JP6490786B2 - Mask blank, phase shift mask, and semiconductor device manufacturing method - Google Patents
Mask blank, phase shift mask, and semiconductor device manufacturing method Download PDFInfo
- Publication number
- JP6490786B2 JP6490786B2 JP2017247528A JP2017247528A JP6490786B2 JP 6490786 B2 JP6490786 B2 JP 6490786B2 JP 2017247528 A JP2017247528 A JP 2017247528A JP 2017247528 A JP2017247528 A JP 2017247528A JP 6490786 B2 JP6490786 B2 JP 6490786B2
- Authority
- JP
- Japan
- Prior art keywords
- phase shift
- film
- light
- mask
- lower layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010363 phase shift Effects 0.000 title claims description 454
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 239000004065 semiconductor Substances 0.000 title claims description 30
- 239000010410 layer Substances 0.000 claims description 316
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 152
- 239000000463 material Substances 0.000 claims description 138
- 239000000758 substrate Substances 0.000 claims description 116
- 229910052710 silicon Inorganic materials 0.000 claims description 84
- 239000010703 silicon Substances 0.000 claims description 84
- 229910052757 nitrogen Inorganic materials 0.000 claims description 70
- 238000012546 transfer Methods 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 45
- 238000002834 transmittance Methods 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 38
- 229910052760 oxygen Inorganic materials 0.000 claims description 38
- 239000001301 oxygen Substances 0.000 claims description 38
- 239000002344 surface layer Substances 0.000 claims description 26
- 229910052752 metalloid Inorganic materials 0.000 claims description 19
- 229910052755 nonmetal Inorganic materials 0.000 claims description 9
- 239000010408 film Substances 0.000 description 489
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 72
- 239000007789 gas Substances 0.000 description 71
- 238000011282 treatment Methods 0.000 description 45
- 230000008033 biological extinction Effects 0.000 description 44
- 239000011651 chromium Substances 0.000 description 42
- 238000005530 etching Methods 0.000 description 42
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 41
- 229910052804 chromium Inorganic materials 0.000 description 37
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 36
- 238000004544 sputter deposition Methods 0.000 description 33
- 230000003287 optical effect Effects 0.000 description 28
- 238000001312 dry etching Methods 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 23
- 229910052723 transition metal Inorganic materials 0.000 description 23
- 238000001552 radio frequency sputter deposition Methods 0.000 description 22
- 150000003624 transition metals Chemical class 0.000 description 22
- 229910052786 argon Inorganic materials 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 13
- 238000013461 design Methods 0.000 description 13
- 238000005546 reactive sputtering Methods 0.000 description 13
- 239000002356 single layer Substances 0.000 description 13
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 12
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 10
- 239000011737 fluorine Substances 0.000 description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- 239000011733 molybdenum Substances 0.000 description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- 229910004205 SiNX Inorganic materials 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- 101150030352 Arsi gene Proteins 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910004535 TaBN Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910004158 TaO Inorganic materials 0.000 description 1
- 229910003071 TaON Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
Description
本発明は、マスクブランクおよびそのマスクブランクを用いて製造された位相シフトマスクに関するものである。また、本発明は、上記の位相シフトマスクを用いた半導体デバイスの製造方法に関するものである。 The present invention relates to a mask blank and a phase shift mask manufactured using the mask blank. The present invention also relates to a method of manufacturing a semiconductor device using the phase shift mask.
一般に、半導体デバイスの製造工程では、フォトリソグラフィー法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚もの転写用マスクと呼ばれている基板が使用される。半導体デバイスのパターンを微細化するに当たっては、転写用マスクに形成されるマスクパターンの微細化に加え、フォトリソグラフィーで使用される露光光源の波長の短波長化が必要となる。半導体装置製造の際の露光光源としては、近年ではKrFエキシマレーザー(波長248nm)から、ArFエキシマレーザー(波長193nm)へと短波長化が進んでいる。 Generally, in a semiconductor device manufacturing process, a fine pattern is formed using a photolithography method. Further, a number of substrates called transfer masks are usually used for forming this fine pattern. In order to miniaturize the pattern of a semiconductor device, it is necessary to shorten the wavelength of an exposure light source used in photolithography in addition to miniaturization of a mask pattern formed on a transfer mask. In recent years, as an exposure light source for manufacturing semiconductor devices, the wavelength has been shortened from an KrF excimer laser (wavelength 248 nm) to an ArF excimer laser (wavelength 193 nm).
転写用マスクの種類としては、従来の透光性基板上にクロム系材料からなる遮光パターンを備えたバイナリマスクの他に、ハーフトーン型位相シフトマスクが知られている。ハーフトーン型位相シフトマスクの位相シフト膜には、モリブデンシリサイド(MoSi)系の材料が広く用いられる。しかし、特許文献1に開示されている通り、MoSi系膜は、ArFエキシマレーザーの露光光に対する耐性(いわゆるArF耐光性)が低いということが近年判明している。特許文献1では、パターンが形成された後のMoSi系膜に対し、プラズマ処理、UV照射処理、または加熱処理を行い、MoSi系膜のパターンの表面に不動態膜を形成することにより、MoSi系膜のArF耐光性を高めている。
As a type of transfer mask, a halftone phase shift mask is known in addition to a binary mask having a light-shielding pattern made of a chromium-based material on a conventional translucent substrate. A molybdenum silicide (MoSi) -based material is widely used for the phase shift film of the halftone phase shift mask. However, as disclosed in
特許文献2では、MoSi系膜のArF耐光性が低いのは、膜中の遷移金属がArFエキシマレーザーの照射によって光励起して不安定化することがその原因にあるとしている。そして、この特許文献2では、位相シフト膜を形成する材料に遷移金属を含有しない材料であるSiNxを適用している。特許文献2では、透光性基板上に位相シフト膜として単層でSiNx膜を形成する場合、その位相シフト膜に求められる光学特性が得られるSiNx膜の組成は、反応性スパッタリング法で成膜する際に不安定な成膜条件(遷移モード)で成膜する必要があることが示されている。そして、この技術的課題を解決するために、特許文献2の位相シフト膜は、高透過層と低透過層を含む積層構造としている。さらに、高透過層は、ポイズンモードの領域で成膜された窒素含有量が相対的に多いSiN系膜を適用し、低透過層は、メタルモードの領域で成膜された窒素含有量が相対的に少ないSiN系膜を適用している。
According to
特許文献2に開示されているSiN系多層構造の位相シフト膜は、従来のMoSi系材料の位相シフト膜に比べ、ArF耐光性が大幅に改善されている。SiN系多層構造の位相シフト膜に転写パターンを形成した後、ArF露光光を積算照射したときに生じるパターンの幅のCD変化(太り)は、従来のMoSi系材料の位相シフト膜の場合に比べて大きく抑制されている。しかし、転写パターンのさらなる微細化、マルチプルパターニング技術の適用などの事情により、位相シフトマスクを含む転写用マスクの製造の難易度はさらに高くなっている。また、マスクブランクから転写用マスクを製造するまでに要する時間もさらに長くなっている。そして、これらの事情から、転写用マスクの価格が高騰している。このため、位相シフトマスクを含む転写用マスクのさらなる長寿命化が望まれている。
The phase shift film having a SiN-based multilayer structure disclosed in
Si3N4は化学量論的に安定な材料であり、ArF耐光性もケイ素と窒素からなる材料の中で優位性が高い。位相シフト膜は、その位相シフト膜に入射するArF露光光に対して、所定の透過率で透過する機能と、かつ所定の位相差を付与する機能を兼ね備える必要がある。Si3N4は、窒素含有量が少ないSiNxに比べ、ArF露光光の波長における屈折率nが大きいため、位相シフト膜の材料にSi3N4を適用した場合、ArF露光光に対して所定の位相差を付与するために必要な膜厚を薄くすることができる。以降、単に屈折率nと記述している場合、ArF露光光の波長に対する屈折率nのことを意味するものとし、単に消衰係数kと記述している場合、ArF露光光の波長に対する消衰係数kのことを意味するものとする。 Si 3 N 4 is a stoichiometrically stable material, and ArF light resistance is superior among materials made of silicon and nitrogen. The phase shift film must have a function of transmitting ArF exposure light incident on the phase shift film with a predetermined transmittance and a function of providing a predetermined phase difference. Si 3 N 4 has a higher refractive index n at the wavelength of ArF exposure light than SiNx having a low nitrogen content. Therefore, when Si 3 N 4 is applied as the material of the phase shift film, it is predetermined for ArF exposure light. It is possible to reduce the film thickness necessary for providing the above phase difference. Henceforth, when simply describing the refractive index n, it means the refractive index n with respect to the wavelength of the ArF exposure light, and when simply describing the extinction coefficient k, extinction with respect to the wavelength of the ArF exposure light. It means the coefficient k.
ArF耐光性で問題となる位相シフトパターンのCD変化は、位相シフト膜の内部にArF露光光が入射したときにその位相シフト膜を構成する元素を光励起させてしまうことが最大の要因であると考えられている。MoSi系材料の場合、遷移金属のモリブデン(Mo)が光励起されやすく、これに起因して表面からのケイ素(Si)の酸化が大幅に進み、パターンの体積が大きく膨張する。このため、MoSi系材料の位相シフト膜は、ArF露光光の照射前後でのCD変化(太り)が著しい。SiN系材料の位相シフト膜の場合、遷移金属を含有していないため、ArF露光光の照射前後でのCD変化は比較的小さい。しかし、位相シフト膜中のケイ素も遷移金属ほど顕著ではないが、ArF露光光の照射によって光励起される。 The biggest cause of the CD change of the phase shift pattern, which is a problem in ArF light resistance, is that when ArF exposure light is incident on the inside of the phase shift film, the elements constituting the phase shift film are photoexcited. It is considered. In the case of the MoSi-based material, the transition metal molybdenum (Mo) is easily photoexcited, which causes the silicon (Si) oxidation from the surface to greatly progress and the pattern volume to expand greatly. For this reason, the phase shift film of the MoSi-based material has a significant CD change (thickness) before and after irradiation with ArF exposure light. In the case of a phase shift film made of a SiN-based material, since the transition metal is not contained, the CD change before and after irradiation with ArF exposure light is relatively small. However, although silicon in the phase shift film is not as remarkable as the transition metal, it is photoexcited by irradiation with ArF exposure light.
位相シフトマスクや転写用マスクを製造するためのマスクブランクのパターン形成用薄膜(位相シフト膜を含む。)は、アモルファスまたは微結晶構造となるような成膜条件でスパッタ成膜される。アモルファスまたは微結晶構造の薄膜中のSi3N4は、結晶膜中のSi3N4よりも結合状態が弱い。このため、アモルファスまたは微結晶構造のSi3N4の位相シフト膜は、ArF露光光の照射によって膜中のケイ素が光励起されやすい。位相シフト膜をSi3N4の結晶膜とすれば、膜中のケイ素が光励起されることを抑制できる。しかし、結晶膜にドライエッチングで転写パターンを形成すると、そのパターン側壁のラフネスは、転写パターンとして許容されるLER(Line Edge Roughness)を大幅に越えるほど悪くなるため、結晶膜はパターン形成用薄膜(位相シフト膜)に適用することはできない。これらのことから、特許文献2に開示されているようなSiN系材料の位相シフト膜を基にして、組成等を単に調整するだけでは、さらなる長寿命の位相シフトマスクを完成させることは困難であった。
A mask blank pattern forming thin film (including a phase shift film) for manufacturing a phase shift mask or a transfer mask is formed by sputtering under film forming conditions so as to have an amorphous or microcrystalline structure. Si 3 N 4 in a thin film of amorphous or microcrystalline structure, is weakly bound state than Si 3 N 4 in the crystalline film. Therefore, the Si 3 N 4 phase shift film having an amorphous or microcrystalline structure is likely to be photoexcited by silicon in the film by irradiation with ArF exposure light. If the phase shift film is a crystal film of Si 3 N 4 , it is possible to suppress photoexcitation of silicon in the film. However, when a transfer pattern is formed on a crystal film by dry etching, the roughness of the pattern side wall becomes so bad that it greatly exceeds the LER (Line Edge Roughness) allowed as a transfer pattern. It cannot be applied to a phase shift film. From these facts, it is difficult to complete a phase shift mask with a longer lifetime simply by adjusting the composition etc. based on the phase shift film of SiN-based material as disclosed in
Si3N4は、屈折率nが大きい反面、ArF露光光の波長における消衰係数kは大幅に小さい材料である。このため、位相シフト膜をSi3N4で形成し、所定の位相差を180度弱となるように設計しようとすると、透過率が20%弱程度の高い透過率のものしか作ることができない。SiN系材料の窒素含有量を下げていけば、所定の位相差と所定の透過率の位相シフト膜を作ることは可能であるが、当然ながら窒素含有量の低下とともにArF耐光性も低下していく。このため、Si3N4からなる位相シフト膜よりも低い透過率の位相シフト膜とする場合には、位相シフト膜をSi3N4からなる層と透過率を調整するための層の積層構造とする必要がある。しかし、透過率を調整する層を単に設けた場合、その層のArF耐光性は高くないため、さらなる長寿命の位相シフトマスクを完成させることはできない。 Si 3 N 4 is a material having a large refractive index n, but a significantly small extinction coefficient k at the wavelength of ArF exposure light. For this reason, when the phase shift film is formed of Si 3 N 4 and an attempt is made to design the predetermined phase difference to be slightly less than 180 degrees, only a high transmittance of about 20% or less can be produced. . If the nitrogen content of the SiN-based material is lowered, it is possible to produce a phase shift film having a predetermined phase difference and a predetermined transmittance. Naturally, however, the ArF light resistance also decreases as the nitrogen content decreases. Go. Therefore, Si 3 when the phase shift film of low transmittance than the phase shift film consisting of N 4 is laminated structure of the layer for adjusting the layer and the transmission ratio which the phase shift film from the Si 3 N 4 It is necessary to. However, when a layer for adjusting the transmittance is simply provided, the ArF light resistance of the layer is not high, and thus a phase shift mask having a further longer life cannot be completed.
そこで、本発明は、従来の課題を解決するためになされたものであり、透光性基板上に位相シフト膜を備えたマスクブランクにおいて、ArF露光光に対して所定の透過率で透過する機能とその透過するArF露光光に対して所定の位相差を生じさせる機能を兼ね備える位相シフト膜であり、さらにSi3N4からなる位相シフト膜よりもArF耐光性が高い位相シフト膜を備えるマスクブランクを提供することを目的としている。また、このマスクブランクを用いて製造される位相シフトマスクを提供することを目的としている。そして、本発明は、このような位相シフトマスクを用いた半導体デバイスの製造方法を提供することを目的としている。 Therefore, the present invention has been made to solve the conventional problems, and in a mask blank having a phase shift film on a translucent substrate, a function of transmitting ArF exposure light at a predetermined transmittance. And a phase shift film having a function of generating a predetermined phase difference with respect to the transmitted ArF exposure light, and further comprising a phase shift film having a higher ArF light resistance than a phase shift film made of Si 3 N 4 The purpose is to provide. Moreover, it aims at providing the phase shift mask manufactured using this mask blank. An object of the present invention is to provide a method of manufacturing a semiconductor device using such a phase shift mask.
前記の課題を達成するため、本発明は以下の構成を有する。
(構成1)
透光性基板上に位相シフト膜を備えたマスクブランクであって、
前記位相シフト膜は、ArFエキシマレーザーの露光光を2%以上の透過率で透過させる機能と、前記位相シフト膜を透過した前記露光光に対して前記位相シフト膜の厚さと同じ距離だけ空気中を通過した前記露光光との間で150度以上180度以下の位相差を生じさせる機能とを有し、
前記位相シフト膜は、前記透光性基板側から下層と上層が積層した構造を含み、
前記下層は、ケイ素からなる材料、またはケイ素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成され、
前記上層は、その表層部分を除き、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素を除く非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成され、
前記下層は、屈折率nが1.8未満であり、かつ消衰係数kが2.0以上であり、
前記上層は、屈折率nが2.3以上であり、かつ消衰係数kが1.0以下であり、
前記上層は、前記下層よりも厚さが厚い
ことを特徴とするマスクブランク。
In order to achieve the above object, the present invention has the following configuration.
(Configuration 1)
A mask blank provided with a phase shift film on a translucent substrate,
The phase shift film has a function of transmitting exposure light of ArF excimer laser with a transmittance of 2% or more, and in the air by the same distance as the thickness of the phase shift film with respect to the exposure light transmitted through the phase shift film. Having a phase difference of not less than 150 degrees and not more than 180 degrees with the exposure light having passed through
The phase shift film includes a structure in which a lower layer and an upper layer are stacked from the translucent substrate side,
The lower layer is formed of a material containing silicon, or a material containing one or more elements selected from non-metal elements and metalloid elements other than oxygen in a material made of silicon,
The upper layer is formed of a material comprising one or more elements selected from a material composed of silicon and nitrogen, or a material composed of silicon and nitrogen, and a nonmetallic element and a metalloid element other than oxygen, excluding the surface layer portion,
The lower layer has a refractive index n of less than 1.8 and an extinction coefficient k of 2.0 or more.
The upper layer has a refractive index n of 2.3 or more and an extinction coefficient k of 1.0 or less.
The mask blank, wherein the upper layer is thicker than the lower layer.
(構成2)
前記下層は、厚さが12nm未満であることを特徴とする構成1記載のマスクブランク。
(構成3)
前記上層の厚さは、前記下層の厚さの5倍以上であることを特徴とする構成1または2に記載のマスクブランク。
(Configuration 2)
The mask blank according to
(Configuration 3)
The mask blank according to
(構成4)
前記下層は、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有した材料で形成されていることを特徴とする構成1から3のいずれかに記載のマスクブランク。
(構成5)
前記下層は、窒素含有量が40原子%以下であることを特徴とする構成1から4のいずれかに記載のマスクブランク。
(Configuration 4)
The lower layer is formed of a material comprising silicon and nitrogen, or a material comprising one or more elements selected from nonmetallic elements and metalloid elements other than oxygen in a material comprising silicon and nitrogen. The mask blank according to any one of
(Configuration 5)
5. The mask blank according to any one of
(構成6)
前記上層の表層部分は、前記表層部分を除く上層を形成する材料に酸素を加えた材料で形成されていることを特徴とする構成1から5のいずれかに記載のマスクブランク。
(構成7)
前記上層は、窒素含有量が50原子%よりも大きいことを特徴とする構成1から6のいずれかに記載のマスクブランク。
(Configuration 6)
6. The mask blank according to any one of
(Configuration 7)
The mask blank according to any one of
(構成8)
前記下層は、前記透光性基板の表面に接して形成されていることを特徴とする構成1から7のいずれかに記載のマスクブランク。
(構成9)
前記位相シフト膜上に、遮光膜を備えることを特徴とする構成1から8のいずれかに記載のマスクブランク。
(Configuration 8)
The mask blank according to any one of
(Configuration 9)
The mask blank according to any one of
(構成10)
前記遮光膜は、クロムを含有する材料からなることを特徴とする構成9記載のマスクブランク。
(構成11)
前記遮光膜は、遷移金属とケイ素を含有する材料からなることを特徴とする構成9記載のマスクブランク。
(Configuration 10)
The mask blank according to Configuration 9, wherein the light shielding film is made of a material containing chromium.
(Configuration 11)
The mask blank according to Configuration 9, wherein the light shielding film is made of a material containing a transition metal and silicon.
(構成12)
前記遮光膜は、前記位相シフト膜側からクロムを含有する材料からなる層と遷移金属とケイ素を含有する材料からなる層がこの順に積層した構造を有することを特徴とする構成9記載のマスクブランク。
(構成13)
構成9から12のいずれかに記載のマスクブランクの前記位相シフト膜に転写パターンが形成され、前記遮光膜に遮光パターンが形成されていることを特徴とする位相シフトマスク。
(Configuration 12)
The mask blank according to Configuration 9, wherein the light shielding film has a structure in which a layer made of a material containing chromium and a layer made of a material containing transition metal and silicon are laminated in this order from the phase shift film side. .
(Configuration 13)
13. A phase shift mask, wherein a transfer pattern is formed on the phase shift film of the mask blank according to any one of Structures 9 to 12, and a light shielding pattern is formed on the light shielding film.
(構成14)
前記遮光膜が積層していない前記位相シフト膜の領域における前記透光性基板側から入射する前記露光光に対する裏面反射率が35%以上であることを特徴とする構成13記載の位相シフトマスク。
(構成15)
前記遮光膜が積層している前記位相シフト膜の領域における前記透光性基板側から入射する前記露光光に対する裏面反射率が30%以上であることを特徴とする構成13または14に記載の位相シフトマスク。
(Configuration 14)
14. The phase shift mask according to claim 13, wherein a back surface reflectance for the exposure light incident from the light transmitting substrate side in the region of the phase shift film where the light shielding film is not laminated is 35% or more.
(Configuration 15)
The phase according to Configuration 13 or 14, wherein a back surface reflectance with respect to the exposure light incident from the translucent substrate side in the region of the phase shift film on which the light shielding film is laminated is 30% or more. Shift mask.
(構成16)
構成13から15のいずれかに記載の位相シフトマスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
(Configuration 16)
A method for manufacturing a semiconductor device, comprising the step of exposing and transferring a transfer pattern onto a resist film on a semiconductor substrate using the phase shift mask according to any one of Structures 13 to 15.
本発明のマスクブランクは、透光性基板上に位相シフト膜を備えており、その位相シフト膜は、ArF露光光に対して所定の透過率で透過する機能とその透過するArF露光光に対して所定の位相差を生じさせる機能を兼ね備えつつ、Si3N4からなる位相シフト膜よりもArF耐光性を高くすることができる。 The mask blank of the present invention includes a phase shift film on a translucent substrate, and the phase shift film functions to transmit ArF exposure light at a predetermined transmittance and to transmit ArF exposure light. Thus, the ArF light resistance can be made higher than that of the phase shift film made of Si 3 N 4 while having a function of generating a predetermined phase difference.
以下、本発明の実施の形態について説明する。本願発明者らは、MoSi系材料よりもArF耐光性が高い材料であるSiN系材料を用いる位相シフト膜において、ArF露光光を所定の透過率で透過する機能と所定の位相差を生じさせる機能を兼ね備えつつ、ArF耐光性をさらに高める手段について、鋭意研究を行った。 Embodiments of the present invention will be described below. The inventors of the present application have a function of transmitting ArF exposure light at a predetermined transmittance and a function of generating a predetermined phase difference in a phase shift film using a SiN-based material that is higher in ArF light resistance than a MoSi-based material. In order to further improve the ArF light resistance, intensive research was conducted.
従来の位相シフト膜を形成する材料は、屈折率nができる限り大きく、かつ消衰係数kが大き過ぎず小さ過ぎない範囲内にあるものが好ましいとされている。従来の位相シフト膜は、主に位相シフト膜の内部でArF露光光を吸収することで所定の透過率でArF露光光を透過させつつ、その透過するArF露光光に対して所定の位相差を生じさせる設計思想となっているためである。従来の位相シフト膜の設計思想によって、透光性基板上にSi3N4を用いた位相シフト膜のパターンを形成し、位相シフトマスクを製造した場合、透光性基板側から位相シフト膜内に入射したArF露光光は位相シフト膜内で吸収され、所定の透過率でArF露光光が位相シフト膜から出射する。この位相シフト膜内でArF露光光が吸収されるとき、膜中のケイ素が光励起する。位相シフト膜中における光励起するケイ素の比率が高くなるほど、酸素を結合して体積膨張するケイ素の比率が高くなり、CD変化量が大きくなることになる。 As a material for forming a conventional phase shift film, a material having a refractive index n as large as possible and an extinction coefficient k within a range that is neither too large nor too small is preferred. A conventional phase shift film mainly absorbs ArF exposure light inside the phase shift film to transmit ArF exposure light at a predetermined transmittance, and has a predetermined phase difference with respect to the transmitted ArF exposure light. This is because the design concept is to be generated. When the phase shift film pattern using Si 3 N 4 is formed on the translucent substrate and the phase shift mask is manufactured according to the conventional design concept of the phase shift film, the inside of the phase shift film is formed from the translucent substrate side. The ArF exposure light incident on is absorbed in the phase shift film, and ArF exposure light is emitted from the phase shift film with a predetermined transmittance. When ArF exposure light is absorbed in the phase shift film, silicon in the film is photoexcited. The higher the ratio of photoexcited silicon in the phase shift film, the higher the ratio of silicon that undergoes volume expansion by binding oxygen, and the CD change amount increases.
一方、位相シフト膜に求められるArF露光光に対する所定の透過率が低く、Si3N4の層だけでは、その所定の透過率とすることができない場合、位相シフト膜を窒素含有量が相対的に多いSi3N4の高透過層と窒素含有量が相対的に少ないSiNの低透過層との積層構造とすることが必要となってくる。この場合、ArF露光光がSiNの低透過層を透過するときに、Si3N4の高透過層を透過するときよりも多く、ArF露光光を吸収することになる。SiNの低透過層は窒素含有量が少ないため、Si3N4の高透過層中のケイ素よりも低透過層中のケイ素の方が光励起しやすく、低透過層のCD変化量が大きくなってしまうことは避け難い。以上のように、従来の位相シフト膜の設計思想を適用しても、SiN系材料の位相シフト膜のArF耐光性をさらに高めることは困難である。 On the other hand, when the predetermined transmittance for ArF exposure light required for the phase shift film is low and the predetermined transmittance cannot be obtained only with the Si 3 N 4 layer, the phase shift film has a relative nitrogen content. Therefore, it is necessary to form a laminated structure of a high permeable layer of Si 3 N 4 and a low permeable layer of SiN having a relatively low nitrogen content. In this case, more ArF exposure light is absorbed when the ArF exposure light is transmitted through the low transmission layer of SiN than when it is transmitted through the high transmission layer of Si 3 N 4 . Since the SiN low transmission layer has a low nitrogen content, the silicon in the low transmission layer is more easily photoexcited than the silicon in the Si 3 N 4 high transmission layer, and the CD variation in the low transmission layer is larger. It is hard to avoid. As described above, even if the design concept of the conventional phase shift film is applied, it is difficult to further improve the ArF light resistance of the phase shift film of the SiN material.
本発明者らは、位相シフト膜のArF露光光に対する透過率を所定値とするために、透光性基板と位相シフト膜との界面における反射率(裏面反射率)を従来の位相シフト膜よりも高くすることで、位相シフト膜のArF露光光に対する耐光性を高められるのではないかと考えた。透光性基板側から位相シフト膜へArF露光光が入射するとき、透光性基板と位相シフト膜との界面で反射されるArF露光光の光量を従来よりも高くすることで、位相シフト膜の内部に入射する露光光の光量を下げることができる。これにより、位相シフト膜内で吸収されるArF露光光の光量を従来よりも少なくしても、位相シフト膜から出射するArF露光光の光量を従来の位相シフト膜と同等にすることができる。それにより、位相シフト膜の内部でケイ素が光励起しにくくなり、その位相シフト膜のArF耐光性を高めることができる。 In order to set the transmittance of the phase shift film with respect to ArF exposure light to a predetermined value, the inventors have set the reflectance (back surface reflectance) at the interface between the translucent substrate and the phase shift film as compared with the conventional phase shift film. It was thought that the light resistance against ArF exposure light of the phase shift film could be increased by increasing the height of the phase shift film. When ArF exposure light is incident on the phase shift film from the translucent substrate side, the amount of ArF exposure light reflected at the interface between the translucent substrate and the phase shift film is made higher than before, thereby allowing the phase shift film The amount of exposure light incident on the inside of the substrate can be reduced. As a result, even if the amount of ArF exposure light absorbed in the phase shift film is less than the conventional amount, the amount of ArF exposure light emitted from the phase shift film can be made equal to that of the conventional phase shift film. This makes it difficult for silicon to be photoexcited inside the phase shift film, and the ArF light resistance of the phase shift film can be improved.
単層構造の位相シフト膜では、裏面反射率を従来の位相シフト膜よりも高くすることが難しい。そこで、SiN系の高透過層とSiN系の低透過層の積層構造の位相シフト膜で検討を行った。高透過層に窒素含有量が高いSiNを適用し、低透過層に窒素含有量の低いSiNを適用した位相シフト膜で検討したところ、所定の位相差と所定の透過率の条件を満たすような膜設計は可能であるが、単純にこれらの層を積層しただけでは、位相シフト膜の全体における裏面反射率を高めることは難しいことがわかった。Si3N4のような窒素含有量が高いSiNは、屈折率nが大きく、消衰係数kが小さい材料であり、この材料を位相シフト膜の透光性基板側に配置される下層に適用しても、ArF露光光に対する裏面反射率は高くならない。このため、Si3N4のような窒素含有量が高いSiNは、位相シフト膜の上層に適用することにした。 In a phase shift film having a single layer structure, it is difficult to make the back surface reflectance higher than that of a conventional phase shift film. Therefore, a phase shift film having a laminated structure of a SiN-based high transmission layer and a SiN-based low transmission layer was studied. When a phase shift film in which SiN having a high nitrogen content is applied to the high transmission layer and SiN having a low nitrogen content is applied to the low transmission layer is studied, the condition of the predetermined phase difference and the predetermined transmittance is satisfied. Although it is possible to design the film, it has been found that it is difficult to increase the back surface reflectance of the entire phase shift film by simply laminating these layers. SiN having a high nitrogen content such as Si 3 N 4 is a material having a large refractive index n and a small extinction coefficient k, and this material is applied to the lower layer disposed on the light-transmitting substrate side of the phase shift film. Even so, the back surface reflectance for ArF exposure light does not increase. For this reason, SiN having a high nitrogen content such as Si 3 N 4 is applied to the upper layer of the phase shift film.
ArF露光光に対する位相シフト膜の裏面反射率を高めるには、透光性基板と位相シフト膜の下層との界面での反射だけでなく、位相シフト膜を構成する下層と上層との界面での反射も高くすることが望まれる。これらの条件を満たすために、下層には、屈折率nが小さく、消衰係数kが大きい材料を適用することにした。窒素含有量が低いSiNは、そのような光学特性を有するため、これを位相シフト膜の下層に適用することにした。すなわち、透光性基板上に、窒素含有量が低いSiN系材料の下層と窒素含有量が高いSiN系材料の上層を積層した構造を備える位相シフト膜を設けたマスクブランクとした。 In order to increase the back surface reflectance of the phase shift film with respect to ArF exposure light, not only the reflection at the interface between the translucent substrate and the lower layer of the phase shift film but also the interface between the lower layer and the upper layer constituting the phase shift film. It is desirable to increase the reflection. In order to satisfy these conditions, a material having a small refractive index n and a large extinction coefficient k is applied to the lower layer. Since SiN having a low nitrogen content has such optical characteristics, it was decided to apply this to the lower layer of the phase shift film. That is, a mask blank provided with a phase shift film having a structure in which a lower layer of a SiN-based material having a low nitrogen content and an upper layer of a SiN-based material having a high nitrogen content are stacked on a light-transmitting substrate.
下層は、透光性基板よりも消衰係数kが大幅に大きい材料で形成されているため、透光性基板側から照射されたArF露光光は、透光性基板と下層との界面で従来の位相シフト膜よりも高い光量比率で反射される。そして、上層は下層よりも消衰係数kは小さいが、屈折率が大きい材料で形成されているため、下層の内部に入射したArF露光光は、下層と上層との界面においても一部反射される。すなわち、このような位相シフト膜は、透光性基板と下層の界面と、下層と上層の界面の2箇所でArF露光光を反射するため、従来の位相シフト膜よりもArF露光光に対する裏面反射率が高くなる。このような新たな設計思想を位相シフト膜に対して適用し、上層と下層を形成する材料の成膜条件等を調整し、上層および下層の屈折率n、消衰係数kおよび膜厚を調整することで、ArF露光光に対する所定の透過率と所定の位相差を兼ね備えつつ、所定の裏面反射率となる位相シフト膜を形成することができた。以上のような位相シフト膜の構成とすることで、前記の技術的課題を解決できるという結論に至った。 Since the lower layer is formed of a material having a significantly larger extinction coefficient k than that of the translucent substrate, ArF exposure light irradiated from the translucent substrate side is conventionally generated at the interface between the translucent substrate and the lower layer. The light is reflected at a higher light quantity ratio than the phase shift film. Since the upper layer is made of a material having a smaller extinction coefficient k than that of the lower layer but having a large refractive index, ArF exposure light incident on the lower layer is partially reflected also at the interface between the lower layer and the upper layer. The That is, since such a phase shift film reflects ArF exposure light at two places, the interface between the translucent substrate and the lower layer and the interface between the lower layer and the upper layer, the back surface reflection with respect to ArF exposure light is higher than that of the conventional phase shift film. The rate is high. Applying such a new design concept to the phase shift film, adjusting the film forming conditions of the material forming the upper and lower layers, adjusting the refractive index n, extinction coefficient k, and film thickness of the upper and lower layers By doing so, it was possible to form a phase shift film having a predetermined back surface reflectance while having a predetermined transmittance and a predetermined phase difference for ArF exposure light. It came to the conclusion that the above technical problem could be solved by adopting the phase shift film configuration as described above.
すなわち、本発明は、透光性基板上に位相シフト膜を備えたマスクブランクであって、位相シフト膜は、ArFエキシマレーザーの露光光を2%以上の透過率で透過させる機能と、位相シフト膜を透過した前記露光光に対して前記位相シフト膜の厚さと同じ距離だけ空気中を通過した露光光との間で150度以上180度以下の位相差を生じさせる機能とを有し、位相シフト膜は、透光性基板側から下層と上層が積層した構造を含み、下層は、ケイ素からなる材料、またはケイ素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成され、上層は、その表層部分を除き、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素を除く非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成され、下層は、屈折率nが1.8未満であり、かつ消衰係数kが2.0以上であり、上層は、屈折率nが2.3以上であり、かつ消衰係数kが1.0以下であり、上層は、下層よりも厚さが厚いことを特徴とするマスクブランクである。 That is, the present invention is a mask blank having a phase shift film on a translucent substrate, the phase shift film having a function of transmitting ArF excimer laser exposure light with a transmittance of 2% or more, and a phase shift A function of causing a phase difference of not less than 150 degrees and not more than 180 degrees between the exposure light transmitted through the film and the exposure light that has passed through the air by the same distance as the thickness of the phase shift film, The shift film includes a structure in which a lower layer and an upper layer are laminated from the translucent substrate side, and the lower layer is made of silicon, or one or more selected from non-metal elements and metalloid elements other than oxygen in a material made of silicon. The upper layer is made of a material consisting of silicon and nitrogen, or a material consisting of silicon and nitrogen, or a nonmetallic element and a metalloid element excluding oxygen. The lower layer has a refractive index n of less than 1.8, an extinction coefficient k of 2.0 or more, and the upper layer has a refractive index n of 2.3. The mask blank is characterized in that the extinction coefficient k is 1.0 or less and the upper layer is thicker than the lower layer.
図1は、本発明の実施形態に係るマスクブランク100の構成を示す断面図である。図1に示す本発明のマスクブランク100は、透光性基板1上に、位相シフト膜2、遮光膜3およびハードマスク膜4がこの順に積層された構造を有する。
FIG. 1 is a cross-sectional view showing a configuration of a mask blank 100 according to an embodiment of the present invention. A
透光性基板1は、合成石英ガラスのほか、石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO2−TiO2ガラス等)などで形成することができる。これらの中でも、合成石英ガラスは、ArFエキシマレーザー光に対する透過率が高く、マスクブランクの透光性基板1を形成する材料として特に好ましい。透光性基板1を形成する材料のArF露光光の波長(約193nm)における屈折率nは、1.5以上1.6以下であることが好ましく、1.52以上1.59以下であるとより好ましく、1.54以上1.58以下であるとさらに好ましい。
The
位相シフト膜2は、ArF露光光に対する透過率が2%以上であることが求められる。位相シフト膜2の内部を透過した露光光と空気中を透過した露光光との間で十分な位相シフト効果を生じさせるには、露光光に対する透過率が少なくとも2%は必要である。位相シフト膜2の露光光に対する透過率は、3%以上であると好ましく、4%以上であるとより好ましい。他方、位相シフト膜2の露光光に対する透過率が高くなるにつれて、裏面反射率を高めることが難しくなる。このため、位相シフト膜2の露光光に対する透過率は、30%以下であると好ましく、20%以下であるとより好ましく、10%以下であるとさらに好ましい。
The
位相シフト膜2は、適切な位相シフト効果を得るために、透過するArF露光光に対し、この位相シフト膜2の厚さと同じ距離だけ空気中を通過した光との間で生じる位相差が150度以上180度以下の範囲になるように調整されていることが求められる。位相シフト膜2における前記位相差は、155度以上であることが好ましく、160度以上であるとより好ましい。他方、位相シフト膜2における前記位相差は、179度以下であることが好ましく、177度以下であるとより好ましい。位相シフト膜2にパターンを形成するときのドライエッチング時に、透光性基板1が微小にエッチングされることによる位相差の増加の影響を小さくするためである。また、近年の露光装置による位相シフトマスクへのArF露光光の照射方式が、位相シフト膜2の膜面の垂直方向に対して所定角度で傾斜した方向からArF露光光を入射させるものが増えてきているためでもある。
In order to obtain an appropriate phase shift effect, the
位相シフト膜2は、ArF露光光が位相シフト膜2の内部に入射してケイ素を光励起させることを抑制する観点から、透光性基板1上に位相シフト膜2のみが存在する状態において、ArF露光光に対する透光性基板1側(裏面側)の反射率(裏面反射率)が少なくとも35%以上であることが求められる。透光性基板1上に位相シフト膜2のみが存在する状態とは、このマスクブランク100から位相シフトマスク200(図2(g)参照)を製造した時に、位相シフトパターン2aの上に遮光パターン3bが積層していない状態(遮光パターン3bが積層していない位相シフトパターン2aの領域)のことをいう。他方、位相シフト膜2のみが存在する状態での裏面反射率が高すぎると、このマスクブランク100から製造された位相シフトマスク200を用いて転写対象物(半導体ウェハ上のレジスト膜等)へ露光転写を行ったときに、位相シフト膜2の裏面側の反射光によって露光転写像に与える影響が大きくなるため、好ましくない。この観点から、位相シフト膜2のArF露光光に対する裏面反射率は、45%以下であることが好ましい。
From the viewpoint of suppressing ArF exposure light from being incident on the inside of the
位相シフト膜2は、透光性基板1側から、下層21と上層22が積層した構造を有する。位相シフト膜2の全体で、上記の透過率、位相差、裏面反射率の各条件を少なくとも満たす必要がある。位相シフト膜2が上記の条件を満たすには、下層21の屈折率nは、1.80未満であることが求められる。下層21の屈折率nは、1.75以下であると好ましく、1.70以下であるとより好ましい。また、下層21の屈折率nは、1.00以上であると好ましく、1.10以上であるとより好ましい。下層21の消衰係数kは、2.00以上であることが求められる。下層21の消衰係数kは、2.10以上であると好ましく、2.20以上であるとより好ましい。また、下層21の消衰係数kは、2.90以下であると好ましく、2.80以下であるとより好ましい。なお、下層21の屈折率nおよび消衰係数kは、下層21の全体を光学的に均一な1つの層とみなして導出された数値である。
The
位相シフト膜2が上記の条件を満たすには、上層22の屈折率nは、2.30以上であることが求められる。上層22の屈折率nは、2.40以上であると好ましい。また、上層22の屈折率nは、2.80以下であると好ましく、2.70以下であるとより好ましい。上層22の消衰係数kは、1.00以下であることが求められる。上層22の消衰係数kは、0.90以下であると好ましく、0.70以下であるとより好ましい。また、上層22の消衰係数kは、0.20以上であると好ましく、0.30以上であるとより好ましい。なお、上層22の屈折率nおよび消衰係数kは、後述の表層部分を含む上層22の全体を光学的に均一な1つの層とみなして導出された数値である。
In order for the
位相シフト膜2を含む薄膜の屈折率nと消衰係数kは、その薄膜の組成だけで決まるものではない。その薄膜の膜密度や結晶状態なども屈折率nや消衰係数kを左右する要素である。このため、反応性スパッタリングで薄膜を成膜するときの諸条件を調整して、その薄膜が所望の屈折率nおよび消衰係数kとなるように成膜する。下層21と上層22を、上記の屈折率nと消衰係数kの範囲にするには、反応性スパッタリングで成膜する際に、希ガスと反応性ガス(酸素ガス、窒素ガス等)の混合ガスの比率を調整することだけに限られない。反応性スパッタリングで成膜する際における成膜室内の圧力、スパッタリングターゲットに印加する電力、ターゲットと透光性基板1との間の距離等の位置関係など多岐にわたる。これらの成膜条件は成膜装置に固有のものであり、形成される下層21および上層22が所望の屈折率nおよび消衰係数kになるように適宜調整されるものである。
The refractive index n and extinction coefficient k of the thin film including the
位相シフト膜2が上記の条件を満たすには、上記の下層21と上層22の光学特性に加えて、上層22の厚さは、下層21の厚さよりも厚いことが少なくとも必要である。上層22は、その求められる光学特性を満たすために窒素含有量が多い材料が適用され、ArF耐光性が相対的に高い傾向を有するのに対し、下層21は、その求められる光学特性を満たすために窒素含有量が少ない材料が適用され、ArF耐光性が相対的に低い傾向を有する。位相シフト膜2の裏面反射率を高くしているのは、位相シフト膜2のArF耐光性を高めるためであることを考慮すると、ArF耐光性が相対的に低い傾向を有する下層21の厚さは、ArF耐光性が相対的に高い傾向を有する上層22の厚さよりも薄くする必要があるためである。
In order for the
下層21の厚さは、位相シフト膜2に求められる所定の透過率、位相差および裏面反射率の条件を満たせる範囲で、極力薄くすることが望まれる。下層21の厚さは12nm未満であると好ましく、11nm以下であるとより好ましく、10nm以下であるとさらに好ましい。また、特に位相シフト膜2の裏面反射率の点を考慮すると、下層21の厚さは、3nm以上であることが好ましく、4nm以上であるとより好ましく、5nm以上であるとさらに好ましい。
It is desirable that the thickness of the
上層22はArF耐光性が相対的に高い材料で形成されるため、位相シフト膜2に求められる所定の透過率、位相差および裏面反射率の条件を満たせる範囲で、位相シフト膜2の全体の膜厚に対する上層22の厚さの比率を極力大きくすることが望まれる。上層22の厚さは、下層21の厚さの5倍以上であることが好ましく、5.5倍以上であるとより好ましく、6倍以上であるとさらに好ましい。また、上層22の厚さは、下層21の厚さの10倍以下であるとより好ましい。上層22の厚さは80nm以下であると好ましく、70nm以下であるとより好ましく、65nm以下であるとさらに好ましい。また、上層22の厚さは、50nm以上であることが好ましく、55nm以上であるとより好ましい。
Since the
下層21は、ケイ素からなる材料、またはケイ素からなる材料に酸素を除く非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成される。下層21には、ArF露光光に対する耐光性が低下する要因となり得る遷移金属は含有しない。遷移金属を除く金属元素についても、ArF露光光に対する耐光性が低下する要因となり得る可能性は否定できないため、含有させないことが望ましい。下層21は、ケイ素に加え、いずれの半金属元素を含有してもよい。この半金属元素の中でも、ホウ素、ゲルマニウム、アンチモン及びテルルから選ばれる1以上の元素を含有させると、スパッタリングターゲットとして用いるケイ素の導電性を高めることが期待できるため、好ましい。
The
下層21は、酸素以外の非金属元素を含有してもよい。この非金属元素の中でも、窒素、炭素、フッ素及び水素から選ばれる1以上の元素を含有させると好ましい。この非金属元素には、ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)およびキセノン(Xe)等の希ガスも含まれる。下層21は、積極的に酸素を含有させることをしない(X線光電子分光法等による組成分析を行ったときの酸素含有量が、検出下限値以下。)。下層21を形成する材料中に酸素を含有させることによって生じる下層21の消衰係数kの低下が他の非金属元素に比べて大きく、位相シフト膜2の裏面反射率を大きく低下させないためである。
The
下層21は、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素を除く非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成されていることが好ましい。窒素を含有するケイ素系材料の方が窒素を含有していないケイ素系材料よりもArF露光光に対する耐光性が高くなるためである。また、下層21に位相シフトパターンを形成したときのパターン側壁の酸化が抑制されるためである。ただし、下層21を形成する材料中の窒素含有量が多くなるに従い、屈折率nは大きくなり、消衰係数kは小さくなる。このため、下層21を形成する材料中の窒素含有量は、40原子%以下であることが好ましく、36原子%以下であるとより好ましく、32原子%以下であるとさらに好ましい。
The
上層22は、その表層部分を除き、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素を除く非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成される。上層22の表層部分とは、上層22の下層21側とは反対側の表層部分のことをいう。成膜装置で透光性基板1上に位相シフト膜2を成膜し終えた後、膜表面の洗浄処理が行われる。この上層22の表層部分は、洗浄処理時に洗浄液やリンス液に晒されるため、成膜時の組成に関わらず酸化が進むことが避け難い。また、位相シフト膜2が大気中に晒されることや大気中で加熱処理を行ったことによっても上層22の表層部分の酸化が進む。上記のとおり、上層22は屈折率nが高い材料であるほど好ましい。材料中の酸素含有量が増加するに従って屈折率nは低下する傾向があるため、表層部分を除き、成膜時において上層22に酸素を積極的に含有させることはしない(X線光電子分光法等による組成分析を行ったときの酸素含有量が、検出下限値以下。)。これらのことから、上層22の表層部分は、表層部分を除く上層を形成する材料に酸素を加えた材料で形成されることになる。
The
上層22の表層部分は、種々の酸化処理で形成してもよい。表層を安定した酸化層とすることが可能であるためである。この酸化処理としては、例えば、大気などの酸素を含有する気体中における加熱処理、酸素を含有する気体中におけるフラッシュランプ等による光照射処理、オゾンや酸素プラズマを上層22の表面に接触させる処理などがあげられる。特に、位相シフト膜2の膜応力を低減する作用も同時に得られる加熱処理やフラッシュランプ等による光照射処理を用いることが好ましい。上層22の表層部分は、厚さが1nm以上であることが好ましく、1.5nm以上であるとより好ましい。また、上層22の表層部分は、厚さが5nm以下であることが好ましく、3nm以下であるとより好ましい。
The surface layer portion of the
上層22には、ArF露光光に対する耐光性が低下する要因となり得る遷移金属は含有しない。遷移金属を除く金属元素についても、ArF露光光に対する耐光性が低下する要因となり得る可能性は否定できないため、含有させないことが望ましい。上層22は、ケイ素に加え、いずれの半金属元素を含有してもよい。この半金属元素の中でも、ホウ素、ゲルマニウム、アンチモン及びテルルから選ばれる1以上の元素を含有させると、スパッタリングターゲットとして用いるケイ素の導電性を高めることが期待できるため、好ましい。
The
上層22は、酸素以外の非金属元素を含有してもよい。この非金属元素の中でも、窒素、炭素、フッ素及び水素から選ばれる1以上の元素を含有させると好ましい。この非金属元素には、ヘリウム(He)、アルゴン(Ar)、クリプトン(Kr)およびキセノン(Xe)等の希ガスも含まれる。上層22は屈折率nが大きい材料であるほど好ましく、ケイ素系材料は窒素含有量が多くなるほど屈折率nが大きくなる傾向がある。このため、上層22を形成する材料に含まれる半金属元素と非金属元素の合計含有量は10原子%以下であることが好ましく、5原子%以下であるとより好ましく、積極的に含有させないとさらに好ましい。他方、上記の理由から、上層22を形成する材料中の窒素含有量は、少なくとも下層21を形成する材料中の窒素含有量よりも多いことが求められる。上層22を形成する材料中の窒素含有量は、50原子%よりも大きいことが好ましく、52原子%以上であるとより好ましく、55原子%以上であるとさらに好ましい。
The
下層21は、透光性基板1の表面に接して形成されていることが好ましい。下層21が透光性基板1の表面と接した構成とした方が、上記の位相シフト膜2の下層21と上層22の積層構造によって生じる裏面反射率を高める効果がより得られるためである。位相シフト膜2の裏面反射率を高める効果に与える影響が微小であれば、透光性基板1と位相シフト膜2との間にエッチングストッパー膜を設けてもよい。この場合、エッチングストッパー膜の厚さは、10nm以下であることが必要であり、7nm以下であると好ましく、5nm以下であるとより好ましい。また、エッチングストッパーとして有効に機能するという観点から、エッチングストッパー膜の厚さは、3nm以上であることが必要である。エッチングストッパー膜を形成する材料の消衰係数kは、0.1未満であることが必要であり、0.05以下であると好ましく、0.01以下であるとより好ましい。また、この場合のエッチングストッパー膜を形成する材料の屈折率nは、1.9以下であることが少なくとも必要であり、1.7以下であると好ましい。エッチングストッパー膜を形成する材料の屈折率nは、1.55以上であることが好ましい。
The
下層21を形成する材料と表層部分を除く上層22を形成する材料は、ともに同じ元素で構成されていることが好ましい。上層22と下層21は、同じエッチングガスを用いたドライエッチングによってパターニングされる。このため、上層22と下層21は、同じエッチングチャンバー内でエッチングすることが望ましい。上層22と下層21を形成する各材料を構成している元素が同じであると、上層22から下層21へとドライエッチングする対象が変わっていくときのエッチングチャンバー内の環境変化を小さくすることができる。同じエッチングガスによるドライエッチングで位相シフト膜2がパターニングされるときにおける、上層22のエッチングレートに対する下層21のエッチングレートの比率は、3.0以下であることが好ましく、2.5以下であるとより好ましい。また、同じエッチングガスによるドライエッチングで位相シフト膜2がパターニングされるときにおける、上層22のエッチングレートに対する下層21のエッチングレートの比率は、1.0以上であることが好ましい。
It is preferable that both the material forming the
位相シフト膜2における下層21および上層22は、スパッタリングによって形成されるが、DCスパッタリング、RFスパッタリングおよびイオンビームスパッタリングなどのいずれのスパッタリングも適用可能である。成膜レートを考慮すると、DCスパッタリングを適用することが好ましい。導電性が低いターゲットを用いる場合においては、RFスパッタリングやイオンビームスパッタリングを適用することが好ましいが、成膜レートを考慮すると、RFスパッタリングを適用するとより好ましい。
The
マスクブランク100は、位相シフト膜2上に遮光膜3を備える。一般に、バイナリマスクでは、転写パターンが形成される領域(転写パターン形成領域)の外周領域は、露光装置を用いて半導体ウェハ上のレジスト膜に露光転写した際に外周領域を透過した露光光による影響をレジスト膜が受けないように、所定値以上の光学濃度(OD)を確保することが求められている。この点については、位相シフトマスクの場合も同じである。通常、位相シフトマスクを含む転写用マスクの外周領域では、ODが2.8以上であると好ましく、3.0以上であるとより好ましい。位相シフト膜2は所定の透過率で露光光を透過する機能を有しており、位相シフト膜2だけでは所定値の光学濃度を確保することは困難である。このため、マスクブランク100を製造する段階で位相シフト膜2の上に、不足する光学濃度を確保するために遮光膜3を積層しておくことが必要とされる。このようなマスクブランク100の構成とすることで、位相シフトマスク200(図2参照)を製造する途上で、位相シフト効果を使用する領域(基本的に転写パターン形成領域)の遮光膜3を除去すれば、外周領域に所定値の光学濃度が確保された位相シフトマスク200を製造することができる。
The
遮光膜3は、単層構造および2層以上の積層構造のいずれも適用可能である。また、単層構造の遮光膜3および2層以上の積層構造の遮光膜3の各層は、膜または層の厚さ方向でほぼ同じ組成である構成であっても、層の厚さ方向で組成傾斜した構成であってもよい。
The
図1に記載の形態におけるマスクブランク100は、位相シフト膜2の上に、他の膜を介さずに遮光膜3を積層した構成としている。この構成の場合の遮光膜3は、位相シフト膜2にパターンを形成する際に用いられるエッチングガスに対して十分なエッチング選択性を有する材料を適用する必要がある。この場合の遮光膜3は、クロムを含有する材料で形成することが好ましい。遮光膜3を形成するクロムを含有する材料としては、クロム金属のほか、クロムに酸素、窒素、炭素、ホウ素およびフッ素から選ばれる一以上の元素を含有する材料が挙げられる。
The mask blank 100 in the form shown in FIG. 1 has a configuration in which the
一般に、クロム系材料は、塩素系ガスと酸素ガスの混合ガスでエッチングされるが、クロム金属はこのエッチングガスに対するエッチングレートがあまり高くない。塩素系ガスと酸素ガスの混合ガスのエッチングガスに対するエッチングレートを高める点を考慮すると、遮光膜3を形成する材料としては、クロムに酸素、窒素、炭素、ホウ素およびフッ素から選ばれる一以上の元素を含有する材料が好ましい。また、遮光膜3を形成するクロムを含有する材料にモリブデン、インジウムおよびスズのうち一以上の元素を含有させてもよい。モリブデン、インジウムおよびスズのうち一以上の元素を含有させることで、塩素系ガスと酸素ガスの混合ガスに対するエッチングレートをより速くすることができる。
In general, a chromium-based material is etched with a mixed gas of a chlorine-based gas and an oxygen gas, but chromium metal does not have a high etching rate with respect to this etching gas. In consideration of increasing the etching rate of the mixed gas of chlorine-based gas and oxygen gas with respect to the etching gas, the material for forming the
また、上層22(特に表層部分)を形成する材料との間でドライエッチングに対するエッチング選択性が得られるのであれば、遮光膜3を遷移金属とケイ素を含有する材料で形成してもよい。遷移金属とケイ素を含有する材料は遮光性能が高く、遮光膜3の厚さを薄くすることが可能となるためである。遮光膜3に含有させる遷移金属としては、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、チタン(Ti)、クロム(Cr)、ハフニウム(Hf)、ニッケル(Ni)、バナジウム(V)、ジルコニウム(Zr)、ルテニウム(Ru)、ロジウム(Rh)、亜鉛(Zn)、ニオブ(Nb)、パラジウム(Pd)等のいずれか1つの金属またはこれらの金属の合金が挙げられる。遮光膜3に含有させる遷移金属元素以外の金属元素としては、アルミニウム(Al)、インジウム(In)、スズ(Sn)およびガリウム(Ga)などが挙げられる。
Further, the light-shielding
一方、別の実施形態のマスクブランク100の遮光膜3として、位相シフト膜2側からクロムを含有する材料からなる層と遷移金属とケイ素を含有する材料からなる層がこの順に積層した構造の遮光膜3を備えてもよい。この場合におけるクロムを含有する材料および遷移金属とケイ素を含有する材料の具体的な事項については、上記の遮光膜3の場合と同様である。
On the other hand, as the light-shielding
マスクブランク100は、位相シフト膜2と遮光膜3が積層した状態において、ArF露光光に対する透光性基板1側(裏面側)の反射率(裏面反射率)が30%以上であること好ましい。遮光膜3がクロムを含有する材料で形成されている場合や遮光膜3の位相シフト膜2側の層がクロムを含有する材料で形成されている場合、遮光膜3へ入射するArF露光光の光量が多いと、クロムが光励起されて位相シフト膜2側にクロムが移動する現象が発生しやすくなる。位相シフト膜2と遮光膜3が積層した状態におけるArF露光光に対する裏面反射率を30%以上とすることで、このクロムの移動を抑制することができる。また、遮光膜3が遷移金属とケイ素を含有する材料で形成されている場合、遮光膜3へ入射するArF露光光の光量が多いと、遷移金属が光励起されて位相シフト膜2側に遷移金属が移動する現象が発生しやすくなる。位相シフト膜2と遮光膜3が積層した状態におけるArF露光光に対する裏面反射率を30%以上とすることで、この遷移金属の移動を抑制することができる。
In the mask blank 100, in the state where the
マスクブランク100において、遮光膜3をエッチングするときに用いられるエッチングガスに対してエッチング選択性を有する材料で形成されたハードマスク膜4を遮光膜3の上にさらに積層させた構成とすると好ましい。ハードマスク膜4は、基本的に光学濃度の制限を受けないため、ハードマスク膜4の厚さは遮光膜3の厚さに比べて大幅に薄くすることができる。そして、有機系材料のレジスト膜は、このハードマスク膜4にパターンを形成するドライエッチングが終わるまでの間、エッチングマスクとして機能するだけの膜の厚さがあれば十分であるので、従来よりも大幅に厚さを薄くすることができる。レジスト膜の薄膜化は、レジスト解像度の向上とパターン倒れ防止に効果があり、微細化要求に対応していく上で極めて重要である。
The mask blank 100 preferably has a structure in which a
このハードマスク膜4は、遮光膜3がクロムを含有する材料で形成されている場合は、ケイ素を含有する材料で形成されることが好ましい。なお、この場合のハードマスク膜4は、有機系材料のレジスト膜との密着性が低い傾向があるため、ハードマスク膜4の表面をHMDS(Hexamethyldisilazane)処理を施し、表面の密着性を向上させることが好ましい。なお、この場合のハードマスク膜4は、SiO2、SiN、SiON等で形成されるとより好ましい。
When the
また、遮光膜3がクロムを含有する材料で形成されている場合におけるハードマスク膜4の材料として、前記のほか、タンタルを含有する材料も適用可能である。この場合におけるタンタルを含有する材料としては、タンタル金属のほか、タンタルに窒素、酸素、ホウ素および炭素から選らばれる一以上の元素を含有させた材料などが挙げられる。たとえば、Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCNなどが挙げられる。また、ハードマスク膜4は、遮光膜3がケイ素を含有する材料で形成されている場合、前記のクロムを含有する材料で形成されることが好ましい。
In addition to the above, a material containing tantalum is also applicable as the material of the
マスクブランク100において、ハードマスク膜4の表面に接して、有機系材料のレジスト膜が100nm以下の膜厚で形成されていることが好ましい。DRAM hp32nm世代に対応する微細パターンの場合、ハードマスク膜4に形成すべき転写パターン(位相シフトパターン)に、線幅が40nmのSRAF(Sub-Resolution Assist Feature)が設けられることがある。しかし、この場合でも、レジストパターンの断面アスペクト比が1:2.5と低くすることができるので、レジスト膜の現像時、リンス時等にレジストパターンが倒壊や脱離することを抑制できる。なお、レジスト膜は、膜厚が80nm以下であるとより好ましい。
In the mask blank 100, it is preferable that a resist film of an organic material is formed with a thickness of 100 nm or less in contact with the surface of the
図2に、上記実施形態のマスクブランク100から製造される本発明の実施形態に係る位相シフトマスク200とその製造工程を示す。図2(g)に示されているように、位相シフトマスク200は、マスクブランク100の位相シフト膜2に転写パターンである位相シフトパターン2aが形成され、遮光膜3に遮光パターン3bが形成されていることを特徴としている。マスクブランク100にハードマスク膜4が設けられている構成の場合、この位相シフトマスク200の作成途上でハードマスク膜4は除去される。
FIG. 2 shows a
本発明の実施形態に係る位相シフトマスク200の製造方法は、前記のマスクブランク100を用いるものであり、ドライエッチングにより遮光膜3に転写パターンを形成する工程と、転写パターンを有する遮光膜3をマスクとするドライエッチングにより位相シフト膜2に転写パターンを形成する工程と、遮光パターンを有するレジスト膜(レジストパターン6b)をマスクとするドライエッチングにより遮光膜3に遮光パターン3bを形成する工程とを備えることを特徴としている。以下、図2に示す製造工程にしたがって、本発明の位相シフトマスク200の製造方法を説明する。なお、ここでは、遮光膜3の上にハードマスク膜4が積層したマスクブランク100を用いた位相シフトマスク200の製造方法について説明する。また、遮光膜3にはクロムを含有する材料を適用し、ハードマスク膜4にはケイ素を含有する材料を適用した場合について述べる。
The method of manufacturing the
まず、マスクブランク100におけるハードマスク膜4に接して、レジスト膜をスピン塗布法によって形成する。次に、レジスト膜に対して、位相シフト膜2に形成すべき転写パターン(位相シフトパターン)である第1のパターンを電子線で露光描画し、さらに現像処理等の所定の処理を行い、位相シフトパターンを有する第1のレジストパターン5aを形成した(図2(a)参照)。続いて、第1のレジストパターン5aをマスクとして、フッ素系ガスを用いたドライエッチングを行い、ハードマスク膜4に第1のパターン(ハードマスクパターン4a)を形成した(図2(b)参照)。
First, a resist film is formed by spin coating in contact with the
次に、レジストパターン5aを除去してから、ハードマスクパターン4aをマスクとして、塩素系ガスと酸素ガスの混合ガスを用いたドライエッチングを行い、遮光膜3に第1のパターン(遮光パターン3a)を形成する(図2(c)参照)。続いて、遮光パターン3aをマスクとして、フッ素系ガスを用いたドライエッチングを行い、位相シフト膜2に第1のパターン(位相シフトパターン2a)を形成し、かつハードマスクパターン4aを除去した(図2(d)参照)。
Next, after removing the resist
次に、マスクブランク100上にレジスト膜をスピン塗布法によって形成した。次に、レジスト膜に対して、遮光膜3に形成すべきパターン(遮光パターン)である第2のパターンを電子線で露光描画し、さらに現像処理等の所定の処理を行い、遮光パターンを有する第2のレジストパターン6bを形成した(図2(e)参照)。続いて、第2のレジストパターン6bをマスクとして、塩素系ガスと酸素ガスの混合ガスを用いたドライエッチングを行い、遮光膜3に第2のパターン(遮光パターン3b)を形成した(図2(f)参照)。さらに、第2のレジストパターン6bを除去し、洗浄等の所定の処理を経て、位相シフトマスク200を得た(図2(g)参照)。
Next, a resist film was formed on the mask blank 100 by a spin coating method. Next, a second pattern, which is a pattern (light-shielding pattern) to be formed on the light-shielding
前記のドライエッチングで使用される塩素系ガスとしては、Clが含まれていれば特に制限はない。たとえば、Cl2、SiCl2、CHCl3、CH2Cl2、CCl4、BCl3等があげられる。また、前記のドライエッチングで使用されるフッ素系ガスとしては、Fが含まれていれば特に制限はない。たとえば、CHF3、CF4、C2F6、C4F8、SF6等があげられる。特に、Cを含まないフッ素系ガスは、ガラス基板に対するエッチングレートが比較的低いため、ガラス基板へのダメージをより小さくすることができる。 The chlorine-based gas used in the dry etching is not particularly limited as long as it contains Cl. For example, Cl 2 , SiCl 2 , CHCl 3 , CH 2 Cl 2 , CCl 4 , BCl 3 and the like can be mentioned. Further, the fluorine-based gas used in the dry etching is not particularly limited as long as F is contained. For example, CHF 3, CF 4, C 2 F 6, C 4 F 8, SF 6 and the like. In particular, since the fluorine-based gas not containing C has a relatively low etching rate with respect to the glass substrate, damage to the glass substrate can be further reduced.
本発明の位相シフトマスク200は、前記のマスクブランク100を用いて作製されたものである。このため、転写パターンが形成された位相シフト膜2(位相シフトパターン2a)はArF露光光に対する透過率が2%以上であり、かつ位相シフトパターン2aを透過した露光光と位相シフトパターン2aの厚さと同じ距離だけ空気中を通過した露光光との間における位相差が150度以上180度以下の範囲内となっている。また、この位相シフトマスク200は、遮光パターン3bが積層していない位相シフトパターン2aの領域(位相シフトパターン2aのみが存在する透光性基板1上の領域)における裏面反射率が35%以上になっている。これにより、位相シフト膜2の内部に入射するArF露光光の光量が削減でき、そのArF露光光によって位相シフト膜2中のケイ素が光励起することを抑制することができる。
The
位相シフトマスク200は、遮光パターン3bが積層していない位相シフトパターン2aの領域における裏面反射率が45%以下であると好ましい。位相シフトマスク200を用いて転写対象物(半導体ウェハ上のレジスト膜等)へ露光転写を行ったときに、位相シフトパターン2aの裏面側の反射光によって露光転写像に与える影響が大きくならない範囲とするためである。
The
位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aの透光性基板1上の領域における裏面反射率が30%以上であることが好ましい。遮光パターン3bがクロムを含有する材料で形成されている場合や遮光パターン3bの位相シフトパターン2a側の層がクロムを含有する材料で形成されている場合、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを抑制できる。また、遮光パターン3bが遷移金属とケイ素を含有する材料で形成されている場合、遮光パターン3b内の遷移金属が位相シフトパターン2a内に移動することを抑制できる。
The
本発明の半導体デバイスの製造方法は、前記の位相シフトマスク200を用い、半導体基板上のレジスト膜に転写パターンを露光転写することを特徴としている。位相シフトマスク200の位相シフトパターン2aは、ArF露光光に対する耐光性が大幅に向上している。このため、この位相シフトマスク200を露光装置にセットし、その位相シフトマスク200の透光性基板1側からArF露光光を照射して転写対象物(半導体ウェハ上のレジスト膜等)へ露光転写する工程を継続して行っても、位相シフトパターン2aのCD変化量は小さく、高い精度で転写対象物に所望のパターンを転写し続けることができる。
The semiconductor device manufacturing method of the present invention is characterized in that the transfer pattern is exposed and transferred onto a resist film on a semiconductor substrate using the
以下、実施例により、本発明の実施の形態をさらに具体的に説明する。
(実施例1)
[マスクブランクの製造]
主表面の寸法が約152mm×約152mmで、厚さが約6.35mmの合成石英ガラスからなる透光性基板1を準備した。この透光性基板1は、端面及び主表面を所定の表面粗さに研磨され、その後、所定の洗浄処理および乾燥処理を施されたものである。この透光性基板1の光学特性を測定したところ、屈折率nが1.556、消衰係数kが0.00であった。
Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples.
Example 1
[Manufacture of mask blanks]
A
次に、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、アルゴン(Ar)ガスをスパッタリングガスとするRFスパッタリングにより、透光性基板1の表面に接してケイ素からなる位相シフト膜2の下層21(Si膜)を8nmの厚さで形成した。続いて、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、下層21上に、ケイ素および窒素からなる位相シフト膜2の上層22(SiN膜 Si:N=43原子%:57原子%)を63nmの厚さで形成した。以上の手順により、透光性基板1の表面に接して下層21と上層22が積層した位相シフト膜2を71nmの厚さで形成した。この位相シフト膜2は、上層22の厚さが下層21の厚さの7.9倍ある。なお、下層21および上層22の組成は、X線光電子分光法(XPS)による測定によって得られた結果である。以下、他の膜に関しても同様である。
Next, the
次に、この位相シフト膜2が形成された透光性基板1に対して、位相シフト膜2の膜応力を低減するため、および表層部分に酸化層を形成するための加熱処理を行った。位相シフト量測定装置(レーザーテック社製 MPM193)を用いて、その位相シフト膜2の波長193nmの光に対する透過率と位相差を測定したところ、透過率が6.1%、位相差が177.0度(deg)であった。また、この位相シフト膜2に対して、STEM(Scanning Electron Microscope)とEDX(Energy Dispersive X−Ray Spectroscopy)で分析したところ、上層22の表面から約2nm程度の厚さの表層部分で酸化層が形成されていることが確認された。さらに、この位相シフト膜2の下層21および上層22の各光学特性を測定したところ、下層21は屈折率nが1.06、消衰係数kが2.72であり、上層22は、屈折率nが2.63、消衰係数kが0.37であった。位相シフト膜2の波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は44.1%であった。
Next, a heat treatment for reducing the film stress of the
次に、枚葉式DCスパッタ装置内に位相シフト膜2が形成された透光性基板1を設置し、クロム(Cr)ターゲットを用い、アルゴン(Ar)、二酸化炭素(CO2)、窒素(N2)およびヘリウム(He)の混合ガスをスパッタリングガスとする反応性スパッタリング(DCスパッタリング)により、位相シフト膜2上にCrOCNからなる遮光膜3(CrOCN膜 Cr:O:C:N=55原子%:22原子%:12原子%:11原子%)を46nmの厚さで形成した。この透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は42.7%であった。この位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を測定したところ、3.0以上であった。また、別の透光性基板1を準備し、同じ成膜条件で遮光膜3のみを成膜し、その遮光膜3の光学特性を測定したところ、屈折率nが1.95、消衰係数kが1.53であった。
Next, the
次に、枚葉式RFスパッタ装置内に、位相シフト膜2および遮光膜3が積層された透光性基板1を設置し、二酸化ケイ素(SiO2)ターゲットを用い、アルゴン(Ar)ガスをスパッタリングガスとし、RFスパッタリングにより遮光膜3の上に、ケイ素および酸素からなるハードマスク膜4を5nmの厚さで形成した。以上の手順により、透光性基板1上に、2層構造の位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備えるマスクブランク100を製造した。
Next, the
[位相シフトマスクの製造]
次に、この実施例1のマスクブランク100を用い、以下の手順で実施例1の位相シフトマスク200を作製した。最初に、ハードマスク膜4の表面にHMDS処理を施した。続いて、スピン塗布法によって、ハードマスク膜4の表面に接して、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚80nmで形成した。次に、このレジスト膜に対して、位相シフト膜2に形成すべき位相シフトパターンである第1のパターンを電子線描画し、所定の現像処理および洗浄処理を行い、第1のパターンを有する第1のレジストパターン5aを形成した(図2(a)参照)。
[Manufacture of phase shift mask]
Next, using the
次に、第1のレジストパターン5aをマスクとし、CF4ガスを用いたドライエッチングを行い、ハードマスク膜4に第1のパターン(ハードマスクパターン4a)を形成した(図2(b)参照)。その後、第1のレジストパターン5aを除去した。
Next, dry etching using CF 4 gas was performed using the first resist
続いて、ハードマスクパターン4aをマスクとし、塩素と酸素の混合ガス(ガス流量比 Cl2:O2=10:1)を用いたドライエッチングを行い、遮光膜3に第1のパターン(遮光パターン3a)を形成した(図2(c)参照)。次に、遮光パターン3aをマスクとし、フッ素系ガス(SF6+He)を用いたドライエッチングを行い、位相シフト膜2に第1のパターン(位相シフトパターン2a)を形成し、かつ同時にハードマスクパターン4aを除去した(図2(d)参照)。
Subsequently, using the
次に、遮光パターン3a上に、スピン塗布法によって、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚150nmで形成した。次に、レジスト膜に対して、遮光膜に形成すべきパターン(遮光パターン)である第2のパターンを露光描画し、さらに現像処理等の所定の処理を行い、遮光パターンを有する第2のレジストパターン6bを形成した(図2(e)参照)。続いて、第2のレジストパターン6bをマスクとして、塩素と酸素の混合ガス(ガス流量比 Cl2:O2=4:1)を用いたドライエッチングを行い、遮光膜3に第2のパターン(遮光パターン3b)を形成した(図2(f)参照)。さらに、第2のレジストパターン6bを除去し、洗浄等の所定の処理を経て、位相シフトマスク200を得た(図2(g)参照)。なお、位相シフト膜2にSF6+Heを用いたドライエッチングを行ったときの、上層22のエッチングレートに対する下層21のエッチングレートの比は、2.06であった。
Next, a resist film made of a chemically amplified resist for electron beam lithography was formed on the light-
作製した実施例1のハーフトーン型位相シフトマスク200における遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は1.5nmであった。このCD変化量は、Si3N4の単層構造からなる位相シフトパターンに対して同様の照射処理の前後で生じるCD変化量(3.2nm)に比べて改善されている。
In the manufactured halftone
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、この実施例1のマスクブランクから製造された位相シフトマスク200は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行っても、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
Furthermore, when the ArF excimer laser light irradiation treatment is performed and the
一方、実施例1のハーフトーン型位相シフトマスク200における遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのクロム含有量は微小であった。以上のことから、この実施例1のマスクブランクから製造された位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを十分に抑制できるといえる。
On the other hand, the ArF excimer laser light is intermittently irradiated to the region of the
(実施例2)
[マスクブランクの製造]
実施例2のマスクブランク100は、位相シフト膜2以外については、実施例1と同様の手順で製造した。この実施例2の位相シフト膜2は、下層21を形成する材料と膜厚を変更し、さらに上層22の膜厚を変更している。具体的には、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、透光性基板1の表面に接してケイ素および窒素からなる位相シフト膜2の下層21(SiN膜 Si:N=68原子%:32原子%)を9nmの厚さで形成した。続いて、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、下層21上に、ケイ素および窒素からなる位相シフト膜2の上層22(SiN膜 Si:N=43原子%:57原子%)を59nmの厚さで形成した。以上の手順により、透光性基板1の表面に接して下層21と上層22が積層した位相シフト膜2を68nmの厚さで形成した。この位相シフト膜2は、上層22の厚さが下層21の厚さの6.6倍ある。
(Example 2)
[Manufacture of mask blanks]
The
また、実施例1と同様の処理条件で、この実施例2の位相シフト膜2に対しても加熱処理を行った。位相シフト量測定装置(レーザーテック社製 MPM193)を用いて、その位相シフト膜2の波長193nmの光に対する透過率と位相差を測定したところ、透過率が6.1%、位相差が177.0度(deg)であった。また、この位相シフト膜2に対して、STEMとEDXで分析したところ、上層22の表面から約2nm程度の厚さの表層部分で酸化層が形成されていることが確認された。さらに、この位相シフト膜2の下層21および上層22の各光学特性を測定したところ、下層21は屈折率nが1.48、消衰係数kが2.35であり、上層22は、屈折率nが2.63、消衰係数kが0.37であった。位相シフト膜2の波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は39.5%であった。
Also, the heat treatment was performed on the
以上の手順により、透光性基板1上に、SiNの下層21とSiNの上層22とからなる位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備える実施例2のマスクブランク100を製造した。なお、この実施例2のマスクブランク100は、透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は37.6%であった。この位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を測定したところ、3.0以上であった。
The mask blank of Example 2 having a structure in which the
[位相シフトマスクの製造]
次に、この実施例2のマスクブランク100を用い、実施例1と同様の手順で、実施例2の位相シフトマスク200を作製した。なお、位相シフト膜2にSF6+Heを用いたドライエッチングを行ったときの上層22のエッチングレートに対する下層21のエッチングレートの比は、1.09であった。
[Manufacture of phase shift mask]
Next, using the
作製した実施例2のハーフトーン型位相シフトマスク200における遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は1.8nmであった。このCD変化量は、Si3N4の単層構造からなる位相シフトパターンに対して同様の照射処理の前後で生じるCD変化量(3.2nm)に比べて改善されている。
In the fabricated halftone
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、この実施例2のマスクブランクから製造された位相シフトマスク200は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行っても、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
Furthermore, when the ArF excimer laser light irradiation treatment is performed and the
一方、実施例2のハーフトーン型位相シフトマスク200における遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのクロム含有量は微小であった。以上のことから、この実施例2のマスクブランク100から製造された位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを十分に抑制できるといえる。
On the other hand, the ArF excimer laser light is intermittently irradiated to the region of the
(実施例3)
[マスクブランクの製造]
実施例3のマスクブランク100は、位相シフト膜2以外については、実施例1と同様の手順で製造した。この実施例3の位相シフト膜2は、下層21を形成する材料と膜厚を変更し、さらに上層22の膜厚を変更している。具体的には、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、透光性基板1の表面に接してケイ素および窒素からなる位相シフト膜2の下層21(SiN膜 Si:N=64原子%:36原子%)を10nmの厚さで形成した。続いて、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、下層21上に、ケイ素および窒素からなる位相シフト膜2の上層22(SiN膜 Si:N=43原子%:57原子%)を58nmの厚さで形成した。以上の手順により、透光性基板1の表面に接して下層21と上層22が積層した位相シフト膜2を68nmの厚さで形成した。この位相シフト膜2は、上層22の厚さが下層21の厚さの5.8倍ある。
(Example 3)
[Manufacture of mask blanks]
The
また、実施例1と同様の処理条件で、この実施例3の位相シフト膜2に対しても加熱処理を行った。位相シフト量測定装置(レーザーテック社製 MPM193)を用いて、その位相シフト膜2の波長193nmの光に対する透過率と位相差を測定したところ、透過率が6.1%、位相差が177.0度(deg)であった。また、この位相シフト膜2に対して、STEMとEDXで分析したところ、上層22の表面から約2nm程度の厚さの表層部分で酸化層が形成されていることが確認された。さらに、この位相シフト膜2の下層21および上層22の各光学特性を測定したところ、下層21は屈折率nが1.62、消衰係数kが2.18であり、上層22は、屈折率nが2.63、消衰係数kが0.37であった。位相シフト膜2の波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は37.8%であった。
In addition, the
以上の手順により、透光性基板1上に、SiNの下層21とSiNの上層22とからなる位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備える実施例3のマスクブランク100を製造した。なお、この実施例3のマスクブランク100は、透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は35.8%であった。この位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を測定したところ、3.0以上であった。
The mask blank of Example 3 having a structure in which the
[位相シフトマスクの製造]
次に、この実施例3のマスクブランク100を用い、実施例1と同様の手順で、実施例3の位相シフトマスク200を作製した。なお、位相シフト膜2にSF6+Heを用いたドライエッチングを行ったときの上層22のエッチングレートに対する下層21のエッチングレートの比は、1.04であった。
[Manufacture of phase shift mask]
Next, using the
作製した実施例3のハーフトーン型位相シフトマスク200における遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は2.0nmであった。このCD変化量は、Si3N4の単層構造からなる位相シフトパターンに対して同様の照射処理の前後で生じるCD変化量(3.2nm)に比べて改善されている。
In the fabricated halftone
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、この実施例3のマスクブランクから製造された位相シフトマスク200は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行っても、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
Furthermore, when the ArF excimer laser light irradiation treatment is performed and the
一方、実施例3のハーフトーン型位相シフトマスク200における遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのクロム含有量は微小であった。以上のことから、この実施例3のマスクブランク100から製造された位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを十分に抑制できるといえる。
On the other hand, the ArF excimer laser light is intermittently irradiated to the region of the
(実施例4)
[マスクブランクの製造]
実施例4のマスクブランク100は、位相シフト膜2以外については、実施例1と同様の手順で製造した。この実施例4の位相シフト膜2は、下層21を形成する材料と膜厚を変更し、さらに上層22の膜厚を変更している。具体的には、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、透光性基板1の表面に接してケイ素および窒素からなる位相シフト膜2の下層21(SiN膜 Si:N=60原子%:40原子%)を11nmの厚さで形成した。続いて、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、下層21上に、ケイ素および窒素からなる位相シフト膜2の上層22(SiN膜 Si:N=43原子%:57原子%)を56nmの厚さで形成した。以上の手順により、透光性基板1の表面に接して下層21と上層22が積層した位相シフト膜2を67nmの厚さで形成した。この位相シフト膜2は、上層22の厚さが下層21の厚さの5.1倍ある。
Example 4
[Manufacture of mask blanks]
The
また、実施例1と同様の処理条件で、この実施例4の位相シフト膜2に対しても加熱処理を行った。位相シフト量測定装置(レーザーテック社製 MPM193)を用いて、その位相シフト膜2の波長193nmの光に対する透過率と位相差を測定したところ、透過率が6.1%、位相差が177.0度(deg)であった。また、この位相シフト膜2に対して、STEMとEDXで分析したところ、上層22の表面から約2nm程度の厚さの表層部分で酸化層が形成されていることが確認された。さらに、この位相シフト膜2の下層21および上層22の各光学特性を測定したところ、下層21は屈折率nが1.76、消衰係数kが2.00であり、上層22は、屈折率nが2.63、消衰係数kが0.37であった。位相シフト膜2の波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は35.4%であった。
In addition, the
以上の手順により、透光性基板1上に、SiNの下層21とSiNの上層22とからなる位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備える実施例4のマスクブランク100を製造した。なお、この実施例4のマスクブランク100は、透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は33.3%であった。この位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を測定したところ、3.0以上であった。
According to the above procedure, the mask blank of Example 4 having a structure in which the
[位相シフトマスクの製造]
次に、この実施例4のマスクブランク100を用い、実施例1と同様の手順で、実施例4の位相シフトマスク200を作製した。なお、位相シフト膜2にSF6+Heを用いたドライエッチングを行ったときの上層22のエッチングレートに対する下層21のエッチングレートの比は、1.00であった。
[Manufacture of phase shift mask]
Next, using the
作製した実施例4のハーフトーン型位相シフトマスク200における遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は2.4nmであった。このCD変化量は、Si3N4の単層構造からなる位相シフトパターンに対して同様の照射処理の前後で生じるCD変化量(3.2nm)に比べて改善されている。
In the fabricated halftone
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、この実施例4のマスクブランクから製造された位相シフトマスク200は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行っても、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
Furthermore, when the ArF excimer laser light irradiation treatment is performed and the
一方、実施例4のハーフトーン型位相シフトマスク200における遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのクロム含有量は微小であった。以上のことから、この実施例4のマスクブランク100から製造された位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを十分に抑制できるといえる。
On the other hand, the ArF excimer laser light is intermittently irradiated to the region of the
(実施例5)
[マスクブランクの製造]
実施例5のマスクブランク100は、遮光膜3とハードマスク膜4以外については、実施例1と同様の手順で製造した。この実施例5の遮光膜3は、下層と上層の2層構造とし、さらに下層と上層を形成する材料にモリブデンシリサイド系材料を用いている。具体的には、枚葉式DCスパッタ装置内に位相シフト膜2が形成された透光性基板1を設置し、モリブデン(Mo)とケイ素(Si)の混合ターゲット(Mo:Si=13原子%:87原子%)を用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(DCスパッタリング)により、位相シフト膜2の上層22の表面に接してモリブデン、ケイ素および窒素からなる遮光膜3の下層(MoSiN膜 Mo:Si:N=8原子%:62原子%:30原子%)を27nmの厚さで形成した。続いて、モリブデン(Mo)とケイ素(Si)の混合ターゲット(Mo:Si=13原子%:87原子%)を用い、アルゴン(Ar)、酸素(O2)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(DCスパッタリング)により、遮光膜3の下層の表面に接してモリブデン、ケイ素、窒素および酸素からなる遮光膜3の上層(MoSiON膜 Mo:Si:O:N=6原子%:54原子%:3原子%:37原子%)を13nmの厚さで形成した。以上の手順により、位相シフト膜2の表面に接して下層と上層が積層した遮光膜3を40nmの厚さで形成した。
(Example 5)
[Manufacture of mask blanks]
The
この位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を測定したところ、3.0以上であった。また、別の透光性基板1を準備し、同じ成膜条件で遮光膜3の下層のみを成膜し、その遮光膜3の下層の光学特性を測定したところ、屈折率nが2.23、消衰係数kが2.07であった。同様に、別の透光性基板1を準備し、同じ成膜条件で遮光膜3の上層のみを成膜し、その遮光膜3の上層の光学特性を測定したところ、屈折率nが2.33、消衰係数kが0.94であった。
The optical density (OD) of light having a wavelength of 193 nm in the laminated structure of the
実施例5のハードマスク膜4は、クロム系材料を用いている。具体的には、枚葉式DCスパッタ装置内に位相シフト膜2および遮光膜3が形成された透光性基板1を設置し、クロム(Cr)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(DCスパッタリング)により、遮光膜3の上層の表面に接してクロムおよび窒素からなるハードマスク膜4(CrN膜 Cr:N=75原子%:25原子%)を5nmの厚さで形成した。
The
以上の手順により、透光性基板1上に、SiNの下層21とSiNの上層22とからなる位相シフト膜2、MoSiNの下層とMoSiONの上層とからなる遮光膜3およびCrNのハードマスク膜4が積層した構造を備える実施例5のマスクブランク100を製造した。なお、この実施例5のマスクブランク100は、透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は43.1%であった。
By the above procedure, the
[位相シフトマスクの製造]
次に、この実施例5のマスクブランク100を用い、遮光膜3のドライエッチングに用いるエッチングガスとしてフッ素系ガス(SF6+He)と適用し、ハードマスク膜4のドライエッチングに用いるエッチングガスとして塩素と酸素の混合ガス(Cl2+O2)を適用したこと以外は、実施例1と同様の手順で、実施例5の位相シフトマスク200を作製した。
[Manufacture of phase shift mask]
Next, using the
作製した実施例5のハーフトーン型位相シフトマスク200における遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は1.5nmであった。このCD変化量は、Si3N4の単層構造からなる位相シフトパターンに対して同様の照射処理の前後で生じるCD変化量(3.2nm)に比べて改善されている。
In the fabricated halftone
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を十分に満たしていた。以上のことから、この実施例5のマスクブランク100から製造された位相シフトマスク200は、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行っても、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができるといえる。
Furthermore, when the ArF excimer laser light irradiation treatment is performed and the
一方、実施例5のハーフトーン型位相シフトマスク200における遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのモリブデン含有量は微小であった。以上のことから、この実施例5のマスクブランク100から製造された位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のモリブデンが位相シフトパターン2a内に移動することを十分に抑制できるといえる。
On the other hand, the ArF excimer laser light is intermittently irradiated to the region of the
(比較例1)
[マスクブランクの製造]
この比較例1のマスクブランクは、位相シフト膜2以外については、実施例1と同様の手順で製造した。この比較例1の位相シフト膜2は、下層21を形成する材料と膜厚を変更し、さらに上層22の膜厚を変更している。具体的には、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、透光性基板1の表面に接してケイ素および窒素からなる位相シフト膜2の下層21(SiN膜 Si:N=52原子%:48原子%)を22nmの厚さで形成した。続いて、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、下層21上に、ケイ素および窒素からなる位相シフト膜2の上層22(SiN膜 Si:N=43原子%:57原子%)を42nmの厚さで形成した。以上の手順により、透光性基板1の表面に接して下層21と上層22が積層した位相シフト膜2を64nmの厚さで形成した。この位相シフト膜2は、上層22の厚さが下層21の厚さの1.9倍ある。
(Comparative Example 1)
[Manufacture of mask blanks]
The mask blank of Comparative Example 1 was manufactured in the same procedure as in Example 1 except for the
また、実施例1と同様の処理条件で、この比較例1の位相シフト膜2に対しても加熱処理を行った。位相シフト量測定装置(レーザーテック社製 MPM193)を用いて、その位相シフト膜2の波長193nmの光に対する透過率と位相差を測定したところ、透過率が6.1%、位相差が177.0度(deg)であった。また、この位相シフト膜2に対して、STEMとEDXで分析したところ、上層22の表面から約2nm程度の厚さの表層部分で酸化層が形成されていることが確認された。さらに、この位相シフト膜2の下層21および上層22の各光学特性を測定したところ、下層21は屈折率nが2.39、消衰係数kが1.17であり、上層22は、屈折率nが2.63、消衰係数kが0.37であった。位相シフト膜2の波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は19.5%であった。
Also, the heat treatment was performed on the
以上の手順により、透光性基板1上に、SiNの下層21とSiNの上層22とからなる位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備える比較例1のマスクブランクを製造した。なお、この比較例1のマスクブランクは、透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は17.8%であった。この位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を測定したところ、3.0以上であった。
The mask blank of Comparative Example 1 having a structure in which the
[位相シフトマスクの製造]
次に、この比較例1のマスクブランクを用い、実施例1と同様の手順で、比較例1の位相シフトマスクを作製した。なお、位相シフト膜2にSF6+Heを用いたドライエッチングを行ったときの上層22のエッチングレートに対する下層21のエッチングレートの比は、0.96であった。
[Manufacture of phase shift mask]
Next, using the mask blank of Comparative Example 1, a phase shift mask of Comparative Example 1 was produced in the same procedure as in Example 1. The ratio of the etching rate of the
作製した比較例1のハーフトーン型位相シフトマスクにおける遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は3.2nmであった。このCD変化量は、Si3N4の単層構造からなる位相シフトパターンに対して同様の照射処理の前後で生じるCD変化量(3.2nm)と差がなく、CD変化量を改善することができていない。
In the fabricated halftone phase shift mask of Comparative Example 1, the region of the
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスクに対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を満たせていなかった。以上のことから、この比較例1のマスクブランクから製造された位相シフトマスクは、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行うと、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができなくなるといえる。 Furthermore, when the ArF excimer laser light is irradiated and transferred to the resist film on the semiconductor device with the exposure light having a wavelength of 193 nm using AIMS 193 (manufactured by Carl Zeiss) for the phase shift mask. An exposure transfer image was simulated. When the exposure transfer image obtained by this simulation was verified, the design specifications could not be satisfied. From the above, when the phase shift mask manufactured from the mask blank of Comparative Example 1 is set in an exposure apparatus and exposure transfer using exposure light of an ArF excimer laser is performed until the integrated dose reaches 40 kJ / cm 2. It can be said that exposure transfer cannot be performed with high accuracy on the resist film on the semiconductor device.
一方、比較例1のハーフトーン型位相シフトマスクにおける遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのクロム含有量は各実施例での結果に比べて大幅に増加していた。この結果から、この比較例1のマスクブランクから製造された位相シフトマスクは、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを抑制できないといえる。
On the other hand, the ArF excimer laser light is intermittently irradiated to the region of the
(比較例2)
[マスクブランクの製造]
この比較例2のマスクブランクは、位相シフト膜2と遮光膜3以外については、実施例1と同様の手順で製造した。この比較例2の位相シフト膜2は、単層構造に変更している。具体的には、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、アルゴン(Ar)および窒素(N2)の混合ガスをスパッタリングガスとする反応性スパッタリング(RFスパッタリング)により、透光性基板1の表面に接してケイ素および窒素からなる位相シフト膜2(SiN膜 Si:N=43原子%:57原子%)を60nmの厚さで形成した。
(Comparative Example 2)
[Manufacture of mask blanks]
The mask blank of Comparative Example 2 was manufactured in the same procedure as in Example 1 except for the
この位相シフト膜2の光学特性を測定したところ、屈折率nが2.63、消衰係数kが0.37であった。ただし、この単層構造の位相シフト膜2は、位相差が177.0度(deg)になるように調整したところ、透過率は18.1%になった。位相シフト膜2と遮光膜3の積層構造における波長193nmの光に対する光学濃度(OD)を3.0以上となるようにするため、遮光膜3は、組成および光学特性は同じとしたが、厚さは57nmに変更した。位相シフト膜2の波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は16.6%であった。
When the optical characteristics of the
以上の手順により、透光性基板1上に、SiNの単層構造からなる位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備える比較例2のマスクブランクを製造した。なお、この比較例2のマスクブランクは、透光性基板1上に位相シフト膜2と遮光膜3が積層した状態における波長193nmの光に対する裏面反射率(透光性基板1側の反射率)は13.7%であった。
The mask blank of the comparative example 2 provided with the structure which laminated | stacked the
[位相シフトマスクの製造]
次に、この比較例2のマスクブランクを用い、実施例1と同様の手順で、比較例2の位相シフトマスクを作製した。
[Manufacture of phase shift mask]
Next, using the mask blank of Comparative Example 2, a phase shift mask of Comparative Example 2 was produced in the same procedure as in Example 1.
作製した比較例2のハーフトーン型位相シフトマスクにおける遮光パターン3bが積層していない位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。この照射処理前後における位相シフトパターン2aのCD変化量は3.2nmであった。
The ArF excimer laser light is intermittently irradiated to the region of the
さらに、このArFエキシマレーザー光の照射処理を行った後の位相シフトマスクに対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける露光転写像のシミュレーションを行った。このシミュレーションで得られた露光転写像を検証したところ、設計仕様を満たせていなかった。以上のことから、この比較例2のマスクブランクから製造された位相シフトマスクは、露光装置にセットしてArFエキシマレーザーの露光光による露光転写を積算照射量が40kJ/cm2となるまで行うと、半導体デバイス上のレジスト膜に対して高精度で露光転写を行うことができなくなるといえる。 Furthermore, when the ArF excimer laser light is irradiated and transferred to the resist film on the semiconductor device with the exposure light having a wavelength of 193 nm using AIMS 193 (manufactured by Carl Zeiss) for the phase shift mask. An exposure transfer image was simulated. When the exposure transfer image obtained by this simulation was verified, the design specifications could not be satisfied. From the above, when the phase shift mask manufactured from the mask blank of Comparative Example 2 is set in an exposure apparatus and exposure transfer using exposure light of an ArF excimer laser is performed until the integrated dose reaches 40 kJ / cm 2. It can be said that exposure transfer cannot be performed with high accuracy on the resist film on the semiconductor device.
一方、比較例2のハーフトーン型位相シフトマスクにおける遮光パターン3bが積層している位相シフトパターン2aの領域に対し、ArFエキシマレーザー光を積算照射量が40kJ/cm2となるように間欠照射する照射処理を行った。照射処理を行った領域の位相シフトパターン2aに対し、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を行ったところ、位相シフトパターン2aのクロム含有量は各実施例での結果に比べて大幅に増加していた。この結果から、この比較例2のマスクブランクから製造された位相シフトマスク200は、遮光パターン3bが積層している位相シフトパターン2aに対してArFエキシマレーザーの露光光が照射された際、遮光パターン3b内のクロムが位相シフトパターン2a内に移動することを抑制できないといえる。
On the other hand, ArF excimer laser light is intermittently irradiated to the region of the
1 透光性基板
2 位相シフト膜
21 下層
22 上層
2a 位相シフトパターン
3 遮光膜
3a,3b 遮光パターン
4 ハードマスク膜
4a ハードマスクパターン
5a 第1のレジストパターン
6b 第2のレジストパターン
100 マスクブランク
200 位相シフトマスク
DESCRIPTION OF
Claims (19)
前記位相シフト膜は、ArFエキシマレーザーの露光光に対する透過率が2%以上であり、
前記透光性基板上に前記位相シフト膜のみが存在する状態における前記位相シフト膜の透光性基板側から入射する前記露光光に対する反射率が35%以上45%以下であり、
前記位相シフト膜は、前記透光性基板側から下層と上層が積層した構造を含み、
前記下層は、ケイ素からなる材料、またはケイ素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成され、
前記上層は、その表層部分を除き、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成されていることを特徴とするマスクブランク。 A mask blank provided with a phase shift film on a translucent substrate,
The phase shift film has an ArF excimer laser transmittance of 2% or more for exposure light,
The reflectance with respect to the exposure light incident from the light-transmissive substrate side of the phase shift film in a state where only the phase shift film exists on the light-transmissive substrate is 35% or more and 45% or less,
The phase shift film includes a structure in which a lower layer and an upper layer are stacked from the translucent substrate side,
The lower layer is formed of a material containing silicon, or a material containing one or more elements selected from non-metal elements and metalloid elements other than oxygen in a material made of silicon,
The upper layer is formed of a material containing silicon and nitrogen, or a material containing one or more elements selected from non-metal elements and metalloid elements other than oxygen in a material consisting of silicon and nitrogen, except for the surface layer portion. A mask blank characterized by
前記位相シフト膜は、ArFエキシマレーザーの露光光に対する透過率が2%以上であり、
前記透光性基板上に前記位相シフト膜のみが存在する状態における前記位相シフト膜の透光性基板側から入射する前記露光光に対する反射率が35%以上45%以下であり、
前記位相シフト膜は、前記透光性基板側から下層と上層が積層した構造を含み、
前記下層は、ケイ素からなる材料、またはケイ素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成され、
前記上層は、その表層部分を除き、ケイ素および窒素からなる材料、またはケイ素および窒素からなる材料に酸素以外の非金属元素および半金属元素から選ばれる1以上の元素を含有する材料で形成されていることを特徴とする位相シフトマスク。 A phase shift mask including a phase shift film in which a transfer pattern is formed on a translucent substrate,
The phase shift film has an ArF excimer laser transmittance of 2% or more for exposure light,
The reflectance with respect to the exposure light incident from the light-transmissive substrate side of the phase shift film in a state where only the phase shift film exists on the light-transmissive substrate is 35% or more and 45% or less,
The phase shift film includes a structure in which a lower layer and an upper layer are stacked from the translucent substrate side,
The lower layer is formed of a material containing silicon, or a material containing one or more elements selected from non-metal elements and metalloid elements other than oxygen in a material made of silicon,
The upper layer is formed of a material containing silicon and nitrogen, or a material containing one or more elements selected from non-metal elements and metalloid elements other than oxygen in a material consisting of silicon and nitrogen, except for the surface layer portion. A phase shift mask characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017247528A JP6490786B2 (en) | 2017-12-25 | 2017-12-25 | Mask blank, phase shift mask, and semiconductor device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017247528A JP6490786B2 (en) | 2017-12-25 | 2017-12-25 | Mask blank, phase shift mask, and semiconductor device manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017016687A Division JP6271780B2 (en) | 2017-02-01 | 2017-02-01 | Mask blank, phase shift mask, and semiconductor device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018045257A JP2018045257A (en) | 2018-03-22 |
JP6490786B2 true JP6490786B2 (en) | 2019-03-27 |
Family
ID=61694815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017247528A Active JP6490786B2 (en) | 2017-12-25 | 2017-12-25 | Mask blank, phase shift mask, and semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6490786B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7109996B2 (en) * | 2018-05-30 | 2022-08-01 | Hoya株式会社 | MASK BLANK, PHASE SHIFT MASK, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD |
US10865840B2 (en) | 2018-10-25 | 2020-12-15 | Akebono Brake Industry Co., Ltd. | Support hidden sliding caliper |
JP7221261B2 (en) * | 2020-11-16 | 2023-02-13 | Hoya株式会社 | MASK BLANK, PHASE SHIFT MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6274280B1 (en) * | 1999-01-14 | 2001-08-14 | E.I. Du Pont De Nemours And Company | Multilayer attenuating phase-shift masks |
JP5317310B2 (en) * | 2009-03-31 | 2013-10-16 | Hoya株式会社 | Mask blank and transfer mask manufacturing method |
JP5602412B2 (en) * | 2009-10-27 | 2014-10-08 | Hoya株式会社 | Mask blank, transfer mask, transfer mask set, and semiconductor device manufacturing method |
JP6005530B2 (en) * | 2013-01-15 | 2016-10-12 | Hoya株式会社 | Mask blank, phase shift mask and manufacturing method thereof |
JP6373607B2 (en) * | 2013-03-08 | 2018-08-15 | Hoya株式会社 | Manufacturing method of mask blank and manufacturing method of phase shift mask |
JP6233873B2 (en) * | 2013-04-17 | 2017-11-22 | アルバック成膜株式会社 | Method for manufacturing phase shift mask |
-
2017
- 2017-12-25 JP JP2017247528A patent/JP6490786B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018045257A (en) | 2018-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6087401B2 (en) | Mask blank, phase shift mask, and semiconductor device manufacturing method | |
JP6297734B2 (en) | Mask blank, phase shift mask, and semiconductor device manufacturing method | |
JP6271780B2 (en) | Mask blank, phase shift mask, and semiconductor device manufacturing method | |
JP6058757B1 (en) | Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device | |
JP6526938B1 (en) | Mask blank, phase shift mask and method for manufacturing semiconductor device | |
JP6490786B2 (en) | Mask blank, phase shift mask, and semiconductor device manufacturing method | |
WO2019230313A1 (en) | Mask blank, phase-shift mask, and semiconductor device manufacturing method | |
WO2019230312A1 (en) | Mask blank, phase-shift mask, and semiconductor device manufacturing method | |
WO2020066590A1 (en) | Mask blank, transfer mask, and semiconductor-device manufacturing method | |
WO2020066591A1 (en) | Mask blank, transfer mask, and semiconductor-device manufacturing method | |
CN113242995B (en) | Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device | |
WO2021059890A1 (en) | Mask blank, phase shift mask, and method for producing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6490786 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |