JP6489579B2 - Phosphophthalocyanine complex, its salt and its hydrate - Google Patents
Phosphophthalocyanine complex, its salt and its hydrate Download PDFInfo
- Publication number
- JP6489579B2 JP6489579B2 JP2015108056A JP2015108056A JP6489579B2 JP 6489579 B2 JP6489579 B2 JP 6489579B2 JP 2015108056 A JP2015108056 A JP 2015108056A JP 2015108056 A JP2015108056 A JP 2015108056A JP 6489579 B2 JP6489579 B2 JP 6489579B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- complex
- salt
- phosphophthalocyanine
- hydrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000003839 salts Chemical class 0.000 title claims description 18
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 31
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 19
- 229910052698 phosphorus Inorganic materials 0.000 claims description 19
- 239000011574 phosphorus Substances 0.000 claims description 19
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 125000005647 linker group Chemical group 0.000 claims description 5
- 125000005702 oxyalkylene group Chemical group 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 2
- 239000003814 drug Substances 0.000 claims description 2
- 229940079593 drug Drugs 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 150000004677 hydrates Chemical class 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- 239000007793 ph indicator Substances 0.000 claims description 2
- 238000000862 absorption spectrum Methods 0.000 description 23
- -1 muscle / cortex Substances 0.000 description 19
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000006862 quantum yield reaction Methods 0.000 description 14
- 239000007787 solid Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 10
- 239000000975 dye Substances 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 239000012265 solid product Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000002189 fluorescence spectrum Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000000695 excitation spectrum Methods 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 239000012452 mother liquor Substances 0.000 description 6
- 238000002428 photodynamic therapy Methods 0.000 description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000001007 phthalocyanine dye Substances 0.000 description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 238000006277 sulfonation reaction Methods 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 4
- 150000001793 charged compounds Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000001717 magnetic circular dichroism spectrum Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000003504 photosensitizing agent Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000004699 copper complex Chemical class 0.000 description 3
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000004043 oxo group Chemical group O=* 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- NNQWYGKROBKYQC-UHFFFAOYSA-N 2,9,16,23-tetra-tert-butyl-29h,31h-phthalocyanine Chemical compound C12=CC(C(C)(C)C)=CC=C2C(N=C2NC(C3=CC=C(C=C32)C(C)(C)C)=N2)=NC1=NC([C]1C=CC(=CC1=1)C(C)(C)C)=NC=1N=C1[C]3C=CC(C(C)(C)C)=CC3=C2N1 NNQWYGKROBKYQC-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000001226 reprecipitation Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- JONPEMDXBGXQHV-UHFFFAOYSA-N 1,1-dimethyl-4,5-dihydroimidazol-1-ium Chemical compound C[N+]1(C)CCN=C1 JONPEMDXBGXQHV-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 108010002255 deoxyhemoglobin Proteins 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Description
本発明はリンフタロシアニン錯体に関し、詳細には、中心元素がリンであり、軸配位子としてオキソ基(=O)およびヒドロキシル基(−OH)を有し、さらにスルホ基を有するリンフタロシアニン錯体、その塩、及びそれらの水和物に関する。 The present invention relates to a phosphorus phthalocyanine complex, and in particular, a phosphorus phthalocyanine complex having a central element of phosphorus, an oxo group (═O) and a hydroxyl group (—OH) as an axial ligand, and further having a sulfo group, It relates to its salts and their hydrates.
高齢化が進む我が国にあっては、癌疾病対策は必要不可欠かつ喫緊の課題である。癌疾病対策では、まず、微小な癌組織を精度良く検出することが必要である。微小な癌組織を精度良く検出する方法の一つに、PET法(positron emission tomography)がある。しかし、PET法では、加速器等の大型の機器・施設を必要とし、検出に時間と経費がかかり、医療現場での利用に多くの制約をもたらしている。 In Japan, where the aging population is advancing, cancer disease control is an indispensable and urgent issue. In cancer disease countermeasures, first, it is necessary to accurately detect a minute cancer tissue. One method for accurately detecting minute cancer tissues is PET (positron emission tomography). However, the PET method requires a large-scale device / facility such as an accelerator, takes time and cost for detection, and causes many restrictions on the use in the medical field.
そこで、大規模施設等を必要としない癌組織検出方法が検討されており、例えば、光線力学的診断法(PDD:Photodynamic Diagnosys)がある。PDDとは、ガン組織に集積された光感受性物質(有機色素等)をレーザー等の光で励起し、その蛍光をモニターする診断法である。PDDに用いられる光感受性物質として、無機系の量子ドット、及び有機色素がある。無機系の量子ドットはカドミウム、鉛、セレン等の生体に有害な元素を含むものが多いので、有機色素が開発の主流となっている。 Thus, cancer tissue detection methods that do not require large-scale facilities have been studied, for example, photodynamic diagnosis (PDD: Photodynamic Diagnosys). PDD is a diagnostic method in which a photosensitive substance (organic dye or the like) accumulated in a cancer tissue is excited with light such as a laser and the fluorescence is monitored. Photosensitive materials used in PDD include inorganic quantum dots and organic dyes. Many inorganic quantum dots contain elements harmful to the living body such as cadmium, lead, and selenium, and therefore organic dyes are the mainstream of development.
有機色素の中でも、「生体の光の窓(therapeutic windowとも言う。)」の波長領域(可視〜近赤外光領域:波長650〜900nm)に光吸収・発光を示す色素は特に有望である。これは、650nmより短波長側の光は、筋肉・皮質、血液(デオキシ−及びオキシ−ヘモグロビン)、メラニン、シトクロム等の生体物質によって強く吸収され、900nmよりも長波長側の光は水や脂質等の倍音振動等により吸収されるからである(例えば、H.Kobayashi,et al.Chem.Rev.,110(2010)2620-2640)。 Among organic dyes, dyes that exhibit light absorption / emission in the wavelength region (visible to near-infrared light region: wavelength 650 to 900 nm) of a “biological light window” are particularly promising. This is because light on the shorter wavelength side than 650 nm is strongly absorbed by biological substances such as muscle / cortex, blood (deoxy- and oxy-hemoglobin), melanin, and cytochrome, and light on the longer wavelength side than 900 nm is water or lipid. This is because it is absorbed by overtone vibrations such as H. Kobayashi, et al. Chem. Rev., 110 (2010) 2620-2640.
上記「生体の光の窓(可視〜近赤外光領域(波長650〜900nm))」の波長領域に光吸収・発光を示す色素として、フタロシアニン系色素がある。フタロシアニン系色素は癌細胞に特異的に集積されるために、該色素からの蛍光によって癌の位置を特定できる。さらに励起状態の色素が活性酸素を生成して癌細胞を殺すことが知られており、光線力学的治療法(PDT:photodynamic therapy)に使用される。 There is a phthalocyanine dye as a dye exhibiting light absorption / emission in the wavelength region of the “biological light window (visible to near infrared light region (wavelength: 650 to 900 nm))”. Since the phthalocyanine dye is specifically accumulated in cancer cells, the position of the cancer can be specified by fluorescence from the dye. Furthermore, it is known that a dye in an excited state generates active oxygen to kill cancer cells, and is used for photodynamic therapy (PDT).
しかし、フタロシアニン系色素は、水はもちろん一般的な有機溶媒にも難溶性であるので、生体への適用が難しいという問題がある。さらに分子間の相互作用により会合体を形成し易く、生体の光の窓で蛍光が見られなくなるだけでなく、活性酸素が生成されなくなるという問題もある。 However, since phthalocyanine dyes are hardly soluble in common organic solvents as well as water, there is a problem that they are difficult to apply to living bodies. Furthermore, there is a problem that not only fluorescence is not seen in the light window of the living body but also active oxygen is not generated due to the interaction between the molecules.
水溶性のフタロシアニン系色素として、IRDye700DX NHS ester(中心元素はケイ素;水溶液中で吸収極大689nm、モル吸光係数(ε);17万M−1cm−1;蛍光極大700nm、量子収率(φ)14%(非特許文献1))が実用化されている。しかし、蛍光量子収率が10%台と低く、また合成も困難である。 As a water-soluble phthalocyanine dye, IRDye700DX NHS ester (the central element is silicon; absorption maximum 689 nm in aqueous solution, molar extinction coefficient (ε); 170,000 M −1 cm −1 ; fluorescence maximum 700 nm, quantum yield (φ) 14% (Non-Patent Document 1)) has been put into practical use. However, the fluorescence quantum yield is as low as 10%, and the synthesis is difficult.
また、水溶性を高めるために、フタロシアニン骨格の外側のベンゼン環の水素原子を親水性の基で置換することが知られている(非特許文献2)。さらに、分子会合を抑制するために、界面活性剤やアルコール等の添加物を加えることも知られている(非特許文献3、特許文献1、2)。 Moreover, in order to improve water solubility, it is known to substitute the hydrogen atom of the benzene ring outside the phthalocyanine skeleton with a hydrophilic group (Non-patent Document 2). Furthermore, it is also known to add an additive such as a surfactant or alcohol in order to suppress molecular association (Non-patent Document 3, Patent Documents 1 and 2).
さらに、フタロシアニン骨格のベンゼン環がスルホフェノキシ基で置換され、軸配位子としてOH基を備えるフタロシアニンのアンチモン錯体が知られている(非特許文献4、特許文献3)。該アンチモン錯体は光吸収極大波長が730nmに位置し、比較的高濃度(〜10−4M)で水に溶解し、且つ会合しない。しかし、アンチモンは毒性であり、その重原子効果により蛍光量子収率が1%未満と著しく低く、蛍光色素には適さないという問題がある。 Furthermore, an antimony complex of phthalocyanine is known in which the benzene ring of the phthalocyanine skeleton is substituted with a sulfophenoxy group and has an OH group as an axial ligand (Non-patent Documents 4 and 3). The antimony complex has a light absorption maximum wavelength at 730 nm, dissolves in water at a relatively high concentration ( −10 −4 M), and does not associate. However, antimony is toxic, and due to its heavy atom effect, there is a problem that the fluorescence quantum yield is remarkably low, less than 1%, and is not suitable for a fluorescent dye.
生体に無害なフタロシアニン錯体としては、リン(V)フタロシアニン錯体が知られており、例えば本発明者らによるリン(V)テトラ(2’,6’−ジメチルフェノキシ)フタロシアニン(以下、[P(tppc)(OH)(O)]という)に関する報告がある(非特許文献5)。 As a phthalocyanine complex that is harmless to a living body, a phosphorus (V) phthalocyanine complex is known. ) (OH) (O)]) (non-patent document 5).
しかし、上記[P(tppc)(OH)(O)]は、界面活性剤の存在下で僅かに水に溶解するだけである。 However, the above [P (tppc) (OH) (O)] is only slightly soluble in water in the presence of a surfactant.
そこで、本発明者らは該[P(tppc)(OH)(O)]の水溶性を高めるためにスルホ基を導入したところ、驚くことに、単に水溶性が向上しただけでなく、分子会合が著しく抑制され、蛍光量子効率が一桁高くなることを見出し、本発明を完成した。即ち、本発明は下記のものである。
下記式(1)で表されるリンフタロシアニン錯体、その塩又はその水和物
上式においてRは、少なくとも1のスルホ基で置換された炭素数6〜13のアリール基であり、
zは−O−、−S−、炭素数1〜4のアルキレン基及び炭素数1〜4のオキシアルキレン基からなる群より選ばれる連結基であり、
nは互いに独立に0〜2の整数、但しnの合計は2以上、である。
また、本発明は、上記リンフタロシアニン錯体、その塩又はそれらの水和物を含む、光線力学的診断法用の光感受性薬剤又は光感受性薬剤にも関する。
Therefore, when the present inventors introduced a sulfo group in order to increase the water solubility of the [P (tppc) (OH) (O)], surprisingly, not only the water solubility was improved but also the molecular association. Was remarkably suppressed and the fluorescence quantum efficiency was increased by an order of magnitude, and the present invention was completed. That is, the present invention is as follows.
A phosphorus phthalocyanine complex represented by the following formula (1), a salt thereof or a hydrate thereof
In the above formula, R is an aryl group having 6 to 13 carbon atoms substituted with at least one sulfo group,
z is a linking group selected from the group consisting of -O-, -S-, an alkylene group having 1 to 4 carbon atoms and an oxyalkylene group having 1 to 4 carbon atoms;
n is an integer of 0 to 2 independently of each other, provided that the total of n is 2 or more.
The present invention also relates to a photosensitizing agent or photosensitizing agent for photodynamic diagnosis, which comprises the above-described phosphophthalocyanine complex, a salt thereof, or a hydrate thereof.
上記本発明の錯体、塩又は水和物(以下、まとめて「錯体等」という場合がある)は、生体に安全であり、水性溶媒に溶解し、且つ650〜800nmに強い光吸収及び高輝度の蛍光を示す。該錯体等はPPD用及びPDT用の光感受性薬剤として有用である。 The complex, salt or hydrate of the present invention (hereinafter sometimes referred to collectively as “complex etc.”) is safe for living organisms, is soluble in an aqueous solvent, and has strong light absorption and high luminance at 650 to 800 nm. The fluorescence of is shown. The complex or the like is useful as a photosensitive drug for PPD and PDT.
(リンフタロシアニン錯体)
本発明のリンフタロシアニン錯体(以下、単に「錯体」という場合がある)は、下記式(1)で表される。
上式において、Rは少なくとも1のスルホ基(SO3H)で置換された、炭素数6〜13のアリール基である。zは−O−、−S−、及び炭素数1〜4のアルキレン基及び炭素数1〜4のオキシアルキレン基からなる群より選ばれる連結基であり、nは互いに独立に0〜2の整数、但しnの合計は2以上、である。
(Phosphophthalocyanine complex)
The phosphorus phthalocyanine complex of the present invention (hereinafter sometimes simply referred to as “complex”) is represented by the following formula (1).
In the above formula, R is an aryl group having 6 to 13 carbon atoms substituted with at least one sulfo group (SO 3 H). z is -O-, -S-, and a linking group selected from the group consisting of an alkylene group having 1 to 4 carbon atoms and an oxyalkylene group having 1 to 4 carbon atoms, and n is an integer of 0 to 2 independently of each other. However, the total of n is 2 or more.
炭素数6〜13のアリール基としては、フェニル基、インデニル基、ナフチル基、及びアズレニル基等が挙げられ、これらのうちフェニル基及びナフチル基が好ましい。 Examples of the aryl group having 6 to 13 carbon atoms include a phenyl group, an indenyl group, a naphthyl group, and an azulenyl group, and among these, a phenyl group and a naphthyl group are preferable.
各アリール基は、少なくとも1のスルホ基(SO3H)で置換されている。該スルホ基の数の上限は特にないが、該アリール基がフェニル基の場合には、合成上の制約から実際上3である。スルホ基以外の極性基、例えばカルボキシ基、ホスホリル基(−P(=O)(OH)2)、アミノ基等も水溶性向上の目的で使用することができるが、極性が高く且つ合成上の制御が容易である点でスルホ基が最も好ましい。該スルホ基は、水性媒体中ではプロトンが解離したスルホネート(−SO3 −)の形態で存在し得る。 Each aryl group is substituted with at least one sulfo group (SO 3 H). The upper limit of the number of the sulfo group is not particularly limited, but when the aryl group is a phenyl group, it is actually 3 due to synthesis restrictions. Polar groups other than sulfo groups, such as carboxy groups, phosphoryl groups (—P (═O) (OH) 2 ), amino groups, and the like can also be used for the purpose of improving water solubility, but they are highly polar and synthetically A sulfo group is most preferable in terms of easy control. The sulfo group may exist in the form of a sulfonate (—SO 3 − ) in which protons are dissociated in an aqueous medium.
各Rは、スルホ基に加えて他の置換基を有していてよい。該置換基としては、スルホン化反応を困難にしない基が好ましく、例えばメチル基、エチル基等の炭素数1〜4のアルキル基、メトキシ基等の炭素数1〜4のアルコキシ基、シアノ基、ニトロ基、及び、フロロ基等のハロゲノ基が挙げられる。好ましくは炭素数1〜4のアルキル基、及び炭素数1〜4のアルコキシ基であり、より好ましくは炭素数1又は2のアルキル基である。 Each R may have other substituents in addition to the sulfo group. As the substituent, a group that does not make the sulfonation reaction difficult is preferable, for example, an alkyl group having 1 to 4 carbon atoms such as a methyl group or an ethyl group, an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, a cyano group, Examples thereof include halogeno groups such as a nitro group and a fluoro group. Preferably they are a C1-C4 alkyl group and a C1-C4 alkoxy group, More preferably, it is a C1-C2 alkyl group.
各Rにおけるスルホ基の置換位置は任意であってよい。後述の実施例で調製したリンフタロシアニン錯体では連結基−O−のパラ位であるが、これは構造解析のために、位置異性体が無いものを便宜上選んだだけのことであり、他の置換位置であってもフタロシアニン骨格への影響はほとんど無く蛍光特性には影響しない。 The substitution position of the sulfo group in each R may be arbitrary. In the phosphophthalocyanine complex prepared in the examples described later, it is the para position of the linking group -O-, but this is simply selected for convenience for the structural analysis without the regioisomer, and other substitutions. Even the position has little effect on the phthalocyanine skeleton and does not affect the fluorescence properties.
zは−O−、−S−、炭素数1〜4のアルキレン基、及び炭素数1〜4のオキシアルキレン基からなる群より選ばれる連結基である。炭素数1〜4のアルキレン基としてはメチレン基、エチレン基が、炭素数1〜4のオキシアルキレン基としてはエチレンオキシ基、プロピレンオキシ基が挙げられる。これらのうち、−O−、及び−S−が好ましい。 z is a linking group selected from the group consisting of -O-, -S-, an alkylene group having 1 to 4 carbon atoms, and an oxyalkylene group having 1 to 4 carbon atoms. Examples of the alkylene group having 1 to 4 carbon atoms include a methylene group and an ethylene group, and examples of the oxyalkylene group having 1 to 4 carbon atoms include an ethyleneoxy group and a propyleneoxy group. Of these, -O- and -S- are preferred.
好ましいRとして、少なくとも1のスルホ基、及び炭素数1又は2のアルキルで置換されたフェニル基、例えばスルホメチルフェニル基、スルホジメチルフェニル基、4’−スルホ−2’,6’−ジメチルフェニル基が挙げられる。 Preferable R is at least one sulfo group and a phenyl group substituted with 1 or 2 carbon atoms such as a sulfomethylphenyl group, a sulfodimethylphenyl group, a 4′-sulfo-2 ′, 6′-dimethylphenyl group. Is mentioned.
Rの位置は、フタロシアニン骨格中の周辺ベンゼン環のα位及びβ位の少なくとも一方である。フタロシアニンの軸配位子をより活性化する点でβ位が好ましい。 The position of R is at least one of the α-position and β-position of the peripheral benzene ring in the phthalocyanine skeleton. The β-position is preferred from the viewpoint of more activating the phthalocyanine axial ligand.
nは、互いに独立に0〜2の整数であり、但しnの合計は2以上である。nが2未満の場合には、所望の水溶性を達成するのが困難となる場合がある。好ましくは、nの合計は3以上であり、より好ましくは4以上であり、例えば各nが全て1である。図1(a)〜(c)に、式(1)でnの合計が5等のリンフタロシアニン錯体の構造例を示す。これらの図において、化合物名称中の「リン」は略してある。 n is an integer of 0 to 2 independently of each other, provided that the total of n is 2 or more. If n is less than 2, it may be difficult to achieve the desired water solubility. Preferably, the total of n is 3 or more, more preferably 4 or more. For example, each n is all 1. 1A to 1C show structural examples of a phosphorus phthalocyanine complex in which the total of n is 5 or the like in the formula (1). In these figures, “phosphorus” in the compound names is abbreviated.
該錯体は、軸配位子、即ち、フタロシアニン骨格をxy方向とした場合のz方向の配位子、としてオキソ基(=O)と水酸基(−OH)を有する。これらの配位子は、後述するように水性媒体中ではプロトンが付加した−OH+もしくは解離された−O−で存在し得、該錯体の水への溶解性を高めるだけでなく、分子会合性を低下する効果をも奏することが見出された。 The complex has an oxo group (═O) and a hydroxyl group (—OH) as an axial ligand, that is, a z-direction ligand when the phthalocyanine skeleton is in the xy direction. These ligands, -O in an aqueous medium is -OH + or dissociated protonated as described below - not only enhance the existing obtained, solubility in water of the complex, the molecular associations It was also found that the effect of decreasing the sex was also achieved.
本発明は、上記錯体の塩にも関する。該塩は上記錯体由来のイオンと対イオンを含み、さらに水和水を含んでいてもよい。該錯体由来のイオンは、少なくとも1つのスルホネート基、軸配位子のオキソ基にプロトンが付加した−OH+基、及び水酸基がイオン化した−O−基のいずれかを含み、例えば図2に示す構造を有することが磁気円偏光二色性スペクトルによって確認された。このイオン化は、プロトン移動によって起こる迅速かつ可逆な反応であることも確認された。各イオン化の解離定数(pKa)はR、z等に依存して異なり得るが、図2の構造の場合、夫々、3〜5及び7〜9程度である。 The present invention also relates to salts of the above complexes. The salt contains an ion derived from the complex and a counter ion, and may further contain water of hydration. The ion derived from the complex includes any one of at least one sulfonate group, an —OH + group in which a proton is added to the oxo group of the axial ligand, and an —O − group in which a hydroxyl group is ionized. The structure was confirmed by a magnetic circular dichroism spectrum. This ionization was also confirmed to be a rapid and reversible reaction that occurs by proton transfer. Although the dissociation constant (pKa) of each ionization may vary depending on R, z, etc., in the case of the structure of FIG. 2, it is about 3-5 and 7-9, respectively.
対イオンは特に限定されない。対カチオンとしては、Na+等のアルカリ金属イオン、Ca2+等のアルカリ土類金属イオン、アンモニウムイオン、テトラメチルアンモニウムイオン等のテトラアルキルアンモニウムイオン、トリスヒドロキシメチルアンモニウム等のヒドロキシアンモニウムイオン、N−メチルピリジニウム等のピリジニウムイオン、ピコリニウムイオン、ルチジニウムイオン、N,N−ジメチルイミダゾリニウム等のイミダゾリニウムイオンが挙げられる。対アニオンとしてはCl−等のハロゲンイオン、シアン化物イオン、硝酸イオン、炭酸水素イオン、炭酸イオン、蟻酸イオン、酢酸イオン等の有機酸イオンが挙げられる。 The counter ion is not particularly limited. Counter cations include alkali metal ions such as Na + , alkaline earth metal ions such as Ca 2+ , tetraalkylammonium ions such as ammonium ions and tetramethylammonium ions, hydroxyammonium ions such as trishydroxymethylammonium, N-methyl Examples include pyridinium ions such as pyridinium, picolinium ions, lutidinium ions, and imidazolinium ions such as N, N-dimethylimidazolinium. Cl as counter anion - halogen ions such, cyanide, nitrate, bicarbonate ions, carbonate ions, formate ions, and an organic acid ion such as acetate ion.
上記錯体または塩は、夫々、水和物であってよい。水和水の数は、錯体又は塩の乾燥の程度に依存して異なり得るが、通常、4〜10程度の水和物で得られることが多い。 Each of the complexes or salts may be a hydrate. The number of water of hydration may vary depending on the degree of drying of the complex or salt, but is usually obtained with a hydrate of about 4-10.
上記本発明の錯体等の構造は、元素分析、二次イオン質量分析及びNMRにより特定することができる。 The structure of the complex of the present invention can be identified by elemental analysis, secondary ion mass spectrometry and NMR.
上記本発明の錯体等は、PDD及びPDTの光感受性物質として有用である。特に、軸配位子が−OH+もしくは解離された−O−である形態のものは、分子会合の程度が顕著に低く、PDTの光感受性物質として大変有用である。例えば後述する実施例で調製したリン(V)テトラ(4’−スルホン酸−2’,6’−ジメチルフェノキシ)フタロシアニン(以下、[P(H4tsppc)(O)(OH)]と表記する場合がある)は、上記いずれかの軸配位子を有する場合、10−4Mの濃度でも吸光度はLambert-Beer則に従い、濃度に比例する。特に−O−を有するものは強い蛍光を放ち、テトラ‐t‐ブチルフタロシアニンのTHF溶液の量子収率を基準とした蛍光量子収率で表すと、46〜49%と、市販の水溶性フタロシアニン系色素であるIRDye700DX NHS esterの量子収率14%に比べて顕著に高い。
なお、本出願において、蛍光量子収率(φ)とは、発光(蛍光)した分子の個数mと、吸収された光子の個数nとの比m/nのことである。量子収率46%とは、光を吸収して励起された分子が100個あったとすると、そのうちの46個が蛍光を出すことを意味する。蛍光の輝度は、モル吸光係数(ε)×蛍光量子収率(φ)に比例する。
The complex of the present invention is useful as a photosensitive substance for PDD and PDT. In particular, the form in which the axial ligand is —OH + or dissociated —O — has a remarkably low degree of molecular association and is very useful as a PDT photosensitizer. For example, phosphorus (V) tetra (4′-sulfonic acid-2 ′, 6′-dimethylphenoxy) phthalocyanine (hereinafter referred to as [P (H4tsppc) (O) (OH)]) prepared in the examples described later may be used. In the case of having any of the above-mentioned axial ligands, the absorbance is proportional to the concentration according to the Lambert-Beer rule even at a concentration of 10 −4 M. Particularly -O - those with the emit strong fluorescence, expressed in fluorescence quantum yield relative to the quantum yield of the THF solution of tetra -t- butyl phthalocyanine, and 46 to 49%, commercially available water-soluble phthalocyanine It is significantly higher than the 14% quantum yield of IRDye700DX NHS ester, which is a dye.
In the present application, the fluorescence quantum yield (φ) is a ratio m / n between the number m of emitted molecules (fluorescence) and the number n of photons absorbed. A quantum yield of 46% means that if there are 100 molecules excited by absorbing light, 46 of them emit fluorescence. The luminance of fluorescence is proportional to the molar extinction coefficient (ε) × fluorescence quantum yield (φ).
(リンフタロシアニン錯体の製造方法)
本発明の錯体は、例えば図3に示すフローチャートに従い作ることができる。該製造方法は、スルホン化工程と、精製工程とに大きく分けることができる。
(Method for producing phosphophthalocyanine complex)
The complex of the present invention can be prepared, for example, according to the flowchart shown in FIG. The production method can be broadly divided into a sulfonation step and a purification step.
(固体生成物作成工程S1)
これは、スルホン化工程である。出発物質として、例えばリン2,6−ジメチルフェノキシフタロシアニン([PPc(O)(OH)])を非特許文献5に記載の方法で用意する。
(Solid product preparation step S1)
This is a sulfonation step. As a starting material, for example, phosphorus 2,6-dimethylphenoxyphthalocyanine ([PPc (O) (OH)]) is prepared by the method described in Non-Patent Document 5.
次に、[PPc(O)(OH)]をスルホン化する。スルホン化剤は特に限定されず、例えば発煙硫酸、濃硫酸等の硫酸、クロロスルホン酸等を使用することができる。好ましくは反応溶媒を兼ねて、出発物質を溶解するのに十分な量の濃硫酸が使用される。スルホン化の温度は、0℃(氷冷下)〜室温、好ましくは10℃以下である。該スルホン化は迅速に起こり、出発物質を濃硫酸に溶解して未反応物をろ過で除去している間に完結していると考えられる。出発物質の溶解からろ過迄の全工程を含めて約5分〜30分程度、典型的には10分以下で、スルホン化物を得ることができる。 Next, [PPc (O) (OH)] is sulfonated. The sulfonating agent is not particularly limited, and for example, sulfuric acid such as fuming sulfuric acid and concentrated sulfuric acid, chlorosulfonic acid and the like can be used. A sufficient amount of concentrated sulfuric acid is preferably used to serve as a reaction solvent and to dissolve the starting material. The temperature of sulfonation is 0 ° C. (under ice cooling) to room temperature, preferably 10 ° C. or less. The sulfonation occurs rapidly and appears to be complete while the starting material is dissolved in concentrated sulfuric acid and unreacted material is removed by filtration. The sulfonated product can be obtained in about 5 to 30 minutes, typically 10 minutes or less, including all steps from dissolution of the starting material to filtration.
反応終了後、反応物を濾過して、濾液を集める。濾過残渣の固体は廃棄する。出発物質が十分に精製されていれば、固体はほとんど残らない。濾液を氷水中に滴下してスルホン化物を沈殿させた後、濾過して粗スルホン化物を得る。 After the reaction is complete, the reaction is filtered and the filtrate is collected. The filtration residue solid is discarded. If the starting material is sufficiently purified, little solid remains. The filtrate is dropped into ice water to precipitate a sulfonated product, followed by filtration to obtain a crude sulfonated product.
得られた粗スルホン化物を以下の再沈及び分離工程により精製し、最後に乾燥する。
(タール状生成物作成工程S2)
固体生成物を冷水に溶解してから、濾過して、濾液を集め、濾液にアルコールを加えてから、ロータリーエバポレーター(RE)等を用いて濃縮して、タール状生成物を得る。
The resulting crude sulfonated product is purified by the following reprecipitation and separation steps, and finally dried.
(Tar-like product making process S2)
The solid product is dissolved in cold water and then filtered, and the filtrate is collected. An alcohol is added to the filtrate and then concentrated using a rotary evaporator (RE) or the like to obtain a tar-like product.
(皮膜状生成物作成工程S3)
上記タール状生成物をアルコールに再溶解してから、REで濃縮して、皮膜状生成物を作成する。
(Film-like product creation step S3)
The tar-like product is redissolved in alcohol and then concentrated with RE to produce a film-like product.
(細かい固体生成物作成工程S4)
上記皮膜状生成物をアルコールに再溶解してから、エーテル中に滴下して、母液中に細かい固体生成物を再沈する。
(Fine solid product creation step S4)
The film-like product is redissolved in alcohol and then dropped into ether to reprecipitate a fine solid product in the mother liquor.
(遠心分離工程S5)
遠心分離工程S5は、遠心分離する工程である。最初の遠心分離工程S5−1、溶液滴下工程S5−2、別の遠心分離工程S5−3を含む。
(Centrifuge separation step S5)
Centrifugation step S5 is a step of centrifuging. It includes an initial centrifugation step S5-1, a solution dropping step S5-2, and another centrifugation step S5-3.
(最初の遠心分離工程S5−1)
S4で得られた細かい固体生成物のアルコール/エーテル分散液を遠心分離する。細かい固体生成物が母液から分離され、タール状物質に変化する。
(First centrifugation step S5-1)
The fine solid product alcohol / ether dispersion obtained in S4 is centrifuged. A fine solid product is separated from the mother liquor and turns into a tar-like substance.
(溶液滴下工程S5−2)
タール状物質をアルコールに溶解してから、タール状物質溶液をエーテル中に滴下して、母液中に細かい固体生成物を作成する。
(Solution dropping step S5-2)
After dissolving the tar-like substance in alcohol, the tar-like substance solution is dropped into ether to produce a fine solid product in the mother liquor.
(別の遠心分離工程S5−3)
細かい固体生成物のアルコール/エーテル溶液を遠心分離する。遠心分離により、細かい固体生成物が母液から分離され、タール状物質に変化した場合は、溶液滴下工程S5−2、別の遠心分離工程S5−3を繰り返す。繰り返し工程では、アルコール/エーテルの混合比を変えることが好ましい。
遠心分離により、細かい固体生成物が母液から分離され、タール状物質に変化せず、固体が得られた場合、真空乾燥工程S6へ進む。
(Another centrifugation step S5-3)
Centrifuge the fine solid product alcohol / ether solution. When the fine solid product is separated from the mother liquor and changed to a tar-like substance by centrifugation, the solution dropping step S5-2 and another centrifugation step S5-3 are repeated. In the repeating step, it is preferable to change the mixing ratio of alcohol / ether.
If the solid product is separated from the mother liquor by centrifugation and does not change to a tar-like substance and a solid is obtained, the process proceeds to a vacuum drying step S6.
(真空乾燥工程S6)
固体を、真空乾燥して、リンフタロシアニン錯体が得られる。
(Vacuum drying step S6)
The solid is vacuum dried to obtain a phosphophthalocyanine complex.
リンフタロシアニン錯体の塩は、該錯体を水性溶媒に溶解し、対イオンを含む酸もしくは塩基を添加し、水性溶媒を除去することによって調製することができる。後述するように該錯体の酸もしくは塩基の添加による構造変化は可逆的であり、且つ、該酸もしくは塩基の拡散速度が律速となるほど迅速である。 The salt of the phosphophthalocyanine complex can be prepared by dissolving the complex in an aqueous solvent, adding an acid or base containing a counter ion, and removing the aqueous solvent. As will be described later, the structural change of the complex due to the addition of an acid or base is reversible, and is faster as the diffusion rate of the acid or base becomes rate-limiting.
以下、実施例により本発明を説明するが、本発明はこれらに限定されるものではない。
<合成>
非特許文献5に記載の方法に従って、下記式で表されるリンフタロシアニン錯体[P(tppc)(O)(OH)]・4H2O(以下、[P(tppc)(O)(OH)]と表す)を合成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
<Synthesis>
According to the method described in Non-Patent Document 5, a phosphorus phthalocyanine complex represented by the following formula [P (tppc) (O) (OH)] · 4H 2 O (hereinafter referred to as [P (tppc) (O) (OH)] ) Was synthesized.
[P(tppc)(O)(OH)]は、エタノール溶液中、励起波長532nm(1mW)により、赤色の蛍光を発した。この化合物は僅かに水溶性であるが、10−6M未満の濃度であっても界面活性剤の存在下でなければ著しく会合する(非特許文献5)。 [P (tppc) (O) (OH)] emitted red fluorescence in an ethanol solution at an excitation wavelength of 532 nm (1 mW). This compound is slightly water-soluble, but even at a concentration of less than 10 −6 M, it is significantly associated unless it is in the presence of a surfactant (Non-patent Document 5).
200g(0.19mmol)の[P(tppc)(O)(OH)]を、氷冷した濃硫酸21mlに溶解して、10分間攪拌してスルホン化した後、濾過して、得られた濾液を約17gの氷中に滴下して、緑色の固体スルホン化物を析出させた。 200 g (0.19 mmol) of [P (tppc) (O) (OH)] was dissolved in 21 ml of ice-cooled concentrated sulfuric acid, sulfonated by stirring for 10 minutes, filtered, and the filtrate obtained. Was dropped into about 17 g of ice to precipitate a green solid sulfonated product.
次に、濾過して、緑色の固体を集めた。次に、集めた緑色の固体を冷水40mlに溶かして、もう一度濾過した。濾過により得られた固体は廃棄した。原料が十分に精製されていたので、固体はほとんど残らなかった。次に、濾液に20mlのエタノールを加えてから、ロータリーエバポレーターを用い、約40℃で濃縮して、タール状の生成物を得た。 It was then filtered to collect a green solid. The collected green solid was then dissolved in 40 ml of cold water and filtered once more. The solid obtained by filtration was discarded. Since the raw material was sufficiently purified, almost no solid remained. Next, 20 ml of ethanol was added to the filtrate, and then concentrated at about 40 ° C. using a rotary evaporator to obtain a tar-like product.
次に、このタール状の生成物を約5mlのエタノールに溶解してから、ロータリーエバポレーターを用い、50℃以下で濃縮した。この操作を繰り返して、二回目に乾いた皮膜状の生成物を得た。 Next, this tar-like product was dissolved in about 5 ml of ethanol, and then concentrated at 50 ° C. or lower using a rotary evaporator. This operation was repeated to obtain a dry film-like product for the second time.
次に、この乾いた皮膜状の生成物を10mlのメタノールに溶かしてから、約40mlのエーテルに滴下して、緑色の細かい固体を沈殿させた。
次に、この緑色の細かい固体を母液から遠心分離した。さらに、メタノール5ml/エーテル45mlで2回、メタノール2ml/エーテル48mlで1回、溶解及び再沈の操作を繰り返して精製することによって、緑色の固体を得た。
得られた緑色の固体を12時間、真空中、40℃で乾燥させて、最終生成物であるリン(V)テトラ(4’−スルホン酸−2’,6’−ジメチルフェノキシ)フタロシアニン([P(H4tsppc)(O)(OH)])を75mg(0.048mmol)得た。収率は25%であった。
Next, this dry film-like product was dissolved in 10 ml of methanol and then dropped into about 40 ml of ether to precipitate a fine green solid.
The green fine solid was then centrifuged from the mother liquor. Further, by repeating the dissolution and reprecipitation operations twice with 5 ml of methanol / 45 ml of ether and once with 2 ml of methanol / 48 ml of ether, a green solid was obtained.
The resulting green solid was dried in vacuum at 40 ° C. for 12 hours to obtain the final product phosphorus (V) tetra (4′-sulfonic acid-2 ′, 6′-dimethylphenoxy) phthalocyanine ([P 75 mg (0.048 mmol) of (H4tsppc) (O) (OH)]) was obtained. The yield was 25%.
<構造解析>
得られた錯体の構造を、二次イオン質量分析(SIMS)及び元素分析により解析した。
[SIMS]
日本電子製JEOL−JMS−T100LCを用いた。図4は、該錯体のSIMSスペクトルと、主なピークの帰属を示す。分子イオンピークは、プロトン化した形(m/z=1377[M+H+])で検出された。図5は上記分子イオンピーク近傍の拡大図であり、挿入図は同位体分布に基づく理論的SIMSスペクトルである。図4と5の大変良い一致から、帰属の正しさが確認された。
他の主なピークは以下のとおりである:
m/z=1359:[M−OH]、イオン化の際に軸配位子OHを1個失ったもの。
m/z=1314:[M−P(=O)(OH)+2H]、中心元素及び軸配位子が失われて水素が2つ付加したもの、即ち中心元素が無いフタロシアニン。
非常に弱いが、非プロトン型の分子イオンピークも検出された(m/z=1376[M])。
<Structural analysis>
The structure of the obtained complex was analyzed by secondary ion mass spectrometry (SIMS) and elemental analysis.
[SIMS]
JEOL-JMS-T100LC manufactured by JEOL Ltd. was used. FIG. 4 shows the SIMS spectrum of the complex and the assignment of the main peaks. The molecular ion peak was detected in protonated form (m / z = 1377 [M + H + ]). FIG. 5 is an enlarged view of the vicinity of the molecular ion peak, and the inset is a theoretical SIMS spectrum based on the isotope distribution. From the very good agreement between FIGS. 4 and 5, the correctness of the attribution was confirmed.
The other main peaks are as follows:
m / z = 1359: [M-OH], in which one axial ligand OH was lost during ionization.
m / z = 1314: [MP (= O) (OH) + 2H], a phthalocyanine having no central element, that is, the central element and the axial ligand lost and two hydrogens added.
A very weak but aprotic molecular ion peak was also detected (m / z = 1376 [M]).
[元素分析]
元素分析の結果は、炭素49.22%;水素4.11%;窒素7.22%であった。ここから、[P(H4tsppc)(OH)(O)]・10H2O(C64H69N8O28PS4)(理論値:炭素49.35%;水素4.47%;窒素7.19%)であることが確認された。
[Elemental analysis]
The results of elemental analysis were as follows: carbon 49.22%; hydrogen 4.11%; nitrogen 7.22%. From this, [P (H4tsppc) (OH) (O)]. 10H 2 O (C 64 H 69 N 8 O 28 PS 4 ) (theoretical value: carbon 49.35%; hydrogen 4.47%; nitrogen 7. 19%).
<吸収及び蛍光スペクトル>
上記[P(H4tsppc)(OH)(O)]・10H2Oの水溶液の蛍光及び励起スペクトルを、日立製F−2500蛍光測定装置を用いて測定した。また、水溶液の吸収スペクトルを、島津社製UV−1800分光光度計を用いて測定した。
図6に、蛍光スペクトル(実線:励起波長600nm)、励起スペクトル(破線:観測波長730nm)、及び吸収スペクトル(灰実線)を合わせて示す。同図において、蛍光スペクトル及び励起スペクトルの強度は任意スケールであり、吸収スペクトルとの比較のために規格化されている。
同図から、[P(H4tsppc)(OH)(O)]・10H2Oは「生体の光の窓」の波長領域に強い吸収と、該吸収に基づく高輝度の蛍光を示すことが分かる。
テトラ‐t‐ブチルフタロシアニンのTHF溶液の量子収率を基準とした蛍光量子収率は、0.326(約33%)であった(方法の詳細はN.Kobayashi,Chem.Lett.,(1994)
1813-1816を参照されたい)。
また、692nmに極大を有する吸収帯のモル吸光係数は16万M−1cm−1であった。
上記蛍光量子収率は、市販の水溶性フタロシアニン系色素、IRDye700DX NHS ester(中心元素はケイ素;水溶液中で吸収極大689nm、モル吸光係数;17万M−1cm−1;蛍光極大700nm、量子収率14%(非特許文献1)と比較して倍以上であり、モル吸光係数はほぼ同等である。
<Absorption and fluorescence spectra>
The fluorescence and excitation spectrum of the above aqueous solution of [P (H4tsppc) (OH) (O)] · 10H 2 O were measured using a Hitachi F-2500 fluorescence measuring apparatus. Moreover, the absorption spectrum of aqueous solution was measured using Shimadzu UV-1800 spectrophotometer.
FIG. 6 shows the fluorescence spectrum (solid line: excitation wavelength 600 nm), excitation spectrum (broken line: observation wavelength 730 nm), and absorption spectrum (grey solid line). In the figure, the intensities of the fluorescence spectrum and the excitation spectrum are arbitrary scales and are normalized for comparison with the absorption spectrum.
From the figure, it can be seen that [P (H4tsppc) (OH) (O)] · 10H 2 O exhibits strong absorption in the wavelength region of the “biological light window” and high-intensity fluorescence based on the absorption.
The fluorescence quantum yield based on the quantum yield of the THF solution of tetra-t-butylphthalocyanine was 0.326 (about 33%) (for details of the method, see N. Kobayashi, Chem. Lett., (1994 )
(See 1813-1816).
The molar absorption coefficient of the absorption band having a maximum at 692 nm was 160,000 M −1 cm −1 .
The above-mentioned fluorescence quantum yield is a commercially available water-soluble phthalocyanine dye, IRDye700DX NHS ester (the central element is silicon; absorption maximum 689 nm in aqueous solution, molar extinction coefficient: 170,000 M −1 cm −1 ; fluorescence maximum 700 nm, quantum yield Compared with the rate of 14% (Non-patent Document 1), the molar extinction coefficient is almost the same.
<イオン形態による吸収スペクトルの変化>
既に述べたとおり、本発明の錯体は水性媒体中のpH変化に応じて迅速にイオン化し、それに伴うスペクトル変化を示す。図7は、[P(H4tsppc)(O)(OH)]の水溶液中(2.5x10−6 M、実線)、0.13 M蟻酸溶液中(濃度8.6x10−6 M、破線)および24mM炭酸水素ナトリウム溶液中(濃度6.8x10-6 M、一点破線)の吸収スペクトル(上段)の変化と、磁気円偏光二色性スペクトル(下段)である。吸収極大が、弱塩基性下で短波長シフトし、弱酸性下で長波長シフトする。これらの吸収極大波長は、磁気円偏光二色性スペクトルのΔε(左右の円偏光の吸光係数の差)がゼロである波長と一致していることから、[P(H4tsppc)(O)(OH)]分子のC4対称性が維持されており、pHによる構造変化が軸配位子上で起きていることが確認された。
<Changes in absorption spectrum due to ion morphology>
As already mentioned, the complexes of the invention ionize rapidly in response to changes in pH in an aqueous medium and exhibit the accompanying spectral changes. FIG. 7 shows [P (H4tsppc) (O) (OH)] in an aqueous solution (2.5 × 10 −6 M, solid line), 0.13 M formic acid solution (concentration 8.6 × 10 −6 M, broken line) and 24 mM. It is a change of the absorption spectrum (upper part) and the magnetic circular dichroism spectrum (lower part) in the sodium hydrogencarbonate solution (concentration 6.8x10 -6 M, one-dot broken line). Absorption maximum shifts short wavelength under weak basicity and long wavelength shift under weak acidity. These absorption maximum wavelengths coincide with the wavelength at which Δε of the magnetic circular dichroism spectrum (difference in absorption coefficient of left and right circularly polarized light) is zero, so [P (H4tsppc) (O) (OH )] The C4 symmetry of the molecule was maintained, and it was confirmed that the structural change due to pH occurred on the axial ligand.
図8−1は、TRIS(トリスヒドロキシメチルアミノメタン)緩衝液でpHを調整した際の吸収スペクトルの変化(a)と、各pHでの676nmにおける吸光度をプロットしたもの(b)である。pHが高くなるにつれピークがシャープに且つ強くなり、吸収極大が短波長シフトする。図(a)に示すように、680nm付近に等吸収点があることから、平衡反応が起きていることが分かった。
図8−1(b)に示すS字状の曲線は、各pHでの676nmにおける吸光度(A)、初期吸光度(A0)、pH変化終点の吸光度(Af)及び解離定数(pKa=7.87)を用いて得られたものであり、該pKaは図8−2(c)に示すグラフから求めた。これらの結果から、同図における吸収スペクトルの変化には1つの水素イオン(図8−2(d)でn=1.22)が関与していることが分かった。酸性側についても同様の現象が観察された。
FIG. 8-1 is a graph (b) plotting changes in absorption spectrum (a) when pH is adjusted with TRIS (trishydroxymethylaminomethane) buffer and absorbance at 676 nm at each pH. As the pH increases, the peak becomes sharper and stronger, and the absorption maximum shifts by a shorter wavelength. As shown in the figure (a), since there is an isosbestic point near 680 nm, it was found that an equilibrium reaction occurred.
The sigmoid curve shown in FIG. 8-1 (b) shows the absorbance at 676 nm (A), initial absorbance (A 0 ), absorbance at the end of pH change (A f ), and dissociation constant (pKa = 7). .87), and the pKa was obtained from the graph shown in FIG. 8-2 (c). From these results, it was found that one hydrogen ion (n = 1.22 in FIG. 8-2 (d)) is involved in the change of the absorption spectrum in FIG. A similar phenomenon was observed on the acidic side.
TRISに代えて、炭酸水素ナトリウムを用いてpHを変更した際にも、同様の吸収スペクトルの変化が見られた(図9)。 A similar change in absorption spectrum was observed when the pH was changed using sodium bicarbonate instead of TRIS (FIG. 9).
上記pH変化に応じたイオン形態及びスペクトルの変化は非常に速く、対イオンを含む酸もしくは塩基を添加した瞬間に起こる。酸性側では蛍光が近赤外領域となるため目視では確認できなくなり、中性及び塩基性側では強い赤色の蛍光が確認できる。この現象を利用すれば、生理的環境のpHを示す高感度の指示薬として用いることができる。 The change in ion form and spectrum in response to the pH change is very rapid and occurs at the moment when an acid or base containing a counter ion is added. Since the fluorescence is in the near infrared region on the acidic side, it cannot be visually confirmed, and strong red fluorescence can be confirmed on the neutral and basic sides. If this phenomenon is utilized, it can be used as a highly sensitive indicator showing the pH of a physiological environment.
上述のとおり、本発明の錯体は塩基性側で強い吸収を示し、蛍光も強くなる。塩基をルチジンにした場合を図10に、水酸化ナトリウムにした場合を図11にそれぞれ示す。中性での蛍光量子収率が約33%であったのに対し、ルチジン存在下では49%、水酸化ナトリウム存在下では46%であった。ここから、本発明の錯体をルチジニウム塩、ナトリウム塩等の形態にして、又は炭酸水素ナトリウム等の塩基と共に生体に投与する等によって弱塩基性の生理的環境を作ることによって、優れた蛍光用色素となることが期待される。 As described above, the complex of the present invention exhibits strong absorption on the basic side and fluorescence becomes strong. FIG. 10 shows the case where the base is lutidine, and FIG. 11 shows the case where the base is sodium hydroxide. The neutral fluorescence quantum yield was about 33%, compared with 49% in the presence of lutidine and 46% in the presence of sodium hydroxide. From this, an excellent fluorescent dye can be obtained by forming a weakly basic physiological environment by, for example, administering the complex of the present invention into a form of lutidinium salt, sodium salt, or the like together with a base such as sodium hydrogen carbonate. It is expected to be
[吸収スペクトルの濃度依存性]
分子会合の有無を調べるために、[P(H4tsppc)(O)(OH)]の吸収スペクトル強度の濃度依存性を調べた。会合が起きていても、Lambert-Beer則に従う吸光度の直線性が維持される場合があるが、一般に直線性から外れた場合には会合が起きていると云える。
図12は、水中における吸収スペクトルの濃度による変化を示す。同様の実験を異なるpHにおいても行い、濃度に対する単位光路長当たりの吸光度の変化をプロットした(図13)。
図13から分かるように、水中(○)では、0.1×10−4Mを過ぎると直線から外れ始めるが、NaOH溶液(●)及びHCl(△)中では1×10−4Mまで良好な直線性を示し、酸性及び塩基性下では中性下より少なくとも一桁高い1×10−4Mまでは、分子会合の影響は無視できることが分かった。ここからも、本発明の錯体等は、優れたPDT用色素となることが期待される。
[Concentration dependence of absorption spectrum]
In order to investigate the presence or absence of molecular association, the concentration dependence of the absorption spectrum intensity of [P (H4tsppc) (O) (OH)] was examined. Even if the association occurs, the linearity of the absorbance according to the Lambert-Beer rule may be maintained, but in general, it can be said that the association occurs when the linearity deviates from the linearity.
FIG. 12 shows the change of the absorption spectrum in water depending on the concentration. Similar experiments were performed at different pHs and the change in absorbance per unit optical path length versus concentration was plotted (FIG. 13).
As can be seen from FIG. 13, in water (◯), it begins to deviate from the straight line after 0.1 × 10 −4 M, but in NaOH solution (●) and HCl (Δ), it is good up to 1 × 10 −4 M. It was found that the influence of molecular association was negligible up to 1 × 10 −4 M at least an order of magnitude higher under neutrality under acidic and basic conditions. Also from here, the complex of the present invention is expected to be an excellent dye for PDT.
<既存の色素との比較>
図14は、[P(H4tsppc)(O)(OH)]と、無金属類縁体及び銅錯体の水溶液中における吸収スペクトル(非特許文献4)を比較したものである。[P(H4tsppc)(O)(OH)]の吸収スペクトルピーク値は、無金属類縁体及び銅錯体の水溶液中における吸収スペクトルピーク値に比べて、顕著に高かった。該無金属類縁体および銅錯体は、界面活性剤やアルコールが存在しない条件では、水溶液中で強く会合した。
<Comparison with existing pigments>
FIG. 14 compares [P (H4tsppc) (O) (OH)] with absorption spectra (Non-patent Document 4) of metal-free analogs and copper complexes in an aqueous solution. The absorption spectrum peak value of [P (H4tsppc) (O) (OH)] was significantly higher than the absorption spectrum peak value in the aqueous solution of the metal-free analog and copper complex. The metal-free analog and copper complex were strongly associated in an aqueous solution in the absence of a surfactant or alcohol.
本発明のリンフタロシアニン錯体は、PDD用、PDT用の光感受性薬剤として、またpH指示薬として有用である。
The phosphophthalocyanine complex of the present invention is useful as a photosensitizer for PDD and PDT, and as a pH indicator.
Claims (8)
上式においてRは、少なくとも1のスルホ基で置換された炭素数6〜13のアリール基であり、
zは−O−、−S−、炭素数1〜4のアルキレン基及び炭素数1〜4のオキシアルキレン基からなる群より選ばれる連結基であり、
nは互いに独立に0〜2の整数、但しnの合計は2以上、である。 A phosphorus phthalocyanine complex represented by the following formula (1), a salt thereof or a hydrate thereof
In the above formula, R is an aryl group having 6 to 13 carbon atoms substituted with at least one sulfo group,
z is a linking group selected from the group consisting of -O-, -S-, an alkylene group having 1 to 4 carbon atoms and an oxyalkylene group having 1 to 4 carbon atoms;
n is an integer of 0 to 2 independently of each other, provided that the total of n is 2 or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014195733 | 2014-09-25 | ||
JP2014195733 | 2014-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016065205A JP2016065205A (en) | 2016-04-28 |
JP6489579B2 true JP6489579B2 (en) | 2019-03-27 |
Family
ID=55803991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015108056A Active JP6489579B2 (en) | 2014-09-25 | 2015-05-28 | Phosphophthalocyanine complex, its salt and its hydrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6489579B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108752356B (en) * | 2018-07-09 | 2019-11-08 | 青岛大学 | A kind of graphene enhances green pesticide and its application of phthalocyanine photosensitizing effect |
JP7264044B2 (en) * | 2018-12-27 | 2023-04-25 | 東洋インキScホールディングス株式会社 | Fluorescent Labeling Agents and Phosphorus Phthalocyanines |
JP7422301B2 (en) * | 2019-10-16 | 2024-01-26 | artience株式会社 | Fluorescent labels, photodynamic therapeutic agents and phthalocyanines |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003261787A (en) * | 2002-03-08 | 2003-09-19 | Univ Nihon | Sensitizing dye for cancer photodynamic therapy |
-
2015
- 2015-05-28 JP JP2015108056A patent/JP6489579B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016065205A (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiao et al. | Regioselective stepwise bromination of boron dipyrromethene (BODIPY) dyes | |
Yang et al. | Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy | |
Gibbs et al. | Synthesis, spectroscopic, and in vitro investigations of 2, 6-diiodo-BODIPYs with PDT and bioimaging applications | |
Epelde-Elezcano et al. | Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: towards a solvent-independent standard in the vis region | |
Shavaleev et al. | Surprisingly bright near-infrared luminescence and short radiative lifetimes of ytterbium in hetero-binuclear Yb− Na chelates | |
Lakshmi et al. | Brominated boron dipyrrins: synthesis, structure, spectral and electrochemical properties | |
Karges et al. | A Ru (II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers | |
CN108727256B (en) | Photosensitizer based on triphenylamine polypyridine salt and preparation method and application thereof | |
JP6489579B2 (en) | Phosphophthalocyanine complex, its salt and its hydrate | |
Grzybowski et al. | Selective Conversion of P= O‐Bridged Rhodamines into P= O‐Rhodols: Solvatochromic Near‐Infrared Fluorophores | |
Hirayama et al. | Bismuth-rhodamine: a new red light-excitable photosensitizer | |
CN105017288A (en) | Blue fluorescent compound and preparation method thereof | |
Dartar et al. | BODIPY–vinyl dibromides as triplet sensitisers for photodynamic therapy and triplet–triplet annihilation upconversion | |
Şenkuytu et al. | Cyclotriphosphazene-BODIPY Dyads: Synthesis, halogen atom effect on the photophysical and singlet oxygen generation properties | |
Zhang et al. | Imidazole functionalized magnesium phthalocyanine photosensitizer: modified photophysics, singlet oxygen generation and photooxidation mechanism | |
Wang et al. | A covalent organic polymer for turn-on fluorescence sensing of hydrazine | |
Köksoy et al. | Effect of iodine substitution pattern on the singlet oxygen generation and solvent depended keto-enol tautomerization behavior of BODIPY photosensitizers | |
Deckers et al. | Balancing fluorescence and singlet oxygen formation in push–pull type near-infrared BODIPY photosensitizers | |
KR20150047719A (en) | Two-Photon Fluorescent Probes for simultaneous imaging of lysosomes and mitochondria in live cell and tissue, and method of imaging the lysosomes and mitochondria in live cell using the same | |
KR101493889B1 (en) | Photosensitizer for photodynamic diagnosis or therapy and the manufacturing method | |
Zen'kevich et al. | Deactivation of S 1 and T 1 states of porphyrins and chlorins upon their interaction with molecular oxygen in solutions | |
Morrison et al. | Photobiological properties of methylene violet | |
CN115160345A (en) | Azaindole-heptamethine cyanine dye, and synthesis method and application thereof | |
Cai et al. | Novel A–(π–D–π–A) 1–3 branched fluorophores displaying high two-photon absorption | |
Taniguchi et al. | Photophysical properties and application in live cell imaging of B, B-fluoro-perfluoroalkyl BODIPYs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6489579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |