JP6489811B2 - Method for producing hardened cementitious body - Google Patents

Method for producing hardened cementitious body

Info

Publication number
JP6489811B2
JP6489811B2 JP2014242229A JP2014242229A JP6489811B2 JP 6489811 B2 JP6489811 B2 JP 6489811B2 JP 2014242229 A JP2014242229 A JP 2014242229A JP 2014242229 A JP2014242229 A JP 2014242229A JP 6489811 B2 JP6489811 B2 JP 6489811B2
Authority
JP
Japan
Prior art keywords
mass
parts
meth
water
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014242229A
Other languages
Japanese (ja)
Other versions
JP2016101737A (en
Inventor
豪士 中崎
豪士 中崎
洋二 小川
洋二 小川
充 谷村
充 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2014242229A priority Critical patent/JP6489811B2/en
Publication of JP2016101737A publication Critical patent/JP2016101737A/en
Application granted granted Critical
Publication of JP6489811B2 publication Critical patent/JP6489811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Description

本発明は、3次元造形システム(以下「3Dプリンタ」という。)を用いて成形した型枠を用いて、所望の形状を付与してセメント質硬化体を製造する方法に関する。   The present invention relates to a method for producing a hardened cementitious body by imparting a desired shape using a mold formed using a three-dimensional modeling system (hereinafter referred to as “3D printer”).

モルタル、コンクリート、およびセメントペースト硬化体等のセメント質硬化体に意匠性を付与する方法の一つに、化粧型枠を用いて成形する方法があり、種々の化粧型枠が知られている。例えば、コンクリート表面に目地を含む凹凸意匠を形成する合成樹脂発泡体製化粧型枠(特許文献1)、表面側に凹凸状の意匠を有する化粧型枠意匠板部材の裏面側に係止部を有し、該係止部により化粧型枠本体に化粧型枠意匠板部材が係止されている化粧型枠(特許文献2)、セメント成形硬化用型枠の底面上に、合成弾性重合体材料からなり、所望表面凹凸模様を有する意匠転写材(特許文献3)、コンクリートに接する表面に凹凸模様を有し、裏面において型枠パネルに取り付けられるコンクリート打設用化粧型枠(特許文献4)等が知られている。   One method of imparting design properties to hardened cementitious materials such as mortar, concrete, and hardened cement paste is a method of forming using a decorative mold, and various decorative molds are known. For example, a synthetic resin foam decorative mold frame (Patent Document 1) that forms a concave and convex design including joints on the concrete surface, and a locking portion on the back side of the decorative mold frame design plate member having a concave and convex design on the front surface A decorative mold frame (Patent Document 2) in which the decorative mold frame design plate member is locked to the decorative mold frame body by the locking portion, and a synthetic elastic polymer material on the bottom surface of the cement molding hardening mold Design transfer material (Patent Document 3) having a desired surface concavo-convex pattern, concrete casting decorative frame (Patent Document 4) having a concavo-convex pattern on the surface in contact with concrete and attached to the mold panel on the back surface It has been known.

しかし、これらの文献の記載から分かるように、付与できる形状は凹凸模様などの単調なデザインに止まり、セメント質硬化体に繊細かつ多様なデザインを付与することは難しかった。   However, as can be seen from the descriptions in these documents, the shape that can be imparted is limited to a monotonous design such as a concavo-convex pattern, and it has been difficult to impart a delicate and diverse design to the hardened cementitious material.

特開2001−277227号公報JP 2001-277227 A 特開平10−266558号公報Japanese Patent Laid-Open No. 10-266558 特開平08−011110号公報Japanese Patent Application Laid-Open No. 08-011110 特開平07−279424号公報Japanese Patent Application Laid-Open No. 07-279424

そこで、本発明は、セメント質硬化体に繊細かつ多様なデザインを付与することができるセメント質硬化体の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the cementitious hardened | cured material which can provide a delicate and various design to a cementitious hardened | cured material.

本発明者は、上記課題を解決するために鋭意研究した結果、3Dプリンタを用いれば、精緻かつ多様な形状および模様を有する型枠が製造でき、また、該型枠を用いて製造したセメント質硬化体は、精緻かつ多様な形状および模様を有することを見い出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventor can produce a mold having precise and various shapes and patterns by using a 3D printer, and the cementitious material produced by using the mold. The cured body was found to have precise and various shapes and patterns, and the present invention was completed.

すなわち、本発明は、以下の構成を有するセメント質硬化体の製造方法である。
[1]3次元造形システムを用いて作製してなる、ガラス転移が80〜120℃のアクリル系樹脂性型枠を使用して、セメント質硬化体を成形して80〜120℃に加熱し脱型して製造するセメント質硬化体の製造方法であって、
前記セメント質硬化体が下記(A)〜(G)のすべての条件を満たす配合物の硬化体であることを特徴とする、セメント質硬化体の製造方法(ただし、前記セメント質硬化体は版部材を含まない。)。
(A)セメントと、
該セメント100質量部に対し、
(B)最大粒径が1.0mm以下の細骨材を80〜180質量部、
(C)BET比表面積が10〜25m/gのシリカフュームを10〜40質量部
(D)ブレーン比表面積が6,500〜8,500cm/gの石英粉末を30〜40質量部
(E)ブレーン比表面積が3,500〜4,200cm/gの石英粉末を1.5質量部以上かつ5質量部未満
(F)ポリカルボン酸系高性能減水剤を0.3〜1.5質量部
および
(G)水を15〜25質量部
含む配合物の硬化体。
That is, this invention is a manufacturing method of the cementitious hardening body which has the following structures.
[1] Using an acrylic resin mold having a glass transition point of 80 to 120 ° C. produced using a three-dimensional modeling system, a cemented cured body is molded and heated to 80 to 120 ° C. A method for producing a cementitious hardened body produced by demolding,
The method for producing a cementitious hardened body, wherein the hardened cementitious body is a hardened body of a composition satisfying all the following conditions (A) to (G): (Does not include components.)
(A) cement and
For 100 parts by mass of the cement,
(B) 80-180 parts by mass of fine aggregate having a maximum particle size of 1.0 mm or less,
(C) 10 to 40 parts by mass of silica fume having a BET specific surface area of 10 to 25 m 2 / g (D) 30 to 40 parts by mass of quartz powder having a Blane specific surface area of 6,500 to 8,500 cm 2 / g (E) Quartz powder having a specific surface area of 3,500 to 4,200 cm 2 / g is 1.5 parts by mass or more and less than 5 parts by mass (F) 0.3 to 1.5 parts by mass of polycarboxylic acid-based high-performance water reducing agent. And (G) a cured product of a blend containing 15 to 25 parts by mass of water.

本発明のセメント質硬化体の製造方法によれば、セメント質硬化体に繊細かつ多様なデザインを付与でき、かつ脱型が容易である。   According to the method for producing a hardened cementitious material of the present invention, a delicate and diverse design can be imparted to the hardened cementitious material, and demolding is easy.

本発明で用いる樹脂製型枠の一例を示す写真である。It is a photograph which shows an example of the resin-made formwork used by this invention. 樹脂製型枠にセメント配合物(セメント質硬化体が硬化する前のもの)を流し込んだ直後の状態を示す写真である。It is a photograph which shows the state immediately after pouring a cement compound (a thing before a cementitious hardened body hardens | cures) into a resin-made formwork. 樹脂製型枠内でセメント配合物が硬化した状態を示す写真である。It is a photograph which shows the state which the cement compound hardened | cured within the resin-made formwork. (A)、(B)ともに、樹脂製型枠からセメント質硬化体を脱型する様子を示す写真である。(A), (B) is a photograph which shows a mode that a cementitious hardened | cured material is demolded from a resin-made formwork. セメント質硬化体と樹脂製型枠を示す写真である。It is a photograph which shows a cementitious hardened body and a resin-made formwork.

本発明のセメント質硬化体の製造方法は、前記のとおり、3Dプリンタを用いて作製してなる樹脂性型枠を使用して、セメント質硬化体を成形して製造する方法である。以下、本発明について、3Dプリンタ、樹脂製型枠、およびセメント質硬化体に分けて詳細に説明する。   As described above, the method for producing a hardened cementitious material of the present invention is a method for producing a hardened cementitious material by using a resin mold formed using a 3D printer. Hereinafter, the present invention will be described in detail for a 3D printer, a resin mold, and a hardened cementitious material.

1.3Dプリンタ
3Dプリンタ(3次元造形システム)は、コンピュータ上で作製した3Dデータを設計図に用いて、断面形状を積層することにより立体物を作製する産業用ロボットの一種である。本発明は、この3Dプリンタを用いて作製した、任意の形状および模様を有する樹脂製型枠を使用して、セメント質硬化体を製造することを特徴とする。
本発明で用いる3Dプリンタは市販品が使用でき、また、造形方式は、熱溶解積層方式、光造形方式、粉末固着方式、粉末焼結方式、インクジェット方式、および切削加工方式の何れでもよい。
1.3D Printer A 3D printer (three-dimensional modeling system) is a type of industrial robot that uses a 3D data created on a computer as a design drawing to create a three-dimensional object by stacking cross-sectional shapes. The present invention is characterized in that a cementitious hardened body is produced using a resin mold having an arbitrary shape and pattern produced using this 3D printer.
Commercially available products can be used for the 3D printer used in the present invention, and the modeling method may be any one of a hot melt lamination method, an optical modeling method, a powder fixing method, a powder sintering method, an inkjet method, and a cutting method.

2.樹脂製型枠
(1)熱可塑性樹脂
本発明で用いる樹脂製型枠を形成する熱可塑性樹脂は、(i)単官能エチレン性不飽和単量体、(ii)ウレタン基を含有しない多官能エチレン性不飽和単量体、および(iii)ウレタン基含有エチレン性不飽和単量体を、(iv)光重合開始剤を用いて重合させてなる共重合体である。そして、前記熱可塑性樹脂のガラス転移点は、脱型の容易性と耐熱性の観点から、好ましくは50〜120℃、より好ましくは80〜120℃である。
2. Resin mold (1) Thermoplastic resin The thermoplastic resin forming the resin mold used in the present invention includes (i) a monofunctional ethylenically unsaturated monomer and (ii) a polyfunctional ethylene containing no urethane group. And (iii) a copolymer obtained by polymerizing (iii) a urethane group-containing ethylenically unsaturated monomer using a photopolymerization initiator. The glass transition point of the thermoplastic resin is preferably 50 to 120 ° C., more preferably 80 to 120 ° C., from the viewpoint of easy demolding and heat resistance.

(i)単官能エチレン性不飽和単量体
前記単官能エチレン性不飽和単量体は、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4−t−シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、4−(メタ)アクリロイルオキシメチル−2−メチル−2−エチル−1,3−ジオキソラン、4−(メタ)アクリロイルオキシメチル−2−シクロヘキシル−1,3−ジオキソラン、アダマンチル(メタ)アクリレート。ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコール、モノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコール、モノ(メタ)アクリレート、メトキシポリプロピレングリコールモノ(メタ)アクリレート、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N,N’−ジメチル(メタ)アクリルアミド、N,N’−ジエチル(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−ヒドロキシプロピル(メタ)アクリルアミド、N−ヒドロキシブチル(メタ)アクリルアミド、およびアクリロイルモルフォリンからなる群より選ばれる1種以上が挙げられる。
(I) Monofunctional ethylenically unsaturated monomer The monofunctional ethylenically unsaturated monomer includes methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate, lauryl (meth) acrylate, stearyl ( (Meth) acrylate, isostearyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-t-cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Tetrahydrofurfuryl (meth) acrylate, 4- (meth) acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, 4- (meth) acryloyloxymethyl-2-cyclohexyl-1,3-dioxolane, Adamantyl (me ) Acrylate. Hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol, mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate, polypropylene glycol, mono (meth) acrylate, Methoxy polypropylene glycol mono (meth) acrylate, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N ′ -Dimethyl (meth) acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylami , One or more selected from the group consisting of N- hydroxybutyl (meth) acrylamide, and acryloyl morpholine and the like.

(ii)ウレタン基を含有しない多官能エチレン性不飽和単量体
ウレタン基を有しない多官能エチレン性不飽和単量体は、ウレタン基を有しない2個以上のエチレン性不飽和基を有する化合物であり、該化合物を用いて高分子の間を架橋することにより機械強度および弾性率が高くなる。そして、ウレタン基を有しない多官能エチレン性不飽和単量体は、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、3-メチル−1,5−ペンタンジオールジ(メタ)アクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートからなる群より選ばれる1種以上が挙げられる。
(Ii) Polyfunctional ethylenically unsaturated monomer having no urethane group The polyfunctional ethylenically unsaturated monomer having no urethane group is a compound having two or more ethylenically unsaturated groups having no urethane group. The mechanical strength and elastic modulus are increased by crosslinking the polymer with the compound. The polyfunctional ethylenically unsaturated monomer having no urethane group is 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, or 1,9-nonanediol di (meth) acrylate. From 3-methyl-1,5-pentanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate 1 type or more chosen from the group which consists of.

(iii)ウレタン基含有エチレン性不飽和単量体
前記ウレタン基含有エチレン性不飽和単量体は、ポリマーの靭性および伸びを調整する機能を有するもので、水酸基と(メタ)アクリロイル基を有する化合物、およびポリイソシアネートを含むものが挙げられる。
そして、前記水酸基と(メタ)アクリロイル基を有する化合物は、ポリカーボネートジオール、PEG、またはポリエステルジオールのモノ(メタ)アクリレート、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸−2−ヒドロキシブチル、およびこれらにさらにアルキレンオキサイドまたはε−カプロラクタムが付加したもの、(メタ)アクリル酸−2−ヒドロキシエチル−ε−カプロラクトン2モル付加物、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、3−ビフェノキシ−2−ヒドロキシプロプル(メタ)アクリレート、グリセリンモノ−およびジ(メタ)アクリレート、トリメチロールプロパンモノ−およびジ(メタ)アクリレート、ペンタエリスリトールモノ−、ジ−およびトリ(メタ)アクリレート、ジトリメチロールプロパンモノ−、ジ−およびトリ(メタ)アクリレート、ジペンタエリスリトールモノ−、ジ−、トリ−、テトラ−およびペンタ(メタ)アクリレート、およびこれらのアルキレンオキサイドの付加物からなる群より選ばれる1種以上が挙げられる。
(Iii) Urethane group-containing ethylenically unsaturated monomer The urethane group-containing ethylenically unsaturated monomer has a function of adjusting the toughness and elongation of the polymer and has a hydroxyl group and a (meth) acryloyl group. And those containing polyisocyanates.
The compound having a hydroxyl group and a (meth) acryloyl group is polycarbonate diol, PEG, or polyester diol mono (meth) acrylate, (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-2-hydroxy. Propyl, (meth) acrylic acid-2-hydroxybutyl, and an alkylene oxide or ε-caprolactam added thereto, (meth) acrylic acid-2-hydroxyethyl-ε-caprolactone 2 mol adduct, 3-phenoxy 2-hydroxypropyl (meth) acrylate, 3-biphenoxy-2-hydroxyprop (meth) acrylate, glycerol mono- and di (meth) acrylate, trimethylolpropane mono- and di (meth) acrylate, pentaerythris Ritol mono-, di- and tri (meth) acrylate, ditrimethylolpropane mono-, di- and tri (meth) acrylate, dipentaerythritol mono-, di-, tri-, tetra- and penta (meth) acrylate, and these And one or more selected from the group consisting of adducts of alkylene oxides.

また、前記ポリイソシアネートは、2,4−および/または2,6−トリレンジイソシアネート(TDI)、4,4’−および/または2,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4−および/または2,6−メチルシクロヘキサンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、m−および/またはp−キシリレンジイソシアネート、およびα,α,α’,α’−テトラメチルキシリレンジイソシアネートからなる群より選ばれる1種以上が挙げられる。   The polyisocyanate may be 2,4- and / or 2,6-tolylene diisocyanate (TDI), 4,4′- and / or 2,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2, 4- and / or 2,6-methylcyclohexane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, m- and / or p-xylylene diisocyanate, and α, α, α ′, α′-tetramethylxylylene diisocyanate 1 type or more chosen from the group which consists of.

(iv)光重合開始剤
前記光重合開始剤は、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、2−ヒドロキシ−2−メチル−フェニルプロパン−1−オン、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン、2−エチルアントラキノン、2−t−ブチルアントラキノン、2−クロロアントラキノン、2−アミルアントラキノン、2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントン、アセトフェノンジメチルケタール、ベンジルジメチルケタール、ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、4,4’−ビスメチルアミノベンゾフェノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、ビス−(2、6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、および1−[4−(2−ヒドロキシエトキシ)フェニル]−2−メチル−1−プロパン−1−オンからなる群より選ばれる1種以上が挙げられる。
(Iv) Photopolymerization initiator The photopolymerization initiator includes benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy. 2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholinopropan-1-one, 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, 2,4-diethylthioxanthone, 2-isopropyl Thioxanthone, 2-chlorothioxanthone, acetophenone dimethyl ketal, benzyl dimethyl ketal, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4′-bismethylaminobenzophenone, 2,4,6-trimethylbenzoyl diphenylphosphine oxide, Bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and 1- [4- (2-hydroxyethoxy) 1 or more types selected from the group consisting of phenyl] -2-methyl-1-propan-1-one.

本発明で用いる熱可塑性樹脂および光重合開始剤の含有率は、前記単官能エチレン性不飽和単量体では、熱可塑性樹脂のガラス転移点の向上および耐脆性の観点から、好ましくは50〜90質量%、前記ウレタン基を含有しない多官能エチレン性不飽和単量体では、熱可塑性樹脂の機械強度および耐脆性の観点から、好ましくは3〜25質量%、前記ウレタン基含有エチレン性不飽和単量体では、熱可塑性樹脂の靱性および硬度の観点から、好ましくは5〜35質量%、および前記光重合開始剤では光硬化速度の観点から、好ましくは0.1〜10質量%である。   In the monofunctional ethylenically unsaturated monomer, the content of the thermoplastic resin and the photopolymerization initiator used in the present invention is preferably 50 to 90 from the viewpoint of improving the glass transition point and brittleness resistance of the thermoplastic resin. In the polyfunctional ethylenically unsaturated monomer not containing the urethane group, preferably 3 to 25% by mass of the urethane group-containing ethylenically unsaturated monomer from the viewpoint of mechanical strength and brittle resistance of the thermoplastic resin. From the viewpoint of the toughness and hardness of the thermoplastic resin, the amount is preferably 5 to 35% by mass, and from the viewpoint of the photocuring rate, the photopolymerization initiator is preferably 0.1 to 10% by mass.

(2)水溶性樹脂
本発明で用いる樹脂製型枠を形成する水溶性樹脂は、(i)水溶性単官能エチレン性不飽和単量体、および/または(ii)オキシプロピレン基を含むアルキレンオキサイド付加物を、(iii)光重合開始剤を用いて重合させてなる単独重合体または共重合体である。そして、前記水溶性樹脂は、好ましくは、水溶性樹脂1gを20℃の水100mlに入れた時点から、24時間以内に完全に溶解するものである。
(2) Water-soluble resin The water-soluble resin forming the resin mold used in the present invention includes (i) a water-soluble monofunctional ethylenically unsaturated monomer and / or (ii) an alkylene oxide containing an oxypropylene group. A homopolymer or copolymer obtained by polymerizing an adduct using (iii) a photopolymerization initiator. The water-soluble resin is preferably one that completely dissolves within 24 hours from the time when 1 g of the water-soluble resin is placed in 100 ml of water at 20 ° C.

(i)水溶性単官能エチレン性不飽和単量体
前記水溶性単官能エチレン性不飽和単量体は、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシポリプロピレングリコールモノ(メタ)アクリレート、PEG−PPGブロックポリマーのモノ(メタ)アクリレート、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N,N’−ジメチル(メタ)アクリルアミド、N,N’−ジエチル(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−ヒドロキシプロピル(メタ)アクリルアミドおよびN−ヒドロキシブチル(メタ)アクリルアミドからなる群より選ばれる1種以上が挙げられる。
(I) Water-soluble monofunctional ethylenically unsaturated monomer The water-soluble monofunctional ethylenically unsaturated monomer is hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate. , Polyethylene glycol mono (meth) acrylate, monoalkoxy polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, monoalkoxy polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEG-PPG block polymer, ( (Meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N′-dimethyl (meth) 1 or more types chosen from the group which consists of acrylamide, N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, and N-hydroxybutyl (meth) acrylamide are mentioned. It is done.

(ii)オキシプロピレン基を含むアルキレンオキサイド付加物
前記オキシプロピレン基を含むアルキレンオキサイド付加物は、1〜4価アルコールおよびアミン化合物等の活性水素化合物に、少なくとも、プロピレンオキサイドを単独、またはプロピレンオキサイドとその他のアルキレンオキサイドを付加した化合物である。
(Ii) Alkylene oxide adduct containing an oxypropylene group The alkylene oxide adduct containing an oxypropylene group includes at least propylene oxide alone or propylene oxide in an active hydrogen compound such as a 1-4 tetrahydric alcohol and an amine compound. It is a compound to which other alkylene oxide is added.

(iii)光重合開始剤
ここで用いる光重合開始剤は、前記熱可塑性樹脂に用いる光重合開始剤と同一である。
(Iii) Photopolymerization initiator The photopolymerization initiator used here is the same as the photopolymerization initiator used for the thermoplastic resin.

また、本発明で用いる水溶性樹脂および光重合開始剤の含有率は、前記水溶性単官能エチレン性不飽和単量体では、水への溶解性の観点から、好ましくは3〜45質量%、前記オキシプロピレン基を含むアルキレンオキサイド付加物では、水への溶解性の観点から、好ましくは50〜95質量%、および前記光重合開始剤では0.1〜10質量%である。   Further, the content of the water-soluble resin and the photopolymerization initiator used in the present invention is preferably 3 to 45% by mass in the water-soluble monofunctional ethylenically unsaturated monomer from the viewpoint of solubility in water. From the viewpoint of solubility in water, the alkylene oxide adduct containing the oxypropylene group is preferably 50 to 95% by mass, and the photopolymerization initiator is 0.1 to 10% by mass.

(3)樹脂製型枠
樹脂製型枠の形状は、特に制限されず、マンホール用型枠、凹凸を有する型枠、曲面を有する型枠、壁用型枠、および柱用型枠等の任意の形状の製品の型枠を、3Dプリンタを用いて作製する。
(3) Resin mold The shape of the resin mold is not particularly limited, and is arbitrary such as a manhole mold, an uneven mold, a curved mold, a wall mold, and a column mold The form of the product of the shape is produced using a 3D printer.

3.セメント質硬化体
次に、本発明に係るセメント質硬化体について説明する。
前記セメント質硬化体は、セメント、BET比表面積が10〜25m/gのポゾラン質微粉末、最大粒径3.5mm以下の細骨材、ブレーン比表面積が3,500〜10,000cm/gの無機粉末、減水剤、および水を含む配合物の硬化体が好ましく、さらに消泡剤および/または補強繊維を含む配合物の硬化体がより好ましい。
3. Next, the cementitious cured body according to the present invention will be described.
The cementitious hardened body is cement, a pozzolanic fine powder having a BET specific surface area of 10 to 25 m 2 / g, a fine aggregate having a maximum particle size of 3.5 mm or less, and a brane specific surface area of 3,500 to 10,000 cm 2 / The hardened | cured material of the mixture containing g inorganic powder, a water reducing agent, and water is preferable, and also the hardened | cured material of the formulation containing an antifoamer and / or a reinforcing fiber is more preferable.

(1)セメント
本発明で用いるセメントは、特に制限されず、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、およびフライアッシュセメントからなる群より選択される1種以上が挙げられる。本発明において、早期の強度発現性の向上が必要な場合、早強ポルトランドセメントが好ましく、セメント配合物の流動性の向上が必要な場合、中庸熱ポルトランドセメントまたは低熱ポルトランドセメントが好ましく、中庸熱ポルトランドセメントがより好ましい。
(1) Cement The cement used in the present invention is not particularly limited, and is one selected from the group consisting of ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, blast furnace cement, and fly ash cement. The above is mentioned. In the present invention, early strength Portland cement is preferable when improvement in early strength development is required, and medium heat Portland cement or low heat Portland cement is preferable when fluidity improvement of the cement composition is required. Is more preferred.

(2)ポゾラン質微粉末
本発明において用いる前記ポゾラン質微粉末のBET比表面積は10〜25m/gである。BET比表面積が10m/g未満では、硬化体の強度発現性が低下する。BET比表面積が25m/gを越えると、配合物の流動性が低下する。また、BET比表面積が25m/gを越えるポゾラン質微粉末は入手が困難である。前記ポゾラン質微粉末の好ましいBET比表面積は、配合物の流動性や硬化体の強度発現性から、15〜20m/gである。
ポゾラン質微粉末は、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、および沈降シリカからなる群より選ばれる1種以上が挙げられる。これらの中でも、シリカフュームおよびシリカダストは、BET比表面積が10〜25m/gであり、粉砕等を行なう必要がないのでコスト的に有利である。
(2) Pozzolanic fine powder The BET specific surface area of the pozzolanic fine powder used in the present invention is 10 to 25 m 2 / g. When the BET specific surface area is less than 10 m 2 / g, the strength expression of the cured product is lowered. When the BET specific surface area exceeds 25 m 2 / g, the fluidity of the blend decreases. Moreover, it is difficult to obtain a pozzolanic fine powder having a BET specific surface area exceeding 25 m 2 / g. A preferable BET specific surface area of the pozzolanic fine powder is 15 to 20 m 2 / g from the fluidity of the blend and the strength development of the cured product.
Examples of the pozzolanic fine powder include one or more selected from the group consisting of silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, and precipitated silica. Among these, silica fume and silica dust have a BET specific surface area of 10 to 25 m 2 / g and are advantageous in terms of cost because it is not necessary to perform pulverization or the like.

前記ポゾラン質微粉末の配合量は、配合物の流動性や硬化体の強度発現性の観点から、セメント100質量部に対し5〜50質量部が好ましく、10〜40質量部がより好ましい。該配合量が5質量部未満では、配合物の流動性、硬化体の強度発現性、および耐久性が低下するうえ、硬化体の使用後に、硬化体の一部に欠けや剥れ等が発生するおそれがある。また、該配合量が50質量部を超えると、配合物の流動性が低下し、成形等の作業が困難となる。   The blending amount of the pozzolanic fine powder is preferably 5 to 50 parts by weight and more preferably 10 to 40 parts by weight with respect to 100 parts by weight of cement from the viewpoint of fluidity of the blend and strength development of the cured body. When the blending amount is less than 5 parts by mass, the fluidity of the blend, the strength development of the cured product, and the durability are deteriorated, and after use of the cured product, chipping or peeling of the cured product occurs. There is a risk. Moreover, when this compounding quantity exceeds 50 mass parts, the fluidity | liquidity of a compound will fall and operations, such as shaping | molding, will become difficult.

(3)細骨材
本発明において用いる細骨材の最大粒径は3.5mm以下である。細骨材の最大粒径が3.5mmを超えると、硬化体の強度発現性が低下する。なお、硬化体の強度発現性等の観点から、最大粒径が2.0mm以下の細骨材を用いることが好ましく、最大粒径が1.0mm以下の細骨材を用いることがより好ましい。細骨材は、川砂、陸砂、海砂、砕砂、珪砂、およびこれらの混合物が挙げられる。
細骨材の配合量は、配合物の流動性、硬化体の強度発現性、自己収縮や乾燥収縮の低減、および水和発熱量の低減等の観点から、セメント100質量部に対して、好ましくは50〜250質量部、より好ましくは80〜180質量部である。
(3) Fine aggregate The maximum particle size of the fine aggregate used in the present invention is 3.5 mm or less. When the maximum particle size of the fine aggregate exceeds 3.5 mm, the strength development property of the cured body is lowered. In addition, it is preferable to use a fine aggregate having a maximum particle size of 2.0 mm or less, and more preferably a fine aggregate having a maximum particle size of 1.0 mm or less, from the viewpoint of strength development of the cured body. Fine aggregates include river sand, land sand, sea sand, crushed sand, quartz sand, and mixtures thereof.
The amount of fine aggregate blended is preferably based on 100 parts by weight of cement from the viewpoints of fluidity of the blend, strength development of the cured body, reduction of self-shrinkage and drying shrinkage, and reduction of calorific value of hydration. Is 50 to 250 parts by mass, more preferably 80 to 180 parts by mass.

(4)無機粉末
本発明で用いる無機粉末のブレーン比表面積は3,500〜10,000cm/gである。該ブレーン比表面積が該範囲外では、配合物の流動性や硬化体の強度発現性が低下する。
無機粉末としては、石英粉末、石灰石粉末、スラグ粉末、フライアッシュ、長石類の粉末、ムライト類の粉末、アルミナ粉末、火山灰、シリカゾル粉末、炭化物粉末、窒化物粉末等が挙げられる。
無機粉末の配合量は、配合物の流動性や硬化体の強度発現性の観点から、好ましくは、セメント100質量部に対して15〜50質量部である。
(4) Inorganic powder The brane specific surface area of the inorganic powder used in the present invention is 3,500 to 10,000 cm 2 / g. When the Blaine specific surface area is outside this range, the fluidity of the blend and the strength development of the cured product are reduced.
Examples of the inorganic powder include quartz powder, limestone powder, slag powder, fly ash, feldspar powder, mullite powder, alumina powder, volcanic ash, silica sol powder, carbide powder, and nitride powder.
The blending amount of the inorganic powder is preferably 15 to 50 parts by mass with respect to 100 parts by mass of cement from the viewpoint of fluidity of the blend and strength development of the cured body.

本発明において、前記無機粉末は、ブレーン比表面積が5,000〜10,000cm/gの無機粒子Aと、ブレーン比表面積が3,500〜5,000cm/gの無機粒子B(ただし、無機粒子Bは、無機粒子Aよりも小さなブレーン比表面積を有する。)から構成されることが好ましい。このように粒度の異なる2種の無機粉末を用いることによって、流動性および強度発現性がより向上する。
無機粉末を構成する無機粒子A、Bとしては、同じ種類の粉末(例えば、石英粉末)を用いてもよいし、異なる種類の粉末(例えば、石英粉末および石灰石粉末)を用いてもよい。ただし、本発明においては、無機粒子A、Bとして、同じ種類の粉末を用いることが好ましい。
In the present invention, the inorganic powder, the inorganic particles A of Blaine specific surface area of 5,000~10,000cm 2 / g, the Blaine specific surface area of 3,500~5,000cm 2 / g inorganic particles B (provided that The inorganic particles B preferably have a smaller specific surface area than the inorganic particles A). By using two kinds of inorganic powders having different particle sizes in this way, fluidity and strength development are further improved.
As the inorganic particles A and B constituting the inorganic powder, the same kind of powder (for example, quartz powder) may be used, or different kinds of powder (for example, quartz powder and limestone powder) may be used. However, in the present invention, it is preferable to use the same kind of powder as the inorganic particles A and B.

無機粒子Aのブレーン比表面積は、5,000〜10,000cm/g、好ましくは5,500〜9,500cm/g、より好ましくは6,000〜9,000cm/g、特に好ましくは6,500〜8,500cm/gである。該値が5,000cm/g未満では、セメントや無機粒子Bのブレーン比表面積との差が小さくなり、流動性および強度発現性の向上効果が低下する。該値が10,000cm/gを超えると、このような小さな粒度の無機粒子Aを得るのに粉砕等の手間がかかるなどの問題がある。 The Blaine specific surface area of the inorganic particles A is 5,000 to 10,000 cm 2 / g, preferably 5,500 to 9,500 cm 2 / g, more preferably 6,000 to 9,000 cm 2 / g, particularly preferably. It is 6,500-8,500 cm < 2 > / g. When the value is less than 5,000 cm 2 / g, the difference between the cement and the inorganic particles B and the Blaine specific surface area becomes small, and the effect of improving fluidity and strength development is reduced. When the value exceeds 10,000 cm 2 / g, there is a problem that it takes time and labor to pulverize to obtain inorganic particles A having such a small particle size.

無機粒子Bのブレーン比表面積は、3,500〜5,000cm/g、好ましくは3,500〜4,800cm/g、より好ましくは3,500〜4,500cm/g、特に好ましくは3,500〜4,200cm/gである。該値が3,500cm/g未満では、配合物の流動性が低下することがある。該値が5,000cm/gを超えると、無機粒子Aのブレーン比表面積との差が小さくなり、流動性および強度発現性の向上効果が低下する。 The Blaine specific surface area of the inorganic particles B is 3,500 to 5,000 cm 2 / g, preferably 3,500 to 4,800 cm 2 / g, more preferably 3,500 to 4,500 cm 2 / g, particularly preferably. It is 3,500-4,200 cm < 2 > / g. When the value is less than 3,500 cm 2 / g, the fluidity of the blend may be lowered. When the value exceeds 5,000 cm 2 / g, the difference from the Blaine specific surface area of the inorganic particles A becomes small, and the effect of improving fluidity and strength development is reduced.

無機粒子Aと無機粒子Bのブレーン比表面積の差は、好ましくは2,000cm/g以上、より好ましくは2,500cm/g以上、さらに好ましくは3,000cm/g以上、特に好ましくは3,500cm/g以上である。該差が2,000cm/g以上で、流動性および強度発現性がより向上する。 The difference in the Blaine specific surface area between the inorganic particles A and the inorganic particles B is preferably 2,000 cm 2 / g or more, more preferably 2,500 cm 2 / g or more, still more preferably 3,000 cm 2 / g or more, particularly preferably. It is 3,500 cm 2 / g or more. When the difference is 2,000 cm 2 / g or more, fluidity and strength development are further improved.

セメントと無機粒子Bのブレーン比表面積の差は、好ましくは200cm/g以上、より好ましくは250cm/g以上、さらに好ましくは350cm/g以上、特に好ましくは450cm/g以上である。該差が200cm/g以上であると、流動性および強度発現性がより向上する。 The difference in the Blaine specific surface area between the cement and the inorganic particles B is preferably 200 cm 2 / g or more, more preferably 250 cm 2 / g or more, still more preferably 350 cm 2 / g or more, and particularly preferably 450 cm 2 / g or more. When the difference is 200 cm 2 / g or more, fluidity and strength development are further improved.

無機粉末が、無機粒子Aと無機粒子Bから構成される場合、無機粒子Aの配合量は、セメント100質量部に対して、14〜54質量部、好ましくは20〜50質量部、より好ましくは25〜45質量部、さらに好ましくは30〜40質量部である。該配合量が14〜54質量部の範囲外では、配合物の流動性が低下することがある。   When inorganic powder is comprised from the inorganic particle A and the inorganic particle B, the compounding quantity of the inorganic particle A is 14-54 mass parts with respect to 100 mass parts of cement, Preferably it is 20-50 mass parts, More preferably It is 25-45 mass parts, More preferably, it is 30-40 mass parts. When the blending amount is out of the range of 14 to 54 parts by mass, the fluidity of the blend may be lowered.

無機粒子Bの配合量は、セメント100質量部に対して、1〜15質量部、好ましくは1.5〜10質量部、より好ましくは1.5〜5質量部、さらに好ましくは1.5質量部以上かつ5質量部未満である。該配合量が1〜15質量部の範囲外では、配合物の流動性が低下することがある。   The compounding amount of the inorganic particles B is 1 to 15 parts by mass, preferably 1.5 to 10 parts by mass, more preferably 1.5 to 5 parts by mass, and still more preferably 1.5 parts by mass with respect to 100 parts by mass of cement. Part or more and less than 5 parts by mass. When the blending amount is outside the range of 1 to 15 parts by mass, the fluidity of the blend may be lowered.

(5)減水剤
本発明で用いる減水剤は、リグニン系、ナフタレンスルホン酸系、メラミン系、またはポリカルボン酸系等の減水剤、AE減水剤、高性能減水剤、または高性能AE減水剤である。これらの中でも、ポリカルボン酸系の高性能減水剤は、減水効果が大きいため好適である。
減水剤の配合量は、セメント100質量部に対して、固形分換算で好ましくは0.1〜4.0質量部、より好ましくは0.3〜1.5質量部である。該配合量が0.1質量部未満では混練が困難になるとともに、配合物の流動性が低下し、4.0質量部を超えると、硬化体の強度発現性が低下する。なお、減水剤は、液状と粉末状のいずれでも使用可能である。
(5) Water reducing agent The water reducing agent used in the present invention is a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent. is there. Among these, a polycarboxylic acid-based high-performance water reducing agent is preferable because of its large water reducing effect.
The blending amount of the water reducing agent is preferably 0.1 to 4.0 parts by mass, more preferably 0.3 to 1.5 parts by mass in terms of solid content with respect to 100 parts by mass of cement. When the blending amount is less than 0.1 parts by mass, kneading becomes difficult, and the fluidity of the blend decreases. When the blending amount exceeds 4.0 parts by mass, the strength development of the cured body decreases. The water reducing agent can be used in either liquid or powder form.

(6)水
水量は、セメント100質量部に対して、好ましくは10〜30質量部、より好ましくは15〜25質量部である。該量が10質量部未満では、混練が困難になるとともに、配合物の流動性が低くなり、30質量部を超えると硬化体の強度発現性が低下する。
(6) Water The amount of water is preferably 10 to 30 parts by mass, more preferably 15 to 25 parts by mass with respect to 100 parts by mass of cement. When the amount is less than 10 parts by mass, kneading becomes difficult, and the fluidity of the blend becomes low. When the amount exceeds 30 parts by mass, the strength development of the cured product decreases.

(7)消泡剤
本発明においては、硬化体はさらに消泡剤を含むことが好ましい。該消泡剤を配合すると流動性および強度発現性が向上し、かつ、硬化後の硬化体の表面気泡の量が低減して硬化体の美観性が向上する。
消泡剤の配合量は、配合物1m中、消泡剤成分(市販等されている消泡剤中の水以外の成分)の量として、好ましくは100g以下、より好ましくは5〜70g、特に好ましくは7〜30gである。
(7) Antifoaming agent In this invention, it is preferable that a hardening body contains an antifoaming agent further. When the antifoaming agent is blended, fluidity and strength development are improved, and the amount of surface bubbles of the cured product after curing is reduced, so that the aesthetics of the cured product is improved.
The blending amount of the antifoaming agent is preferably 100 g or less, more preferably 5 to 70 g, as the amount of the defoaming agent component (component other than water in the commercially available defoaming agent) in the composition 1 m 3 . Especially preferably, it is 7-30g.

(8)補強繊維
本発明において、硬化体はさらに補強繊維を含むことが好ましい。該補強繊維を配合すると、硬化体の曲げ強度や破壊エネルギー等が向上する。補強繊維は、金属繊維、有機繊維、炭素繊維等が挙げられる。
金属繊維は、鋼繊維およびアモルファス繊維が挙げられる。これらの中でも、鋼繊維は、高い強度を有し、かつコストや入手のし易さの点でも優れているため好適である。金属繊維の形状および寸法は、好ましくは、長さが2mm以上で、長さ/直径の比が20以上であり、より好ましくは、長さが2〜30mmで、長さ/直径の比が20〜200である。
金属繊維の長さが2mm未満では曲げ強度の向上効果が低下し、30mmを超えると混練の際にファイバーボールが生じ易くなる。また、金属繊維の長さ/直径の比が20未満では、同一配合量(同一体積)での本数が少なくなり、曲げ強度の向上効果が低下し、また、200を超えると、金属繊維自身の強度が不足し張力を受けた際に切れ易くなる。
金属繊維の配合量は、配合物中の体積の割合で示せば、好ましくは4体積%以下、より好ましくは0.5〜3.5体積%である。4体積%を超えると、混練時の作業性等を確保するために単位水量が増加し、硬化体の強度低下を招く場合がある。
(8) Reinforcing fiber In the present invention, the cured body preferably further contains a reinforcing fiber. When the reinforcing fiber is blended, the bending strength and fracture energy of the cured body are improved. Examples of the reinforcing fibers include metal fibers, organic fibers, and carbon fibers.
Metal fibers include steel fibers and amorphous fibers. Among these, steel fibers are suitable because they have high strength and are excellent in terms of cost and availability. The shape and dimensions of the metal fibers are preferably a length of 2 mm or more and a length / diameter ratio of 20 or more, more preferably a length of 2 to 30 mm and a length / diameter ratio of 20 ~ 200.
If the length of the metal fiber is less than 2 mm, the effect of improving the bending strength is lowered, and if it exceeds 30 mm, fiber balls are likely to be produced during kneading. Moreover, when the ratio of length / diameter of the metal fiber is less than 20, the number of the same compounding amount (same volume) decreases, and the effect of improving the bending strength is lowered. It becomes easy to cut when it receives strength due to insufficient strength.
If the compounding quantity of a metal fiber is shown by the ratio of the volume in a compounding composition, it is preferably 4 volume% or less, More preferably, it is 0.5-3.5 volume%. If it exceeds 4% by volume, the unit water amount increases in order to ensure workability during kneading, and the strength of the cured product may be reduced.

有機質繊維としては、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、および炭素繊維からなる群から選ばれる1種以上が挙げられる。これらの中でも、ビニロン繊維およびポリプロピレン繊維は、高い強度を有し、かつコストが低く入手のし易さの点でも優れているため好適である。
有機質繊維の形状および寸法は、好ましくは、長さが2mm以上で、長さ/直径の比が20以上であり、より好ましくは、長さが2〜30mmで、長さ/直径の比が20〜500である。有機質繊維の長さが2mm未満では、破壊強度の向上効果が低下し、30mmを超えると、混練の際にファイバーボールが生じ易くなる。
有機質繊維の長さ/直径の比が20未満では、同一配合量(同一体積)での有機質繊維の本数が少なくなり、破壊強度の向上効果が低下し、また、500を超えると、有機質繊維自身の強度が不足し、張力を受けた際に切れ易くなる。
有機質繊維の配合量は、配合物中の体積の割合で、好ましくは10体積%以下、より好ましくは0.5〜8.0体積%である。10%を超えると混練時の作業性等を確保するために単位水量を増加しなければならず、硬化体の強度の低下を招くことがある。
Examples of the organic fiber include one or more selected from the group consisting of vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber. Among these, vinylon fiber and polypropylene fiber are preferable because they have high strength and are low in cost and excellent in availability.
The shape and dimensions of the organic fibers are preferably 2 mm or more in length and a length / diameter ratio of 20 or more, more preferably 2 to 30 mm in length and 20 in length / diameter. ~ 500. If the length of the organic fiber is less than 2 mm, the effect of improving the breaking strength is reduced, and if it exceeds 30 mm, fiber balls are likely to be produced during kneading.
If the length / diameter ratio of the organic fiber is less than 20, the number of organic fibers at the same blending amount (same volume) decreases, and the effect of improving the breaking strength decreases. If the ratio exceeds 500, the organic fiber itself The strength of the is insufficient, and it becomes easy to break when subjected to tension.
The compounding amount of the organic fiber is preferably 10% by volume or less, and more preferably 0.5 to 8.0% by volume, as a volume ratio in the formulation. If it exceeds 10%, the unit water amount must be increased in order to ensure workability during kneading, and the strength of the cured product may be reduced.

また、炭素繊維は、PAN系炭素繊維やピッチ系炭素繊維が挙げられる。また、炭素繊維の寸法、アスペクト比および配合量は、有機繊維と同様である。
なお、本発明において、金属繊維と有機質繊維は併用してもよい。この場合、金属繊維および有機質繊維の配合量(合計量)は、配合物中の体積の割合で、好ましくは0.1〜10体積%、より好ましくは0.5〜8.0体積%である。
Examples of the carbon fiber include PAN-based carbon fiber and pitch-based carbon fiber. Moreover, the dimension, aspect ratio, and compounding quantity of carbon fiber are the same as that of organic fiber.
In the present invention, metal fibers and organic fibers may be used in combination. In this case, the blending amount (total amount) of the metal fiber and the organic fiber is a volume ratio in the blend, preferably 0.1 to 10% by volume, more preferably 0.5 to 8.0% by volume. .

配合物の混練方法は、特に限定されるものではなく、例えば、
(a)水、減水剤以外の材料を予め混合して、プレミックス材を調製し、該プレミックス材、水および減水剤をミキサに投入し混練する方法、
(b)水以外の材料(ただし、減水剤は粉末状のものを使用する。)を予め混合して、プレミックス材を調製し、該プレミックス材および水をミキサに投入し混練する方法、
(c)各材料を、それぞれ個別にミキサに投入し混練する方法
等が挙げられる。
The kneading method of the blend is not particularly limited, for example,
(A) A method of mixing materials other than water and a water reducing agent in advance to prepare a premix material, and adding the premix material, water and the water reducing agent to a mixer and kneading them,
(B) A method of mixing materials other than water (however, a water reducing agent is in powder form) to prepare a premix material, and charging the premix material and water into a mixer and kneading,
(C) A method in which each material is individually put into a mixer and kneaded is exemplified.

混練に用いるミキサは、通常のコンクリートの混練に用いられる任意のタイプのミキサを用いることができ、例えば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ等が挙げられる。混練後、所定の型枠内に配合物を投入して成形し、その後、養生して、セメント質硬化体を製造する。養生の方法は、気中養生、および蒸気養生等が挙げられる。   As the mixer used for kneading, any type of mixer used for ordinary concrete kneading can be used, and examples thereof include an oscillating mixer, a pan type mixer, and a biaxial kneading mixer. After kneading, the compound is put into a predetermined mold and molded, and then cured to produce a cementitious hardened body. Curing methods include air curing and steam curing.

(9)脱型方法
本発明において、脱型方法は、樹脂製型枠を形成する樹脂が熱可塑性樹脂である場合は、セメント質硬化体を含む型枠を加熱して脱型する。そして、加熱温度は、脱型の容易性から、好ましくは80℃以上である。
また、該樹脂が水溶性樹脂である場合は、セメント質硬化体を含む型枠を、水に溶かして脱型するか、または膨潤させて脱型する。具体的な方法としては、セメント質硬化体を含む型枠を水中に浸漬して型枠を溶かすか、または膨潤させる方法や、該型枠に(連続して)水を掛けて型枠を溶かすか、または膨潤させる方法等が挙げられる。なお、水中に浸漬する場合の浸漬時間は、好ましくは24時間以下、より好ましくは12時間以下である。
なお、該樹脂が熱可塑性樹脂および水溶性樹脂からなる場合は、上記加熱して脱型する、または水に溶かすか膨潤させて脱型する、を適宜行えばよい。例えば、外側が熱可塑性樹脂で内側(セメント質硬化体と接する側)が水溶性樹脂からなる型枠の場合は、内側の水溶性樹脂を水に溶かすか、または膨潤させることにより脱型することができる。
(9) Demolding method In the present invention, when the resin forming the resin mold is a thermoplastic resin, the demolding method is performed by heating the mold including the hardened cementitious body. And heating temperature becomes like this. Preferably it is 80 degreeC or more from the ease of demolding.
When the resin is a water-soluble resin, the mold containing the cementitious hardened body is dissolved in water and demolded, or swollen and demolded. As a specific method, a mold containing a cementitious hardened body is immersed in water to dissolve the mold or swell, or water is continuously applied to the mold to dissolve the mold. Or a method of swelling. In addition, the immersion time in the case of being immersed in water becomes like this. Preferably it is 24 hours or less, More preferably, it is 12 hours or less.
In the case where the resin is composed of a thermoplastic resin and a water-soluble resin, the above-described heating and demolding may be performed as appropriate, or the mold may be demolded by dissolving in water or swelling. For example, in the case of a mold made of a thermoplastic resin on the outside and a water-soluble resin on the inside (side in contact with the hardened cementitious material), the inner water-soluble resin is dissolved in water or swelled to remove the mold. Can do.

本発明の配合物は、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載される方法において、15回の落下運動を行わないで測定したフロー値が、230mm以上であり流動性に優れる。そのため、配合物の混練作業や、樹脂製型枠内に投入して成形する作業等は容易である。
また、型枠内の隅々まで配合物が行き渡るので、任意かつ精緻な形状を有する硬化体を高い精度で製造することができる。
さらに、本発明の配合物の硬化体は、130N/mm以上の圧縮強度と、20N/mm以上の曲げ強度を発現するうえ、構造的に極めて緻密に形成されているので、機械的強度や耐久性の低下が生じ難い。また、硬化体に欠けや剥れ等が発生し難いので、美観の低下も生じ難い。
The composition of the present invention has a flow value of 230 mm or more measured in the method described in “JIS R 5201 (Cement physical test method) 11. Flow test” without performing 15 drop motions. Excellent in properties. Therefore, the kneading operation of the blend, the operation of putting it in a resin mold and molding it are easy.
In addition, since the composition reaches every corner of the mold, a cured body having an arbitrary and precise shape can be produced with high accuracy.
Further, the cured product of the formulation of the present invention, a 130N / mm 2 or more compression strength, after expressing 20 N / mm 2 or more bending strength, since structurally are very densely formed, the mechanical strength And durability is less likely to occur. Moreover, since it is hard to generate | occur | produce a chip | tip and peeling in a hardening body, a fall of aesthetics is hard to produce.

以下、実施例により本発明を説明するが、本発明はこの実施例に限定されない。
1.使用材料
(1)セメント;中庸熱ポルトランドセメント(太平洋セメント社製)
(2)ポゾラン質微粉末;シリカフューム(BET比表面積:17m/g)
(3)細骨材;珪砂5号(最大粒径:0.6mm)
(4)石英粉末A(ブレーン比表面積:7,500cm/g)
(5)石英粉末B(ブレーン比表面積:3,800cm/g)
(6)減水剤;ポリカルボン酸系高性能減水剤
(7)消泡剤;ポリエーテル系消泡剤
(8)水;水道水
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this Example.
1. Materials used (1) Cement; Medium heat Portland cement (manufactured by Taiheiyo Cement)
(2) Pozzolanic fine powder; silica fume (BET specific surface area: 17 m 2 / g)
(3) Fine aggregate: quartz sand No. 5 (maximum particle size: 0.6 mm)
(4) Quartz powder A (Blaine specific surface area: 7,500 cm 2 / g)
(5) Quartz powder B (Blaine specific surface area: 3,800 cm 2 / g)
(6) Water-reducing agent; Polycarboxylic acid-based high-performance water-reducing agent (7) Antifoaming agent; Polyether-based antifoaming agent (8) Water; Tap water

2.セメント質硬化体の製造
中庸熱ポルトランドセメント100質量部に対し、シリカフューム30質量部、石英粉末A、B(合計量:35質量部、該合計量中の石英粉末Bの配合量:4.0質量部)、細骨材120質量部、高性能減水剤0.4質量部(固形分換算値)、水22質量部、消泡剤(15g/配合物1mの量(水以外の成分としての換算値))を混練して、配合物を調製した。
該配合物の混練は、ホバートミキサを使用して、以下の方法で行った。
中庸熱ポルトランドセメント、シリカフューム、石英粉末A、石英粉末B、および細骨材をホバートミキサに投入して、15秒間空練りした後、水、高性能減水剤、および消泡剤を投入して、7分間低速で混練した。JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載の方法において、15回の落下運動を省略して測定した前記配合物のフロー値は290mmで流動性に優れていた。
次に、該配合物を、図1に示す熱可塑性樹脂(アクリル系樹脂)製の型枠の中に流し込み(図2)、20℃で48時間前置きした後、90℃で48時間蒸気養生し(図3)、該蒸気養生終了後直ちに脱型して(図4)、図5に示す瓶の形状のセメント質硬化体を得た。図6から、瓶のキャップのネジ部分の形状が、きれいに形成されていることが分かる。
2. Manufacture of hardened cementitious material 30 parts by mass of silica fume, quartz powders A and B (total amount: 35 parts by mass, blending amount of quartz powder B in the total amount: 4.0 parts by mass with respect to 100 parts by mass of moderately heated Portland cement Part), 120 parts by weight of fine aggregate, 0.4 parts by weight of high-performance water reducing agent (in terms of solid content), 22 parts by weight of water, defoaming agent (15 g / amount of compound 1 m 3 (as components other than water) Conversion value)) was kneaded to prepare a blend.
The kneading of the blend was performed by the following method using a Hobart mixer.
Put medium hot heat Portland cement, silica fume, quartz powder A, quartz powder B, and fine aggregate into Hobart mixer, knead for 15 seconds, and then add water, high-performance water reducing agent, and antifoaming agent, Kneaded at low speed for 7 minutes. JIS R 5201 (Cement physical test method) 11. In the method described in the “flow test”, the flow value of the blend measured by omitting 15 dropping motions was 290 mm, and the fluidity was excellent.
Next, the mixture was poured into a thermoplastic resin (acrylic resin) mold shown in FIG. 1 (FIG. 2), pre-positioned at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. (FIG. 3), the mold was removed immediately after the completion of the steam curing (FIG. 4) to obtain a hardened cementitious body in the shape of a bottle shown in FIG. From FIG. 6, it can be seen that the shape of the screw portion of the bottle cap is formed cleanly.

Claims (1)

3次元造形システムを用いて作製してなる、ガラス転移が80〜120℃のアクリル系樹脂性型枠を使用して、セメント質硬化体を成形して80〜120℃に加熱し脱型して製造するセメント質硬化体の製造方法であって、
前記セメント質硬化体が下記(A)〜(G)のすべての条件を満たす配合物の硬化体であることを特徴とする、セメント質硬化体の製造方法(ただし、前記セメント質硬化体は版部材を含まない。)。
(A)セメントと、
該セメント100質量部に対し、
(B)最大粒径が1.0mm以下の細骨材を80〜180質量部、
(C)BET比表面積が10〜25m/gのシリカフュームを10〜40質量部
(D)ブレーン比表面積が6,500〜8,500cm/gの石英粉末を30〜40質量部
(E)ブレーン比表面積が3,500〜4,200cm/gの石英粉末を1.5質量部以上かつ5質量部未満
(F)ポリカルボン酸系高性能減水剤を0.3〜1.5質量部
および
(G)水を15〜25質量部
含む配合物の硬化体。
Using an acrylic resin mold with a glass transition point of 80 to 120 ° C. produced using a three-dimensional modeling system, a cemented hardened body is molded and heated to 80 to 120 ° C. for demolding. A method for producing a hardened cementitious body,
The method for producing a cementitious hardened body, wherein the hardened cementitious body is a hardened body of a composition satisfying all the following conditions (A) to (G): (Does not include components.)
(A) cement and
For 100 parts by mass of the cement,
(B) 80-180 parts by mass of fine aggregate having a maximum particle size of 1.0 mm or less,
(C) 10 to 40 parts by mass of silica fume with a BET specific surface area of 10 to 25 m 2 / g (D) 30 to 40 parts by mass of quartz powder with a Blane specific surface area of 6,500 to 8,500 cm 2 / g (E) Quartz powder having a specific surface area of 3,500 to 4,200 cm 2 / g is 1.5 parts by mass or more and less than 5 parts by mass (F) 0.3 to 1.5 parts by mass of polycarboxylic acid-based high-performance water reducing agent. And (G) a cured product of a blend containing 15 to 25 parts by mass of water.
JP2014242229A 2014-11-28 2014-11-28 Method for producing hardened cementitious body Active JP6489811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242229A JP6489811B2 (en) 2014-11-28 2014-11-28 Method for producing hardened cementitious body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242229A JP6489811B2 (en) 2014-11-28 2014-11-28 Method for producing hardened cementitious body

Publications (2)

Publication Number Publication Date
JP2016101737A JP2016101737A (en) 2016-06-02
JP6489811B2 true JP6489811B2 (en) 2019-03-27

Family

ID=56088097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242229A Active JP6489811B2 (en) 2014-11-28 2014-11-28 Method for producing hardened cementitious body

Country Status (1)

Country Link
JP (1) JP6489811B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599837B2 (en) * 2016-10-05 2019-10-30 日本ヒューム株式会社 Formwork design apparatus, formwork production method, concrete molded product production method, formwork design system, and formwork design method
JP6619791B2 (en) * 2017-12-07 2019-12-11 日本ヒューム株式会社 Formwork design apparatus, formwork production method, concrete molded product production method, formwork design system, and formwork design method
CN111151220A (en) * 2020-01-09 2020-05-15 中山大学惠州研究院 Preparation method of cement-based polyconnected honeycomb catalyst/adsorbent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188105A (en) * 1985-02-15 1986-08-21 新東工業株式会社 Manufacture of hydraulic product
JPH07195331A (en) * 1993-12-28 1995-08-01 Ozawa Concrete Kogyo Kk Manufacture of concrete article with hollow structure
JPH09267318A (en) * 1996-04-02 1997-10-14 Hiroshima Kasei Ltd Molding box for producing relief, its production and relief produced by using molding box
JPH10292622A (en) * 1997-02-19 1998-11-04 Achilles Corp Method for molding form made of resin and form made of resin
JP2004224639A (en) * 2003-01-23 2004-08-12 Taiheiyo Cement Corp Slab member
JP2004317978A (en) * 2003-04-18 2004-11-11 Asahi Kasei Chemicals Corp Method for manufacturing photosensitive resin plate
JP6378699B2 (en) * 2013-02-21 2018-08-22 ライング オーローク オーストラリア プロプライエタリー リミテッド Method for casting building components

Also Published As

Publication number Publication date
JP2016101737A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6489811B2 (en) Method for producing hardened cementitious body
JP6654964B2 (en) Cement composition
JP4823896B2 (en) Cement-based extrusion molding composition
JP6619215B2 (en) Bridge web member and manufacturing method thereof
JP2003104766A (en) Fiber reinforced hydraulic composition and fiber reinforced hydraulic formed body obtained by using the composition
JP4567315B2 (en) Method for producing cured body
CN108440860A (en) A kind of PVC building templates and its formula, preparation method
JP2020090004A (en) Method for selecting hydraulic composition for extrusion system additional production device, method for producing molding, and hydraulic composition for extrusion system additional production device
Marczyk et al. Possibilities of using the 3D printing process in the concrete and geopolymers application
JP4342701B2 (en) Hardened cement and method for producing the same
JP2008087978A (en) Acid-resistant concrete product
De Witte Concrete in an AM process: freeform concrete processing
JP6474688B2 (en) Embedded formwork board
JP4621017B2 (en) Centrifugal concrete products
JP2016222477A (en) Earthquake resisting wall block and method of manufacturing the same
JP6516567B2 (en) Plate and method of manufacturing the same
JP6238356B2 (en) Method for manufacturing spliton block
JP4334948B2 (en) Retaining wall formwork and manufacturing method thereof
JP2000063161A (en) Filler inorganic hydraulic composition and board material
JP7433031B2 (en) Cement composition and method for producing hardened cementitious body
JPH03257048A (en) Artificial marble excellent in impact resistance and cutting workability
JP2004224639A (en) Slab member
Wern et al. Fresh Properties and Compressive Strength of 3D Printing Concrete Containing GGBS with Varies in Water-Cement Ratio
JP2008024573A (en) Method of producing concrete product, and concrete product
JP2007023106A (en) Room temperature curable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6489811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250