JP6488758B2 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP6488758B2
JP6488758B2 JP2015036239A JP2015036239A JP6488758B2 JP 6488758 B2 JP6488758 B2 JP 6488758B2 JP 2015036239 A JP2015036239 A JP 2015036239A JP 2015036239 A JP2015036239 A JP 2015036239A JP 6488758 B2 JP6488758 B2 JP 6488758B2
Authority
JP
Japan
Prior art keywords
intermediate plate
main body
absorbing member
hole
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015036239A
Other languages
Japanese (ja)
Other versions
JP2016155509A (en
Inventor
靖典 澤
靖典 澤
嘉明 中澤
嘉明 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015036239A priority Critical patent/JP6488758B2/en
Publication of JP2016155509A publication Critical patent/JP2016155509A/en
Application granted granted Critical
Publication of JP6488758B2 publication Critical patent/JP6488758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、軸方向に負荷される衝撃荷重を周期的な座屈によって吸収する衝撃吸収部材に関する。   The present invention relates to an impact absorbing member that absorbs an impact load applied in an axial direction by periodic buckling.

自動車や鉄道、船舶等の輸送機械では、衝撃吸収部材が用いられる。その衝撃吸収部材は、衝突時に衝撃荷重を受けて変形することによって衝突のエネルギーを吸収し、その結果、乗員の安全の確保と修理費用の軽減を図ることができる。このような衝撃吸収部材として、例えば、自動車の骨格部材やクラッシュボックスがある。   Shock absorbers are used in transport machines such as automobiles, railways, and ships. The impact absorbing member absorbs the energy of the collision by being deformed by receiving an impact load at the time of the collision, and as a result, it is possible to ensure the safety of the occupant and reduce the repair cost. Examples of such a shock absorbing member include an automobile skeleton member and a crash box.

図1は、自動車における骨格部材およびクラッシュボックスの配置を模式的に示す斜視図である。同図に示すように、自動車の側部には、フロントサイドメンバー2、リアサイドメンバー3およびサイドシル7が配置されている。これらの部材は、いずれも、自動車の前後方向に沿って設けられる。フロントサイドメンバー2は自動車の側部のうちの前部に、リアサイドメンバー3は自動車の側部のうちの後部に、サイドシル7は自動車の側部のうちの中間部に配置される。   FIG. 1 is a perspective view schematically showing the arrangement of a skeleton member and a crash box in an automobile. As shown in the figure, a front side member 2, a rear side member 3, and a side sill 7 are disposed on the side of the automobile. All of these members are provided along the longitudinal direction of the automobile. The front side member 2 is arranged at the front part of the side part of the automobile, the rear side member 3 is arranged at the rear part of the side part of the automobile, and the side sill 7 is arranged at the middle part of the side part of the automobile.

自動車の前後方向の中間部には、床(フロア)が設けられる。そのフロアには、フロアクロスメンバー(4、4’)が配置され、フロアクロスメンバー(4、4’)は自動車の幅方向に延びる。   A floor (floor) is provided at an intermediate portion in the front-rear direction of the automobile. Floor cross members (4, 4 ') are arranged on the floor, and the floor cross members (4, 4') extend in the width direction of the automobile.

クラッシュボックス(1a、1b)は、上述の骨格部材で構成されるフレームの先端に配置される。より具体的には、第1のクラッシュボックス1aがフロントサイドメンバー2の前端に設けられ、第2のクラッシュボックス1bがリアサイドメンバー3の後端に設けられる。   The crash box (1a, 1b) is disposed at the tip of the frame formed of the above-described skeleton member. More specifically, the first crash box 1 a is provided at the front end of the front side member 2, and the second crash box 1 b is provided at the rear end of the rear side member 3.

これらのフロントサイドメンバー2、リアサイドメンバー3、サイドシル7およびフロアクロスメンバー(4、4’)といった骨格部材、並びに、クラッシュボックス(1a、1b)は、衝突時にそれらの軸方向に荷重が負荷される場合がある。この場合、それらの部材が軸方向に蛇腹状に縮むように座屈変形することにより、衝撃荷重を吸収する。   The frame members such as the front side member 2, the rear side member 3, the side sill 7 and the floor cross member (4, 4 '), and the crash box (1a, 1b) are loaded in the axial direction at the time of collision. There is a case. In this case, the impact load is absorbed by buckling and deforming such members so as to contract in a bellows shape in the axial direction.

このような衝撃吸収部材は、材料である金属板に曲げ加工や重ね合わせ溶接を施すことによって作製できる。金属板から作製される衝撃吸収部材は、筒状であり、すなわち、軸方向と垂直な断面での形状が閉じている。このため、衝撃吸収部材は、その内部が中空である。   Such an impact-absorbing member can be produced by subjecting a metal plate as a material to bending or lap welding. The shock absorbing member produced from the metal plate has a cylindrical shape, that is, a shape in a cross section perpendicular to the axial direction is closed. For this reason, the inside of the shock absorbing member is hollow.

衝撃荷重を周期的な座屈によって吸収する衝撃吸収部材に関し、従来から種々の提案がなされており、例えば、特許文献1がある。特許文献1には、クラッシュボックスが記載されている。そのクラッシュボックスは、中空断面を形成する部材(本体)に加え、中空断面の上下方向の中央付近で中空領域を上下に仕切るように水平状に延びた中板を備える。中板を備えることにより、クラッシュボックスが衝突時に座屈して潰れずに、折れ曲がるのが抑制されるとしている。その構成例では、中空断面を形成する部材(第1の部材、第2の部材)および中板を構成する第3の部材が、いずれも金属板からなり、同じ板厚である。   Various proposals have hitherto been made regarding impact absorbing members that absorb impact loads by periodic buckling. Patent Document 1 describes a crash box. In addition to a member (main body) that forms a hollow cross section, the crush box includes an intermediate plate that extends horizontally so as to partition the hollow region up and down near the center in the vertical direction of the hollow cross section. By providing the intermediate plate, the crash box is prevented from buckling and collapsing at the time of collision, and is prevented from being bent. In the configuration example, the members (first member and second member) forming the hollow cross section and the third member forming the intermediate plate are both made of metal plates and have the same plate thickness.

特許第4766422号公報Japanese Patent No. 4766422 特願2014−212631号Japanese Patent Application No. 2014-212231

綾紀元、他1名、「車体のエネルギ吸収特性」、自動車技術会論文集,No.7,1974、p.60−66Ayaki Gen and one other, “Energy Absorption Characteristics of Car Body”, Automobile Engineering Society Proceedings, No. 7, 1974, p. 60-66

衝撃吸収部材は、前述の通り、金属板から作製される場合がある。この場合、軸方向と垂直な断面の形状が閉じているので、衝撃吸収部材の内部が中空である。特許文献1には、衝撃吸収部材(本体)の中空部に、中板を軸方向に沿って設けることが記載されている。   As described above, the impact absorbing member may be made of a metal plate. In this case, since the shape of the cross section perpendicular to the axial direction is closed, the inside of the shock absorbing member is hollow. Patent Document 1 describes that an intermediate plate is provided along the axial direction in a hollow portion of an impact absorbing member (main body).

このように衝撃吸収部材を本体および中板で構成すれば、確かに、本体によるエネルギーの吸収を中板が補助することが可能となる。このため、衝撃吸収部材の吸収エネルギーを大きくすることができ、例えば、大型車の衝撃吸収部材において有効である。   If the impact absorbing member is constituted by the main body and the middle plate in this way, the middle plate can surely assist the energy absorption by the main body. For this reason, the absorbed energy of the impact absorbing member can be increased, and it is effective, for example, in the impact absorbing member of a large vehicle.

衝撃吸収部材を本体および中板で構成する場合、従来、エネルギーの吸収を主に本体が担い、補助的に中板が担っていた。このため、中板の板厚は、本体の板厚より、薄かった。あるいは、特許文献1の構成例で示されるように、中板の板厚は、本体の板厚と同じであった。   When the impact absorbing member is composed of a main body and an intermediate plate, conventionally, the main body is mainly responsible for energy absorption, and the intermediate plate is auxiliary. For this reason, the thickness of the intermediate plate was thinner than the thickness of the main body. Alternatively, as shown in the configuration example of Patent Document 1, the plate thickness of the middle plate is the same as the plate thickness of the main body.

ところで、自動車では、燃費向上の観点から、部品の軽量化が要求されている。このため、衝撃吸収部材においても、吸収エネルギーを確保しつつ軽量化することが求められる。前述の特許文献1に記載されるような本体と中板を備える衝撃吸収部材においても、吸収エネルギーを確保しつつ軽量化することが求められる。   By the way, in the automobile, the weight reduction of components is requested | required from a viewpoint of a fuel consumption improvement. For this reason, the impact absorbing member is also required to be reduced in weight while ensuring the absorbed energy. Even in the impact absorbing member including the main body and the intermediate plate as described in Patent Document 1, it is required to reduce the weight while ensuring the absorbed energy.

本発明は、このような問題に鑑みてなされたものであり、吸収エネルギーを確保しつつ軽量化できる衝撃吸収部材を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the impact-absorbing member which can be reduced in weight, ensuring absorption energy.

本発明の一実施形態である衝撃吸収部材は、金属板から成形される本体および中板を備える衝撃吸収部材であって、前記本体は、軸方向に垂直な断面における形状が4角形であり、前記中板は、前記本体の軸方向に沿って設けられるとともに、幅方向の両端が前記4角形の一対の長辺にそれぞれ重ね合わせて接合され、さらに、前記軸方向に沿って並べて所定の領域内に配置される複数の穴を有し、前記所定の領域は、前記中板の幅方向の中央に位置し、かつ、前記中板の幅(mm)に対して39%の幅(mm)であり、前記中板の板厚(mm)は、前記本体の板厚(mm)に対して140〜290%である。   The shock absorbing member according to an embodiment of the present invention is a shock absorbing member including a main body and an intermediate plate formed from a metal plate, and the main body has a quadrangular shape in a cross section perpendicular to the axial direction. The intermediate plate is provided along the axial direction of the main body, and both ends in the width direction are overlapped and joined to the pair of long sides of the quadrangle, and further arranged in a predetermined region along the axial direction. A plurality of holes disposed in the center plate, and the predetermined region is located in the center in the width direction of the intermediate plate and is 39% wide (mm) with respect to the width (mm) of the intermediate plate. The thickness (mm) of the intermediate plate is 140 to 290% with respect to the thickness (mm) of the main body.

前記複数の穴の中心間隔(mm)は、座屈周期(mm)に対して75〜135%であるのが好ましい。前記座屈周期は、前記4角形を前記中板で仕切ることによって形成される第1および第2の4角形について、平均辺長さ(mm)をそれぞれ算出し、算出した前記平均辺長さ(mm)を平均したものである。   The center interval (mm) of the plurality of holes is preferably 75 to 135% with respect to the buckling period (mm). The buckling period is calculated by calculating an average side length (mm) for each of the first and second quadrilaterals formed by dividing the quadrilateral with the intermediate plate, and calculating the average side length ( mm) is averaged.

前記穴は、前記中板の幅方向の両端に近づくに従い、前記軸方向の長さが小さくなるのが好ましい。   It is preferable that the length of the hole in the axial direction decreases as the hole approaches both ends in the width direction of the intermediate plate.

本発明の衝撃吸収部材は、中板のうちで幅方向の中央に位置し、かつ、所定の幅である領域内に穴が本体の軸方向に並べて配置される。また、中板の板厚は、本体の板厚よりも厚い。これらより、単位質量あたりの吸収エネルギーを向上させることができ、衝撃吸収部材の軽量化が可能となる。   The impact absorbing member of the present invention is located in the center in the width direction of the middle plate, and the holes are arranged in the axial direction of the main body in a region having a predetermined width. Further, the thickness of the middle plate is thicker than the thickness of the main body. As a result, the absorbed energy per unit mass can be improved, and the weight of the impact absorbing member can be reduced.

図1は、自動車における骨格部材およびクラッシュボックスの配置を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the arrangement of a skeleton member and a crash box in an automobile. 図2Aは、本発明の衝撃吸収部材の構成例を模式的に示す正面図である。FIG. 2A is a front view schematically showing a configuration example of the impact absorbing member of the present invention. 図2Bは、本発明の衝撃吸収部材の構成例を示す模式図であり、図2AのA−A断面図である。FIG. 2B is a schematic diagram illustrating a configuration example of the shock absorbing member of the present invention, and is a cross-sectional view taken along line AA in FIG. 2A. 図2Cは、本発明の衝撃吸収部材の構成例を示す模式図であり、図2AのB−B断面図である。FIG. 2C is a schematic diagram illustrating a configuration example of the shock absorbing member of the present invention, and is a cross-sectional view taken along line BB in FIG. 2A. 図3Aは、平均辺長さの算出における各辺の長さを例示する横断面図であり、本体が1枚の金属板からなる場合を示す。FIG. 3A is a cross-sectional view illustrating the length of each side in the calculation of the average side length, and shows a case where the main body is made of one metal plate. 図3Bは、平均辺長さの算出における各辺の長さを例示する横断面図であり、本体が2枚の金属板からなる場合を示す。FIG. 3B is a cross-sectional view illustrating the length of each side in the calculation of the average side length, and shows a case where the main body is made of two metal plates. 図4Aは、穴が長方形である場合を示す図である。FIG. 4A is a diagram illustrating a case where the hole is rectangular. 図4Bは、穴がひし形である場合を示す図である。FIG. 4B is a diagram illustrating a case where the hole has a diamond shape. 図5は、中板の穴の幅と、単位質量あたりの吸収エネルギーの関係を示す図である。FIG. 5 is a diagram showing the relationship between the width of the hole in the intermediate plate and the absorbed energy per unit mass. 図6は、中板の板厚と、吸収エネルギー比の関係を示す図である。FIG. 6 is a diagram showing the relationship between the thickness of the intermediate plate and the absorbed energy ratio. 図7は、座屈周期に対する穴の中心間隔の割合と、単位質量あたりの吸収エネルギーの関係を示す図である。FIG. 7 is a graph showing the relationship between the ratio of the center interval of the holes to the buckling period and the absorbed energy per unit mass. 図8は、穴の形状と、単位質量あたりの吸収エネルギーの関係を示す図である。FIG. 8 is a diagram showing the relationship between the shape of the hole and the absorbed energy per unit mass.

1.本発明に至る知見
本発明者らは、特許文献2において、閉断面を有する本体の板厚よりも、中空部に設けられる中板の板厚を厚くすることを提案した。中板の板厚を厚くすることにより、衝撃吸収部材が周期的に座屈変形する際に、中板の両側で位相が異なる座屈変形が発生し、その変形の振幅(座屈変形に伴って形成される山の高さと谷の深さ)が小さくなるとともに波長(周期)が短くなる。これにより、衝撃吸収部材の吸収エネルギーが増加するのみならず、単位質量当たりの吸収エネルギーを増加させることができる。したがって、本体の板厚を薄くした場合でも、吸収エネルギーを確保することができ、軽量化を行うことが可能となる。
1. Knowledge to Attain the Present Invention In the patent document 2, the present inventors have proposed that the thickness of the intermediate plate provided in the hollow portion is made thicker than the thickness of the main body having a closed cross section. By increasing the thickness of the middle plate, when the shock absorbing member periodically buckles and deforms, buckling deformation with different phases occurs on both sides of the middle plate, and the amplitude of the deformation (with buckling deformation) (The height of the peaks and the depth of the valleys) are reduced, and the wavelength (period) is shortened. Thereby, not only the absorbed energy of the impact absorbing member increases, but also the absorbed energy per unit mass can be increased. Therefore, even when the thickness of the main body is reduced, the absorbed energy can be secured and the weight can be reduced.

一方で、本発明者らは、吸収エネルギーを確保しながら軽量化を行うため、中板に穴を設けることによる肉抜きを検討した。ここで、中板の役割として、衝撃吸収時の口開きの抑制がある。口開きとは、本体が周期的に座屈変形する際に、本体の横断面において対向する長辺が湾曲し、長辺の中央で長辺同士の間隔が広がる現象である。このような口開きを抑制するため、中板の両端は、本体の横断面における一対の長辺にそれぞれ接合される。   On the other hand, in order to reduce the weight while securing the absorbed energy, the present inventors examined the removal of the meat by providing a hole in the intermediate plate. Here, the role of the intermediate plate is to suppress opening of the mouth when absorbing the shock. Mouth opening is a phenomenon in which, when the main body is periodically buckled and deformed, the long sides facing each other in the cross section of the main body are curved, and the distance between the long sides is widened at the center of the long side. In order to suppress such opening, both ends of the intermediate plate are joined to a pair of long sides in the cross section of the main body.

中板の幅方向の両端部は、折り曲げられて本体の一対の長辺に重ね合わせた状態でそれぞれ接合される。衝撃吸収時には、両端部の折り曲げに伴って形成される稜線部(曲げR部)も衝撃吸収に寄与する。これは、中板の稜線部が本体の軸方向に沿うように配置されることによる。   Both end portions in the width direction of the intermediate plate are joined in a state of being folded and overlapped with a pair of long sides of the main body. At the time of impact absorption, a ridge line portion (bent R portion) formed along with bending of both ends also contributes to the impact absorption. This is because the ridge line portion of the intermediate plate is arranged along the axial direction of the main body.

ところで、非特許文献1には、衝撃吸収時の座屈変形の周期(以下、「座屈周期」ともいう)が、本体の閉断面の平均辺長さ(mm)となることが開示されている。特許文献1のように中板を設ければ、本体の閉断面が中板で仕切られて2つの閉断面に分割される。この場合、座屈周期は、中板で分割された各閉断面の平均辺長さを平均したものとなる。このため、中板を設けることにより、衝撃吸収部材の平均辺長さが小さくなり、座屈周期も小さくなるので、衝撃吸収能が向上する。   By the way, Non-Patent Document 1 discloses that the period of buckling deformation during shock absorption (hereinafter also referred to as “buckling period”) is the average side length (mm) of the closed cross section of the main body. Yes. If an intermediate plate is provided as in Patent Document 1, the closed cross section of the main body is partitioned by the intermediate plate and divided into two closed cross sections. In this case, the buckling period is an average of the average side lengths of the closed cross sections divided by the intermediate plate. For this reason, by providing the intermediate plate, the average side length of the shock absorbing member is reduced and the buckling period is also reduced, so that the shock absorbing ability is improved.

中板に穴を設ける肉抜きを行うにあたり、上述の中板の役割、および、座屈周期を考慮し、鋭意検討を重ねた結果、本発明者らは、下記(1)および(2)の知見を得た。
(1)中板に穴を設ける場合、穴の一部が稜線部に配置されると、衝撃吸収能が損なわれる。換言すると、中板の幅方向の中央領域に穴を配置すれば、衝撃吸収能を確保できる。
(2)穴のピッチ(間隔)を座屈変形のピッチ(周期)に同期させれば、周期的な座屈変形を促進でき、衝撃吸収能を向上できる。
As a result of intensive studies in consideration of the role of the above-described intermediate plate and the buckling cycle in performing the lightening for providing a hole in the intermediate plate, the present inventors have found that the following (1) and (2) Obtained knowledge.
(1) When providing a hole in the intermediate plate, if a part of the hole is disposed in the ridge line portion, the shock absorbing ability is impaired. In other words, if the hole is arranged in the center region in the width direction of the intermediate plate, the shock absorbing ability can be secured.
(2) If the pitch (interval) of the holes is synchronized with the pitch (period) of buckling deformation, the periodic buckling deformation can be promoted, and the impact absorbing ability can be improved.

本発明者らは、上記(1)および(2)の知見に基づき、後述の実施例に示す試験を行い、前述の本発明を完成させた。以下に、図面を参照しながら、本発明の一実施形態を説明する。   Based on the findings of the above (1) and (2), the present inventors conducted the tests shown in the examples described later, and completed the above-described present invention. An embodiment of the present invention will be described below with reference to the drawings.

2.本実施形態の衝撃吸収部材
図2A〜2Cは、本発明の衝撃吸収部材の構成例を示す模式図であり、図2Aは正面図、図2BはA−A断面図、図2CはB−B断面図である。同図に示す衝撃吸収部材10は、本体20と、中板30とを備える。
2. 2A to 2C are schematic views showing a configuration example of the shock absorbing member of the present invention, FIG. 2A is a front view, FIG. 2B is an AA cross-sectional view, and FIG. It is sectional drawing. The impact absorbing member 10 shown in the figure includes a main body 20 and an intermediate plate 30.

本体20は、同図Bに示すように、軸方向と垂直な断面(横断面)における形状が4角形であり、その4角形の各辺は曲線でつながれる。同図に示す本体20は、横断面における形状が長方形であり、長方形の各辺は、曲げ加工に伴って発生する円弧でつながれる。また、本体20は、一枚の金属板からなり、閉断面を有する。4角形の4辺のうちで一方の対辺は長辺であり、他方の対辺は、長辺より短い短辺である。   As shown in FIG. B, the main body 20 has a quadrangular shape in a cross section (transverse cross section) perpendicular to the axial direction, and each side of the quadrangular shape is connected by a curve. The main body 20 shown in the figure has a rectangular shape in cross section, and each side of the rectangle is connected by an arc generated along with bending. The main body 20 is made of a single metal plate and has a closed cross section. Of the four sides of the quadrangle, one opposite side is a long side, and the other opposite side is a short side shorter than the long side.

中板30は、金属板からなり、本体20の中空部に軸方向に沿って設けられる。その中板30は、本体20と接合される両端部と、両端部の間に設けられる直線状部と、端部と直線状部とをつなぐ稜線部とを有する。また、中板30は、両端部が、本体20の4角形の4辺のうちで一対の長辺20aにそれぞれ重ね合わせ接合される。この中板30によって本体20の4角形が仕切られ、本体20および中板30によって2つの4角形が形成される。   The middle plate 30 is made of a metal plate and is provided in the hollow portion of the main body 20 along the axial direction. The intermediate plate 30 has both ends joined to the main body 20, a linear portion provided between both ends, and a ridge line portion connecting the end and the linear portion. Further, both ends of the intermediate plate 30 are overlapped and joined to the pair of long sides 20 a among the four sides of the quadrangle of the main body 20. The intermediate plate 30 partitions the quadrangle of the main body 20, and the main body 20 and the intermediate plate 30 form two quadrangles.

中板30は、複数の穴30aを有し、その穴30aは、本体20の軸方向に沿って並べて配置される。同図Cに示す中板30には、中板30の幅方向の中央に楕円の穴が等間隔(ピッチ)で設けられる。このように複数の穴30aを設けることにより、肉抜きが図られ、衝撃吸収部材を軽量化できる。   The intermediate plate 30 has a plurality of holes 30 a, and the holes 30 a are arranged side by side along the axial direction of the main body 20. In the middle plate 30 shown in FIG. 3C, elliptical holes are provided at equal intervals (pitch) in the center in the width direction of the middle plate 30. By providing the plurality of holes 30a in this manner, the lightening is achieved and the impact absorbing member can be reduced in weight.

また、中板30の穴30aは、所定の領域X内に配置される。その領域Xは、中板30の幅方向の中央に位置し、本体20の軸方向に沿って伸びる。領域Xの幅は、中板の幅W1(mm)の39%である。ただし、中板の幅W1は、中板30の直線状部の長さとする。   Further, the hole 30 a of the intermediate plate 30 is disposed in the predetermined region X. The region X is located at the center in the width direction of the intermediate plate 30 and extends along the axial direction of the main body 20. The width of the region X is 39% of the width W1 (mm) of the intermediate plate. However, the width W1 of the intermediate plate is the length of the linear portion of the intermediate plate 30.

ここで、前述の通り、衝撃吸収時に中板30の稜線部が衝撃吸収に寄与する。一方で、中板30の中央は、衝撃吸収にほとんど寄与しない。領域X内に穴30aを配置すれば、中板の稜線部およびその周辺には穴が侵入しないので、稜線部による衝撃吸収作用を維持しながら、衝撃吸収部材を軽量化できる。これにより、単位質量あたりの吸収エネルギーを増加させることができる。   Here, as described above, the ridge line portion of the intermediate plate 30 contributes to shock absorption during shock absorption. On the other hand, the center of the middle plate 30 hardly contributes to shock absorption. If the hole 30a is disposed in the region X, since the hole does not enter the ridge line portion of the intermediate plate and the periphery thereof, the shock absorbing member can be reduced in weight while maintaining the shock absorbing action by the ridge line portion. Thereby, the absorbed energy per unit mass can be increased.

穴30aの一部または全部が領域X外に位置すると、単位質量あたりの吸収エネルギーが低下する場合がある。これは、中板30の稜線部による衝撃吸収効果が阻害され、衝撃吸収時に周期的な座屈変形が不安定となるからである。   When part or all of the hole 30a is located outside the region X, the absorbed energy per unit mass may be reduced. This is because the impact absorption effect by the ridge portion of the intermediate plate 30 is hindered, and the periodic buckling deformation becomes unstable at the time of impact absorption.

穴の幅Whの上限は、自ずと、領域Xの幅に対して100%となる。穴の幅Whは、軽量化を促進する観点から、領域Xの幅に対して50%以上とするのが好ましい。   The upper limit of the hole width Wh is naturally 100% of the width of the region X. The width Wh of the hole is preferably 50% or more with respect to the width of the region X from the viewpoint of promoting weight reduction.

中板30の板厚(mm)は、前述の特許文献2と同様に、本体20の板厚(mm)よりも厚くする。具体的には、中板30の板厚(mm)は、本体20の板厚(mm)に対して140〜290%とする。   The plate thickness (mm) of the intermediate plate 30 is made thicker than the plate thickness (mm) of the main body 20 as in the above-described Patent Document 2. Specifically, the plate thickness (mm) of the intermediate plate 30 is set to 140 to 290% with respect to the plate thickness (mm) of the main body 20.

中板30の板厚(mm)が140%未満であれば、領域X内に穴を配置しても、後述の実施例に示すように、単位質量あたりの吸収エネルギーが低下する。これは、本体20の口開きを抑制できないことと、上下のそれぞれの空間の一辺としては薄くなりすぎ、座屈時のバランスが崩れ安定した座屈が阻害されてしまうことによる。   If the plate thickness (mm) of the intermediate plate 30 is less than 140%, even if a hole is arranged in the region X, the absorbed energy per unit mass is reduced as shown in the examples described later. This is because the opening of the main body 20 cannot be suppressed, and the sides of the upper and lower spaces are too thin, and the balance during buckling is lost and stable buckling is inhibited.

中板30の板厚(mm)が140〜290%であれば、領域X内に穴を設けることにより、軽量化しながら、吸収エネルギーを向上でき、単位質量あたりの吸収エネルギーも向上できる。これは、特許文献2で明らかにする通り、中板30の両側で位相が異なる周期的な座屈変形が発生し、その変形の振幅が小さくなるとともに波長が短くなることによる。単位質量あたりの吸収エネルギーをより向上させる観点から、中板30の板厚(mm)は、150%以上とするのが好ましく、220%以上とするのがより好ましい。同様の観点から、中板30の板厚(mm)は、285%以下とするのが好ましく、280%以下とするのがより好ましい(後述の図6参照)。   If the thickness (mm) of the intermediate plate 30 is 140 to 290%, by providing a hole in the region X, the absorbed energy can be improved while reducing the weight, and the absorbed energy per unit mass can also be improved. This is because, as will be clarified in Patent Document 2, periodic buckling deformation with different phases occurs on both sides of the intermediate plate 30, and the amplitude of the deformation becomes smaller and the wavelength becomes shorter. From the viewpoint of further improving the absorbed energy per unit mass, the thickness (mm) of the intermediate plate 30 is preferably 150% or more, and more preferably 220% or more. From the same viewpoint, the thickness (mm) of the intermediate plate 30 is preferably 285% or less, and more preferably 280% or less (see FIG. 6 described later).

中板30の板厚(mm)が290%を超えると、後述の実施例に示すように、領域X内に穴を配置しても、単位質量あたりの吸収エネルギーが低下する。これは、中板30の厚肉化による質量増の影響と、上下のそれぞれの空間の一辺としては厚くなりすぎ、座屈時のバランスが崩れ安定した座屈が阻害されてしまうことによる。   If the plate thickness (mm) of the intermediate plate 30 exceeds 290%, the absorbed energy per unit mass decreases even if holes are arranged in the region X, as shown in examples described later. This is due to the influence of the mass increase due to the thickening of the intermediate plate 30 and the fact that the sides of the upper and lower spaces become too thick, and the balance during buckling is lost and stable buckling is inhibited.

穴30aの中心間隔(ピッチ)Phは、特に制限はなく、例えば、中板30と本体20の接合する際の作業性を考慮し、適宜設定してもよい。また、等間隔としてもよく、不等間隔としてもよい。穴30aの中心間隔Ph(mm)は、座屈周期(mm)に対して75〜135%であるのが好ましい。なお、穴30aの中心間隔Phは、本体の軸方向の間隔である。   The center interval (pitch) Ph of the holes 30a is not particularly limited, and may be appropriately set in consideration of workability when the intermediate plate 30 and the main body 20 are joined. Moreover, it is good also as an equal interval and good also as an unequal interval. The center interval Ph (mm) of the holes 30a is preferably 75 to 135% with respect to the buckling period (mm). The center interval Ph of the holes 30a is the interval in the axial direction of the main body.

ここで、座屈周期は、以下の手順によって算出する。
(1)本体20の4角形を中板30で仕切ることによって形成される第1および第2の4角形について、4辺の平均辺長さ(mm)をそれぞれ算出する。
(2)第1の4角形の平均辺長さ(mm)と、第2の4角形の平均辺長さ(mm)との平均値を求め、座屈周期とする。
Here, the buckling period is calculated by the following procedure.
(1) For the first and second quadrilaterals formed by partitioning the quadrilateral of the main body 20 with the intermediate plate 30, the average side length (mm) of the four sides is calculated.
(2) The average value of the average side length (mm) of the first quadrangle and the average side length (mm) of the second quadrangle is obtained and set as a buckling period.

図3Aおよび3Bは、平均辺長さの算出における各辺の長さを例示する横断面図であり、図3Aは本体が1枚の金属板からなる場合、図3Bは本体が2枚の金属板からなる場合を示す。平均辺長さ(mm)の算出において、辺の長さは、稜線部を除き、直線状の部分の長さとする。ただし、稜線部の中心が4角形の外側に位置する場合、4角形の外側に存在する部分は、除外する。例えば、中板30の下側の4角形において、辺cと辺gをつなぐ稜線部の中心は当該4角形の外側に位置する。この場合、辺cは、4角形の外側にも直線状に伸びるが、辺gが辺cまで伸びるとみなして辺cの長さを求める。図3Aの辺eおよび図3Bの辺dも同様に、4角形の外側に存在する部分は、除外する。   3A and 3B are cross-sectional views illustrating the length of each side in the calculation of the average side length. FIG. 3A shows a case where the main body is made of one metal plate, and FIG. The case of a plate is shown. In the calculation of the average side length (mm), the side length is the length of the linear portion excluding the ridge line portion. However, when the center of the ridge line portion is located outside the quadrangular shape, the portion existing outside the quadrangular shape is excluded. For example, in the lower quadrangular shape of the intermediate plate 30, the center of the ridge line portion that connects the side c and the side g is located outside the quadrangular shape. In this case, the side c extends linearly to the outside of the quadrangle, but the length of the side c is determined on the assumption that the side g extends to the side c. Similarly, the side e of FIG. 3A and the side d of FIG. 3B are excluded from the portion existing outside the quadrangular shape.

穴30aの中心間隔Ph(mm)を座屈周期(mm)に対して75〜135%とすれば、穴30aのピッチと座屈ピッチとが同期する。この場合、衝撃吸収部材が周期的に座屈変形する際に、穴30aが設けられた部分が山状や谷状に変形し易いことから、座屈ピッチおよび座屈変形の振幅(山の高さと谷の深さ)が安定し、周期的な座屈変形が促進される。これにより、単位質量当たりの吸収エネルギーをさらに増加させることができる。このため、衝撃吸収部材をさらに軽量化できる。   If the center interval Ph (mm) of the holes 30a is 75 to 135% with respect to the buckling period (mm), the pitch of the holes 30a and the buckling pitch are synchronized. In this case, when the impact absorbing member is periodically buckled and deformed, the portion provided with the hole 30a is easily deformed into a mountain shape or a valley shape, so that the buckling pitch and the amplitude of the buckling deformation (the peak height) The depth of the valley is stable, and periodic buckling deformation is promoted. Thereby, the absorbed energy per unit mass can be further increased. For this reason, the impact absorbing member can be further reduced in weight.

穴30aの形状は、例えば、楕円や長方形、ひし形、正方形、円等とすることができる。   The shape of the hole 30a can be, for example, an ellipse, a rectangle, a rhombus, a square, a circle, or the like.

図4Aおよび4Bは、穴の形状例を示す図であり、図4Aは長方形である場合、図4Bはひし形である場合を示す。後述の実施例では、穴30aの形状を楕円、長方形またはひし形とし、単位質量あたりの吸収エネルギーを比較した。その結果、楕円およびひし形とすれば、単位質量あたりの吸収エネルギーがより増加することが明らかになった。これは、長方形のように穴30aの長さLh(本体の軸方向の長さ)が中板の幅方向で一定であると、角部で応力が集中し、中板の稜線部による衝撃吸収作用に悪影響を及ぼすからである。   4A and 4B are diagrams showing examples of hole shapes. FIG. 4A shows a case of a rectangle, and FIG. 4B shows a case of a diamond. In Examples described later, the shape of the hole 30a was an ellipse, a rectangle, or a rhombus, and the absorbed energy per unit mass was compared. As a result, it has been clarified that the absorption energy per unit mass is further increased when the ellipse and the rhombus are used. This is because, when the length Lh of the hole 30a (the length in the axial direction of the main body) is constant in the width direction of the intermediate plate like a rectangle, stress is concentrated at the corners, and the shock absorption by the ridge line portion of the intermediate plate This is because it adversely affects the action.

これを防止するため、穴30aは、中板の幅方向の両端に近づくに従い、穴の長さLhが小さくなるのが好ましい。より具体的には、穴30aの形状は、楕円、ひし形または円とするのが好ましい。   In order to prevent this, it is preferable that the hole length Lh of the hole 30a becomes smaller as it approaches the both ends in the width direction of the intermediate plate. More specifically, the shape of the hole 30a is preferably an ellipse, a rhombus, or a circle.

前述の特許文献2に記載するように、本体の板厚が薄いほど、中板の板厚増加によって単位質量当たりの吸収エネルギーが向上する効果が大きい。このため、本体の板厚は、2.3mm以下が好ましく、1.6mm以下がより好ましい。   As described in Patent Document 2 described above, the thinner the main body, the greater the effect that the absorbed energy per unit mass is improved by increasing the thickness of the intermediate plate. For this reason, the plate thickness of the main body is preferably 2.3 mm or less, and more preferably 1.6 mm or less.

本体と中板との重ね合わせ接合は、衝突時に本体と中板とが分離することなく、一体で変形できる限り、種々の方法により行うことができ、例えば、重ね合わせ溶接を採用できる。この場合、例えば、連続溶接や所定ピッチでのスポット溶接を採用できる。   Overlap joining of the main body and the intermediate plate can be performed by various methods as long as the main body and the intermediate plate can be integrally deformed without being separated at the time of collision. For example, overlap welding can be employed. In this case, for example, continuous welding or spot welding at a predetermined pitch can be employed.

本体は、例えば、単一の金属板から作製することができる。この場合、金属板を断面が多角形状になるように折り曲げ、前記図2に示すように、その両端を中板とともに重ね合わせ溶接すればよい。本体は、前記図3Bに示すように、2枚の金属板、より具体的には、ハット型断面の金属板と、平面状の金属板を重ね合わせ溶接することによって作製することもできる。この場合、2枚の金属板の板厚が異なってもよい。2枚の金属板の板厚が異なる場合、前述の本実施形態の効果を得るため、中板の板厚(mm)は、本体のいずれの金属板の板厚(mm)に対しても前述の範囲とする。   The main body can be made of, for example, a single metal plate. In this case, the metal plate may be bent so that the cross section has a polygonal shape, and as shown in FIG. As shown in FIG. 3B, the main body can also be manufactured by laminating and welding two metal plates, more specifically, a hat-shaped cross-sectional metal plate and a planar metal plate. In this case, the thickness of the two metal plates may be different. When the thicknesses of the two metal plates are different, in order to obtain the effect of the above-described embodiment, the thickness (mm) of the intermediate plate is the same as the thickness (mm) of any metal plate of the main body. The range.

本体および中板は、いずれも引張強度が270〜1200MPaである金属板からなるのが好ましい。これは、一般的に金属板の引張強度は270MPa以上であり、引張強度が270MPa未満の金属板を入手するのが困難なことによる。また、引張強度が1200MPaを超えると、金属板を加工する際に割れが発生し易く、加工が困難なことにもよる。吸収エネルギーをより増加させるとともに、加工の際の割れ発生をより抑制する観点から、金属板の引張強度は、440〜980MPaとするのがより好ましい。   Both the main body and the intermediate plate are preferably made of a metal plate having a tensile strength of 270 to 1200 MPa. This is because the metal plate generally has a tensile strength of 270 MPa or more, and it is difficult to obtain a metal plate having a tensile strength of less than 270 MPa. Further, if the tensile strength exceeds 1200 MPa, cracks are likely to occur when the metal plate is processed, and the processing is difficult. The tensile strength of the metal plate is more preferably 440 to 980 MPa from the viewpoint of further increasing the absorbed energy and further suppressing the occurrence of cracks during processing.

本実施形態の衝撃吸収部材は、自動車や鉄道、船舶等の輸送機械における衝撃吸収部材として用いることができる。より具体的には、自動車の衝撃吸収部材として用いる場合であれば、クラッシュボックスまたは骨格部材に用いることができる。骨格部材の場合、フロントサイドメンバー、リアサイドメンバー、サイドシルまたはフロアクロスメンバー等に用いることができる。   The impact absorbing member of this embodiment can be used as an impact absorbing member in a transport machine such as an automobile, a railway, or a ship. More specifically, if it is used as a shock absorbing member for an automobile, it can be used for a crash box or a skeleton member. In the case of a skeleton member, it can be used for a front side member, a rear side member, a side sill or a floor cross member.

本実施形態の衝撃吸収部材による効果を確認するため、衝撃試験を行った。   In order to confirm the effect of the impact absorbing member of this embodiment, an impact test was performed.

1.穴の配置領域の確認試験
本試験では、落錘式衝撃試験を模擬した解析を行った。具体的には、前記図2に示す形状の衝撃吸収部材をその軸方向を鉛直方向に沿って配置した状態で、質量700kgの衝突体を高さ16.1mから落下させることにより、衝撃吸収部材の一端に衝突させた。その際、衝突体の軸方向の荷重と軸方向の変位とを算出し、荷重と変位との関係を求めた。
1. Confirmation test of hole arrangement region In this test, an analysis simulating a drop weight impact test was performed. Specifically, the impact absorbing member having the shape shown in FIG. 2 is dropped from a height of 16.1 m while a collision body having a mass of 700 kg is dropped in a state where the axial direction of the impact absorbing member is arranged along the vertical direction. It was made to collide with one end. At that time, the axial load and the axial displacement of the collision object were calculated, and the relationship between the load and the displacement was obtained.

衝撃吸収部材10は、軸方向の長さを300mmとした。本体20は、横断面の形状が長方形(4角形)であった。本体20において、一対の長辺(20a、20b)は、いずれも、直線状部の長さが128mm、一対の短辺は、いずれも、直線状部の長さが58mm、稜線部は、いずれも、半径が6mmの円弧であった。   The impact absorbing member 10 has an axial length of 300 mm. The main body 20 had a rectangular cross section (quadrangle). In the main body 20, each of the pair of long sides (20a, 20b) has a straight portion length of 128 mm, and each of the pair of short sides has a straight portion length of 58 mm, and the ridge line portion is Was an arc having a radius of 6 mm.

中板30は、本体20の一対の長辺の中央に中板30の直線状部が位置するように配置した。中板30の直線状部の長さ(中板の幅W1)は55.2mmであり、中板30の稜線部は半径が6mmの円弧とした。中板30には、幅方向の中央に楕円または円の穴30aを複数並べて設けた。中板30の穴30aの中心間隔Phは、50mmの等間隔とした。穴30aの幅Whは、10、20、22.5、25、30、40、50または60mmとし、穴の長さLh(本体の軸方向の最大長さ)は、10、20、30または40mmとした。   The middle plate 30 was arranged so that the linear portion of the middle plate 30 was located at the center of the pair of long sides of the main body 20. The length of the linear portion of the intermediate plate 30 (width W1 of the intermediate plate) was 55.2 mm, and the ridge line portion of the intermediate plate 30 was an arc having a radius of 6 mm. The middle plate 30 was provided with a plurality of elliptical or circular holes 30a arranged in the center in the width direction. The center interval Ph of the holes 30a of the intermediate plate 30 was set to an equal interval of 50 mm. The width Wh of the hole 30a is 10, 20, 22.5, 25, 30, 40, 50 or 60 mm, and the hole length Lh (maximum length in the axial direction of the main body) is 10, 20, 30 or 40 mm. It was.

本体の4角形を中板で仕切ることにより、第1および第2の4角形が形成され、そのうちの図3Aで上側を第1とし、下側を第2とした。上側の第1の4角形は、辺aの長さが58mm、辺bの長さが58mm、辺gの長さ55.2mmが、辺fの長さが58mmであった。したがって、上側の第1の4角形は、平均辺長さが57.3mmであった。   By dividing the quadrangle of the main body with an intermediate plate, first and second quadrangles were formed, and in FIG. 3A, the upper side was first and the lower side was second. In the upper first quadrangular shape, the length of side a was 58 mm, the length of side b was 58 mm, the length of side g was 55.2 mm, and the length of side f was 58 mm. Accordingly, the upper first quadrangular has an average side length of 57.3 mm.

また、下側の第2の4角形は、辺cの長さが64mm、辺dの長さが58mm、辺eの長さが64mm、辺gの長さが55.2mmであった。したがって、下側の第2の4角形は、平均辺長さが60.3mmであった。これらの平均辺長さより、衝撃吸収部材の座屈周期は58.8mmであった。   The lower second quadrangle had a side c length of 64 mm, a side d length of 58 mm, a side e length of 64 mm, and a side g length of 55.2 mm. Therefore, the lower second square had an average side length of 60.3 mm. From these average side lengths, the buckling cycle of the shock absorbing member was 58.8 mm.

本体20および中板30は、いずれも、引張強度が980MPa級の鋼板を用いた。本体20の板厚は0.8mm、中板30の板厚は2mmとした。本体20と中板30との接合部は、スポット溶接を模擬した境界条件を設定し、より具体的には、直径5mmのスポット溶接を45mmピッチで行った場合を模擬して境界条件を設定した。   Both the main body 20 and the intermediate plate 30 were steel plates having a tensile strength of 980 MPa. The plate thickness of the main body 20 was 0.8 mm, and the plate thickness of the intermediate plate 30 was 2 mm. The joint between the main body 20 and the intermediate plate 30 sets boundary conditions that simulate spot welding, and more specifically, sets boundary conditions by simulating the case where spot welding with a diameter of 5 mm is performed at a pitch of 45 mm. .

衝撃試験における荷重と変位の関係から衝撃吸収部材の吸収エネルギー(kJ)を算出し、その吸収エネルギーを衝撃吸収部材の質量(kg)で除することにより、単位質量あたりの吸収エネルギー(kJ/kg)を求めた。比較のため、中板30が穴30aを有さない衝撃吸収部材についても、同様の条件で、衝突試験を行い、単位質量あたりの吸収エネルギー(kJ/kg)を求めた。   By calculating the absorbed energy (kJ) of the shock absorbing member from the relationship between the load and the displacement in the impact test and dividing the absorbed energy by the mass (kg) of the shock absorbing member, the absorbed energy per unit mass (kJ / kg) ) For comparison, an impact absorbing member in which the intermediate plate 30 does not have the hole 30a was subjected to a collision test under the same conditions, and the absorbed energy per unit mass (kJ / kg) was obtained.

図5は、中板の穴の幅(mm)と、単位質量あたりの吸収エネルギーの関係を示す図である。同図には、穴の長さごとに、中板の穴の幅と、単位質量あたりの吸収エネルギーの関係を示す。また、単位質量あたりの吸収エネルギーは、中板が穴を有さない衝撃吸収部材を基準(1)とし、相対値で示す。   FIG. 5 is a diagram showing the relationship between the width (mm) of the hole in the intermediate plate and the absorbed energy per unit mass. The figure shows the relationship between the hole width of the intermediate plate and the absorbed energy per unit mass for each hole length. Moreover, the absorbed energy per unit mass is expressed as a relative value with an impact absorbing member having no hole in the middle plate as a reference (1).

同図より、穴の長さがいずれであっても、穴の幅が21.53mmを超えると、単位質量あたりの吸収エネルギーが低下するケースが発生した。すなわち、中板の幅方向の中央に位置し、かつ、中板の幅W1(55.2mm)に対して39%の幅である領域外に穴の一部が位置すると、単位質量あたりの吸収エネルギーが低下するケースが発生した。   From the figure, there was a case where the absorbed energy per unit mass was reduced when the hole width exceeded 21.53 mm regardless of the length of the hole. That is, if a part of the hole is located outside the region that is located at the center in the width direction of the intermediate plate and 39% wide with respect to the width W1 (55.2 mm) of the intermediate plate, absorption per unit mass is achieved. There was a case where energy decreased.

一方、穴の長さがいずれであっても、穴の幅が21.53mm以下であれば、単位質量あたりの吸収エネルギーが増加した。したがって、中板の幅方向の中央に位置し、かつ、中板の幅(55.2mm)に対して39%の幅である領域内に穴を配置すれば、単位質量あたりの吸収エネルギーを増加できることが明らかになった。   On the other hand, the absorbed energy per unit mass increased when the hole width was 21.53 mm or less regardless of the length of the hole. Therefore, if the hole is located in the center of the center plate in the width direction and 39% of the width of the center plate (55.2 mm), the absorbed energy per unit mass is increased. It became clear that we could do it.

2.板厚の確認試験
本試験では、前述の[穴の配置領域の確認試験]と同様に、前記図2に示す形状の衝撃吸収部材を用いて衝撃試験を行い、単位質量あたりの吸収エネルギーを求めた。本試験では、本体の板厚を0.8mmとし、中板の板厚を0.8、1.0、1.2、1.6、2.0、2.2または2.4mmとした。また、中板が穴を有するケースと、中板が穴を有しないケースとを設けた。中板が穴を有するケースでは、穴の形状を幅Wh20mm、長さLh40mmの楕円とし、穴の中心間隔Phを50mmの等間隔とした。これら以外の試験条件は、前述の[穴の配置領域の確認試験]と同じにした。
2. Plate thickness confirmation test In this test, an impact test was performed using the impact absorbing member having the shape shown in Fig. 2 to obtain the absorbed energy per unit mass, as in the above-mentioned "Confirmation test of hole arrangement region". It was. In this test, the plate thickness of the main body was 0.8 mm, and the plate thickness of the intermediate plate was 0.8, 1.0, 1.2, 1.6, 2.0, 2.2, or 2.4 mm. Further, a case where the intermediate plate has a hole and a case where the intermediate plate does not have a hole were provided. In the case where the intermediate plate has holes, the shape of the holes was an ellipse having a width Wh of 20 mm and a length of Lh 40 mm, and the center interval Ph of the holes was an equal interval of 50 mm. The test conditions other than these were the same as those in the above-mentioned [Confirmation test of hole arrangement region].

図6は、中板の板厚(mm)と、吸収エネルギー比(単位なし)の関係を示す図である。同図の吸収エネルギー比は、中板の板厚ごとに、中板が穴を有するケースの単位質量あたりの吸収エネルギー(kJ/kg)を、中板が穴を有しないケースの単位質量あたりの吸収エネルギー(kJ/kg)で除したものである。   FIG. 6 is a diagram showing the relationship between the thickness (mm) of the intermediate plate and the absorbed energy ratio (no unit). The absorbed energy ratio in the figure shows the absorbed energy per unit mass of the case where the intermediate plate has holes (kJ / kg) for each thickness of the intermediate plate, and the unit energy of the case where the intermediate plate does not have holes. Divided by absorbed energy (kJ / kg).

図6より、中板の板厚が本体の板厚に対して140〜290%であれば、単位質量あたりの吸収エネルギーが増加することが明らかになった。   6 that the absorbed energy per unit mass increases when the thickness of the intermediate plate is 140 to 290% of the thickness of the main body.

3.穴の中心間隔の確認試験
本試験では、前述の[穴の配置領域の確認試験]と同様に、前記図2に示す形状の衝撃吸収部材を用いて衝撃試験を行い、単位質量あたりの吸収エネルギーを求めた。本試験では、穴を有する中板を用い、穴の形状を幅Wh20mm、長さLh40mmの楕円とした。穴の中心間隔Phは、40、45、50、60、70または90mmの等間隔とした。これら以外の試験条件は、前述の[穴の配置領域の確認試験]と同じにした。
3. Confirmation test of hole center interval In this test, an impact test was performed using the impact absorbing member having the shape shown in FIG. Asked. In this test, an intermediate plate having a hole was used, and the shape of the hole was an ellipse having a width Wh of 20 mm and a length of Lh 40 mm. The center interval Ph of the holes was set at an equal interval of 40, 45, 50, 60, 70 or 90 mm. The test conditions other than these were the same as those in the above-mentioned [Confirmation test of hole arrangement region].

図7は、座屈周期(mm)に対する穴の中心間隔(mm)の割合(%)と、単位質量あたりの吸収エネルギーの関係を示す図である。同図の単位質量あたりの吸収エネルギーは、中板が穴を有さない衝撃吸収部材を基準(1)とし、相対値で示す。   FIG. 7 is a graph showing the relationship between the ratio (%) of the hole center interval (mm) to the buckling period (mm) and the absorbed energy per unit mass. The absorbed energy per unit mass in the figure is expressed as a relative value with an impact absorbing member having no hole in the middle plate as a reference (1).

同図より、穴の中心間隔(mm)は、座屈周期(58.8mm)に対して75〜135%とすれば、すなわち、44.1〜79.38mmとすれば、単位質量あたりの吸収エネルギーが増加することが明らかになった。   From the figure, if the hole center interval (mm) is 75 to 135% with respect to the buckling period (58.8 mm), that is, 44.1 to 79.38 mm, absorption per unit mass. It became clear that energy increased.

4.穴形状の確認試験
本試験では、前述の[穴の配置領域の確認試験]と同様に、前記図2に示す形状の衝撃吸収部材を用いて衝撃試験を行い、単位質量あたりの吸収エネルギーを求めた。穴の中心間隔Phは、50mmの等間隔とした。
4). Hole Shape Confirmation Test In this test, an impact test using the impact absorbing member having the shape shown in FIG. 2 is performed to obtain the absorbed energy per unit mass, as in the above-described [hole placement region confirmation test]. It was. The center interval Ph of the holes was an equal interval of 50 mm.

穴の形状は、図2Cに示すような楕円、図4Aに示すような長方形、または、図4Bに示すようなひし形とした。いずれの穴の形状でも、穴の幅Whは20mm、穴の長さLhは40mmとした。これら以外の試験条件は、前述の[穴の配置領域の確認試験]と同じにした。   The shape of the hole was an ellipse as shown in FIG. 2C, a rectangle as shown in FIG. 4A, or a rhombus as shown in FIG. 4B. In any hole shape, the hole width Wh was 20 mm and the hole length Lh was 40 mm. The test conditions other than these were the same as those in the above-mentioned [Confirmation test of hole arrangement region].

図8は、穴の形状と、単位質量あたりの吸収エネルギーの関係を示す図である。同図の単位質量あたりの吸収エネルギーは、中板が穴を有さない衝撃吸収部材を基準(1)とし、相対値で示す。   FIG. 8 is a diagram showing the relationship between the shape of the hole and the absorbed energy per unit mass. The absorbed energy per unit mass in the figure is expressed as a relative value with an impact absorbing member having no hole in the middle plate as a reference (1).

同図より、楕円およびひし形とした場合は、穴の形状を長方形とした場合と比べ、単位質量あたりの吸収エネルギーが増加した。このため、穴の形状を楕円またはひし形とすれば、単位質量あたりの吸収エネルギーを増加できることが確認できた。換言すると、穴を、中板の幅方向の両端に近づくに従い、軸方向の長さLhが小さくなる形状とすれば、単位質量あたりの吸収エネルギーを増加できることが確認できた。   From the figure, when the ellipse and the rhombus were used, the absorbed energy per unit mass increased compared to the case where the hole was a rectangle. For this reason, it was confirmed that the absorbed energy per unit mass can be increased if the shape of the hole is an ellipse or a rhombus. In other words, it was confirmed that the absorbed energy per unit mass can be increased if the hole has a shape in which the length Lh in the axial direction decreases as it approaches both ends in the width direction of the intermediate plate.

本発明の衝撃吸収部材は、吸収エネルギーを確保しつつ軽量化できる。このため、自動車のクラッシュボックスや骨格部材に適用すれば、燃費の向上に大きく寄与することができる。   The impact absorbing member of the present invention can be reduced in weight while ensuring the absorbed energy. For this reason, if it applies to a crash box or a frame member of an automobile, it can greatly contribute to an improvement in fuel consumption.

10:衝撃吸収部材、 20:本体、 20a:長辺、 20b:短辺、
30:中板、 30a:穴、 X:本発明で穴を配置する領域
10: Shock absorbing member, 20: Main body, 20a: Long side, 20b: Short side,
30: Middle plate, 30a: Hole, X: Area where holes are arranged in the present invention

Claims (3)

金属板から成形される本体および中板を備える衝撃吸収部材であって、
前記本体は、軸方向に垂直な断面における形状が4角形であり、
前記中板は、前記本体の軸方向に沿って設けられるとともに、幅方向の両端が前記4角形の一対の長辺にそれぞれ重ね合わせて接合され、さらに、前記軸方向に沿って並べて所定の領域内に配置される複数の穴を有し、
前記所定の領域は、前記中板の幅方向の中央に位置し、かつ、前記中板の幅(mm)に対して39%の幅(mm)であり、
前記中板の板厚(mm)は、前記本体の板厚(mm)に対して140〜290%である、衝撃吸収部材。
A shock absorbing member comprising a main body and an intermediate plate formed from a metal plate,
The main body has a quadrangular shape in a cross section perpendicular to the axial direction,
The intermediate plate is provided along the axial direction of the main body, and both ends in the width direction are overlapped and joined to the pair of long sides of the quadrangle, and further arranged in a predetermined region along the axial direction. Having a plurality of holes disposed within,
The predetermined region is located in the center in the width direction of the intermediate plate, and has a width (mm) of 39% with respect to the width (mm) of the intermediate plate,
The impact absorbing member, wherein a thickness (mm) of the intermediate plate is 140 to 290% with respect to a thickness (mm) of the main body.
請求項1に記載の衝撃吸収部材であって、
前記複数の穴の中心間隔(mm)は、座屈周期(mm)に対して75〜135%であり、
前記座屈周期は、前記4角形を前記中板で仕切ることによって形成される第1および第2の4角形について、平均辺長さ(mm)をそれぞれ算出し、算出した前記平均辺長さ(mm)を平均したものである、衝撃吸収部材。
The shock absorbing member according to claim 1,
The center interval (mm) of the plurality of holes is 75 to 135% with respect to the buckling period (mm),
The buckling period is calculated by calculating an average side length (mm) for each of the first and second quadrilaterals formed by dividing the quadrilateral with the intermediate plate, and calculating the average side length ( mm), which is an average of (mm).
請求項1または2に記載の衝撃吸収部材であって、
前記穴は、前記中板の幅方向の両端に近づくに従い、前記軸方向の長さが小さくなる、衝撃吸収部材。
The impact absorbing member according to claim 1 or 2,
The impact absorbing member, wherein the hole has a length in the axial direction that decreases as the hole approaches both ends in the width direction of the intermediate plate.
JP2015036239A 2015-02-26 2015-02-26 Shock absorbing member Active JP6488758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015036239A JP6488758B2 (en) 2015-02-26 2015-02-26 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036239A JP6488758B2 (en) 2015-02-26 2015-02-26 Shock absorbing member

Publications (2)

Publication Number Publication Date
JP2016155509A JP2016155509A (en) 2016-09-01
JP6488758B2 true JP6488758B2 (en) 2019-03-27

Family

ID=56824832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036239A Active JP6488758B2 (en) 2015-02-26 2015-02-26 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP6488758B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2547196A (en) 2016-02-09 2017-08-16 Gordon Murray Design Ltd Impact energy absorbing structure
EP3932750B1 (en) * 2019-02-26 2023-12-06 JFE Steel Corporation Structural member for vehicle
JP6973517B2 (en) * 2019-02-26 2021-12-01 Jfeスチール株式会社 Structural members for vehicles
JP7347110B2 (en) * 2019-10-17 2023-09-20 マツダ株式会社 Vehicle front body structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11342862A (en) * 1998-01-08 1999-12-14 Nissan Motor Co Ltd Reinforcing structure for strength member of vehicle
JP5168477B2 (en) * 2008-03-26 2013-03-21 スズキ株式会社 Vehicle crash box and body front structure

Also Published As

Publication number Publication date
JP2016155509A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP4733702B2 (en) Vehicle crash box
JP5949925B2 (en) Crash box and car body
TWI627082B (en) Shock absorbing member
JP5121677B2 (en) Shock absorbing member
JP6908117B2 (en) Hollow member
JP6488758B2 (en) Shock absorbing member
KR20170028458A (en) Bumper beam
KR20210107682A (en) Vehicle locker structure and method for obtaining the same
JP6443413B2 (en) Rear body structure of the vehicle
CN113195310B (en) Energy absorbing member and bumper beam having such an energy absorbing member
WO2018021422A1 (en) Shock absorption member
KR102365534B1 (en) hollow member
JP2010126067A (en) Shock-absorbing member
CN105636833B (en) Shock mitigation system for motor vehicles
JP5147003B2 (en) Side member
JP7181799B2 (en) car body structure
JP2023075317A (en) Vehicle body member
JP2023541988A (en) Vehicle side seal
JP6747928B2 (en) Shock absorber
JP5585684B2 (en) Shock absorbing member
JP4766075B2 (en) Bumpy stay
JP4706656B2 (en) Bumpy stay
CN110475706B (en) Impact absorbing member and side member for automobile
JP7376797B2 (en) Automobile frame parts and electric vehicles
JP5638969B2 (en) Van Paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R151 Written notification of patent or utility model registration

Ref document number: 6488758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350