転することで、溝41,42によって環状隙間A1,A2の潤滑油を軸方向一方側へ向かって流すことができるが、保持器10(軸受)の回転が停止している状態では、このような作用は発生しない。
そこで、本実施形態では、前記のとおり、溝41は、外環状面31の内の軸方向他方側の端部36を除く領域K1に形成されており、また、溝42は、内環状面32の内の軸方向他方側の端部35を除く領域K2に形成されている。このため、保持器10の回転が停止している状態において、溝41,42を通じて潤滑油が軸受内部に入りにくい。
Thus, when the cage 10 rotates in the direction of arrow R, the lubricating oil in the annular gaps A1 and A2 can be caused to flow toward the one side in the axial direction by the grooves 41 and 42. However, the cage 10 (bearing) Such an effect does not occur when the rotation of the motor is stopped.
Therefore, in the present embodiment, as described above, the groove 41 is formed in the region K1 excluding the end 36 on the other axial side in the outer annular surface 31, and the groove 42 is formed in the inner annular surface 32. Is formed in a region K2 excluding the end portion 35 on the other side in the axial direction. For this reason, it is difficult for the lubricating oil to enter the bearing through the grooves 41 and 42 when the rotation of the cage 10 is stopped.

また、図2において、小径環状部11の軸方向一方側の側面33は、その半径方向内寄りの領域に、半径方向外側に向かって軸方向内側に傾斜する内側傾斜面46を有している。この内側傾斜面46は、円筒状である内環状面32と鋭角で交差する円すい面となっている。このため、小径環状部11の軸方向一方側の内周端部は、内側傾斜面46と内環状面32とが鋭角に交差する角部55から成る。そして、この角部55の軸方向位置は、内輪3の側面3bよりも軸方向他方側に位置している。   In FIG. 2, the side surface 33 on one axial side of the small-diameter annular portion 11 has an inner inclined surface 46 that is inclined inward in the axial direction toward the outer side in the radial direction in the radially inward region. . This inner inclined surface 46 is a conical surface that intersects the inner annular surface 32 that is cylindrical at an acute angle. For this reason, the inner peripheral end portion on one axial side of the small-diameter annular portion 11 includes a corner portion 55 where the inner inclined surface 46 and the inner annular surface 32 intersect at an acute angle. And the axial direction position of this corner | angular part 55 is located in the axial direction other side rather than the side surface 3b of the inner ring | wheel 3. FIG.

ここで、円すいころ軸受1(内輪3)が回転した場合の軸方向一方側の軸受外部に存在する潤滑油の流れについて説明する。円すいころ軸受1(内輪3)が回転することで、軸方向一方側の軸受外部に存在する潤滑油には、遠心力によって径方向外側向きの力が作用し、潤滑油の一部は内輪3の側面3bに沿って流れる(図2参照)。
そこで、本実施形態では、前記のとおり、角部55の軸方向位置がこの側面3bよりも軸方向他方側に位置していることから、側面3bに沿って流れる潤滑油は環状隙間A2に届きにくくなるので、環状隙間A2を通過しようとする潤滑油を減らすことができる。
Here, the flow of the lubricating oil existing outside the bearing on one axial side when the tapered roller bearing 1 (inner ring 3) rotates will be described. As the tapered roller bearing 1 (inner ring 3) rotates, a radially outward force acts on the lubricating oil existing outside the bearing on one axial side by centrifugal force, and a part of the lubricating oil is contained in the inner ring 3. It flows along the side surface 3b (see FIG. 2).
Therefore, in the present embodiment, as described above, since the axial position of the corner portion 55 is located on the other side in the axial direction with respect to the side surface 3b, the lubricating oil flowing along the side surface 3b reaches the annular gap A2. Since it becomes difficult, the lubricating oil which tries to pass through the annular gap A2 can be reduced.

そして、図3に示すように、環状隙間A2を通過しようとする潤滑油が存在していても、内環状面32には、前記溝42が形成されていることから、保持器10が回転することで、この潤滑油を軸方向一方側へ送り出すことができ、環状隙間A2を通じて軸受内部に流れる潤滑油量を減らすことができる。この結果、円すいころ軸受1の撹拌抵抗を低減することが可能となる。   As shown in FIG. 3, the cage 10 rotates because the groove 42 is formed in the inner annular surface 32 even when there is lubricating oil that tries to pass through the annular gap A <b> 2. Thus, this lubricating oil can be sent out to one side in the axial direction, and the amount of lubricating oil flowing into the bearing through the annular gap A2 can be reduced. As a result, the stirring resistance of the tapered roller bearing 1 can be reduced.

また、図2において、小径環状部11の軸方向一方側の側面33は、その半径方向外寄りの領域に、半径方向外側に向かって軸方向一方側に傾斜する外側傾斜面45を有している。この外側傾斜面45は、円筒状である外環状面31と鋭角で交差する円すい面となっている。このため、小径環状部11の軸方向一方側の外周端部は、外側傾斜面45と外環状面31とが鋭角に交差する角部52から成る。そして、この角部52の軸方向位置は、外輪2の軸方向一方側の側面2bの軸方向位置と概ね一致している。なお、図2に示す実施形態では、角部52は側面2bよりも僅かに軸方向一方側に位置している。   Further, in FIG. 2, the side surface 33 on one axial side of the small-diameter annular portion 11 has an outer inclined surface 45 that is inclined outward in the radial direction toward one side in the axial direction. Yes. The outer inclined surface 45 is a conical surface that intersects the outer annular surface 31 that is cylindrical at an acute angle. For this reason, the outer peripheral end portion on one axial side of the small-diameter annular portion 11 includes a corner portion 52 where the outer inclined surface 45 and the outer annular surface 31 intersect at an acute angle. The axial position of the corner portion 52 substantially coincides with the axial position of the side surface 2b on one side of the outer ring 2 in the axial direction. In the embodiment shown in FIG. 2, the corner 52 is positioned slightly on one side in the axial direction from the side surface 2b.

この構成によれば、遠心力によって、小径環状部11の側面33に沿って流れてきた潤滑油が、遠心力によって角部52から外方に飛ばされたときに、その飛散する方向は外輪2の側面2bから離れた向きとなるので、環状隙間A1を通過しようとする潤滑油を減らすことができる。   According to this configuration, when the lubricating oil that has flowed along the side surface 33 of the small-diameter annular portion 11 by the centrifugal force is blown outward from the corner portion 52 by the centrifugal force, the direction in which the lubricant is scattered is the outer ring 2. Since the direction is away from the side surface 2b, the lubricating oil that tries to pass through the annular gap A1 can be reduced.

そして、図4に示すように、環状隙間A1を通過しようとする潤滑油が存在していても、外環状面31(図4参照)には、前記溝41が形成されていることから、保持器10が回転することで、この潤滑油を軸方向一方側へ送り出すことができ、環状隙間A1を通じて軸受内部に流れる潤滑油量を減らすことができる。この結果、円すいころ軸受1の撹拌抵抗を低減することが可能となる。   As shown in FIG. 4, even if there is lubricating oil that tries to pass through the annular gap A1, the outer annular surface 31 (see FIG. 4) is formed with the groove 41, so that By rotating the container 10, this lubricating oil can be sent out to one side in the axial direction, and the amount of lubricating oil flowing into the bearing through the annular gap A1 can be reduced. As a result, the stirring resistance of the tapered roller bearing 1 can be reduced.

なお、前記実施形態では、小径環状部11の外環状面31及び内環状面32の双方に、溝41,42を形成する場合について説明したが、外環状面31及び内環状面32の内の一方にのみ、保持器10が一方向(矢印R方向)に回転すると環状隙間の潤滑油を軸方向一方側へ向かって流す溝41(42)を形成してもよい。例えば、内環状面32にのみ溝42が形成されており、外環状面31は平滑な面であってもよい。   In the above embodiment, the case where the grooves 41 and 42 are formed in both the outer annular surface 31 and the inner annular surface 32 of the small-diameter annular portion 11 has been described. Only on one side, when the cage 10 rotates in one direction (in the direction of arrow R), a groove 41 (42) that allows the lubricating oil in the annular gap to flow toward one side in the axial direction may be formed. For example, the groove 42 may be formed only in the inner annular surface 32, and the outer annular surface 31 may be a smooth surface.

以上のとおり開示した実施形態はすべての点で例示であって制限的なものではない。つまり、本発明の円すいころ軸受は、図示する形態に限らず本発明の範囲内において他の形態のものであってもよい。
前記実施形態では、軸方向一方側から潤滑油が軸受内部へ流入可能となるころ軸受として、円すいころ軸受1について説明したが、円筒ころ軸受であってもよい。
また、前記実施形態では、保持器10の小径環状部11の側面33を、折れ曲がっている形状としているが、これに限らず、平面であってもよい。
The embodiments disclosed above are illustrative in all respects and not restrictive. That is, the tapered roller bearing of the present invention is not limited to the illustrated form, but may be of another form within the scope of the present invention.
In the above-described embodiment, the tapered roller bearing 1 has been described as the roller bearing that allows lubricating oil to flow into the bearing from one side in the axial direction. However, a cylindrical roller bearing may be used.
Moreover, in the said embodiment, although the side surface 33 of the small diameter annular part 11 of the holder | retainer 10 is made into the shape bent, not only this but a plane may be sufficient.

1:円すいころ軸受(ころ軸受) 2:外輪 3:内輪
4:円すいころ(ころ) 5:内輪端部(小鍔部) 8:外輪端部
10:保持器 11:小径環状部(環状部) 13:柱部
21:外輪端部の内周面 22:内輪端部の外周面
31:外環状面(外側の環状面) 32:内環状面(内側の環状面)
33:軸方向一方側の側面 41,42:溝 A1,A2:環状隙間
K1:領域 K2:領域
1: Tapered roller bearing (roller bearing) 2: Outer ring 3: Inner ring 4: Tapered roller (roller) 5: Inner ring end (small flange) 8: Outer ring end 10: Cage 11: Small diameter annular part (annular part) 13: Column portion 21: Inner peripheral surface of outer ring end portion 22: Outer peripheral surface of inner ring end portion 31: Outer annular surface (outer annular surface) 32: Inner annular surface (inner annular surface)
33: Side surface on one side in the axial direction 41, 42: groove A1, A2: annular gap K1: region K2: region

Claims (2)

外輪と、内輪と、前記外輪と前記内輪との間に設けられている複数のころと、前記複数のころを周方向に間隔をあけて保持する環状の保持器と、を備え、前記外輪と前記内輪との間に潤滑油が軸方向一方側から流入可能となるころ軸受であって、
前記保持器は、前記外輪の軸方向一方側の外輪端部と前記内輪の軸方向一方側の内輪端部との間に位置する環状部と、前記環状部から軸方向他方側に延びて設けられている複数の柱部と、を有し、
前記環状部は、前記外輪端部の内周面に環状隙間を有して対向する外側の環状面、及び前記内輪端部の外周面に環状隙間を有して対向する内側の環状面を有し、
前記外側の環状面及び前記内側の環状面の内の少なくとも一方であって当該環状面の内の軸方向他方側を除く領域に、前記保持器が一方向に回転すると前記環状隙間の潤滑油を軸方向一方側へ向かって流す溝形状を有する溝が形成されている、ころ軸受。
An outer ring, an inner ring, a plurality of rollers provided between the outer ring and the inner ring, and an annular retainer that holds the plurality of rollers at intervals in the circumferential direction. A roller bearing that allows lubricating oil to flow from one side in the axial direction between the inner ring,
The cage is provided with an annular portion located between an outer ring end on one axial side of the outer ring and an inner ring end on one axial side of the inner ring, and extending from the annular portion to the other axial side. A plurality of pillars that are
The annular portion has an outer annular surface facing the inner peripheral surface of the outer ring end portion with an annular clearance, and an inner annular surface facing the outer peripheral surface of the inner ring end portion with an annular clearance. And
When the cage rotates in one direction in at least one of the outer annular surface and the inner annular surface except for the other axial side of the annular surface, the lubricating oil in the annular gap is removed. A roller bearing in which a groove having a groove shape that flows toward one side in the axial direction is formed.
前記溝は、前記環状部の軸方向一方側の側面において開口している請求項1に記載のころ軸受。   The roller bearing according to claim 1, wherein the groove is open on a side surface on one axial side of the annular portion.
JP2015059606A 2015-03-23 2015-03-23 Roller bearing Expired - Fee Related JP6492840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059606A JP6492840B2 (en) 2015-03-23 2015-03-23 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059606A JP6492840B2 (en) 2015-03-23 2015-03-23 Roller bearing

Publications (2)

Publication Number Publication Date
JP2016180423A JP2016180423A (en) 2016-10-13
JP6492840B2 true JP6492840B2 (en) 2019-04-03

Family

ID=57130967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059606A Expired - Fee Related JP6492840B2 (en) 2015-03-23 2015-03-23 Roller bearing

Country Status (1)

Country Link
JP (1) JP6492840B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240898A (en) * 2007-03-27 2008-10-09 Ntn Corp Conical roller bearing
JP6212862B2 (en) * 2012-12-27 2017-10-18 株式会社ジェイテクト Liquid lubricated bearing and vehicle pinion shaft support device

Also Published As

Publication number Publication date
JP2016180423A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP6458459B2 (en) Tapered roller bearing
JP6212862B2 (en) Liquid lubricated bearing and vehicle pinion shaft support device
JP6212923B2 (en) Tapered roller bearing
JP6442837B2 (en) Tapered roller bearings
JP6677291B2 (en) Tapered roller bearing
JP6256023B2 (en) Tapered roller bearing and power transmission device
JP6852260B2 (en) Roller bearing
JP6507764B2 (en) Tapered roller bearings
TW201817991A (en) Cylindrical roller bearing
JP2015194244A (en) Ball bearing
JP2011226571A (en) Tapered roller bearing
WO2016068029A1 (en) Tapered roller bearing
JP6790507B2 (en) Tapered roller bearing
JP6816390B2 (en) Tapered roller bearing
JP6874340B2 (en) Tapered roller bearing
JP2012082916A (en) Cage for rolling bearing and rolling bearing
JP5321052B2 (en) Rolling bearing device
JP6492840B2 (en) Roller bearing
JP6244959B2 (en) Tapered roller bearing
JP2017082979A (en) Tapered roller bearing
JP6790517B2 (en) Tapered roller bearing
JP2012102838A (en) Conical rolling bearing
JP6171506B2 (en) Tapered roller bearing cage and tapered roller bearing
JP2016217432A (en) Rolling bearing
JP2016205594A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees