JP6487285B2 - Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same - Google Patents

Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same Download PDF

Info

Publication number
JP6487285B2
JP6487285B2 JP2015132680A JP2015132680A JP6487285B2 JP 6487285 B2 JP6487285 B2 JP 6487285B2 JP 2015132680 A JP2015132680 A JP 2015132680A JP 2015132680 A JP2015132680 A JP 2015132680A JP 6487285 B2 JP6487285 B2 JP 6487285B2
Authority
JP
Japan
Prior art keywords
acid
compound
electrolyte
gel electrolyte
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015132680A
Other languages
Japanese (ja)
Other versions
JP2017017188A (en
Inventor
寛之 出水
寛之 出水
康久 菅原
康久 菅原
佐藤 弘樹
弘樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2015132680A priority Critical patent/JP6487285B2/en
Publication of JP2017017188A publication Critical patent/JP2017017188A/en
Application granted granted Critical
Publication of JP6487285B2 publication Critical patent/JP6487285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ゲル電解質用組成物ならびに該組成物を用いたゲル電解質および電解コンデンサに関する。   The present invention relates to a composition for gel electrolyte, a gel electrolyte using the composition, and an electrolytic capacitor.

電解質として電解液を用いた電解コンデンサは、高温下で使用した場合、電解液のドライアップによる容量の低下等の電気特性の劣化が起こりやすい傾向にある。また、急激な熱により電解液がガス化して内圧が増加し、コンデンサの破裂や液漏れを引き起こすおそれがある。   When an electrolytic capacitor using an electrolytic solution as an electrolyte is used at a high temperature, there is a tendency that deterioration of electrical characteristics such as a decrease in capacity due to dry-up of the electrolytic solution easily occurs. Moreover, the electrolyte is gasified by sudden heat, and the internal pressure increases, which may cause the capacitor to burst or leak.

そこで、液漏れを防止する手段として、電解液に反応性高分子を添加してゲル化ないし固化させる方法や、電解液をポリマーシートに含浸させる方法等が知られている。例えば、特許文献1では、電解液に添加して電解液をゲル化ないし固化させる電解液固化用共重合体として、アミド骨格を有する単量体と、反応性基を有する単量体との共重合体が開示されている。また、特許文献2では、特定の分子量を有する多価アルコール系溶媒と、電解質塩と、分子中に酸基を含有する高分子と、アミン化合物よりなる高分子塩とから構成される電解コンデンサ駆動用高分子固体電解質が開示されている。   Thus, as means for preventing liquid leakage, a method of adding a reactive polymer to the electrolytic solution to gel or solidify, a method of impregnating a polymer sheet with the electrolytic solution, and the like are known. For example, in Patent Document 1, a copolymer having an amide skeleton and a monomer having a reactive group is used as an electrolyte solution-solidifying copolymer that is added to the electrolyte solution to gel or solidify the electrolyte solution. A polymer is disclosed. Further, in Patent Document 2, an electrolytic capacitor drive composed of a polyhydric alcohol solvent having a specific molecular weight, an electrolyte salt, a polymer containing an acid group in the molecule, and a polymer salt made of an amine compound. A solid polymer electrolyte is disclosed.

特開平11−106440号公報JP-A-11-106440 特開平5−175083号公報Japanese Patent Laid-Open No. 5-175083

しかしながら、特許文献1に記載のゲル化剤を構成する単量体は、アミド骨格を有しているため、水素結合により該骨格同士が引き合うことにより、電解液の粘度が上昇する場合がある。その結果、コンデンサ素子の酸化皮膜細孔への含浸性が低下し、コンデンサの容量の低下につながることがある。また、特許文献2に記載のゲル化剤を用いてゲル骨格を形成し、電解液をゲル化する場合、架橋反応の際に副生成物として水が生成し、耐熱性や低温特性の低下を招く場合がある。   However, since the monomer constituting the gelling agent described in Patent Document 1 has an amide skeleton, the viscosity of the electrolyte solution may increase due to the skeleton attracting each other by hydrogen bonding. As a result, the impregnation property of the capacitor element into the oxide film pores may be reduced, leading to a reduction in the capacitance of the capacitor. In addition, when a gel skeleton is formed using the gelling agent described in Patent Document 2 and the electrolytic solution is gelled, water is generated as a by-product during the cross-linking reaction, and heat resistance and low-temperature characteristics are reduced. May invite.

本発明は、高温下における電気特性の低下や、電解液のガス化によるコンデンサの破裂や液漏れを抑制した、信頼性の高い電解コンデンサを提供することを目的とする。   An object of the present invention is to provide a highly reliable electrolytic capacitor that suppresses deterioration of electrical characteristics at high temperatures, rupture of the capacitor due to gasification of the electrolytic solution, and liquid leakage.

上記課題を解決するため、本発明は、電解液と、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物とオキサゾリン基を有する化合物とが共有結合により結合したゲル骨格を有するゲル電解質を使用するものであり、具体的には、以下の構成を有することを特徴とする。   In order to solve the above problems, the present invention provides an electrolyte solution and a gel electrolyte having a gel skeleton in which a compound having a carboxyl group and not containing a nitrogen atom in the main chain skeleton and a compound having an oxazoline group are bonded by a covalent bond. Specifically, it is characterized by having the following configuration.

1.電解液と、ゲル化剤と、を含むゲル電解質用組成物であって、前記ゲル化剤が、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物Aと、オキサゾリン基を有する化合物Bと、を含むことを特徴とするゲル電解質用組成物。   1. A composition for a gel electrolyte comprising an electrolytic solution and a gelling agent, wherein the gelling agent does not contain a nitrogen atom in the main chain skeleton and has a carboxyl group, and a compound B having an oxazoline group And a composition for gel electrolyte, comprising:

2.前記化合物Aの分子量が5万以下である、前記1に記載のゲル電解質用組成物。   2. 2. The gel electrolyte composition according to 1 above, wherein the compound A has a molecular weight of 50,000 or less.

3.前記化合物Aと前記化合物Bの含有比率は、前記化合物Aの有するカルボキシル基のモル数を、前記化合物Bの有するオキサゾリン基のモル数で除した値が1.5以上2.5以下である、前記1または2に記載のゲル電解質用組成物。   3. The content ratio of the compound A and the compound B is a value obtained by dividing the number of moles of the carboxyl group of the compound A by the number of moles of the oxazoline group of the compound B is 1.5 or more and 2.5 or less. 3. The gel electrolyte composition as described in 1 or 2 above.

4.前記化合物Aがポリアクリル酸である、前記1〜3のいずれかに記載のゲル電解質用組成物。   4). 4. The composition for gel electrolyte according to any one of 1 to 3, wherein the compound A is polyacrylic acid.

5.前記1〜4のいずれかに記載のゲル電解質用組成物をゲル化してなるゲル電解質。   5. A gel electrolyte formed by gelling the composition for gel electrolyte according to any one of 1 to 4 above.

6.前記5に記載のゲル電解質を含む電解質層を備えた電解コンデンサ。   6). 6. An electrolytic capacitor comprising an electrolyte layer containing the gel electrolyte as described in 5 above.

7.前記電解質層に、さらに導電性高分子を含む前記6に記載の電解コンデンサ。   7). 7. The electrolytic capacitor as described in 6 above, further comprising a conductive polymer in the electrolyte layer.

本発明によれば、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物と、オキサゾリン基を有する化合物との共有結合によりゲル骨格が形成され、該ゲル骨格中に電解液を保持してゲル化させることにより、強固で耐熱性に優れた化学ゲル電解質を得ることができる。本発明においては、オキサゾリン基を有する化合物を用いることで、上記のような副生成物の水が生成することなく、架橋反応によってゲル骨格を形成することができるため有利である。   According to the present invention, a gel skeleton is formed by a covalent bond between a compound having a carboxyl group without containing a nitrogen atom in the main chain skeleton and a compound having an oxazoline group, and the electrolytic solution is retained in the gel skeleton. By gelling, a chemical gel electrolyte that is strong and excellent in heat resistance can be obtained. In the present invention, the use of a compound having an oxazoline group is advantageous because a gel skeleton can be formed by a crosslinking reaction without generating water as a by-product as described above.

また、本発明のゲル電解質を用いることにより、蒸気圧を低下させることができるため、高温下や経時的な電気特性劣化の原因となるドライアップを抑制できる。さらに、急激なガス化を抑制することができるため、リフローやコンデンサ内部の発熱等により急激に高温にさらされた場合のコンデンサの破裂や液漏れを抑制できる。以上のように、本発明によれば、信頼性の高い電解コンデンサを提供することができる。   Moreover, since the vapor pressure can be lowered by using the gel electrolyte of the present invention, it is possible to suppress dry-up that causes deterioration of electrical characteristics over time or at high temperatures. Furthermore, since rapid gasification can be suppressed, the capacitor can be prevented from rupturing or leaking when exposed to a high temperature due to reflow or heat generation inside the capacitor. As described above, according to the present invention, a highly reliable electrolytic capacitor can be provided.

本発明の一実施形態に係る電解コンデンサの構造を示す模式的断面図である。It is a typical sectional view showing the structure of the electrolytic capacitor concerning one embodiment of the present invention. 本発明の一実施形態に係る電解コンデンサの構造を示す模式的断面図である。It is a typical sectional view showing the structure of the electrolytic capacitor concerning one embodiment of the present invention.

以下、本発明の実施形態を掲げて説明するが、本発明はこれらの実施形態のみに限定されるものではない。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to these embodiments.

本発明に係るゲル電解質用組成物は、電解液と、ゲル化剤と、を含み、前記ゲル化剤は、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物(以下、「化合物A」とも称する。)と、オキサゾリン基を有する化合物(以下、「化合物B」とも称する。)と、を含む。また、前記ゲル電解質用組成物をゲル化することによって、本発明のゲル電解質が得られる。該ゲル電解質は、化合物A中のカルボキシル基と、化合物B中のオキサゾリン基との共有結合により形成されるゲル骨格中に、前記電解液が保持されて得られるものである。   The composition for a gel electrolyte according to the present invention includes an electrolytic solution and a gelling agent, and the gelling agent does not contain a nitrogen atom in the main chain skeleton and has a carboxyl group (hereinafter referred to as “Compound A”). And a compound having an oxazoline group (hereinafter also referred to as “compound B”). Moreover, the gel electrolyte of this invention is obtained by gelatinizing the said composition for gel electrolytes. The gel electrolyte is obtained by holding the electrolytic solution in a gel skeleton formed by a covalent bond between a carboxyl group in compound A and an oxazoline group in compound B.

また、本発明の一実施形態に係る電解コンデンサは、弁作用金属と、前記弁作用金属の表面に形成された誘電体層と、前記誘電体層の上に形成された電解質層と、を含む。該電解質層には、前記ゲル電解質が含まれる。以下、本実施形態に係るゲル電解質及びそれを用いた電解コンデンサについて、詳細に説明する。   An electrolytic capacitor according to an embodiment of the present invention includes a valve metal, a dielectric layer formed on a surface of the valve metal, and an electrolyte layer formed on the dielectric layer. . The electrolyte layer contains the gel electrolyte. Hereinafter, the gel electrolyte according to the present embodiment and an electrolytic capacitor using the gel electrolyte will be described in detail.

<ゲル電解質>
上記のとおり、本発明に係るゲル電解質は、電解液と、ゲル化剤と、を含む。
<Gel electrolyte>
As described above, the gel electrolyte according to the present invention includes an electrolytic solution and a gelling agent.

[電解液]
電解液は、有機溶媒に電解質を溶解させて得られる。
[Electrolyte]
The electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.

(有機溶媒)
有機溶媒としては、特に限定されず、プロトン性極性溶媒や非プロトン性極性溶媒の中から選択される。例えば、エチレングリコール、プロピレングリコール、グリセリン等のアルコール溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、テトラヒドロフラン、3−メチルテトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ポリエチレングリコール等のエーテル溶媒;N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N−エチルアセトアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、N−メチルピロリドン、N−エチルピロリドン等のアミド溶媒;γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、α−アセチル−γ−ブチロラクトン等のラクトン溶媒;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート溶媒; アセトニトリル、プロピオニトリル、ブチロニトリル、アクリロニトリル、メタクリロニトリル、ベンゾニトリル、3−メトキシプロピオニトリル等のニトリル溶媒;N−メチル−2−オキサゾリドン等のカーバメート溶媒;N,N’−ジメチルイミダゾリジノン等のユレア溶媒;スルホラン、3−メチルスルホラン、ジメチルスルホン等のスルホン溶媒等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
(Organic solvent)
It does not specifically limit as an organic solvent, It selects from a protic polar solvent and an aprotic polar solvent. For example, alcohol solvents such as ethylene glycol, propylene glycol, glycerin; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl Ether solvents such as ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and polyethylene glycol; N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-diethylformamide, N −Me Amide solvents such as lucacetamide, N-ethylacetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylpropionamide, N-methylpyrrolidone, N-ethylpyrrolidone; γ-butyrolactone, β- Lactone solvents such as butyrolactone, γ-valerolactone, δ-valerolactone, α-acetyl-γ-butyrolactone; carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate; acetonitrile, propionitrile, butyronitrile, acrylonitrile, Nitrile solvents such as methacrylonitrile, benzonitrile, 3-methoxypropionitrile; carbamate solvents such as N-methyl-2-oxazolidone; N, N′-dimethylimidazolidinone, etc. And urea solvents such as sulfolane, 3-methylsulfolane, dimethyl sulfone, and the like. These may be used alone or in combination of two or more.

上記有機溶媒の中でも、エチレングリコール、プロピレングリコール、グリセリン、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ポリエチレングリコール、N−メチルホルムアミド、N−エチルホルムアミド、N−メチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルピロリドン、N−エチルピロリドン、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、α−アセチル−γ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ベンゾニトリル、N,N’−ジメチルイミダゾリジノン、スルホラン、ジメチルスルホンは沸点が高く、ゲル化した場合においても揮発性が低くなるため好ましい。   Among the above organic solvents, ethylene glycol, propylene glycol, glycerin, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, polyethylene glycol, N-methylformamide, N-ethylformamide, N-methylacetamide N, N-diethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, α-acetyl-γ-butyrolactone, ethylene carbonate, propylene carbonate, benzonitrile, N , N'-dimethylimidazolidinone, sulfolane, and dimethyl sulfone have high boiling points and are volatile even when gelled. Since it becomes low, it is preferable.

さらに、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、N−メチルピロリドン、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、プロピレンカーボネート、ベンゾニトリルは、0℃以下においても液体であるため特に好ましい。グリセリンの融点は大気圧下17.8℃とされているが、種結晶が入っていない場合や−75℃程度に冷却した後、徐々に温度を上げるなどの工程を経ない限り、17.8℃以下にしても凍結することはない。   Further, ethylene glycol, propylene glycol, glycerin, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, propylene carbonate, and benzonitrile are 0. It is particularly preferable because it is liquid even at a temperature of ℃ or lower. The melting point of glycerin is 17.8 ° C. under atmospheric pressure, but 17.8 ° C. unless seed crystals are contained or unless the temperature is gradually raised after cooling to about −75 ° C. Even if it is below ℃, it does not freeze.

(電解質)
有機溶媒に加えて電解液とするための電解質としては、無機酸及び有機酸のアンモニウム塩、アミン塩、四級アンモニウム塩、四級ホスホニウム塩等を使用することができる。ここで、無機酸としては、ホウ酸、炭酸、ケイ酸、リン酸、亜リン酸、次亜リン酸、硝酸、硫酸、亜硫酸、チオシアン酸、シアン酸、ホウフッ化水素酸、リンフッ化水素酸、ヒ素フッ化水素酸、アンチモンフッ化水素酸、過塩素酸等が挙げられる。また、有機酸としては、蟻酸、酢酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、テトラデカン二酸、ペンタデカン二酸、ジメチルマロン酸、ジエチルマロン酸、ジプロピルマロン酸、3,3−ジメチルグルタル酸、3−メチルアジピン酸、1,6−デカンジカルボン酸、1,2−シクロヘキサンジカルボン酸、マレイン酸、シトラコン酸、安息香酸、フタル酸、トリメリット酸、ピロメリット酸、サリチル酸、γ−レゾルシン酸、p−ニトロ安息香酸、フェノール、ピクリン酸、メタンスルホン酸、ベンゼンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。無機酸や有機酸は一部がエステル化されていてもよい。
(Electrolytes)
As an electrolyte for forming an electrolyte solution in addition to an organic solvent, inorganic acids and organic acid ammonium salts, amine salts, quaternary ammonium salts, quaternary phosphonium salts, and the like can be used. Here, as the inorganic acid, boric acid, carbonic acid, silicic acid, phosphoric acid, phosphorous acid, hypophosphorous acid, nitric acid, sulfuric acid, sulfurous acid, thiocyanic acid, cyanic acid, borohydrofluoric acid, hydrofluoric acid, Examples thereof include arsenic hydrofluoric acid, antimony hydrofluoric acid, perchloric acid and the like. Organic acids include formic acid, acetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassylic acid, tetradecane Diacid, pentadecanedioic acid, dimethylmalonic acid, diethylmalonic acid, dipropylmalonic acid, 3,3-dimethylglutaric acid, 3-methyladipic acid, 1,6-decanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, Maleic acid, citraconic acid, benzoic acid, phthalic acid, trimellitic acid, pyromellitic acid, salicylic acid, γ-resorcinic acid, p-nitrobenzoic acid, phenol, picric acid, methanesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid Etc. A part of the inorganic acid or organic acid may be esterified.

アミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、モノエタノールアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、エチルメチルアミン、ジフェニルアミン、ジエタノールアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、1,8−ジアザビシクロ[5.4.0]−ウンデセン−7、トリエタノールアミン等が挙げられる。   Examples of the amine include methylamine, ethylamine, propylamine, butylamine, ethylenediamine, monoethanolamine, dimethylamine, diethylamine, dipropylamine, ethylmethylamine, diphenylamine, diethanolamine, trimethylamine, triethylamine, tributylamine, 1,8-diazabicyclo [ 5.4.0] -undecene-7, triethanolamine and the like.

四級アンモニウムとしては、ジエチルアンモニウム、トリエチルアンモニウム、トリプロピルアンモニウム、エタノールアンモニウム、ジエタノールアンモニウム、トリエタノールアンモニウム、シクロヘキシルアンモニウム、ピペリジニウム、1,5−ジアザビシクロ[4.3.0]ノネニウム−5、1,8−ジアザビシクロ[5.4.0]ウンデセニウム−7、テトラメチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム、トリメチルエチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、N,N−ジメチルピロリジニウム、N−メチル−N−エチルピロリジニウム、N,N−ジメチルピペリジニウム、ベンジルトリメチルアンモニウム、N−エチルピリジニウム、N,N’−ジメチルイミダゾリウム等が挙げられる。また、四級ホスホニウムとしては、テトラメチルホスホニウム、メチルトリエチルホスホニウム、テトラエチルホスホニウム、テトラプロピルホスホニウム、テトラブチルホスホニウム等が挙げられる。   As quaternary ammonium, diethylammonium, triethylammonium, tripropylammonium, ethanolammonium, diethanolammonium, triethanolammonium, cyclohexylammonium, piperidinium, 1,5-diazabicyclo [4.3.0] nonenium-5, 1,8 -Diazabicyclo [5.4.0] undecenium-7, tetramethylammonium, methyltriethylammonium, dimethyldiethylammonium, trimethylethylammonium, tetraethylammonium, tetrabutylammonium, N, N-dimethylpyrrolidinium, N-methyl-N -Ethylpyrrolidinium, N, N-dimethylpiperidinium, benzyltrimethylammonium, N-ethylpyridinium, N, N'-di Chill imidazolium and the like. Examples of the quaternary phosphonium include tetramethylphosphonium, methyltriethylphosphonium, tetraethylphosphonium, tetrapropylphosphonium, tetrabutylphosphonium and the like.

電解質は1種を単独で用いてもよく、2種以上を併用してもよい。また、難燃性を付与できる点から、ホウ酸またはホウ酸エステルが含まれていることが好ましい。   The electrolyte may be used alone or in combination of two or more. Moreover, it is preferable that the boric acid or boric acid ester is contained from the point which can provide a flame retardance.

[ゲル化剤]
本発明において使用するゲル化剤は、化合物Aおよび化合物Bを含有する。本発明のゲル電解質用組成物をゲル化するにあたっては、化合物Aに含まれるカルボキシル基と、化合物Bに含まれるオキサゾリン基とが共有結合することによりゲル骨格が形成される。
[Gelling agent]
The gelling agent used in the present invention contains Compound A and Compound B. In gelling the composition for gel electrolyte of the present invention, a gel skeleton is formed by covalently bonding a carboxyl group contained in Compound A and an oxazoline group contained in Compound B.

(化合物A:主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物)
本明細書において、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物における「主鎖骨格」とは、該化合物の骨格を構成する部分であり、該骨格に結合している置換基・原子等を除いた部分を意味する。すなわち、例えば、化合物Aがポリアクリル酸である場合は、カルボキシル基が置換している炭素を含むアルキル鎖が主鎖骨格である。化合物Aとしては、カルボキシル基を2つ以上有するものが好ましい。カルボキシル基を2つ以上有する化合物としては、例えば、シュウ酸、マロン酸、マレイン酸、コハク酸、グルタン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、オルトフタル酸、イソフタル酸、テレフタル酸、クエン酸、イソクエン酸、タルトロン酸、フマル酸、リンゴ酸、酒石酸、meso−ブタン−1,2,3,4−テトラカルボン酸等の単分子の多価カルボン酸や、ポリアクリル酸等のポリカルボン酸が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。ゲル骨格中への電解液の保持のしやすさという観点からは、カルボキシル基が多い方が好ましく、ポリアクリル酸等のポリカルボン酸が特に好ましい。
(Compound A: Compound having no carboxyl atom in the main chain skeleton and having a carboxyl group)
In the present specification, the “main chain skeleton” in a compound having a carboxyl group without containing a nitrogen atom in the main chain skeleton is a part constituting the skeleton of the compound, and a substituent bonded to the skeleton. It means the part excluding atoms. That is, for example, when Compound A is polyacrylic acid, an alkyl chain containing carbon substituted with a carboxyl group is a main chain skeleton. The compound A is preferably one having two or more carboxyl groups. Examples of the compound having two or more carboxyl groups include oxalic acid, malonic acid, maleic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, orthophthalic acid, isophthalic acid, terephthalic acid Acid, citric acid, isocitric acid, tartronic acid, fumaric acid, malic acid, tartaric acid, monomolecular polycarboxylic acid such as meso-butane-1,2,3,4-tetracarboxylic acid, polyacrylic acid, etc. Polycarboxylic acid is mentioned. These may be used alone or in combination of two or more. From the viewpoint of easy retention of the electrolytic solution in the gel skeleton, it is preferable that there are more carboxyl groups, and polycarboxylic acids such as polyacrylic acid are particularly preferable.

化合物Aとしては、分子量が100,000以下のものが好適に用いられる。化合物Aの分子量は50,000以下であることが好ましく、5,000以上50,000以下であることがより好ましい。分子量が100,000より大きい場合は、ゲル化前の電解液の粘度が上昇し、ゲル電解質の酸化皮膜細孔への含浸性が低下するため、容量の低下を招く。   As the compound A, those having a molecular weight of 100,000 or less are preferably used. The molecular weight of Compound A is preferably 50,000 or less, and more preferably 5,000 or more and 50,000 or less. When the molecular weight is greater than 100,000, the viscosity of the electrolyte before gelation increases, and the impregnation property of the gel electrolyte into the oxide film pores decreases, resulting in a decrease in capacity.

また、化合物Aの添加量は、電解液100質量部に対して、5質量部以上15質量部未満であることが好ましい。化合物Aの添加量が5質量部未満の場合は、ゲル化が不十分となり、また、15質量部以上の場合は、ゲル電解質の導電率が低下し、コンデンサの等価直列抵抗(ESR)が増加する。   Moreover, it is preferable that the addition amount of the compound A is 5 mass parts or more and less than 15 mass parts with respect to 100 mass parts of electrolyte solution. When the amount of compound A added is less than 5 parts by mass, gelation becomes insufficient, and when it is 15 parts by mass or more, the conductivity of the gel electrolyte decreases and the equivalent series resistance (ESR) of the capacitor increases. To do.

(化合物B:オキサゾリン基を有する化合物)
化合物Bは、該化合物B中のオキサゾリン基と、上記化合物A中のカルボキシル基とを、共有結合を介して架橋させる架橋剤として機能する。化合物Bとしては、例えば、エポクロス(登録商標)(株式会社日本触媒製)等が好適に用いられる。具体的には、「エポクロス」(登録商標)の品番K−2010E、K−2020E、K−2030E、WS−300、WS−500、WS−700等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。化合物Bとしては、1分子あたりにオキサゾリン基を複数有しているものが好ましい。1分子あたりにオキサゾリン基を複数有していない化合物を用いた場合は、ゲル骨格の形成が困難となる。
(Compound B: Compound having an oxazoline group)
Compound B functions as a crosslinking agent that crosslinks the oxazoline group in compound B and the carboxyl group in compound A via a covalent bond. As the compound B, for example, Epocros (registered trademark) (manufactured by Nippon Shokubai Co., Ltd.) and the like are preferably used. Specific examples include “Epocross” (registered trademark) product numbers K-2010E, K-2020E, K-2030E, WS-300, WS-500, WS-700, and the like. These may be used alone or in combination of two or more. Compound B preferably has a plurality of oxazoline groups per molecule. When a compound that does not have a plurality of oxazoline groups per molecule is used, it is difficult to form a gel skeleton.

なお、市販の化合物Bには、水分が多く含まれていることがあり、そのまま電解液に添加すると、水分により、作製したゲル電解質の揮発性や低温特性が悪化することがある。そのため、市販の化合物Bを電解液に添加する際は、事前に、化合物Bに対し、該電解液に用いる溶媒を化合物B中の水分と等量添加し、100℃以上で加熱することによって、化合物B中の水分を電解液に用いる溶媒に置換する操作を実施することが好ましい。   In addition, commercially available compound B may contain a lot of moisture, and if added to the electrolyte as it is, the volatility and low temperature characteristics of the prepared gel electrolyte may deteriorate due to the moisture. Therefore, when adding commercially available compound B to the electrolytic solution, the solvent used for the electrolytic solution is added to compound B in an amount equal to the water in compound B and heated at 100 ° C. or higher in advance. It is preferable to carry out an operation of substituting the water in Compound B with the solvent used for the electrolyte.

化合物Bは、化合物Aの有するカルボキシル基のモル数を、化合物Bの有するオキサゾリン基のモル数で除した値(以下、「化合物Aのカルボキシル基数/化合物Bのオキサゾリン基数」と称する。)が1.5以上2.5以下となるように添加することが好ましい。上記の値が1.5より小さい場合は、未反応のカルボキシル基が少なくなり、電解液の保液性が不十分となる。また、上記の値が2.5より大きい場合には、ゲル骨格を形成するために必要なオキサゾリン基とカルボキシル基の反応が少なくなり、ゲル化が不十分となる。   In Compound B, the value obtained by dividing the number of moles of the carboxyl group of Compound A by the number of moles of the oxazoline group of Compound B (hereinafter referred to as “the number of carboxyl groups of Compound A / the number of oxazoline groups of Compound B”) is 1. It is preferable to add so that it may become 5 or more and 2.5 or less. When the above value is smaller than 1.5, the number of unreacted carboxyl groups decreases, and the liquid retaining property of the electrolytic solution becomes insufficient. Moreover, when said value is larger than 2.5, reaction of an oxazoline group and a carboxyl group required in order to form a gel frame | skeleton will decrease, and gelation will become inadequate.

次に、ゲル電解質の製造方法について記載する。ゲル電解質は、電解液に、ゲル化剤となる化合物Aと化合物Bを添加して、架橋反応が始まる60℃以上に加熱してゲル化することによって得られる。架橋反応により、化合物Aのカルボキシル基と化合物Bのオキサゾリン基とが共有結合した結果、ゲル骨格が形成され、該骨格中に電解液が保持されてゲル電解質が得られる。   Next, a method for producing a gel electrolyte will be described. The gel electrolyte is obtained by adding Compound A and Compound B, which are gelling agents, to the electrolytic solution, and heating to 60 ° C. or higher where the crosslinking reaction starts to gel. As a result of the covalent bond between the carboxyl group of compound A and the oxazoline group of compound B by the cross-linking reaction, a gel skeleton is formed, and an electrolyte is held in the skeleton to obtain a gel electrolyte.

以上のように得られたゲル電解質は、電解コンデンサの電解質層として使用する。なお、該電解質層には、前記ゲル電解質に加え、導電性高分子が含まれていてもよい。   The gel electrolyte obtained as described above is used as an electrolyte layer of an electrolytic capacitor. In addition to the gel electrolyte, the electrolyte layer may contain a conductive polymer.

[導電性高分子]
導電性高分子としては、ポリピロール、ポリチオフェン、ポリアニリンおよびそれらの誘導体が挙げられる。中でも、ポリ(3,4−エチレンジオキシチオフェン)またはその誘導体が好ましい。導電性高分子は、ホモポリマーでもよく、コポリマーでもよい。また、1種を単独で用いてもよく、2種以上を併用してもよい。
[Conductive polymer]
Examples of the conductive polymer include polypyrrole, polythiophene, polyaniline, and derivatives thereof. Among these, poly (3,4-ethylenedioxythiophene) or a derivative thereof is preferable. The conductive polymer may be a homopolymer or a copolymer. Moreover, 1 type may be used independently and 2 or more types may be used together.

導電性高分子のドーパントとしては、アルキルスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、アントラキノンスルホン酸、カンファースルホン酸、ポリアクリル酸、ポリスチレンスルホン酸およびそれらの誘導体等が挙げられる。これらのスルホン酸は、モノスルホン酸でもジスルホン酸でもトリスルホン酸でもよい。   Examples of the conductive polymer dopant include alkylsulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, anthraquinonesulfonic acid, camphorsulfonic acid, polyacrylic acid, polystyrenesulfonic acid, and derivatives thereof. These sulfonic acids may be monosulfonic acid, disulfonic acid or trisulfonic acid.

アルキルスルホン酸の誘導体としては、2−アクリルアミド−2−メチルプロパンスルホン酸が挙げられる。ベンゼンスルホン酸の誘導体としては、フェノールスルホン酸、スチレンスルホン酸、トルエンスルホン酸、ドデシルベンゼンスルホン酸が挙げられる。ナフタレンスルホン酸の誘導体としては、1−ナフタレンスルホン酸、2−ナフタレンスルホン酸、1,3−ナフタレンジスルホン酸、1,3,6−ナフタレントリスルホン酸、6−エチル−1−ナフタレンスルホン酸が挙げられる。アントラキノンスルホン酸の誘導体としては、アントラキノン−1−スルホン酸、アントラキノン−2−スルホン酸、アントラキノン−2,6−ジスルホン酸、2−メチルアントラキノン−6−スルホン酸が挙げられる。   Examples of alkylsulfonic acid derivatives include 2-acrylamido-2-methylpropanesulfonic acid. Examples of benzenesulfonic acid derivatives include phenolsulfonic acid, styrenesulfonic acid, toluenesulfonic acid, and dodecylbenzenesulfonic acid. Examples of naphthalene sulfonic acid derivatives include 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, 1,3-naphthalene disulfonic acid, 1,3,6-naphthalene trisulfonic acid, and 6-ethyl-1-naphthalene sulfonic acid. It is done. Examples of the derivatives of anthraquinone sulfonic acid include anthraquinone-1-sulfonic acid, anthraquinone-2-sulfonic acid, anthraquinone-2,6-disulfonic acid, and 2-methylanthraquinone-6-sulfonic acid.

これらの中でも、p−トルエンスルホン酸等のトルエンスルホン酸やポリスチレンスルホン酸が好ましい。ポリスチレンスルホン酸がドープしたポリ(3,4−エチレンジオキシチオフェン)を用いた場合には、水溶媒中に安定に分散した懸濁液が得られる。また、その懸濁液から得られる導電性高分子組成物は高い導電性を有することが知られている。   Among these, toluenesulfonic acid such as p-toluenesulfonic acid and polystyrenesulfonic acid are preferable. When poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid is used, a suspension that is stably dispersed in an aqueous solvent is obtained. Moreover, it is known that the conductive polymer composition obtained from the suspension has high conductivity.

<電解コンデンサ>
続いて、本発明の電解コンデンサの構成について説明する。本発明の電解コンデンサは、電解質層として上記ゲル電解質を含有する。電解コンデンサの基本的な構成は、従来と同様であり、特に制限なく公知の形状、材質等を採用することができる。
<Electrolytic capacitor>
Then, the structure of the electrolytic capacitor of this invention is demonstrated. The electrolytic capacitor of the present invention contains the gel electrolyte as an electrolyte layer. The basic configuration of the electrolytic capacitor is the same as that of the conventional one, and a known shape, material, etc. can be adopted without particular limitation.

図1に示すように、本発明の一実施形態に係る電解コンデンサは、例えば、弁作用金属からなる陽極体1と、陽極体1の表面を陽極酸化することにより形成した酸化被膜からなる誘電体層2と、エッチングにより拡面化させたアルミニウム等の弁作用金属からなる陰極体3と、セパレータ5とからなる捲回素子と、該捲回素子に含浸させたゲル電解質4とからなる。   As shown in FIG. 1, an electrolytic capacitor according to an embodiment of the present invention includes, for example, an anode body 1 made of a valve metal and a dielectric made of an oxide film formed by anodizing the surface of the anode body 1. It comprises a layer 2, a cathode body 3 made of a valve metal such as aluminum which has been expanded by etching, a winding element made of a separator 5, and a gel electrolyte 4 impregnated in the winding element.

陽極体1は、弁作用金属の板、箔または線;弁作用金属の微粒子からなる焼結体;エッチングによって拡面処理された多孔質体金属等によって形成される。弁作用金属としては、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、ハフニウム、タングステン、およびこれらの合金を用いることが好ましい。   The anode body 1 is formed of a valve metal plate, foil, or wire; a sintered body made of fine particles of the valve metal; a porous metal that has been subjected to surface expansion by etching, or the like. As the valve action metal, it is preferable to use aluminum, tantalum, niobium, titanium, zirconium, hafnium, tungsten, and alloys thereof.

セパレータは、陽極と陰極の接触を物理的に遮断するシートであり、シートには電解液中のイオンが通り抜けられる穴があいている。セパレータとしては、一般的なものを用いることができ、特に限定されない。例えば、マニラ紙、クラフト紙等の紙製セパレータ、ポリプロピレン、ポリエチレン等のポリオレフィン製セパレータ、またはポリフェニレンスルフィド、ポリブチレンテレフタレート等のエンジニアリングプラスチック製セパレータ、セルロース系セパレータ等が挙げられる。   The separator is a sheet that physically blocks the contact between the anode and the cathode, and the sheet has a hole through which ions in the electrolytic solution can pass. A general separator can be used as the separator, and is not particularly limited. Examples thereof include paper separators such as manila paper and kraft paper, polyolefin separators such as polypropylene and polyethylene, engineering plastic separators such as polyphenylene sulfide and polybutylene terephthalate, and cellulose-based separators.

本発明の電解コンデンサは、公知の方法によって製造することができる。例えば、表面を陽極酸化して誘電体化したアルミニウムから作製した陽極箔と、この陽極箔の誘電体化した面に対向するアルミニウム製の陰極箔と、陽極箔と陰極箔との間に介在するセパレータとから構成した捲回素子に上記ゲル電解質を含浸したものをケース内に密封して製造することができる。   The electrolytic capacitor of the present invention can be manufactured by a known method. For example, an anode foil made of aluminum whose surface is anodized and made dielectric, an aluminum cathode foil facing the dielectric surface of the anode foil, and the anode foil and the cathode foil are interposed A wound element formed of a separator and impregnated with the gel electrolyte can be manufactured by sealing in a case.

前記捲回素子にゲル電解質を形成する方法としては、まず、前記電解液に、前記化合物Aと前記化合物B(事前に水分を電解液の溶媒に置換する操作を実施したもの)とを添加した溶液(ゲル化剤および電解液(ゲル電解質用組成物)を含むこの溶液を、プレゲル電解液とする)を調製する。続いて、プレゲル電解液を捲回素子に60℃〜80℃にて1時間以上含浸させ、捲回素子内部にプレゲル電解液を浸透させる。次に、100℃〜160℃で加熱することで、ゲル電解質を形成する。   As a method for forming a gel electrolyte on the wound element, first, the compound A and the compound B (the operation in which water was replaced with a solvent of the electrolyte solution in advance) were added to the electrolyte solution. A solution (this solution containing a gelling agent and an electrolytic solution (a composition for gel electrolyte) is used as a pregel electrolytic solution) is prepared. Subsequently, the pregel electrolyte is impregnated in the wound element at 60 ° C. to 80 ° C. for 1 hour or longer, and the pregel electrolyte is infiltrated into the wound element. Next, the gel electrolyte is formed by heating at 100 ° C. to 160 ° C.

なお、前記プレゲル電解液を捲回素子に含浸する際は、プレゲル電解液に前記導電性高分子を含む溶液を同時に添加してもよい。また、プレゲル電解液を捲回素子に含浸する前に、導電性高分子を捲回素子に形成してもよい。導電性高分子は、誘電体層上に導電性高分子を与えるモノマーの化学酸化重合により形成してもよく、導電性高分子溶液を用いて乾燥することにより形成してもよい。このような工程を経ることによって、導電性高分子と前記ゲル電解質の両方を含有する電解質層が得られる。   In addition, when impregnating a winding element with the said pregel electrolyte solution, you may add simultaneously the solution containing the said conductive polymer to a pregel electrolyte solution. Further, the conductive polymer may be formed on the winding element before the winding element is impregnated with the pregel electrolyte. The conductive polymer may be formed by chemical oxidation polymerization of a monomer that provides the conductive polymer on the dielectric layer, or may be formed by drying using a conductive polymer solution. Through such a process, an electrolyte layer containing both the conductive polymer and the gel electrolyte is obtained.

また、本発明の電解コンデンサは、図2に示すように、アルミニウム、タンタル、ニオブ等の弁作用金属からなる陽極体1と、陽極体を陽極酸化することにより形成した誘電体層2の上に、導電性高分子層6と前記ゲル電解質4からなる固体電解質層と、グラファイト層7、銀層8を順次形成して作製した固体電解コンデンサであってもよい。ゲル電解質4は、導電性高分子層6のポーラス状の穴の中に存在しており、誘電体層2の直上にいきわたっている。なお、導電性高分子層6は、第一の導電性高分子層6Aと第二の導電性高分子層6Bとからなる多層構造であってもよい。   Further, as shown in FIG. 2, the electrolytic capacitor of the present invention has an anode body 1 made of a valve metal such as aluminum, tantalum, or niobium, and a dielectric layer 2 formed by anodizing the anode body. Alternatively, a solid electrolytic capacitor produced by sequentially forming a conductive polymer layer 6, a solid electrolyte layer composed of the gel electrolyte 4, a graphite layer 7, and a silver layer 8 may be used. The gel electrolyte 4 is present in a porous hole of the conductive polymer layer 6 and extends right above the dielectric layer 2. Note that the conductive polymer layer 6 may have a multilayer structure including the first conductive polymer layer 6A and the second conductive polymer layer 6B.

前記固体電解質層の形成方法としては特に限定されないが、例えば、誘電体層上に、導電性高分子を与えるモノマーの化学酸化重合を複数回行うことにより、導電性高分子からなる導電性高分子層を形成した後、前記導電性高分子層に前記プレゲル電解液を含浸させ、加熱してゲル化することにより形成することができる。導電性高分子層は、導電性高分子溶液を用いて乾燥することにより形成してもよい。また、誘電体層上に導電性高分子溶液と前記プレゲル電解液との混合溶液を含浸し加熱することで、導電性高分子とゲル電解質からなる固体電解質層を形成してもよい。このような工程を経ることによって、導電性高分子と前記ゲル電解質の両方を含有する固体電解質層が得られる。   The method for forming the solid electrolyte layer is not particularly limited. For example, a conductive polymer made of a conductive polymer is obtained by performing chemical oxidation polymerization of a monomer that gives a conductive polymer a plurality of times on the dielectric layer. After forming the layer, the conductive polymer layer can be impregnated with the pregel electrolyte and heated to be gelled. The conductive polymer layer may be formed by drying using a conductive polymer solution. In addition, a solid electrolyte layer made of a conductive polymer and a gel electrolyte may be formed by impregnating and heating a mixed solution of a conductive polymer solution and the pregel electrolyte on the dielectric layer. By undergoing such a process, a solid electrolyte layer containing both the conductive polymer and the gel electrolyte is obtained.

以下、実施例に基づき、本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited only to these Examples.

[実施例1]
(電解液の調製)
エチレングリコール100質量部に対し、ホウ酸30質量部、アンモニア水3.64質量部を混合し、130℃で1時間加熱することにより電解液を調製した。
[Example 1]
(Preparation of electrolyte)
To 100 parts by mass of ethylene glycol, 30 parts by mass of boric acid and 3.64 parts by mass of aqueous ammonia were mixed and heated at 130 ° C. for 1 hour to prepare an electrolytic solution.

(プレゲル電解液の調製)
化合物Aとしてポリアクリル酸(分子量5,000)を、化合物Bとして「エポクロス(登録商標)WS−700」(株式会社日本触媒製、以下、WS−700)を用いた。WS−700を電解液に添加する前に、以下の操作を行った。なお、化合物Bの水分を置換する操作は、以下、全ての実施例および比較例にて行った。
WS−700、100質量部中には、固形分が25質量部、水分が75質量部含まれているため、WS−700、100質量部に対して、電解液の溶媒であるエチレングリコールを75質量部添加し、125℃で3時間加熱することにより、WS−700中の水分をエチレングリコールに置換した。
ここで、WS−700の1g当たりのオキサゾリン基のモル数は、4.5mmol/g、ポリアクリル酸(分子量5,000)の1g当たりのカルボキシル基のモル数は、13.8mmol/gである。
(Pregel electrolyte solution preparation)
Polyacrylic acid (molecular weight 5,000) was used as compound A, and “Epocross (registered trademark) WS-700” (manufactured by Nippon Shokubai Co., Ltd., hereinafter referred to as WS-700) was used as compound B. The following operations were performed before adding WS-700 to the electrolyte. In addition, operation which substitutes the water | moisture content of the compound B was performed in all the Examples and the comparative examples below.
Since WS-700, 100 parts by mass contains 25 parts by mass of solids and 75 parts by mass of water, 75 parts of ethylene glycol, which is a solvent for the electrolytic solution, is added to 100 parts by mass of WS-700. The water in WS-700 was replaced with ethylene glycol by adding part by mass and heating at 125 ° C. for 3 hours.
Here, the mole number of oxazoline groups per gram of WS-700 is 4.5 mmol / g, and the mole number of carboxyl groups per gram of polyacrylic acid (molecular weight 5,000) is 13.8 mmol / g. .

上記で調製した電解液100質量部に対して、ポリアクリル酸(分子量5,000)5質量部と、上記水分をエチレングリコールに置換したWS−700を固形分換算で10.22質量部添加し、プレゲル電解液を調製した。   To 100 parts by mass of the electrolytic solution prepared above, 5 parts by mass of polyacrylic acid (molecular weight 5,000) and WS-700 in which the above water was replaced with ethylene glycol were added in an amount of 10.22 parts by mass in terms of solid content. A pregel electrolyte was prepared.

(コンデンサ素子の製造・評価)
エッチングによる拡面化されたアルミニウム箔を陽極酸化して得られたアルミ誘電体層を有する陽極体、エッチングにより拡面化されたアルミニウムからなる陰極体、セパレータを捲回して捲回素子を作製した後、捲回素子に上記プレゲル電解液を含浸し、80℃で1時間保持した後、125℃で20分間加熱した。これにより、捲回素子にゲル電解質層を形成し、コンデンサ素子を製造した。製造したコンデンサに対して、以下の評価を行い、容量出現率、容量変化率、およびコンデンサ故障率を算出した。結果を表1に示す。
(Manufacture and evaluation of capacitor elements)
An anode body having an aluminum dielectric layer obtained by anodizing a surface-enlarged aluminum foil by etching, a cathode body made of aluminum that has been surface-enhanced by etching, and a separator were wound to produce a wound element. Thereafter, the wound element was impregnated with the above pregel electrolyte, held at 80 ° C. for 1 hour, and then heated at 125 ° C. for 20 minutes. Thus, a gel electrolyte layer was formed on the wound element, and a capacitor element was manufactured. The manufactured capacitor was evaluated as follows to calculate the capacity appearance rate, the capacity change rate, and the capacitor failure rate. The results are shown in Table 1.

製造したコンデンサの容量をLCRメーター(Agilent製、E4980A)にて測定し、下式より、容量出現率を算出した。
容量出現率(%)=(実測された容量/wet容量)×100
なお、wet容量とは、アジピン酸アンモニウム水溶液に陽極体を浸漬させ、LCRメーターにて測定した静電容量である。
The capacity of the manufactured capacitor was measured with an LCR meter (manufactured by Agilent, E4980A), and the capacity appearance rate was calculated from the following formula.
Capacity appearance rate (%) = (actually measured capacity / wet capacity) × 100
The wet capacity is an electrostatic capacity measured by an LCR meter after immersing the anode body in an aqueous solution of ammonium adipate.

また、製造したコンデンサに対して、150℃において耐熱試験を1000時間実施した。評価投入直後(0時間)と1000時間経過後の容量をLCRメーターにて測定し、1000時間経過後における容量の変化率を、下式より算出した。
容量変化率(%)=(1000時間後の値/0時間後の値)×100
The manufactured capacitor was subjected to a heat resistance test at 150 ° C. for 1000 hours. The capacity immediately after the evaluation (0 hours) and after 1000 hours was measured with an LCR meter, and the change rate of the capacity after 1000 hours was calculated from the following equation.
Capacity change rate (%) = (value after 1000 hours / value after 0 hours) × 100

さらに、製造したコンデンサ素子に対して、150℃において電圧印加試験(1.0W.V)を1000時間実施し、下式より、コンデンサ故障率を評価した。評価サンプルの個数は100個とした。なお、W.Vは、製品定格電圧を意味する。
コンデンサ故障率(%)=(液漏れ、破損したサンプルの個数/全評価サンプルの個数)×100
Furthermore, a voltage application test (1.0 W.V) was performed for 1000 hours on the manufactured capacitor element at 150 ° C., and the capacitor failure rate was evaluated from the following equation. The number of evaluation samples was 100. W.V means the rated product voltage.
Capacitor failure rate (%) = (Liquid leakage, number of damaged samples / number of all evaluation samples) x 100

[実施例2]
WS−700を固形分換算で7.67質量部添加としたこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 2]
A capacitor element was manufactured in the same manner as in Example 1 except that WS-700 was added in an amount of 7.67 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例3]
WS−700を固形分換算で6.13質量部添加としたこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 3]
A capacitor element was manufactured in the same manner as in Example 1 except that WS-700 was added in an amount of 6.13 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例4]
化合物Bとして、「エポクロス(登録商標)WS−500」(株式会社日本触媒製、以下、WS−500)(1g当たりのオキサゾリン基のモル数は、4.5mmol/g)を固形分換算で10.22質量部添加したこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 4]
As compound B, “Epocross (registered trademark) WS-500” (manufactured by Nippon Shokubai Co., Ltd., hereinafter referred to as WS-500) (the number of moles of oxazoline group per 1 g is 4.5 mmol / g) in terms of solid content is 10 A capacitor element was manufactured in the same manner as in Example 1 except that .22 parts by mass was added. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例5]
WS−500を固形分換算で7.67質量部添加としたこと以外は、実施例4と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 5]
A capacitor element was manufactured in the same manner as in Example 4 except that WS-500 was added in an amount of 7.67 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例6]
WS−500を固形分換算で6.13質量部添加としたこと以外は、実施例4と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 6]
A capacitor element was manufactured in the same manner as in Example 4 except that WS-500 was added in an amount of 6.13 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例7]
化合物Bとして、「エポクロス(登録商標)WS−300」(株式会社日本触媒製、以下、WS−300)(1g当たりのオキサゾリン基のモル数は、7.7mmol/g)を固形分換算で5.97質量部添加したこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 7]
As compound B, “Epocross (registered trademark) WS-300” (manufactured by Nippon Shokubai Co., Ltd., hereinafter referred to as WS-300) (the number of moles of oxazoline group per gram is 7.7 mmol / g) is 5 in terms of solid content. A capacitor element was manufactured in the same manner as in Example 1 except that 97 parts by mass was added. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例8]
WS−300を固形分換算で4.48質量部添加としたこと以外は、実施例7と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 8]
A capacitor element was manufactured in the same manner as in Example 7 except that WS-300 was added in an amount of 4.48 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例9]
WS−300を固形分換算で3.58質量部添加としたこと以外は、実施例7と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 9]
A capacitor element was manufactured in the same manner as in Example 7 except that WS-300 was added in an amount of 3.58 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例10]
ポリアクリル酸の分子量を25,000(1g当たりのカルボキシル基のモル数は、13.8mmol/g)とし、WS−700の添加量を7.67質量部としたこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 10]
Example 1 except that the molecular weight of polyacrylic acid was 25,000 (the number of moles of carboxyl groups per gram was 13.8 mmol / g) and the amount of WS-700 added was 7.67 parts by mass. A capacitor element was manufactured in the same manner. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例11]
WS−500を固形分換算で7.67質量部添加としたこと以外は、実施例10と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 11]
A capacitor element was manufactured in the same manner as in Example 10 except that WS-500 was added in an amount of 7.67 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例12]
WS−300を固形分換算で3.58質量部添加としたこと以外は、実施例10と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 12]
A capacitor element was manufactured in the same manner as in Example 10 except that WS-300 was added in an amount of 3.58 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例13]
ポリアクリル酸の分子量を50,000(1g当たりのカルボキシル基のモル数は、13.8mmol/g)としたこと以外は、実施例10と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 13]
A capacitor element was manufactured in the same manner as in Example 10 except that the molecular weight of polyacrylic acid was 50,000 (the number of moles of carboxyl groups per gram was 13.8 mmol / g). Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例14]
ポリアクリル酸の分子量を50,000としたこと以外は、実施例11と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 14]
A capacitor element was manufactured in the same manner as in Example 11 except that the molecular weight of polyacrylic acid was 50,000. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例15]
ポリアクリル酸の分子量を50,000としたこと以外は、実施例12と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 15]
A capacitor element was manufactured in the same manner as in Example 12 except that the molecular weight of polyacrylic acid was 50,000. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例16]
(電解液の調製)
実施例1と同様にして、電解液を調製した。
[Example 16]
(Preparation of electrolyte)
In the same manner as in Example 1, an electrolytic solution was prepared.

(プレゲル電解液の調製)
実施例2と同様にして、プレゲル電解液を調製した。
(Pregel electrolyte preparation)
In the same manner as in Example 2, a pregel electrolyte was prepared.

(コンデンサ素子の製造・評価)
陽極体としてのタンタル微粉末の焼結体を、リン酸水溶液中、10Vで電解酸化し、タンタル微粉末の焼結体の表面全体が誘電体層で被覆されたペレットを得た。次に、酸化剤兼ドーパントである30質量%のp−トルエンスルホン酸第二鉄メタノール溶液に、この誘電体層で被覆されたペレットを10分間浸漬し、室温で30分間乾燥させた。次いで、導電性高分子を与えるモノマーである3,4−エチレンジオキシチオフェンに10分間浸漬して室温で30分間保持し、3,4−エチレンジオキシチオフェンの重合を行った。この後、エタノールに浸漬して未反応物および酸化剤残渣の洗浄を行った。これら酸化剤の充填と、3,4−エチレンジオキシチオフェンの充填及び洗浄を行う一連の重合操作とを5回繰り返し行い、導電性ポリエチレンジオキシチオフェン層からなる導電性高分子層を形成した。
(Manufacture and evaluation of capacitor elements)
A sintered body of fine tantalum powder as an anode body was electrolytically oxidized at 10 V in an aqueous phosphoric acid solution to obtain a pellet in which the entire surface of the sintered body of fine tantalum powder was coated with a dielectric layer. Next, the pellet covered with this dielectric layer was immersed in a 30% by mass p-toluenesulfonic acid ferric methanol solution that is an oxidizing agent and a dopant for 10 minutes and dried at room temperature for 30 minutes. Next, it was immersed in 3,4-ethylenedioxythiophene, which is a monomer that gives a conductive polymer, for 10 minutes and kept at room temperature for 30 minutes to polymerize 3,4-ethylenedioxythiophene. Then, it was immersed in ethanol and the unreacted substance and the oxidizing agent residue were washed. The filling of these oxidizing agents and a series of polymerization operations for filling and washing 3,4-ethylenedioxythiophene were repeated five times to form a conductive polymer layer composed of a conductive polyethylenedioxythiophene layer.

続いて、導電性高分子層を上記にて調製したプレゲル電解液に10分間含浸し、誘電体層近傍に至るまでプレゲル電解液を含浸させた。この後、125℃で20分間加熱することでゲル電解質層を形成した。さらに、グラファイト層、銀層を順次形成し、外装樹脂でモールドすることにより、固体電解コンデンサ素子を製造した。得られた固体電解コンデンサについて、実施例1と同様の評価を実施した。結果を表1に示す。   Subsequently, the conductive polymer layer was impregnated with the pregel electrolyte prepared above for 10 minutes, and was impregnated with the pregel electrolyte until reaching the vicinity of the dielectric layer. Then, the gel electrolyte layer was formed by heating at 125 ° C. for 20 minutes. Furthermore, a solid electrolytic capacitor element was manufactured by sequentially forming a graphite layer and a silver layer and molding with a packaging resin. About the obtained solid electrolytic capacitor, evaluation similar to Example 1 was implemented. The results are shown in Table 1.

[実施例17]
ポリアクリル酸(分子量5,000)の添加量を10質量部とし、WS−700を固形分換算で15.33質量部添加としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 17]
A solid electrolytic capacitor element was prepared in the same manner as in Example 16 except that the addition amount of polyacrylic acid (molecular weight: 5,000) was 10 parts by mass, and WS-700 was added in an amount of 15.33 parts by mass in terms of solid content. Manufactured. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例18]
ポリアクリル酸(分子量5,000)の添加量を14質量部とし、WS−700を固形分換算で21.47質量部添加としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
す。
[Example 18]
A solid electrolytic capacitor element was prepared in the same manner as in Example 16 except that the addition amount of polyacrylic acid (molecular weight 5,000) was 14 parts by mass and WS-700 was added 21.47 parts by mass in terms of solid content. Manufactured. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.
The

[実施例19]
化合物Bとして、WS−500を固形分換算で7.67質量部添加としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 19]
A solid electrolytic capacitor element was produced in the same manner as in Example 16 except that WS-500 was added as compound B in an amount of 7.67 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例20]
化合物Bとして、WS−300を固形分換算で4.47質量部添加としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 20]
A solid electrolytic capacitor element was produced in the same manner as in Example 16 except that WS-300 was added as compound B in an amount of 4.47 parts by mass in terms of solid content. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例21]
ポリアクリル酸の分子量を25,000としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 21]
A solid electrolytic capacitor element was produced in the same manner as in Example 16 except that the molecular weight of polyacrylic acid was 25,000. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例22]
ポリアクリル酸の分子量を50,000としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 22]
A solid electrolytic capacitor element was produced in the same manner as in Example 16 except that the molecular weight of polyacrylic acid was 50,000. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[実施例23]
ポリアクリル酸の分子量を100,000(1g当たりのカルボキシル基のモル数は、13.8mmol/g)とし、WS−700を固形分換算で10.22質量部添加としたこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Example 23]
Except that the molecular weight of polyacrylic acid was 100,000 (the number of moles of carboxyl groups per gram is 13.8 mmol / g), and WS-700 was added in an amount of 10.22 parts by mass in terms of solid content. In the same manner as in Example 16, a solid electrolytic capacitor element was produced. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[比較例1]
ゲル化剤を添加せず、実施例1にて調製した電解液のみを捲回素子に含浸させてコンデンサ素子を製造したこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Comparative Example 1]
A capacitor element was manufactured in the same manner as in Example 1 except that the winding element was impregnated with only the electrolytic solution prepared in Example 1 without adding a gelling agent. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[比較例2]
ゲル化剤を添加せず、実施例1にて調製した電解液のみを導電性高分子層に含浸させて固体電解コンデンサを製造したこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Comparative Example 2]
A solid electrolytic capacitor element was prepared in the same manner as in Example 16 except that a solid electrolytic capacitor was produced by impregnating the conductive polymer layer only with the electrolytic solution prepared in Example 1 without adding a gelling agent. Manufactured. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[比較例3]
実施例1にて調製した電解液100質量部に対し、主鎖骨格に窒素原子を含有するN,N−ジメチルアクリルアミドとアクリル酸の共重合体(1g当たりのカルボキシル基のモル数は、13.8mmol/g)5質量部と、WS−700を固形分換算で10質量部添加し、プレゲル電解液を調製したこと以外は、実施例1と同様にしてコンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Comparative Example 3]
A copolymer of N, N-dimethylacrylamide and acrylic acid containing a nitrogen atom in the main chain skeleton with respect to 100 parts by mass of the electrolytic solution prepared in Example 1 (the number of moles of carboxyl groups per gram is 13. 8 mmol / g) A capacitor element was produced in the same manner as in Example 1 except that 5 parts by mass and 10 parts by mass of WS-700 were added in terms of solid content to prepare a pregel electrolyte. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

[比較例4]
実施例1にて調製した電解液100質量部に対し、N,N−ジメチルアクリルアミドとアクリル酸の共重合体を5質量部と、WS−700を固形分換算で10質量部添加し、プレゲル電解液を調製したこと以外は、実施例16と同様にして固体電解コンデンサ素子を製造した。また、実施例1と同様の評価を実施した。結果を表1に示す。
[Comparative Example 4]
5 parts by weight of a copolymer of N, N-dimethylacrylamide and acrylic acid and 10 parts by weight of WS-700 in terms of solid content are added to 100 parts by weight of the electrolytic solution prepared in Example 1, and pregel electrolysis A solid electrolytic capacitor element was produced in the same manner as in Example 16 except that the liquid was prepared. Moreover, the same evaluation as Example 1 was implemented. The results are shown in Table 1.

Figure 0006487285
Figure 0006487285

表1に示すように、本発明のゲル電解質用組成物を用いた電解コンデンサは、高温下においても容量の低下が抑制され、耐熱性に優れていることがわかった。一方で、本発明のゲル化剤を使用せずに作製した比較例1、比較例2のコンデンサおよび、化合物Aとして、主鎖骨格に窒素原子を含有するN,N−ジメチルアクリルアミドとアクリル酸の共重合体を用いて作製した比較例3、比較例4のコンデンサは、本発明のコンデンサに比べ、耐熱性が劣る結果であった。   As shown in Table 1, it was found that the electrolytic capacitor using the gel electrolyte composition of the present invention was excellent in heat resistance because the decrease in capacity was suppressed even at high temperatures. On the other hand, as a capacitor of Comparative Example 1 and Comparative Example 2 prepared without using the gelling agent of the present invention and Compound A, N, N-dimethylacrylamide and acrylic acid containing nitrogen atoms in the main chain skeleton were used. The capacitors of Comparative Example 3 and Comparative Example 4 produced using the copolymer were inferior in heat resistance as compared with the capacitor of the present invention.

1:陽極体
2:誘電体層
3:陰極体
4:ゲル電解質
5:セパレータ
6:導電性高分子層
6A:第一の導電性高分子層
6B:第二の導電性高分子層
7:グラファイト層
8:銀層
1: Anode body 2: Dielectric layer 3: Cathode body 4: Gel electrolyte 5: Separator 6: Conductive polymer layer 6A: First conductive polymer layer 6B: Second conductive polymer layer 7: Graphite Layer 8: Silver layer

Claims (6)

電解液と、ゲル化剤と、を含むゲル電解質用組成物であって、前記ゲル化剤が、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物Aと、オキサゾリン基を有する化合物Bと、を含み、前記化合物Aと前記化合物Bの含有比率は、前記化合物Aの有するカルボキシル基のモル数を、前記化合物Bの有するオキサゾリン基のモル数で除した値が1.5以上2.5以下である、ことを特徴とするゲル電解質用組成物。 A composition for a gel electrolyte comprising an electrolytic solution and a gelling agent, wherein the gelling agent does not contain a nitrogen atom in the main chain skeleton and has a carboxyl group, and a compound B having an oxazoline group When, only contains, the content ratio of the compound B and the compound a, the number of moles of the carboxyl group contained in the said compound a, a value obtained by dividing the number of moles of oxazoline group contained in the said compound B is 1.5 or more 2 The composition for gel electrolytes characterized by being 5 or less . 前記化合物Aの分子量が5万以下である、請求項1に記載のゲル電解質用組成物。   The composition for gel electrolyte according to claim 1, wherein the compound A has a molecular weight of 50,000 or less. 前記化合物Aがポリアクリル酸である、請求項1または請求項2に記載のゲル電解質用組成物。 The composition for gel electrolyte according to claim 1 or 2 , wherein the compound A is polyacrylic acid. 請求項1〜請求項のいずれか一項に記載のゲル電解質用組成物をゲル化してなるゲル電解質。 The gel electrolyte formed by gelatinizing the composition for gel electrolytes as described in any one of Claims 1-3 . 電解液と、ゲル化剤と、を含むゲル電解質用組成物であって、前記ゲル化剤が、主鎖骨格に窒素原子を含有せずカルボキシル基を有する化合物Aと、オキサゾリン基を有する化合物Bと、を含むことを特徴とするゲル電解質用組成物をゲル化してなるゲル電解質を含む電解質層を備えた電解コンデンサ。 A composition for a gel electrolyte comprising an electrolytic solution and a gelling agent, wherein the gelling agent does not contain a nitrogen atom in the main chain skeleton and has a carboxyl group, and a compound B having an oxazoline group And an electrolytic capacitor comprising an electrolyte layer containing a gel electrolyte formed by gelling a composition for gel electrolyte. 前記電解質層に、さらに導電性高分子を含む請求項に記載の電解コンデンサ。 The electrolytic capacitor according to claim 5 , further comprising a conductive polymer in the electrolyte layer.
JP2015132680A 2015-07-01 2015-07-01 Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same Active JP6487285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132680A JP6487285B2 (en) 2015-07-01 2015-07-01 Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132680A JP6487285B2 (en) 2015-07-01 2015-07-01 Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2017017188A JP2017017188A (en) 2017-01-19
JP6487285B2 true JP6487285B2 (en) 2019-03-20

Family

ID=57831011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132680A Active JP6487285B2 (en) 2015-07-01 2015-07-01 Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP6487285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027019A1 (en) * 2017-08-04 2019-02-07 三洋化成工業株式会社 Electrolytic capacitor additive, conductive polymer dispersion, electrolytic solution and electrolytic capacitor
JP7308405B2 (en) * 2018-10-31 2023-07-14 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for manufacturing electrolytic capacitor
WO2023171344A1 (en) * 2022-03-10 2023-09-14 カーリットホールディングス株式会社 Solid electrolyte capacitor and method for manufacturing same
WO2023189924A1 (en) * 2022-03-29 2023-10-05 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162645A (en) * 1997-03-13 2000-12-19 Abbott Laboratories Determination of % glycated hemoglobin
EP0949290B1 (en) * 1998-04-09 2006-12-27 Nippon Shokubai Co., Ltd. Crosslinked polymer particle and its production process and use
JPH11349689A (en) * 1998-04-09 1999-12-21 Nippon Shokubai Co Ltd Crosslinked polymer particle and its preparation and use thereof
US20070122699A1 (en) * 2005-11-30 2007-05-31 Rovcal, Inc. Electrochemical cells having improved gelling agents
JP2010129933A (en) * 2008-11-29 2010-06-10 Nichicon Corp Driving electrolytic solution of electrolytic capacitor, and electrolytic capacitor using the same
JP2013171956A (en) * 2012-02-21 2013-09-02 Nec Tokin Corp Solid electrolytic capacitor, method for manufacturing the same, and conductive polymer composition
JP6017148B2 (en) * 2012-02-23 2016-10-26 Necトーキン株式会社 Conductive polymer suspension solution, conductive polymer material, electrolytic capacitor and method for producing the same

Also Published As

Publication number Publication date
JP2017017188A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP2019080076A (en) Solid electrolytic capacitor and method for manufacturing the same
TWI825130B (en) solid electrolytic capacitor
JP2014123685A (en) Electrolytic capacitor and method of manufacturing the same
JP6487285B2 (en) Composition for gel electrolyte and gel electrolyte and electrolytic capacitor using the same
JP2015095616A (en) Solid electrolytic capacitor and manufacturing method therefor
WO2017163727A1 (en) Electrolytic capacitor
JP7226593B2 (en) solid electrolytic capacitor
JPWO2020022472A1 (en) Electrolytic capacitor
JP5327255B2 (en) Electrolytic capacitor manufacturing method
JP2023176004A (en) solid electrolytic capacitor
JP6911910B2 (en) Electrolytic capacitors and their manufacturing methods
JP7357238B2 (en) Electrolytic capacitors and electrolytic capacitor manufacturing methods
JP4800891B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2024070288A1 (en) Solid electrolytic capacitor and manufacturing method
JP4795331B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2024052275A (en) Solid electrolytic capacitor and manufacturing method
JP2016122741A (en) Electrolytic capacitor
TW202338873A (en) solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP2017220679A (en) Electrolytic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6487285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250