JP6489372B2 - Method for recovering copper from resin-coated copper wire - Google Patents

Method for recovering copper from resin-coated copper wire Download PDF

Info

Publication number
JP6489372B2
JP6489372B2 JP2015186176A JP2015186176A JP6489372B2 JP 6489372 B2 JP6489372 B2 JP 6489372B2 JP 2015186176 A JP2015186176 A JP 2015186176A JP 2015186176 A JP2015186176 A JP 2015186176A JP 6489372 B2 JP6489372 B2 JP 6489372B2
Authority
JP
Japan
Prior art keywords
copper
copper wire
resin
oxide film
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015186176A
Other languages
Japanese (ja)
Other versions
JP2017061584A (en
Inventor
畠山 耕
耕 畠山
始 川崎
始 川崎
沙織 古賀
沙織 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015186176A priority Critical patent/JP6489372B2/en
Publication of JP2017061584A publication Critical patent/JP2017061584A/en
Application granted granted Critical
Publication of JP6489372B2 publication Critical patent/JP6489372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Description

本発明は、自動車、家電製品、産業用電気機器などに使用されている樹脂被覆銅線から銅を効率よく回収する方法に関する。   The present invention relates to a method for efficiently recovering copper from a resin-coated copper wire used in automobiles, home appliances, industrial electrical equipment, and the like.

自動車、家電製品、産業用電気機器などには樹脂で被覆された銅線(樹脂被覆銅線と云う)が多く使用されている。一般に樹脂被覆銅線に用いられている銅材は純度99.9%以上の銅であるが、現状では、樹脂被覆銅線から回収された銅材の純度は98%程度として取り扱われている。この理由は、回収された銅材には、被覆材の樹脂、樹脂中のフィラー材、絶縁物、素子類、はんだ等が不純物として含まれているためである。また、従来は、樹脂被覆銅線から銅線を回収するため加熱処理する際に、樹脂熱分解によって油煙が生じ、リサイクル環境を損なっている。   Copper wires coated with resin (referred to as resin-coated copper wires) are often used in automobiles, home appliances, industrial electrical equipment, and the like. In general, the copper material used for the resin-coated copper wire is copper having a purity of 99.9% or higher, but at present, the purity of the copper material recovered from the resin-coated copper wire is handled as about 98%. This is because the recovered copper material contains a resin of the coating material, a filler material in the resin, an insulator, elements, solder, and the like as impurities. Conventionally, when heat treatment is performed to recover the copper wire from the resin-coated copper wire, oily smoke is generated by the resin thermal decomposition, which impairs the recycling environment.

樹脂被覆や不純物を十分に取り除き、素材に近い銅線を回収することができれば、被覆銅線から回収した銅線を高品位の銅として再利用することができ、例えば、伸銅品原料、または他の銅製品原料として再利用することができるので、高品位銅の原料調達や省エネルギーを図るうえで好ましい。   If the resin coating and impurities are sufficiently removed and the copper wire close to the material can be recovered, the copper wire recovered from the coated copper wire can be reused as high-grade copper, for example, a copper-stretched product raw material, or Since it can be reused as another copper product raw material, it is preferable in terms of procurement of high-grade copper raw material and energy saving.

樹脂被覆銅線から樹脂被覆を除去して銅線を回収する方法として、従来、以下の処理方法が知られている。
(イ) 樹脂被覆を有する廃銅線を加熱炉に入れ、300〜450℃の温度で、非酸化性雰囲気下で乾留処理し、塩化水素ガスを含む排ガスを排出し、炭素を含む残渣が付着した銅線を未溶融状態で回収し、振動、分篩、破砕の各工程を経て銅線に付着した残渣を除去し、樹脂被覆を取り除いた銅線を回収する(特許文献1)。
(ロ) 樹脂被覆銅線を、無酸素ないし低酸素雰囲気下で、電気ヒータとマイクロ波照射、さらに過熱水蒸気による加熱手段によって熱分解し、この熱分解には一段または二段以上の熱分解室を有する連続乾留装置を用い、この熱分解によって樹脂被覆が分解されてその残渣と銅線が分離され、分離した銅線を酸洗浄して回収する(特許文献2)。
(ハ) 樹脂被覆銅線を加熱処理して樹脂被覆を炭化し、この炭化物と銅線を分別し、分別された銅線を酸洗浄して銅を回収する方法であり、加熱処理において、熱風、電磁誘導加熱または過熱水蒸気によって500〜800℃に加熱し、炭化した樹脂と銅を、振動または機械的外力または洗浄によって分離する(特許文献3)。
Conventionally, the following processing methods are known as methods for recovering a copper wire by removing the resin coating from the resin-coated copper wire.
(Ii) Put a waste copper wire with resin coating in a heating furnace, dry-treat in a non-oxidizing atmosphere at a temperature of 300 to 450 ° C, discharge exhaust gas containing hydrogen chloride gas, and deposit carbon residue The obtained copper wire is recovered in an unmelted state, the residue attached to the copper wire is removed through each step of vibration, sieving, and crushing, and the copper wire from which the resin coating has been removed is recovered (Patent Document 1).
(B) The resin-coated copper wire is pyrolyzed in an oxygen-free or low-oxygen atmosphere by an electric heater, microwave irradiation, and heating means using superheated steam, and this pyrolysis is performed in one or more stages of pyrolysis chambers. The resin coating is decomposed by this thermal decomposition to separate the residue and the copper wire, and the separated copper wire is recovered by washing with acid (Patent Document 2).
(C) Resin-coated copper wire is heat treated to carbonize the resin coating, the carbide and the copper wire are separated, the separated copper wire is acid washed and the copper is recovered. Then, it is heated to 500 to 800 ° C. by electromagnetic induction heating or superheated steam, and the carbonized resin and copper are separated by vibration, mechanical external force or washing (Patent Document 3).

特開平11−188335号公報Japanese Patent Laid-Open No. 11-188335 特開2014−029817号公報JP 2014-029817 A 特開2014−069137号公報JP 2014-069137 A

上記(イ)の方法は、銅線に付着した残渣に含まれる炭素量が多いために残渣を十分に剥離することができず、伸銅品の原料とするとき油煙が発生すると云う問題がある。上記(ロ)の方法は、表面が金属光沢をもつ銅線が得られるが、加熱方法が複雑であり、また上記(ハ)の方法は、加熱温度が高いので加熱コストが高くなり、さらに上記(ロ)および上記(ハ)の何れの方法も酸洗浄を行うので排水処理のコストも高くなると云う問題がある。   The above method (b) has a problem that oil residue is not sufficiently peeled off because the amount of carbon contained in the residue adhering to the copper wire is large, and oil smoke is generated when it is used as a raw material for copper products. . In the method (b), a copper wire having a metallic luster on the surface can be obtained.However, the heating method is complicated, and the method (c) increases the heating cost because the heating temperature is high. Both the methods (b) and (c) have a problem that the cost of waste water treatment is increased because the acid cleaning is performed.

本発明は、樹脂被覆銅線から銅線を回収する従来の方法における上記問題を解決したものであり、酸洗浄を必要とせず、樹脂被覆と不純物を効率よく銅線から剥離して、不純物の少ない銅を低コストで回収することができる方法を提供する。   The present invention solves the above-mentioned problems in the conventional method of recovering copper wire from resin-coated copper wire, and does not require acid cleaning. Provided is a method capable of recovering a small amount of copper at a low cost.

本発明は上記課題を解決した以下の銅回収方法に関する。
〔1〕樹脂被覆銅線を、空気雰囲気下で、樹脂被覆が炭化せずに酸化分解すると共に、銅線表面に酸化銅被膜機械的に剥離される膜厚5〜10μmに形成する温度で焼成し、該焼成後、付着している焼成残渣と共に酸化銅被膜を機械的に剥離して銅線を回収することを特徴とする銅の回収方法。
〔2〕ポリエステル樹脂被覆を有する銅線を、またはポリウレタン樹脂被覆を有する銅線を、空気雰囲気下、420℃〜470℃で焼成する上記[1]に記載する銅の回収方法。
〔3〕焼成した樹脂被覆銅線を水中で超音波洗浄して、付着している焼成残渣と共に酸化銅被膜を剥離する上記[1]または上記[2]に記載する銅の回収方法。
〔4〕焼成した樹脂被覆銅線を、回転軸に剥離羽根を有する剥離機を用い、あるいはエアーテーブルを用いて、付着している焼成残渣と共に酸化銅被膜を剥離する上記[1]または上記[2]に記載する銅の回収方法。
〔5〕樹脂被覆銅線を有する部材を破砕し、この破砕片を磁力選別して鉄材を分離し、分別した破砕片を焼成炉に入れて、樹脂被覆が酸化分解すると共に銅線表面に酸化銅被膜が形成する温度で焼成し、焼成した破砕片を機械的な剥離手段に入れて、付着している焼成残渣と共に酸化銅被膜を剥離して銅線を回収する上記[1]〜上記[4] の何れかに記載する銅の回収方法。
The present invention relates to the following copper recovery method that has solved the above problems.
[1] At a temperature at which a resin-coated copper wire is oxidized and decomposed without being carbonized in an air atmosphere, and a copper oxide film is mechanically peeled from the surface of the copper wire to a thickness of 5 to 10 μm. A method for recovering copper, comprising firing, and after the firing, the copper oxide film is mechanically peeled together with the attached firing residue to recover the copper wire.
[2] The copper recovery method according to the above [1], wherein a copper wire having a polyester resin coating or a copper wire having a polyurethane resin coating is fired at 420 ° C. to 470 ° C. in an air atmosphere.
[3] The copper recovery method according to the above [1] or [2], wherein the fired resin-coated copper wire is subjected to ultrasonic cleaning in water, and the copper oxide film is peeled off together with the adhered firing residue.
[4] The copper oxide film is peeled off from the fired resin-coated copper wire together with the attached fired residue using a peeling machine having a peeling blade on the rotating shaft or an air table. The method for recovering copper described in 2].
[5] Crush a member having a resin-coated copper wire, magnetically sort the crushed pieces, separate the iron material, put the separated crushed pieces into a firing furnace, and oxidize and decompose the resin coating and oxidize the copper wire surface The above-mentioned [1] to [[] above, which are fired at a temperature at which the copper film is formed, put the fired crushed pieces into a mechanical peeling means, peel off the copper oxide film together with the attached baking residue, and collect the copper wire [4] The method for recovering copper according to any one of [ 4].

〔具体的な説明〕
本発明は、樹脂被覆銅線を、空気雰囲気下で、樹脂被覆が炭化せずに酸化分解すると共に、銅線表面に酸化銅被膜機械的に剥離される膜厚5〜10μmに形成する温度で焼成し、該焼成後、付着している焼成残渣と共に酸化銅被膜を機械的に剥離して銅線を回収することを特徴とする銅の回収方法である。


[Specific description]
The present invention is a temperature at which a resin-coated copper wire is formed in a film thickness of 5 to 10 μm so that the resin coating is oxidized and decomposed without being carbonized in an air atmosphere, and the copper oxide film is mechanically peeled on the surface of the copper wire. The copper recovery method is characterized in that after the baking, the copper oxide film is mechanically peeled off together with the attached baking residue to recover the copper wire.


本発明において処理する樹脂被覆銅線は、樹脂で被覆された銅線であり、ポリウレタン樹脂、ポリエステル樹脂、ポリエステルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂などの絶縁性樹脂によって被覆された銅線であり、樹脂被覆銅線はモーターや発電機や変圧器に多く使われるので一般にマグネットワイヤーと称されており、エナメル線としても知られている。本発明の方法は、これらの樹脂被覆銅線に広く適用することができる。また、本発明の回収方法は、樹脂被覆銅線の単体に限らず、樹脂被覆銅線がコイルに巻かれた状態の破砕片などについても処理することができる。   The resin-coated copper wire to be treated in the present invention is a copper wire coated with a resin, and is a copper wire coated with an insulating resin such as a polyurethane resin, a polyester resin, a polyesterimide resin, a polyamideimide resin, or a polyimide resin. Resin-coated copper wire is commonly used as a magnet wire because it is often used in motors, generators, and transformers, and is also known as enameled wire. The method of the present invention can be widely applied to these resin-coated copper wires. Moreover, the collection | recovery method of this invention can process not only the single-piece | unit of a resin coating copper wire but the crushing piece of the state in which the resin coating copper wire was wound around the coil.

本発明の回収方法は、樹脂被覆銅線を、空気雰囲気下で、樹脂被覆が酸化分解すると共に、銅線表面に酸化銅被膜が機械的に剥離される厚さに形成する温度で焼成する。具体的には、例えば、樹脂被覆が酸化分解する温度以上であって銅線表面の酸化銅被膜の膜厚が5〜10μmになるように焼成する。   In the recovery method of the present invention, the resin-coated copper wire is baked in an air atmosphere at a temperature at which the resin coating is oxidatively decomposed and the copper oxide film is mechanically peeled from the copper wire surface. Specifically, for example, baking is performed so that the temperature of the resin coating is higher than the temperature at which the resin coating is oxidatively decomposed and the thickness of the copper oxide film on the surface of the copper wire is 5 to 10 μm.

本発明の回収方法の焼成工程は、樹脂被覆銅線を、空気雰囲気下で加熱して樹脂被覆を酸化分解(燃焼)させる工程であり、樹脂被覆を炭化させる処理方法とは異なる。焼成温度は樹脂の種類に応じて設定すればよい。概ね400℃〜500℃に加熱することによって各種の樹脂被覆を酸化分解(燃焼)させることができる。例えば、ポリエステル樹脂被覆を有する銅線、またはポリウレタン樹脂被覆を有する銅線について、空気雰囲気下、420℃〜470℃で加熱処理することによって、これらの樹脂被覆を酸化分解することができる。この焼成工程によって樹脂被覆の有機成分は分解されて炭酸ガスなどを生じ、系外に除去される。また表面に残留する焼成残渣は酸化銅被膜と共に除去される。   The firing step of the recovery method of the present invention is a step in which the resin-coated copper wire is heated in an air atmosphere to oxidatively decompose (combust) the resin coating, and is different from the treatment method in which the resin coating is carbonized. What is necessary is just to set a calcination temperature according to the kind of resin. Various resin coatings can be oxidatively decomposed (burned) by heating to approximately 400 ° C to 500 ° C. For example, a copper wire having a polyester resin coating or a copper wire having a polyurethane resin coating can be oxidatively decomposed by heat treatment at 420 ° C. to 470 ° C. in an air atmosphere. By this baking step, the organic component of the resin coating is decomposed to generate carbon dioxide gas and the like, and is removed from the system. The firing residue remaining on the surface is removed together with the copper oxide film.

本発明の回収方法の焼成工程では、樹脂被覆が酸化分解すると共に銅線表面を酸化して酸化銅被膜(CuO被膜)を機械的に剥離される厚さに形成する。具体的には、例えば、銅線表面に形成される酸化銅被膜の膜厚が5〜10μmになるように焼成する。従って、焼成温度は樹脂被覆が酸化分解すると共に酸化銅被膜の膜厚が5〜10μmになる温度が好ましい。 In the firing step of the recovery method of the present invention, the resin coating is oxidized and decomposed, and the copper wire surface is oxidized to form a copper oxide coating (Cu 2 O coating) with a mechanically peeled thickness. Specifically, for example, the copper oxide film formed on the surface of the copper wire is fired so that the film thickness becomes 5 to 10 μm. Accordingly, the firing temperature is preferably a temperature at which the resin coating is oxidatively decomposed and the copper oxide film thickness is 5 to 10 μm.

銅線表面の酸化銅被膜は次工程において剥離するので、酸化銅被膜の膜厚が10μmよりも厚いと、回収する銅の損失量が多くなる。酸化銅被膜を10μm以下に形成することによって銅の損失を抑えることができる。一方、酸化銅被膜の膜厚が5μm未満では機械的に剥離し難い。   Since the copper oxide film on the surface of the copper wire is peeled off in the next step, if the thickness of the copper oxide film is thicker than 10 μm, the loss of recovered copper increases. By forming the copper oxide film to 10 μm or less, copper loss can be suppressed. On the other hand, when the thickness of the copper oxide film is less than 5 μm, mechanical peeling is difficult.

本発明の回収方法は、樹脂被覆銅線の焼成後に、付着している焼成残渣と共に酸化銅被膜を機械的に剥離して銅線を回収する。樹脂被覆銅線の焼成によって銅線表面に形成された酸化銅被膜と金属銅(銅線)とは結晶構造が異なるので、この界面部分は脆く、振動、機械的外力、水中での超音波振動などを加えると酸化銅被膜は容易に剥離する。樹脂被覆の焼成残渣は酸化銅被膜に付着しているが、この付着残渣は酸化銅被膜と共に剥離される。また、銅線に付着している不純物金属(鉛、鉄など)は上記酸化銅被膜と共に除去される。   In the recovery method of the present invention, after firing the resin-coated copper wire, the copper oxide film is mechanically peeled off together with the adhered firing residue to recover the copper wire. Because the copper oxide film formed on the surface of the copper wire by firing the resin-coated copper wire and the metal copper (copper wire) have different crystal structures, this interface part is brittle, vibration, mechanical external force, ultrasonic vibration in water Etc., the copper oxide film easily peels off. Although the baking residue of the resin coating adheres to the copper oxide film, the adhesion residue is peeled off together with the copper oxide film. Impurity metals (lead, iron, etc.) adhering to the copper wire are removed together with the copper oxide film.

剥離手段として、例えば、回転軸に剥離羽根を有する剥離機などを用いると良い。剥離機の一例を図1に示す。図1において、剥離機10は縦型の貯槽11を備えており、貯槽11の側壁には集塵機12が接続しており、槽底には取出口13が設けられている。さらに貯槽11の内部には回転軸14が立設されており、該回転軸14には剥離羽根15が複数段取り付けられている。該剥離羽根15は柔らかなプラスチック製、あるいは牛革製などが好ましい。   For example, a peeling machine having a peeling blade on the rotating shaft may be used as the peeling means. An example of a peeling machine is shown in FIG. In FIG. 1, the peeling machine 10 includes a vertical storage tank 11, a dust collector 12 is connected to the side wall of the storage tank 11, and an outlet 13 is provided at the tank bottom. Further, a rotating shaft 14 is provided upright inside the storage tank 11, and a plurality of separation blades 15 are attached to the rotating shaft 14. The peeling blade 15 is preferably made of soft plastic or cowhide.

樹脂被覆銅線を破砕して得た破砕片を焼成し、樹脂被覆を酸化(燃焼)分解させる。この焼成した破砕片20を剥離機10の貯槽11に装入し、回転軸14によって剥離羽根15を回転して破砕片20を撹拌する。この撹拌によって、破砕片20の酸化銅被膜は容易に剥離するので、この酸化銅被膜粉や、不純物金属粉などを集塵機12によって系外に除去する。酸化銅被膜が除去されて剥き出しになった銅線は取出口13から回収する。   The crushed pieces obtained by crushing the resin-coated copper wire are fired, and the resin coating is oxidized (burned) and decomposed. The fired crushed pieces 20 are charged into the storage tank 11 of the peeling machine 10, and the peeling blades 15 are rotated by the rotating shaft 14 to stir the crushed pieces 20. By this stirring, the copper oxide film of the crushed pieces 20 is easily peeled off, and the copper oxide film powder, impurity metal powder, and the like are removed from the system by the dust collector 12. The copper wire exposed by removing the copper oxide film is collected from the outlet 13.

剥離手段としてエアーテーブルや超音波振動機などを用いてもよい。焼成した樹脂被覆銅線をエアーテーブルに入れ、エアーの圧力を加えて酸化銅被膜を剥離することができる。また、焼成した樹脂被覆銅線を水中に入れて超音波をかけ、この超音波振動によって酸化銅被膜を剥離することができる。   An air table or an ultrasonic vibrator may be used as the peeling means. The fired resin-coated copper wire is placed in an air table, and the copper oxide film can be peeled off by applying air pressure. Moreover, the fired resin-coated copper wire is put into water and subjected to ultrasonic waves, and the copper oxide film can be peeled off by this ultrasonic vibration.

本発明の回収方法に基づく処理工程の一例を図2に示す。
モーターのステータには樹脂被覆銅線が巻き込まれている。自動車、家電製品、産業用電気機器などから回収したステータなどの樹脂被覆銅線を有する部材を破砕機30に投入して破砕片にする。この破砕片を磁力選別機31に投入して鉄材を分離する。鉄材を分離した破砕片を焼成炉33に投入する。あるいは、鉄材を分離した破砕片を風力選別機32に投入し、樹脂片などの軽い破砕物を除去した後に、焼成炉33に投入する。
An example of processing steps based on the recovery method of the present invention is shown in FIG.
A resin-coated copper wire is wound around the stator of the motor. A member having a resin-coated copper wire, such as a stator, collected from an automobile, a household appliance, an industrial electric device, or the like is put into the crusher 30 to be crushed pieces. The crushed pieces are put into the magnetic separator 31 to separate the iron material. The crushed pieces from which the iron material has been separated are put into the firing furnace 33. Alternatively, the crushed pieces from which the iron material is separated are put into the wind power sorter 32 and light crushed pieces such as resin pieces are removed, and then put into the firing furnace 33.

破砕片には樹脂被覆銅線が巻込まれているので、焼成炉33において、空気下、破砕片の樹脂被覆が酸化分解すると共に銅線表面に酸化銅被膜が形成する温度条件で焼成する。好ましくは、酸化銅被膜の膜厚が5〜10μmであるように焼成する。この焼成処理によって樹脂被覆の有機物成分は炭酸ガスなどに分解されて炉外に除去される。   Since the resin-coated copper wire is wound on the crushed pieces, the crushed pieces are baked in the firing furnace 33 under the temperature conditions in which the resin coating of the crushed pieces is oxidatively decomposed and a copper oxide film is formed on the surface of the copper wires. Preferably, baking is performed so that the film thickness of the copper oxide film is 5 to 10 μm. By this baking treatment, the organic component of the resin coating is decomposed into carbon dioxide and the like and removed outside the furnace.

焼成した破砕片を機械的な剥離手段34、例えば、剥離機10、エアーテーブル、超音波振動機などに入れて、付着残渣と共に酸化銅被膜を銅線から剥離し、酸化銅被膜が除去されて剥き出しになった銅線片を回収する。一方、剥離された酸化銅被膜粉や鉄粉、鉛粉などの不純物金属粉は集塵機35を通じて回収する。   The fired crushed pieces are put into a mechanical peeling means 34, for example, a peeling machine 10, an air table, an ultrasonic vibrator, etc., and the copper oxide film is peeled off from the copper wire together with the adhered residue, and the copper oxide film is removed. Collect the stripped copper wire pieces. On the other hand, the peeled copper oxide coating powder, iron powder, lead powder and other impurity metal powders are collected through the dust collector 35.

本発明の方法によって回収された銅線は、樹脂成分および不純物金属が十分に除去されており、具体的には、引き抜き銅線では、焼成後の炭素量10ppm前後、水素量2ppm前後であり、銅線の素材銅品位(99.9%)に近い品位の銅である。また、コイル破砕物を処理したものは、焼成後の炭素量および水素量は引き抜き銅線と同程度であって残留鉄量および残留鉛量も僅かであり(Fe:420ppm、Pb:10ppm程度)、銅線の素材銅品位(99.9%)に近い品位の銅を回収することができる。   The copper wire recovered by the method of the present invention has sufficiently removed the resin component and the impurity metal. Specifically, in the drawn copper wire, the amount of carbon after firing is around 10 ppm, the amount of hydrogen is around 2 ppm, It is copper with a quality close to the copper quality (99.9%) of the copper wire. In addition, the coil crushed material is processed, the amount of carbon and the amount of hydrogen after firing are about the same as the drawn copper wire, and the amount of residual iron and residual lead are also slight (Fe: 420 ppm, Pb: about 10 ppm) It is possible to recover copper having a quality close to the copper quality (99.9%) of the copper wire.

本発明の回収方法は、空気雰囲気で、400℃〜500℃程度の温度で焼成することによって樹脂被覆を酸化分解し、最小限の銅を酸化して表面に付着している不純物を除去することができる。また、本発明の回収方法は、空気雰囲気で焼成するので、特殊な雰囲気(無酸素状態、例えば、窒素雰囲気、真空雰囲気など)にする必要がなく、ランニングコストと設備コストを低く抑えることができる。さらに、樹脂被覆が空気雰囲気で酸化分解(燃焼)する際に、発熱するので、該被覆銅線を処理するためのエネルギーコストを低減することができる。焼成工程において生じる酸化銅被膜は容易に剥離され、回収した銅線の酸洗浄を必要としないので処理コストを低減することできる。   In the recovery method of the present invention, the resin coating is oxidatively decomposed by baking at a temperature of about 400 ° C. to 500 ° C. in an air atmosphere, and a minimum amount of copper is oxidized to remove impurities adhering to the surface. Can do. Further, since the recovery method of the present invention is fired in an air atmosphere, there is no need to use a special atmosphere (an oxygen-free state, such as a nitrogen atmosphere or a vacuum atmosphere), and the running cost and equipment cost can be kept low. . Furthermore, since heat is generated when the resin coating is oxidatively decomposed (burned) in an air atmosphere, the energy cost for processing the coated copper wire can be reduced. The copper oxide film produced in the firing step is easily peeled off, and the processing cost can be reduced because the recovered copper wire does not require acid cleaning.

モーターのステータなどを樹脂被覆銅線が巻き込まれている状態で破砕すると、ステータの鉄材破片などが樹脂被覆や銅線に突き刺さった状態になり、磁力選別機でも鉄材破片などが除去されず、焼成後にも銅線に付着しているものがあるが、銅線に付着している銅以外の金属(鉄、鉛など)は酸化銅被膜と共に除去されるので、これらの不純物金属を容易に除去することができる。   If the stator of the motor is crushed with the resin-coated copper wire being wound, the iron fragments of the stator will be stuck into the resin coating or copper wire, and even the magnetic separator will not remove the iron fragments etc. Some of them are attached to the copper wire later, but metals other than copper (iron, lead, etc.) attached to the copper wire are removed together with the copper oxide film, so these impurity metals are easily removed. be able to.

剥離機の概略断面図。The schematic sectional drawing of a peeling machine. 本発明の回収方法に基づく処理工程図。The process flowchart based on the collection | recovery method of this invention. 焼成した銅線断面のEPMA分析写真。EPMA analysis photograph of the cross section of the fired copper wire.

以下、本発明の実施例を比較例と共に示す。
銅線に残存する炭素は、炭素・硫黄同時分析装置(LECO製CSLS-600)を用いて燃焼−赤外線吸収法により定量した。水素は、水素分析装置(LECO製RHEN-602)を用いて不活性ガス融解−熱伝導度法により定量した。酸素は、窒素・酸素同時分析装置(LECO製TCEN-600)を用いて不活性ガス融解−赤外線吸収法により定量した。銅の純度は、電解重量法により定量した。銅に残存する不純物は、試料を酸に溶解し、誘導結合プラズマ発光分析装置(Thermo Fisher Scientific製iCAP-6500 Duo)により定量した。銅線の断面観察は、エネルギー分散型X線分光装置(HITACHI SU8230 + Bruker QUANTAX)を用い、表面分析を実施した。
実施例および比較例で使用した樹脂被覆銅線Aはテレビ用であり、引抜銅線ではないので被覆中に鉄および鉛を含まない。樹脂被覆銅線Bはコイルから引き抜いた銅線であり、引抜処理時にコイルの鉄粉や鉛粉が被覆中に付着している。銅線Aの被覆樹脂はポリウレタン樹脂、銅線Bの被覆樹脂はポリエステル樹脂である。銅線Cの被覆樹脂はホルマール樹脂、銅線Dの被覆樹脂はポリエステルイミド樹脂である。
Examples of the present invention are shown below together with comparative examples.
The carbon remaining in the copper wire was quantified by a combustion-infrared absorption method using a simultaneous carbon / sulfur analyzer (CSLS-600 manufactured by LECO). Hydrogen was quantified by an inert gas melting-thermal conductivity method using a hydrogen analyzer (RHEN-602 manufactured by LECO). Oxygen was quantified by an inert gas melting-infrared absorption method using a nitrogen / oxygen simultaneous analyzer (TCEN-600 manufactured by LECO). The purity of copper was quantified by electrogravimetry. Impurities remaining in copper were quantified with an inductively coupled plasma emission spectrometer (iCAP-6500 Duo manufactured by Thermo Fisher Scientific) after dissolving the sample in acid. The cross-section of the copper wire was subjected to surface analysis using an energy dispersive X-ray spectrometer (HITACHI SU8230 + Bruker QUANTAX).
The resin-coated copper wire A used in the examples and comparative examples is for televisions and is not a drawn copper wire, so iron and lead are not included in the coating. The resin-coated copper wire B is a copper wire drawn from the coil, and the iron powder and lead powder of the coil adhere to the coating during the drawing process. The coating resin for the copper wire A is a polyurethane resin, and the coating resin for the copper wire B is a polyester resin. The coating resin for the copper wire C is a formal resin, and the coating resin for the copper wire D is a polyesterimide resin.

〔実施例1〕
樹脂被覆銅線A(成分を表1に示す)250gを、電気炉に入れて、温度450℃、空気流量1L/分の条件で、1時間焼成処理した。炉内を室温まで冷却し、焼成銅線を取り出した。この焼成銅線を水中に浸し、水中で超音波を20分間かけて洗浄し、酸化被膜を取り除いた。結果を表2に示す。また、焼成後(超音波処理前)の銅線の一部を採取して銅線の断面をEPMA分析により観察した。この断面写真を図3に示す。
図3に示すように、銅線表面には膜厚5〜10μmの酸化被膜が形成されている。この酸化被膜は元素比から酸化銅(CuO)であることを確認した。純銅と酸化銅被膜の界面には亀裂が生じている。表2に示すように、焼成後の炭素量は10ppm、水素量は2ppmであり、樹脂被覆は殆ど除去されている。なお、表面酸化等により重量が2.5%減少し、銅回収歩留まりは97.5%であった。また、回収した銅の純度は99.9%であり、高純度の銅であった。
[Example 1]
250 g of resin-coated copper wire A (components are shown in Table 1) was put in an electric furnace and baked for 1 hour under conditions of a temperature of 450 ° C. and an air flow rate of 1 L / min. The inside of the furnace was cooled to room temperature, and the fired copper wire was taken out. This baked copper wire was immersed in water, and ultrasonic waves were washed in water for 20 minutes to remove the oxide film. The results are shown in Table 2. In addition, a part of the copper wire after firing (before ultrasonic treatment) was collected, and the cross section of the copper wire was observed by EPMA analysis. This cross-sectional photograph is shown in FIG.
As shown in FIG. 3, an oxide film having a thickness of 5 to 10 μm is formed on the surface of the copper wire. This oxide film was confirmed to be copper oxide (Cu 2 O) from the element ratio. Cracks are generated at the interface between the pure copper and the copper oxide film. As shown in Table 2, the amount of carbon after firing was 10 ppm, the amount of hydrogen was 2 ppm, and the resin coating was almost removed. The weight was reduced by 2.5% due to surface oxidation and the copper recovery yield was 97.5%. Moreover, the purity of the recovered copper was 99.9%, which was high-purity copper.

〔実施例2、実施例3〕
焼成炉の炉内温度を470℃(実施例2)、420℃(実施例3)に設定した以外は実施例1と同様にして焼成処理および超音波洗浄を行った。結果を表2に示す。表2に示すように、処理後の炭素量は12〜13pppm、水素量は2〜3ppmであり、樹脂被覆は殆ど除去されている。実施例2の焼成温度は実施例1より高いので銅表面の酸化銅被膜が多くなり、銅回収歩留まりは95.1%であった。また、実施例2および実施例3の何れも回収した銅の純度は99.9%であった。
[Example 2 and Example 3]
The firing treatment and ultrasonic cleaning were performed in the same manner as in Example 1 except that the furnace temperature of the firing furnace was set to 470 ° C. (Example 2) and 420 ° C. (Example 3). The results are shown in Table 2. As shown in Table 2, the amount of carbon after the treatment is 12 to 13 pppm, the amount of hydrogen is 2 to 3 ppm, and the resin coating is almost removed. Since the firing temperature of Example 2 was higher than that of Example 1, the copper oxide film on the copper surface increased, and the copper recovery yield was 95.1%. Further, the purity of the recovered copper in both Example 2 and Example 3 was 99.9%.

〔実施例4〕
焼成時間を5時間に設定した以外は実施例1と同様にして焼成処理および超音波洗浄を行った。結果を表2に示す。処理後の炭素量は8ppm、水素量は2ppmであり、樹脂被覆は殆ど除去されている。銅回収歩留まりは97.5%であり、回収した銅の純度は99.9%であった。
Example 4
A baking treatment and ultrasonic cleaning were performed in the same manner as in Example 1 except that the baking time was set to 5 hours. The results are shown in Table 2. The amount of carbon after the treatment is 8 ppm, the amount of hydrogen is 2 ppm, and the resin coating is almost removed. The copper recovery yield was 97.5%, and the purity of the recovered copper was 99.9%.

〔比較例1〕
焼成雰囲気を窒素雰囲気(流量1L/分)にした以外は実施例1と同様にして焼成処理および超音波洗浄を行った。結果を表2に示す。窒素雰囲気下の焼成であるため、銅線表面に酸化銅被膜が殆ど形成されず、焼成処理した銅線を超音波洗浄しても表面に残留した焼成残渣を剥離することができなかった。このため、処理後の炭素量は5000ppm、水素量は210ppmであり、樹脂被覆の焼成残渣が多く残留した。
[Comparative Example 1]
Baking treatment and ultrasonic cleaning were performed in the same manner as in Example 1 except that the firing atmosphere was changed to a nitrogen atmosphere (flow rate: 1 L / min). The results are shown in Table 2. Since the firing was performed under a nitrogen atmosphere, almost no copper oxide film was formed on the surface of the copper wire, and the fired residue remaining on the surface could not be peeled off even when the fired copper wire was ultrasonically cleaned. For this reason, the amount of carbon after the treatment was 5000 ppm, the amount of hydrogen was 210 ppm, and a large amount of resin coating firing residue remained.

〔比較例2〕
焼成炉の炉内温度を380℃に設定した以外は実施例1と同様にして焼成処理および超音波洗浄を行った。結果を表2に示す。被覆樹脂の種類に対して、樹脂被覆の酸化分解を進めて銅線表面に酸化銅被膜を十分に形成するには焼成温度が低いため、焼成処理した銅線を超音波洗浄しても表面に残留した焼成残渣を剥離することができず、処理後の炭素量は2300ppm、水素量は40ppmであり、樹脂被覆の焼成残渣が多く残留した。
[Comparative Example 2]
The baking treatment and ultrasonic cleaning were performed in the same manner as in Example 1 except that the furnace temperature of the baking furnace was set to 380 ° C. The results are shown in Table 2. Because the firing temperature is low to advance the oxidative decomposition of the resin coating and sufficiently form a copper oxide film on the surface of the copper wire for the type of coating resin, the surface of the copper wire that has been baked is ultrasonically cleaned. The remaining fired residue could not be peeled off, the amount of carbon after the treatment was 2300 ppm, the amount of hydrogen was 40 ppm, and a large amount of the fired residue of the resin coating remained.

〔比較例3〕
焼成処理後の超音波洗浄を行わない以外は実施例1と同様にして焼成処理を行った。結果を表2に示す。超音波洗浄を行わないため、焼成処理した銅線の表面には焼成残渣が付着しており、このため、実施例1よりも焼成残渣の炭素量および水素量が多い。
[Comparative Example 3]
The baking treatment was performed in the same manner as in Example 1 except that the ultrasonic cleaning after the baking treatment was not performed. The results are shown in Table 2. Since ultrasonic cleaning is not performed, the firing residue adheres to the surface of the fired copper wire. For this reason, the amount of carbon and hydrogen in the firing residue is larger than that in Example 1.

実施例3の焼成時間は1時間(焼成温度420℃)であり、実施例4が焼成時間は5時間(焼成温度420℃)であるが、処理結果は同程度であり、この結果から焼成時間は1時間程度で良いことが確認された。   The firing time of Example 3 is 1 hour (baking temperature 420 ° C.), and the firing time of Example 4 is 5 hours (baking temperature 420 ° C.). It was confirmed that about 1 hour was sufficient.

比較例1に示すように、樹脂被覆銅線を窒素雰囲気下で焼成して樹脂を炭化すると、銅表面には酸化銅被膜が形成されないので、酸化銅被膜の剥離によって焼成残渣を除去することができず、焼成残渣が多く残留するので、高純度の銅を回収するには難しい。また、比較例2に示すように、被覆樹脂の種類に対して焼成温度が低すぎると、酸化銅被膜が機械的に剥離される厚さにならず、焼成残渣が残る。実施例1〜4に示すように、酸化銅被膜を機械的に剥離される厚さに形成すると、水中での超音波洗浄によって容易に酸化銅被膜と共に焼成残渣を除去することができる。   As shown in Comparative Example 1, when the resin-coated copper wire is baked in a nitrogen atmosphere and the resin is carbonized, a copper oxide film is not formed on the copper surface, so that the baking residue can be removed by peeling off the copper oxide film. It is difficult to recover high-purity copper because a large amount of baking residue remains. Moreover, as shown in Comparative Example 2, if the firing temperature is too low relative to the type of coating resin, the copper oxide film is not mechanically peeled off and a firing residue remains. As shown in Examples 1 to 4, when the copper oxide film is formed to have a mechanically peeled thickness, the baking residue can be easily removed together with the copper oxide film by ultrasonic cleaning in water.

具体的には、被覆樹脂がポリウレタン樹脂である場合、樹脂被覆の酸化分解を進めて銅線表面に酸化銅被膜を十分に形成するには比較例2の焼成温度は低く、一方、同種の樹脂被覆を有する実施例1〜4の焼成温度では、樹脂被覆の酸化分解と銅線表面の酸化銅被膜の形成が十分に進行する。従って、ポリウレタン樹脂の被覆を有する銅線Aについては、焼成温度は420℃〜470℃が好ましい。このように、樹脂被覆銅線の焼成温度は、被覆樹脂の種類に応じ、樹脂被覆の酸化分解を進めて銅線表面に酸化銅被膜を十分に形成する温度が好ましい。   Specifically, when the coating resin is a polyurethane resin, the firing temperature of Comparative Example 2 is low to advance the oxidative decomposition of the resin coating to sufficiently form a copper oxide film on the surface of the copper wire, while the same kind of resin is used. At the firing temperatures of Examples 1 to 4 having a coating, the oxidative decomposition of the resin coating and the formation of the copper oxide film on the surface of the copper wire proceed sufficiently. Accordingly, for the copper wire A having a polyurethane resin coating, the firing temperature is preferably 420 ° C to 470 ° C. Thus, the firing temperature of the resin-coated copper wire is preferably a temperature at which the oxidative decomposition of the resin coating is advanced to sufficiently form a copper oxide film on the surface of the copper wire, depending on the type of the coating resin.

Figure 0006489372
Figure 0006489372

Figure 0006489372
Figure 0006489372

〔実施例5〕
樹脂被覆銅線B(成分を表1に示す)50gを、電気炉に入れて、温度450℃、空気流量1L/分の条件で、1時間焼成処理した。炉内を室温まで冷却し、焼成銅線を取り出した。この焼成銅線を水中に浸し、水中で超音波を20分間かけて洗浄し、酸化被膜を取り除いた。結果を表3に示す。
Example 5
50 g of resin-coated copper wire B (components shown in Table 1) was placed in an electric furnace and fired for 1 hour under conditions of a temperature of 450 ° C. and an air flow rate of 1 L / min. The inside of the furnace was cooled to room temperature, and the fired copper wire was taken out. This baked copper wire was immersed in water, and ultrasonic waves were washed in water for 20 minutes to remove the oxide film. The results are shown in Table 3.

〔比較例4〕
樹脂被覆銅線Bについて、焼成処理後の超音波洗浄を行わない以外は実施例5と同様にして焼成処理を行った。結果を表3に示す。超音波洗浄を行わないので、焼成処理した銅線の表面には焼成残渣が付着しており、このため、実施例5よりも焼成残渣の炭素量および水素量が多く、鉄および鉛の残量が多い。
[Comparative Example 4]
The resin-coated copper wire B was fired in the same manner as in Example 5 except that ultrasonic cleaning after the firing process was not performed. The results are shown in Table 3. Since ultrasonic cleaning is not performed, the firing residue is attached to the surface of the fired copper wire. For this reason, the amount of carbon and hydrogen in the firing residue is larger than that in Example 5, and the remaining amount of iron and lead There are many.

〔実施例6〕
樹脂被覆銅線C(成分を表1に示す)50gを、電気炉に入れて、温度400℃、空気流量1L/分の条件で、1時間焼成処理した。炉内を室温まで冷却し、焼成銅線を取り出した。この焼成銅線を水中に浸し、水中で超音波を20分間かけて洗浄し、酸化被膜を取り除いた。結果を表3に示す。焼成処理によって樹脂被覆は酸化分解され、超音波洗浄によって焼成残渣が除去されるので、処理後の炭素量、水素量が少なく、また、銅線表面に付着していた鉄および鉛も酸化被膜と共に除去されるので、処理後の鉄および鉛の残量も少ない。
Example 6
50 g of a resin-coated copper wire C (components shown in Table 1) was placed in an electric furnace and baked for 1 hour under conditions of a temperature of 400 ° C. and an air flow rate of 1 L / min. The inside of the furnace was cooled to room temperature, and the fired copper wire was taken out. This baked copper wire was immersed in water, and ultrasonic waves were washed in water for 20 minutes to remove the oxide film. The results are shown in Table 3. The resin coating is oxidatively decomposed by the baking treatment, and the baking residue is removed by ultrasonic cleaning, so the amount of carbon and hydrogen after the treatment is small, and iron and lead attached to the surface of the copper wire together with the oxide film Since it is removed, the remaining amount of iron and lead after processing is small.

〔実施例7〕
樹脂被覆銅線D(成分を表1に示す)50gを、電気炉に入れて、温度500℃、空気流量1L/分の条件で、1時間焼成処理した。炉内を室温まで冷却し、焼成銅線を取り出した。この焼成銅線を水中に浸し、水中で超音波を20分間かけて洗浄し、酸化被膜を取り除いた。結果を表3に示す。焼成処理によって樹脂被覆は酸化分解され、超音波洗浄によって焼成残渣が除去されるので、処理後の炭素量、水素量が少なく、また、銅線表面に付着していた鉄および鉛も酸化被膜と共に除去されるので、処理後の鉄および鉛の残量も少ない。
Example 7
50 g of a resin-coated copper wire D (components shown in Table 1) was placed in an electric furnace and fired for 1 hour under conditions of a temperature of 500 ° C. and an air flow rate of 1 L / min. The inside of the furnace was cooled to room temperature, and the fired copper wire was taken out. This baked copper wire was immersed in water, and ultrasonic waves were washed in water for 20 minutes to remove the oxide film. The results are shown in Table 3. The resin coating is oxidatively decomposed by the baking treatment, and the baking residue is removed by ultrasonic cleaning, so the amount of carbon and hydrogen after the treatment is small, and iron and lead attached to the surface of the copper wire together with the oxide film Since it is removed, the remaining amount of iron and lead after processing is small.

Figure 0006489372
Figure 0006489372

10−剥離機、11−貯槽、12−集塵機、13−取出口、14−回転軸、15−剥離羽根、20−破砕片、30−破砕機、31−磁力選別機、32−風力選別機、33−焼成炉、34−剥離機、35−集塵機。 10-Peeling machine, 11-Storage tank, 12-Dust collector, 13-Takeout port, 14-Rotating shaft, 15-Peeling blade, 20-Crushing piece, 30-Crushing machine, 31-Magnetic sorter, 32-Wind sorter 33-firing furnace, 34-peeler, 35-dust collector.

Claims (5)

樹脂被覆銅線を、空気雰囲気下で、樹脂被覆が炭化せずに酸化分解すると共に、銅線表面に酸化銅被膜を機械的に剥離される膜厚5〜10μmに形成する温度で焼成し、該焼成後、付着している焼成残渣と共に酸化銅被膜を機械的に剥離して銅線を回収することを特徴とする銅の回収方法。 The resin-coated copper wire is baked at a temperature at which the resin coating is oxidized and decomposed without being carbonized in an air atmosphere, and the copper oxide film is mechanically peeled on the surface of the copper wire to a thickness of 5 to 10 μm. A copper recovery method, wherein after the baking, the copper oxide film is mechanically peeled off together with the attached baking residue to recover the copper wire. ポリエステル樹脂被覆を有する銅線を、またはポリウレタン樹脂被覆を有する銅線を、空気雰囲気下、420℃〜470℃で焼成する請求項1に記載する銅の回収方法。 The copper recovery method according to claim 1, wherein a copper wire having a polyester resin coating or a copper wire having a polyurethane resin coating is fired at 420 ° C to 470 ° C in an air atmosphere. 焼成した樹脂被覆銅線を水中で超音波洗浄して、付着している焼成残渣と共に酸化銅被膜を剥離する請求項1または請求項2に記載する銅の回収方法。 The method for recovering copper according to claim 1 or 2, wherein the fired resin-coated copper wire is subjected to ultrasonic cleaning in water, and the copper oxide film is peeled off together with the adhered firing residue. 焼成した樹脂被覆銅線を、回転軸に剥離羽根を有する剥離機を用い、あるいはエアーテーブルを用いて、付着している焼成残渣と共に酸化銅被膜を剥離する請求項1または請求項2に記載する銅の回収方法。 The copper oxide film is peeled off from the fired resin-coated copper wire together with the attached fired residue using a peeling machine having a peeling blade on the rotating shaft or using an air table. Copper recovery method. 樹脂被覆銅線を有する部材を破砕し、この破砕片を磁力選別して鉄材を分離し、分別した破砕片を焼成炉に入れて、樹脂被覆が酸化分解すると共に銅線表面に酸化銅被膜が形成する温度で焼成し、焼成した破砕片を機械的な剥離手段に入れて、付着している焼成残渣と共に酸化銅被膜を剥離して銅線を回収する請求項1〜請求項4の何れかに記載する銅の回収方法。
The member having the resin-coated copper wire is crushed, the crushed pieces are magnetically separated to separate the iron material, the separated crushed pieces are put in a firing furnace, the resin coating is oxidatively decomposed, and the copper oxide film is formed on the copper wire surface Any one of Claims 1-4 which baked at the temperature to form, put the baked crushing piece in a mechanical peeling means, peels a copper oxide film with the attached baking residue, and collects a copper wire . The method for recovering copper described in 1.
JP2015186176A 2015-09-23 2015-09-23 Method for recovering copper from resin-coated copper wire Active JP6489372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186176A JP6489372B2 (en) 2015-09-23 2015-09-23 Method for recovering copper from resin-coated copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186176A JP6489372B2 (en) 2015-09-23 2015-09-23 Method for recovering copper from resin-coated copper wire

Publications (2)

Publication Number Publication Date
JP2017061584A JP2017061584A (en) 2017-03-30
JP6489372B2 true JP6489372B2 (en) 2019-03-27

Family

ID=58429171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186176A Active JP6489372B2 (en) 2015-09-23 2015-09-23 Method for recovering copper from resin-coated copper wire

Country Status (1)

Country Link
JP (1) JP6489372B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6632926B2 (en) * 2016-03-30 2020-01-22 Dowaエコシステム株式会社 Metal recovery method and metal recovery system from metal electric wire
WO2019222878A1 (en) * 2018-05-21 2019-11-28 Que nanping Pyrolysis and liquation-based continuous treatment apparatus for waste circuit boards/waste enamelled wires
JP7417852B2 (en) * 2018-10-19 2024-01-19 三菱マテリアル株式会社 How to treat covered wires
CN112143910B (en) * 2019-06-28 2022-12-06 铜陵富翔铜再生循环利用有限公司 Ultrasonic reinforced wet separation method for waste enameled wire
CN114038621B (en) * 2020-12-16 2023-11-21 金杯电工电磁线有限公司 Copper oxide insulated round copper wire and preparation method and application thereof
CN113977808B (en) * 2021-11-25 2023-05-26 重庆市科诚电机制造有限公司 Rubber separation and recovery device for waste stator of motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125487A (en) * 1978-03-22 1979-09-28 Meisei Engineering Method of and apparatus for recovering copper wire by burning
TW200916215A (en) * 2007-07-05 2009-04-16 Panasonic Corp Method of recovering valuable materials from waste household electrical appliance
JP6056088B2 (en) * 2012-09-28 2017-01-11 株式会社アステック入江 Processing method for resin-coated wires

Also Published As

Publication number Publication date
JP2017061584A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6489372B2 (en) Method for recovering copper from resin-coated copper wire
US20160068929A1 (en) EXTRACTION OF RARE EARTH METALS FROM NdFeB USING SELECTIVE SULFATION ROASTING
JP6056088B2 (en) Processing method for resin-coated wires
WO2013096893A1 (en) A system and method for extraction and refining of titanium
JP5259231B2 (en) Method for recovering valuable metals from waste wires
JP2011121049A (en) Silicon recycling system and silicon recycling method
CN112135793B (en) Method for producing graphene oxide from electrode graphite waste
CN112771742B (en) Method for processing coated electric wire
EP3802890A1 (en) Hydrometallurgical method for the recovery of base metals and precious metals from a waste material
KR101562007B1 (en) Leaching method of neodymium from permanent magnet scrap
US6235074B1 (en) Process of recovering copper from winding
CA3099835C (en) A method for the manufacture of reduced graphene oxide from electrode graphite scrap
JP6632926B2 (en) Metal recovery method and metal recovery system from metal electric wire
JP5337778B2 (en) Permanent magnet recovery method and apparatus therefor
JP6604515B2 (en) Method for recovering copper from resin-coated copper wire
CN107312931B (en) Method that is a kind of while recycling noble metal and prepare HIGH-PURITY SILICON
US2939209A (en) Reconditioning of electric apparatus
JP2022018253A (en) Recycling method of motor stator
JPH1025523A (en) Method for recovering copper from winding
TWI385254B (en) A method for the recycling of copper containing scrap silicon wafer
JPH11239782A (en) Waste disintegrating treatment method
JP2012171858A (en) Method for melting recovered silicon waste
JP6284133B2 (en) Integrated circuit processing method
Li et al. Efficient and environmentally friendly separation and recycling of cathode materials and current collectors for lithium-ion batteries by fast Joule heating
CN115369258A (en) Low-silver low-sulfur ultrahigh-purity copper purification vacuum melting process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6489372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150