WO2019027019A1 - Electrolytic capacitor additive, conductive polymer dispersion, electrolytic solution and electrolytic capacitor - Google Patents

Electrolytic capacitor additive, conductive polymer dispersion, electrolytic solution and electrolytic capacitor Download PDF

Info

Publication number
WO2019027019A1
WO2019027019A1 PCT/JP2018/029129 JP2018029129W WO2019027019A1 WO 2019027019 A1 WO2019027019 A1 WO 2019027019A1 JP 2018029129 W JP2018029129 W JP 2018029129W WO 2019027019 A1 WO2019027019 A1 WO 2019027019A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
meth
group
electrolytic capacitor
additive
Prior art date
Application number
PCT/JP2018/029129
Other languages
French (fr)
Japanese (ja)
Inventor
慶彦 赤澤
史行 田邊
賢吾 内橋
隆宏 芝
向井 孝夫
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201880044315.2A priority Critical patent/CN110832611B/en
Priority to JP2019534589A priority patent/JP7173972B2/en
Publication of WO2019027019A1 publication Critical patent/WO2019027019A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials

Definitions

  • the present invention relates to an additive for an electrolytic capacitor, a conductive polymer dispersion, an electrolytic solution and an electrolytic capacitor.
  • the electrolytic capacitor includes an anode foil made of aluminum, tantalum or the like, a dielectric layer such as aluminum oxide or tantalum oxide formed on the anode foil, and a cathode foil.
  • an electrolytic capacitor in which a solid electrolyte layer containing a conductive polymer as a cathode material is formed on a dielectric layer is called a solid electrolytic capacitor.
  • Solid electrolytic capacitors use conductive polymers, and therefore can achieve lower ESR than electrolytic capacitors using electrolytic solutions.
  • a solid electrolytic capacitor does not contain a substance responsible for the repair of a dielectric such as an electrolytic solution, there is a problem that the guaranteed voltage can not be increased because the leakage current is large and the withstand voltage is low. .
  • Patent Document 1 discloses a technique for suppressing the leakage current by covering the dielectric surface with polyvinyl alcohol.
  • Patent Document 2 discloses a technique capable of improving the withstand voltage by introducing a copolymer such as acrylic acid and vinyl phenol into a solid electrolyte layer.
  • a copolymer such as acrylic acid and vinyl phenol
  • the electrolytic solution gets into the gaps of the solid electrolyte of the conductive polymer, and the degree of contact between the dielectric oxide film and the electrolyte is improved. Therefore, the capacitance is increased and the ESR is reduced, and the defect of the dielectric oxide film can be repaired by the action of the electrolytic solution, the leakage current is small, and the short circuit can be suppressed.
  • the suppression of the leakage current in particular, the suppression of the leakage current under a high temperature environment was not sufficient.
  • An object of the present invention is to reduce the leakage current of an electrolytic capacitor provided with a solid electrolyte layer and to improve the withstand voltage.
  • the present invention is an additive for an electrolytic capacitor used in an electrolytic capacitor provided with a solid electrolyte layer, which contains a polymer (A) having a hydrophilic group, and the concentration of the hydrophilic group of the polymer (A) Is 18 mmol / g or less based on the weight of the polymer (A), and the solubility parameter of the polymer (A) is an additive for an electrolytic capacitor of 12 (cal / cm 3 ) 1/2 or more.
  • the present invention is a conductive polymer dispersion containing the above-mentioned additive for electrolytic capacitor, an electrolytic solution containing the above-mentioned additive for electrolytic capacitor, and an electrolytic capacitor containing the above-mentioned additive for electrolytic capacitor .
  • the additive for an electrolytic capacitor of the present invention is an additive for an electrolytic capacitor used in an electrolytic capacitor provided with a solid electrolyte layer, which contains a polymer (A) having a hydrophilic group, and is hydrophilic of the polymer (A)
  • the additive for an electrolytic capacitor wherein the concentration of the hydrophobic group is 18 mmol / g or less based on the weight of the polymer (A), and the solubility parameter of the polymer (A) is 12 (cal / cm 3 ) 1/2 or more is there.
  • the hydrophilic group is not particularly limited, and can be, for example, a hydroxyl group, an acid group, a basic group, and an oxyalkylene group having 2 to 3 carbon atoms.
  • an acidic group a carboxyl group, a sulfonic acid group, a phosphonic acid group etc. are mentioned.
  • Examples of basic groups include amino groups and ammonium groups.
  • Examples of the oxyalkylene group having a carbon number of 2 to 3 include an oxyethylene group and a 1,2- or 1,3-oxypropylene group.
  • these hydrophilic groups from the viewpoint of leakage current, preferred are a hydroxyl group and an acidic group, and more preferred is a hydroxyl group.
  • the concentration of hydrophilic groups in the polymer (A) having a hydrophilic group is 18 mmol / g or less based on the weight of the polymer (A).
  • the upper limit thereof is preferably 13 mmol / g, more preferably 10 mmol / g, and the lower limit thereof is preferably 2 mmol / g, more preferably 4 mmol / g. If the concentration of the hydrophilic group of the polymer (A) exceeds 18 mmol / g, the intermolecular force becomes strong and precipitation occurs at a low temperature, so that there is a problem that the low temperature characteristics of the capacitor are deteriorated.
  • the concentration of the hydrophilic group in the polymer (A) can be adjusted by the selection of the constituent monomers and the weight ratio.
  • the concentration of the hydrophilic group in the polymer (A) is defined by the amount of substance (number of moles) of the hydrophilic group contained in 1 g of the polymer (A).
  • the concentration of the hydrophilic group of the polymer (A) was measured by the following method.
  • the concentration of the hydrophilic group of the polymer (A) is a value calculated by the following formula by determining the hydroxyl value by the method described in JIS K 0700: 1992.
  • the concentration of the hydrophilic group of the polymer (A) is a value calculated by the following formula by determining the acid value by the method described in JIS K 0700: 1992.
  • the concentration of the hydrophilic group of the polymer (A) can be determined by the following method.
  • the polymer (A) is hydrolyzed in a 1 mol / l aqueous sodium hydroxide solution at 100 ° C. for 2 hours to obtain a solution in which a segment containing an oxyalkylene group is separated from the polymer.
  • the solubility parameter (hereinafter abbreviated as SP value) of the polymer (A) is 12 (cal / cm 3 ) 1/2 or more. Preferably, it is 12 to 20 (cal / cm 3 ) 1/2 , more preferably 12 to 17 (cal / cm 3 ) 1/2 . If the SP value of the polymer (A) is less than 12 (cal / cm 3 ) 1/2 , the affinity to the oxide film is low, and there is a problem that the withstand voltage decreases.
  • the SP value of the polymer (A) can be adjusted by appropriately adjusting the SP value and the mole fraction of the constituent monomers. In order to increase the SP value of the polymer (A), a monomer having a high polar functional group may be used as a constituent monomer.
  • the SP value of the polymer (A) is a value calculated by the method described in the Fedors method (Polymer Engineering and Science, February, 1974, Vol. 14, No. 2, P. 147 to 154). SP value of a polymer (A) calculates SP value of each monomer which comprises a polymer (A) by said method, and SP value of each monomer is an average based on the mole fraction of a constituent monomer unit. Value.
  • the polymer (A) having a hydrophilic group is preferably a polymer having an ethylenically unsaturated monomer (a) having a hydrophilic group as a constituent monomer.
  • a polymer having an ethylenically unsaturated monomer (a) having a hydrophilic group an ethylenically unsaturated monomer having at least one group selected from the group consisting of a hydroxyl group, an acidic group, a basic group and an oxyalkylene group having 2 to 3 carbon atoms Can be mentioned.
  • Examples of the ethylenically unsaturated monomer (a) having a hydrophilic group include (meth) acrylic monomers having a hydrophilic group, vinyl monomers having a hydrophilic group, styrene monomers having a hydrophilic group, and the like.
  • the notation "(meth) acrylic” means acrylic and / or methacrylic
  • the notation "(meth) acryloyl” means acryloyl and / or methacryloyl
  • the notation "(meth) acryloyloxy” Means acryloyloxy and / or methacryloyloxy.
  • Examples of the ethylenically unsaturated monomer (a) having a hydroxyl group as a hydrophilic group include (meth) acrylic monomers having a hydroxyl group, vinyl monomers having a hydroxyl group, and styrene monomers having a hydroxyl group.
  • a (meth) acrylic monomer having a hydroxyl group as a hydrophilic group a hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, a lactone adduct to the above hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, and Examples thereof include alkylene oxide adducts to the above-mentioned hydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms.
  • hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms examples include monohydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms [2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and —Hydroxybutyl (meth) acrylate and the like], dihydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms, trihydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms, and the like.
  • Examples of monohydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate and 2-hydroxy-1-methyl Ethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-1-methylpropyl (meth) acrylate, 2-hydroxy- 2-Methylpropyl (meth) acrylate, 3-hydroxy-1-methylpropyl (meth) acrylate, 3-hydroxy-2-methylpropyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 6- Mud carboxymethyl hexyl (meth) acrylate, 7-hydroxy-heptyl (meth) acrylate and 8-hydroxyoctyl (meth)
  • Examples of the dihydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms include glycerin mono (meth) acrylate and the like.
  • Examples of trihydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms include pentaerythritol monoacrylate and the like.
  • lactones to be added to the hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms lactones having 2 to 12 carbon atoms are preferable, and acetolactone, propiolactone, butyrolactone, valerolactone, caprolactone, laurolactone and the like can be mentioned.
  • the addition mole number of the lactone is preferably 1 to 15 moles, more preferably 1 to 5 moles.
  • the lactone to be added may be used alone or in combination of two or more.
  • Examples of the 1 to 15-mole adduct of lactone to hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms include 2- (meth) acryloyloxyethyl 6-hydroxyhexanoate, 2- (5-hydroxydodecanoate) And the like) and caprolactone 5 mol adduct to acryloyloxyethyl and 2-hydroxyethyl (meth) acrylate.
  • an alkylene oxide having 2 to 10 carbon atoms is preferable, and ethylene oxide, 1,2- or 1,3-propylene oxide, 1,2 And 1,3-, 1,4-, 2,3-butylene oxide, 3-methyltetrahydrofuran, 1,2-decene oxide, styrene oxide and epihalohydrin (such as epichlorohydrin).
  • the addition mole number of the alkylene oxide is preferably 1 to 40 moles.
  • the alkylene oxide to be added may be used alone or in combination of two or more.
  • Examples of the vinyl monomer having a hydroxyl group as a hydrophilic group include vinyl alcohol, allyl alcohol, 4-vinyloxybutanol, 4-vinyloxybutanol, 3-allyloxy-1,2-propanediol and the like.
  • styrene monomers having a hydroxyl group as a hydrophilic group examples include cinnamyl alcohol and 4-hydroxybenzalacetone.
  • Examples of the ethylenically unsaturated monomer (a) having an acidic group as a hydrophilic group include (meth) acrylic monomers having an acidic group, vinyl monomers having an acidic group, styrene monomers having an acidic group, and the like.
  • (Meth) acrylic monomer having a carboxy group [acid anhydride (preferably acid anhydride having 4 to 10 carbon atoms) adduct to the (meth) acrylic monomer having a hydroxyl group (succinic acid 2- (meth) acryloyloxy) Ethyl, 2- (meth) acryloyloxyethyl maleate, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, etc.], Lactone to (meth) acrylic acid (The above-mentioned lactones of 2 to 12 carbon atoms are preferred) Adducts (1 to 5 molar adducts are preferred) [2-((meth) acryloyloxy) ethanoic acid, 3-((meth) acryloyloxy) propanoic acid, 4-
  • Examples of the vinyl monomer having an acidic group as a hydrophilic group include 3-pentenoic acid, 3-hexenoic acid, vinylsulfonic acid, vinylphosphonic acid and the like.
  • Examples of the styrene monomer having an acidic group as a hydrophilic group include 4-vinylbenzoic acid and 4-styrenesulfonic acid.
  • Examples of the ethylenically unsaturated monomer (a) having a basic group as a hydrophilic group include (meth) acrylic monomers having a basic group, vinyl monomers having a basic group, styrene monomers having a basic group, etc. .
  • the (meth) acrylic monomer having a basic group as a hydrophilic group includes (meth) acrylamide [(meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide having 3 to 20 carbon atoms] , Dimethylaminopropyl (meth) acrylamide, N- (2- hydroxyethyl) (meth) acrylamide and N, N- dibenzyl (meth) acrylamide, etc.], aminoalkyl (meth) acrylate having 4 to 12 carbon atoms [(meth) Examples thereof include dimethylaminoethyl acrylate] and quaternary ammonium salts of aminoalkyl (meth) acrylates having 4 to 12 carbon atoms [trimethylethyl ammonium (meth) acrylate] and the like.
  • Examples of the vinyl monomer having a basic group as a hydrophilic group include allylamine, N, N-dimethylallylamine, N, N-diethylallylamine and the like.
  • styrene monomer having a basic group as a hydrophilic group 4-aminostyrene and the like can be mentioned.
  • Examples of the ethylenically unsaturated monomer (a) having an oxyalkylene group having 2 to 3 carbon atoms as a hydrophilic group include (meth) acrylic monomers having an oxyalkylene group having 2 to 3 carbon atoms, and an oxy alkylene group having 2 to 3 carbon atoms Examples thereof include vinyl monomers having an alkylene group and styrene monomers having an oxyalkylene group having 2 to 3 carbon atoms.
  • an alkylene oxide an alkylene oxide having a carbon number of 2 to 3 adduct to a (meth) acrylate having a hydroxyl group
  • alkyl examples include alkyl (preferably alkyl having 1 to 8 carbon atoms such as methyl, ethyl, propyl and octyl) and the like.
  • alkyl ether of alkylene oxide adduct to (meth) acrylate having hydroxyl group methoxy polyethylene glycol acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 2- (2-ethoxy) (meth) acrylate Ethoxy) ethyl and 2- (2-octoxyethoxy) ethyl (meth) acrylate and the like can be mentioned.
  • Examples of the vinyl monomer having an oxyalkylene group having a carbon number of 2 to 3 as a hydrophilic group include diethylene glycol monovinyl ether and the like.
  • ethylenically unsaturated monomers (a) having such a hydrophilic group preferred are (meth) acrylic monomers having a hydrophilic group from the viewpoint of improving the withstand voltage, and more preferred are those having 4 to 6 carbon atoms.
  • Succinic anhydride, maleic anhydride, phthalic anhydride and hexahydrophthalic anhydride adducts to 12 hydroxyalkyl (meth) acrylates and hydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms, particularly preferably 2 -Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate and 2- (meth) acryloyloxyethyl succinate.
  • the ethylenically unsaturated monomers (a) having a hydrophilic group may be used alone or in combination of two or more.
  • the polymer (A) having a hydrophilic group is a monomer other than the above-mentioned ethylenically unsaturated monomer (a) having a hydrophilic group and the ethylenically unsaturated monomer (a) having a hydrophilic group (hydrophilic It may be a copolymer with a group-free ethylenically unsaturated monomer etc.).
  • alkyl (meth) acrylates having 4 to 20 carbon atoms [ Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and lauryl (meth) acrylate, etc .; styrene compounds having 8 to 20 carbon atoms (styrene and And paramethyl styrene etc .; allyl compounds having 3 to 20 carbon atoms (such as allyl methyl ether and allyl butyl ether) and vinyl acetate etc., more preferably alkyl (meth) acrylates having 4 to 20 carbon atoms, Particularly preferred are butyl (meth) acrylate and
  • the glass transition point (hereinafter abbreviated as Tg) of the polymer (A) having a hydrophilic group in the present invention is preferably -100 to 80 ° C, more preferably -100 to 40, from the viewpoint of withstand voltage. ° C., more preferably ⁇ 100 to 20 ° C., particularly preferably ⁇ 100 to 5 ° C., most preferably ⁇ 100 to 0 ° C.
  • the Tg of the present invention can be measured by a method in accordance with "ASTM D 3418-82" using a differential scanning calorimeter ("DSC 20" and "SSC / 580" manufactured by Seiko Instruments Inc., etc.). .
  • the polymer (A) having a hydrophilic group and having a Tg within the above range has relatively high flexibility and easily penetrates into a defect present in the dielectric, thereby improving repairability, resulting in leakage current Becomes smaller and the withstand voltage becomes higher.
  • the number average molecular weight (hereinafter abbreviated as Mn) of the polymer (A) having a hydrophilic group is preferably 1,000 to 500,000, more preferably 2, from the viewpoint of the withstand voltage. It is preferably in the range of 000 to 200,000, more preferably 3,000 to 50,000, and most preferably 3,000 to 30,000.
  • the Mn of the polymer (A) having a hydrophilic group in the present invention is measured using gel permeation chromatography (hereinafter abbreviated as GPC) under the following conditions.
  • Device (example): HLC-8120 manufactured by Tosoh Corporation Column (one example): Two TSK GEL GMH6 (made by Tosoh Corp.) Measurement temperature: 40 ° C Sample solution: 0.25 wt% THF solution Injection volume: 100 ⁇ l
  • Detection device Refractive index detector
  • Reference substance Tosoh Corp. standard polystyrene (TSK standard POLYSTYRENE) 12 points (weight average molecular weight: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
  • the weight ratio of the ethylenically unsaturated monomer (a) having a hydrophilic group constituting the polymer (A) having a hydrophilic group is the polymer (A) having the hydrophilic group from the viewpoint of improving the withstand voltage. Preferably, it is 50 to 100% by weight, more preferably 60 to 100% by weight, based on the weight of all the monomers constituting the group). From the viewpoint of improving the withstand voltage, the weight ratio of monomers other than the above-mentioned essential constituent monomers constituting the polymer (A) having a hydrophilic group is all constituting the polymer (A) having a hydrophilic group It is preferably 50% by weight or less, more preferably 40% by weight or less, based on the weight of monomers of
  • the polymer (A) having a hydrophilic group is a monomer other than the ethylenically unsaturated monomer (a) having a hydrophilic group and the ethylenically unsaturated monomer (a) optionally having a hydrophilic group.
  • a known method using an ethylenic unsaturated monomer (a) having a hydrophilic group such as a (meth) acrylic monomer having a hydrophilic group is known (JP-A-5-117330) (1) can be produced by polymerization according to the method described in Japanese Patent Application Publication No.
  • a polymerization initiator can be used.
  • the polymerization initiator include azobisisobutyronitrile and the like.
  • the polymer (A) which uses said vinyl alcohol as a structural monomer can be manufactured by implementing partial saponification of polyvinyl acetate by a well-known method.
  • the partially saponified polyvinyl acetate is produced by a known method, and can also be obtained from the market as Gosenex LL (manufactured by Japan Synthetic Chemical Industry Co., Ltd.).
  • the additive for electrolytic capacitor of the present invention may contain components other than the polymer (A) having a hydrophilic group, and as components other than the polymer (A), antioxidants, thermal deterioration inhibitors, etc. Can be mentioned.
  • antioxidants examples include phosphoric acid antioxidants, hindered phenol antioxidants, and thioether antioxidants.
  • As the antioxidant 2,2-methylenebis (4,6-di t-butylphenyl) octyl phosphite (manufactured by Asahi Denka Co., Ltd .; trade name: Adekastab HP-10), tris (2,4-di t-) And butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals; trade name: IRUGAFOS 168).
  • 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate
  • 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate
  • 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate
  • 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate
  • 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate
  • 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate
  • 4-di-t-amyl-6- (3 ', 5'-di-t-amyl
  • the weight ratio of the polymer (A) having a hydrophilic group to the total weight of the additive for an electrolytic capacitor is preferably 80 to 100% by weight from the viewpoint of improving the withstand voltage. More preferably, it is 90 to 100% by weight, and particularly preferably 96 to 100% by weight.
  • the weight ratio of the above-mentioned antioxidant to the total weight of the additive for electrolytic capacitors is preferably 0.01 to 10% by weight. More preferably, it is 0.1 to 5% by weight, and particularly preferably 0.5 to 2% by weight.
  • the weight ratio of the above thermal deterioration inhibitor to the total weight of the electrolytic capacitor additive is 0.01 to 10% by weight. Is more preferably 0.1 to 5% by weight, particularly preferably 0.5 to 2% by weight.
  • the conductive polymer dispersion liquid of the present invention is a conductive polymer dispersion liquid containing an additive for an electrolytic capacitor.
  • the conductive polymer dispersion preferably contains a solvent (B) and a conductive polymer (C) in addition to the additive for the electrolytic capacitor.
  • a solvent B
  • the organic solvent include alcohol solvents, amide solvents, ether solvents, ketone solvents, ester solvents, nitrile solvents, sulfoxide solvents, sulfone solvents and the like. These organic solvents may be used alone or in combination of two or more.
  • the alcohol solvent include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol, monobutyl ether and polyethylene glycol (Mn: 600 or less).
  • the amide solvent include N-methylformamide and N, N-dimethylformamide.
  • ether solvent diethyl ether, dimethyl ether, tetrahydrofuran and the like can be mentioned.
  • the ketone solvent include 2-butanone and acetone.
  • ester solvents include ethyl acetate, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -valerolactone.
  • nitrile solvents include acetonitrile, propionitrile, butyronitrile, acrylonitrile, methacrylonitrile and benzonitrile.
  • sulfoxide solvent dimethyl sulfoxide, methyl ethyl sulfoxide, diethyl sulfoxide and the like can be mentioned.
  • sulfone solvent sulfolane, ethyl methyl sulfone and the like can be mentioned.
  • solvents (B) water, alcohol solvents, sulfoxide solvents and sulfone solvents are preferable from the viewpoint of solubility of the polymer (A), and water, ethylene glycol, diethylene glycol and dimethyl sulfoxide are more preferable. It is.
  • the solvent (B) may be used alone or in combination of two or more.
  • the conductive polymer (C) is an organic polymer having a main chain composed of a ⁇ -conjugated system and exhibiting conductivity. It is not particularly limited as long as it exhibits conductivity and has the effects of the present invention, and examples thereof include polypyrrole conductive polymers, polythiophene conductive polymers, polyacetylene conductive polymers, polyphenylene conductive polymers, polyphenylene vinylene conductive polymers, polyaniline Examples thereof include conductive polymers, polyacene conductive polymers, polythiophene vinylene conductive polymers, and copolymers of these.
  • polythiophene conductive polymers polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), Poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly ( 3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), Poly (3-hydroxythiophene), poly (3-methoxythiophene), poly ( -Ethoxythiophene), poly
  • polypyrrole As the polypyrrole conductive polymer, polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole) ), Poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3- Carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), Poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyi) Oxy pyrrole), poly (3-methyl-4-hexyloxy-
  • polyaniline conductive polymer examples include polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-anilinesulfonic acid), poly (3-anilinesulfonic acid) and the like.
  • conductive polymers from the viewpoint of stability in air and heat resistance, preferred are polypyrrole conductive polymers, polythiophene conductive polymers and polyaniline conductive polymers, and more preferably polythiophene conductive.
  • Polymer and from the viewpoint of conductivity, particularly preferably poly (3,4-ethylenedioxythiophene).
  • the conductive polymers may be used alone or in combination of two or more.
  • the conductive polymer can be used together with a dopant to improve the conductivity.
  • a dopant include p-toluenesulfonic acid and polystyrenesulfonic acid.
  • the conductive polymer dispersion is a conductive polymer dispersion containing an additive for an electrolytic capacitor.
  • An additive (D) may be contained in addition to the additive for electrolytic capacitor, the solvent (B) and the conductive polymer (C).
  • a polyether, surfactant, etc. are mentioned. It is preferably a polyether from the viewpoint of conductivity, and preferably a surfactant from the viewpoint of film formability.
  • nonionic surfactant nonionic surfactant, anionic surfactant, cationic surfactant, etc. are mentioned.
  • nonionic surfactants are preferable from the viewpoint of storage stability.
  • the weight ratio of the additive for electrolytic capacitor to the weight of the conductive polymer dispersion liquid is 0.1 to 30% by weight from the viewpoint of the impregnation property to the capacitor element. Preferably, it is more preferably 0.5 to 25% by weight, particularly preferably 1 to 20% by weight.
  • the weight ratio of the solvent (B) to the weight of the conductive polymer dispersion is preferably 50 to 99% by weight, more preferably 60 from the viewpoint of the dispersibility of the conductive polymer. % To 99% by weight, particularly preferably 70 to 99% by weight.
  • the weight ratio of the conductive polymer (C) to the weight of the conductive polymer dispersion is 0.5 to 10% by weight from the viewpoint of the dispersibility of the conductive polymer. Is preferably 0.8 to 5% by weight.
  • the weight ratio of the additive (G) to the weight of the conductive polymer dispersion is 0.01 to 5% by weight from the viewpoint of solubility in the conductive polymer dispersion. Is more preferable, and more preferably 0.05 to 2% by weight.
  • the conductive polymer dispersion liquid of the present invention is, for example, a dispersion liquid in which the polymer (A) and the conductive polymer (C) are dispersed in a solvent (B) and, if necessary, an additive (D) 20 It can be produced by homogeneous mixing in a temperature range of -80 ° C. by using a known mechanical mixing method (for example, a method using a mechanical stirrer or a magnetic stirrer).
  • a known mechanical mixing method for example, a method using a mechanical stirrer or a magnetic stirrer.
  • the electrolytic solution of the present invention is an electrolytic solution containing an additive for an electrolytic capacitor.
  • the electrolytic solution contains the above-mentioned solvent (B) in addition to the additive for the electrolytic capacitor. If necessary, an electrolyte (F) and other additives (G) can be added.
  • the solvents (B) used as the electrolytic solution water, alcohol solvents, ester solvents, sulfoxide solvents and sulfone solvents are preferable from the viewpoint of the solubility of the polymer (A), and water and ethylene glycol are more preferable. , ⁇ -butyrolactone and sulfolane.
  • the solvent (B) may be used alone or in combination of two or more.
  • the electrolyte (F) contained in the electrolytic solution of the present invention is composed of a cation component (F1) and an anion component (F2), and as the cation component (F1), ammonia, triethylamine, dimethylethylamine, diethylmethylamine, dimethyldimethylamine Amines, diethylamine, 1-methylimidazole, 1,2,3,4-tetramethylimidazolinium, 1-ethyl-3-methylimidazolinium and the like can be mentioned, with preference given to ammonia, dimethylethylamine, diethylamine and triethylamine. More preferred is dimethylethylamine.
  • examples of the anion component (F2) include adipic acid, azelaic acid, 1,6-decanedicarboxylic acid, phthalic acid, maleic acid, benzoic acid, phosphoric acid and their esters and boric acid and their esters, etc. Among them, phthalic acid is preferable.
  • the electrolyte (F) may be used alone or in combination of two or more.
  • the molar ratio of (F1) to (F2) is preferably (F1) / (F2) from the viewpoint of not dedoping the dopant incorporated in the solid electrolyte (conductive polymer described later). It is 3 to 1.0, more preferably 0.5 to 1.0.
  • Examples of other additives (G) include nitro compounds (o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol and p-nitrophenol etc.), boric acid and poval etc.
  • the weight ratio of the polymer (A) to the weight of the electrolytic solution is preferably 5 to 70% by weight, more preferably 10 to 60% by weight from the viewpoint of the impregnatability to the capacitor element. And particularly preferably 20 to 50% by weight.
  • the weight ratio of the solvent (B) to the weight of the electrolytic solution is preferably 30 to 95% by weight, more preferably 40 to 90% by weight from the viewpoint of suppressing dry-up of the capacitor element. And particularly preferably 40 to 80% by weight.
  • the weight ratio of the electrolyte (F) to the weight of the electrolytic solution is preferably 0 to 20% by weight, more preferably 5 to 15% by weight from the viewpoint of the chemical conversion of the dielectric layer. is there.
  • the weight ratio of the additive (G) to the weight of the electrolytic solution is preferably 0 to 5% by weight, more preferably 0.1 to 5%, from the viewpoint of solubility in the electrolytic solution. It is 2% by weight.
  • the electrolytic solution of the present invention can be prepared, for example, from the polymer (A) and the solvent (B) and, if necessary, the electrolyte (F) and other additives (G) in a known mechanical temperature range from 20 to 80.degree. It can be manufactured by uniform mixing by using a dynamic mixing method (for example, a method using a mechanical stirrer or a magnetic stirrer).
  • the electrolytic capacitor of the present invention is an electrolytic capacitor provided with a solid electrolyte layer, and is an electrolytic capacitor containing an additive for electrolytic capacitor.
  • the electrolytic capacitor of the present invention include a capacitor and the like formed by disposing a cathode foil opposite to an anode foil provided with a dielectric layer and a solid electrolyte layer via a separator (such as manila hemp and kraft paper).
  • the solid electrolyte layer is a capacitor containing an electrolytic solution for electrolytic capacitor.
  • a conductive material can be used as the above-mentioned anode foil.
  • the conductive material include aluminum, titanium, tantalum, niobium and alloys thereof.
  • the anode foil is preferably a foil whose surface area is increased by a method such as making it porous by etching.
  • the dielectric layer is formed by anodizing the surface of the anode foil by chemical conversion treatment or the like, and examples thereof include oxides of a conductive substance used for the anode foil.
  • the dielectric layer formed on the surface of the anode foil is aluminum oxide formed by formation.
  • the solid electrolyte layer formed on the surface of the dielectric layer is a layer containing a conductive polymer, a dopant, a polymer (A) having the above-mentioned hydrophilic group and optionally an additive (D).
  • a conductive polymer include polythiophene, poly (3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole.
  • the dopant include p-toluenesulfonic acid and polystyrenesulfonic acid (PSS).
  • PSS polystyrenesulfonic acid
  • an additive (D) a polyether, surfactant, etc. are mentioned.
  • surfactant nonionic surfactant, anionic surfactant, cationic surfactant, etc. are mentioned. Among these surfactants, nonionic surfactants are preferable from the viewpoint of storage stability.
  • the weight ratio of the polymer (A) having a hydrophilic group contained in the solid electrolyte layer is preferably 20 to 80% by weight based on the weight of the solid electrolyte layer from the viewpoint of the withstand voltage, and more preferably It is 30 to 60% by weight, particularly preferably 40 to 50% by weight.
  • the solid electrolyte layer in the present invention can be formed by the following methods [I] and [II].
  • a solid electrolyte layer is formed by the method described in (1) below.
  • An anode foil having a dielectric layer was prepared by using the conductive polymer dispersion described above [the polymer (A) having a hydrophilic group, the conductive polymer (C), the dopant, and the solvent (B) (water, etc.
  • a solid electrolyte layer can be formed by a method in which the solution is impregnated and then dried.
  • the above operation (1) may be performed a plurality of times to form a plurality of solid electrolyte layers.
  • the following operations (2) and / or (3) may be performed instead of the operation (1).
  • the operation of (1), (2) and / or (3) is performed a plurality of times, in each operation of (1), (2) or (3), instead of the anode foil having a dielectric layer.
  • an anode foil having a dielectric layer and a solid electrolyte layer obtained by performing the operation of (1), (2) or (3) immediately before may be used.
  • the anode foil having a dielectric layer is impregnated with the conductive polymer dispersion [a solution containing a conductive polymer (C), a dopant and a solvent (B) (such as water)], and then dried. And a solid electrolyte layer can be formed. Further, the conductive polymer dispersion may contain boric acid and boric acid ester, if necessary.
  • An anode foil having a dielectric layer, a solid electrolyte composition [a monomer (such as thiophene, ethylenedioxythiophene and pyrrole) and a dopant solution (such as aqueous solution) constituting the conductive polymer (C)], an oxidizing agent (such as an aqueous solution)
  • a monomer such as thiophene, ethylenedioxythiophene and pyrrole
  • a dopant solution such as aqueous solution constituting the conductive polymer (C)
  • an oxidizing agent such as an aqueous solution
  • the solid electrolyte layer can be formed by polymerizing the monomers constituting the conductive polymer by a method of alternately impregnating with a solution (aqueous solution or the like) of iron oxide or the like.
  • cathode foil examples include laminates of carbon paste and silver paste, aluminum foil, and the like.
  • the electrolytic capacitor of the present invention can be produced, for example, by the following method. First, the aluminum etched foil as an anode foil is subjected to a chemical conversion treatment by the above method to form a dielectric layer on the surface of the aluminum etched foil, and an anode comprising the anode foil and the dielectric layer is produced. Thereafter, an electrode tab is connected to the anode foil and the cathode foil, and they are opposed to each other through the separator to produce an element. Then, in order to repair the cut surface and the defect portion, the element is subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to prepare a capacitor element.
  • the capacitor element is immersed in the conductive polymer dispersion, the solid electrolyte composition, the solution of the oxidizing agent, etc.
  • a solid electrolyte layer is formed on the surface of the dielectric layer.
  • Examples of the solid electrolyte include polythiophene, poly 3,4-ethylenedioxythiophene and the like, and conductive polymers such as polypyrrole.
  • the conductive polymer has a dopant incorporated therein, and the dopant plays a role in developing conductivity. Examples of the above-mentioned dopant include p-toluenesulfonic acid and polystyrenesulfonic acid.
  • cathode foil examples include laminates of carbon paste and silver paste, aluminum foil, and the like.
  • the following structures are mentioned as a specific structure of the electrolytic capacitor of this invention. It has a capacitor
  • the pair of lead wires are each connected to the capacitor element.
  • the outer package encloses the capacitor element in such a manner that the lead wire is led out to the other end.
  • the exterior body is composed of a cylindrical case and a sealing body, in which case a capacitor element containing an electrolytic solution is accommodated by the method described later, and the lead-through is inserted through the sealing body. It passes through a hole and is sealed by compressing in a drawing portion provided on the outer peripheral surface of the case.
  • the capacitor element of the present invention has an anode foil having a dielectric layer on the surface, and a layer of solid electrolyte in contact with the dielectric layer of the anode foil.
  • the anode foil is formed by roughening the aluminum foil by etching, and further forming an anodized film, which is a dielectric layer, on the surface thereof.
  • the anode foil having the dielectric layer, the cathode foil, and the separator are stacked and wound to form a capacitor element (without a solid electrolyte layer).
  • condenser element in this invention can be obtained by producing the layer of a solid electrolyte between the anode foil and cathode foil in a capacitor
  • the following (1) and (2) etc. are mentioned as a preparation method of the layer of a solid electrolyte.
  • a dielectric element layer in a capacitor element is formed by impregnating a capacitor element (without a layer of solid electrolyte) with the above-mentioned dispersion solution of solid electrolyte [a solution in which a solid electrolyte is dispersed in a solvent (such as water)] and then drying it.
  • a layer of solid electrolyte can be formed on the surface.
  • a capacitor element without a solid electrolyte layer
  • a solid electrolyte composition [a mixture of monomers (such as thiophene, ethylenedioxythiophene and pyrrole, which constitute the solid electrolyte, a dopant and a solvent (such as water)], an oxidant (oxidation
  • a solid electrolyte layer can be formed on the surface of the dielectric layer in the capacitor element by polymerizing the monomers constituting the solid electrolyte by a method of alternately impregnating with a solution (aqueous solution or the like) of iron or the like.
  • the gap of the solid electrolyte layer provided in the capacitor element By immersing the capacitor element formed as described above in the electrolytic solution of the present invention for the electrolytic capacitor of the present invention, and impregnating the electrolytic solution with the above-mentioned electrolytic solution in a vacuum, the gap of the solid electrolyte layer provided in the capacitor element The electrolytic solution for electrolytic capacitor of the above enters and the electrolytic capacitor of the present invention is manufactured.
  • Tg of the following polymers (A-1 to 24) having a hydrophilic group and the comparative polymers (RA-1 and 2) is a differential scanning calorimeter [DSC 20 manufactured by Seiko Instruments Inc. And “SSC / 580” and the like] in accordance with “ASTM D 3418-82”.
  • a solution of 0.9 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 parts by weight of toluene was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was heated with stirring for 3 hours while maintaining 80 ° C. Thereafter, the toluene is distilled off by heating to 100 ° C. under a reduced pressure of 0.5 kPa to synthesize a polymer (A-1) having a hydrophilic group, and the polymer (A-1) is contained. An additive (P-1) for an electrolytic capacitor was produced.
  • the Mn of the polymer (A-1) was 5,600, and the Tg was 56 ° C.
  • Example 2 Preparation of Additive (P-2) for Electrolytic Capacitor Containing Polymer (A-2) Having Hydrophilic Group>
  • a polymer (A-2) having a hydrophilic group is prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1.
  • An additive (P-2) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-2) was 5,300, and the Tg was 11 ° C.
  • Example 3 Preparation of Additive (P-3) for Electrolytic Capacitor Containing Polymer (A-3) Having Hydrophilic Group>
  • a polymer (A-3) having a hydrophilic group is prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1.
  • An additive (P-3) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-3) was 5,500, and the Tg was 4 ° C.
  • Example 4 Preparation of additive (P-4) for electrolytic capacitor containing polymer (A-4) having a hydrophilic group> A polymer (A-4) having a hydrophilic group was prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group was changed to the monomer described in Table 1 in Example 1. An additive (P-4) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-4) was 6,100, and the Tg was ⁇ 2 ° C.
  • Example 5 Preparation of Additive (P-5) for Electrolytic Capacitor Containing Polymer (A-5) Having Hydrophilic Group>
  • a polymer (A-5) having a hydrophilic group was prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group was changed to the monomer described in Table 1 in Example 1.
  • An additive (P-5) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-5) was 4,600, and the Tg was ⁇ 40 ° C.
  • the mixture was heated with stirring for 3 hours while maintaining 80 ° C. Thereafter, the toluene was distilled off by heating to 100 ° C. under a reduced pressure of 0.5 kPa to prepare an additive (P-6) for an electrolytic capacitor containing a polymer (A-6) having a hydrophilic group .
  • the Mn of the polymer (A-7) was 6,100, and the Tg was -15.degree.
  • Example 7 Preparation of Additive for Electrolytic Capacitor (P-7) Containing Polymer (A-7) Having Hydrophilic Group>
  • Example 6 is carried out in the same manner as in Example 6 except that 0.9 parts by weight of azobisisobutyronitrile is changed to 1.8 parts by weight, and a polymer (A-7) having a hydrophilic group is obtained An additive (P-7) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-7) was 2,500, and the Tg was ⁇ 15 ° C.
  • Example 8 Preparation of Additive for Electrolytic Capacitor (P-8) Containing Polymer (A-8) Having Hydrophilic Group>
  • Example 6 except that 30 parts by weight of toluene was changed to 30 parts by weight of methyl ethyl ketone [manufactured by Wako Pure Chemical Industries, Ltd.], the same procedure as in Example 6 was performed, and a polymer having a hydrophilic group (A-8) Were prepared (P-8).
  • the Mn of the polymer (A-8) was 3,100, and the Tg was ⁇ 15 ° C.
  • Example 9 Preparation of Additive for Electrolytic Capacitor (P-9) Containing Polymer (A-9) Having Hydrophilic Group>
  • a polymer (A-9) having a hydrophilic group is obtained in the same manner as in Example 6 except that in Example 6, 0.9 parts by weight of azobisisobutyronitrile is changed to 0.4 parts by weight.
  • An additive (P-9) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-9) was 15,000, and the Tg was ⁇ 15 ° C.
  • Example 10 Preparation of Additive for Electrolytic Capacitor (P-10) Containing Polymer (A-10) Having Hydrophilic Group>
  • a polymer (A-10) having a hydrophilic group was prepared in the same manner as in Example 6 except that in Example 6, 0.9 parts by weight of azobisisobutyronitrile was changed to 0.2 parts by weight.
  • An additive (P-10) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-10) was 36,000, and the Tg was ⁇ 15 ° C.
  • Example 11 Preparation of Additive for Electrolytic Capacitor (P-11) Containing Polymer (A-11) Having Hydrophilic Group>
  • a polymer (A-11) having a hydrophilic group is obtained in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 6.
  • An additive (P-11) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-11) was 5,600, and the Tg was ⁇ 7 ° C.
  • Example 12 Preparation of Additive for Electrolytic Capacitor (P-12) Containing Polymer (A-12) Having Hydrophilic Group>
  • a polymer (A-12) having a hydrophilic group is prepared in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 6.
  • An additive (P-12) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-12) was 6,200, and the Tg was ⁇ 40 ° C.
  • Example 13 Preparation of Additive for Electrolytic Capacitor (P-13) Containing Polymer (A-13) Having Hydrophilic Group> 30 parts of toluene [manufactured by Wako Pure Chemical Industries, Ltd.], 12.7 parts by weight of 4-hydroxybutyl acrylate (88.2 mmol) and 1.4 parts of butyl acrylate in a flask equipped with a stirrer, a thermometer and a condenser A portion (10.9 mmol) was charged and heated to 80 ° C. with stirring.
  • a solution of 0.9 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 parts by weight of toluene was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was heated with stirring for 3 hours while maintaining 80 ° C. Thereafter, the toluene is distilled off by heating to 100 ° C. under a reduced pressure of 0.5 kPa, and an additive (P-13) for an electrolytic capacitor containing a polymer (A-13) having a hydrophilic group is obtained.
  • the Mn of the polymer (A-13) was 5,800, and the Tg was -42 ° C.
  • Example 14 Preparation of Additive for Electrolytic Capacitor (P-14) Containing Polymer (A-14) Having Hydrophilic Group>
  • a polymer (A-14) having a hydrophilic group is prepared in the same manner as in Example 13 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to a monomer described in Table 1 in Example 13.
  • An additive (P-14) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-14) was 4,800, and the Tg was ⁇ 40 ° C.
  • Example 15 Preparation of Additive for Electrolytic Capacitor (P-15) Containing Polymer (A-15) Having Hydrophilic Group>
  • Example 13 is carried out in the same manner as Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer having a hydrophilic group (A-15) is obtained An additive (P-15) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-15) was 6,300, and the Tg was 16 ° C.
  • Example 16 Preparation of Additive for Electrolytic Capacitor (P-16) Containing Polymer (A-16) Having Hydrophilic Group>
  • a polymer (A-16) having a hydrophilic group is obtained in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to a monomer described in Table 1 in Example 6.
  • An additive (P-16) for an electrolytic capacitor to be contained was produced.
  • the Mn of the polymer (A-16) was 5,800, and the Tg was 165 ° C.
  • Example 17 Preparation of Additive for Electrolytic Capacitor (P-17) Containing Polymer (A-17) Having Hydrophilic Group>
  • a polymer (A-17) having a hydrophilic group is prepared in the same manner as in Example 7 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to a monomer described in Table 1 in Example 7.
  • the additive for electrolytic capacitors (P-17) to contain was produced.
  • the Mn of the polymer (A-17) was 6,500, and the Tg was ⁇ 50 ° C.
  • Example 18 Preparation of Additive for Electrolytic Capacitor (P-18) Containing Polymer (A-18) Having Hydrophilic Group>
  • Example 13 is carried out in the same manner as in Example 13 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-18) having a hydrophilic group is contained.
  • An additive for electrolytic capacitor (P-18) was prepared.
  • the Mn of the polymer (A-18) was 4,100, and the Tg was 65 ° C.
  • Example 19 Preparation of Additive for Electrolytic Capacitor (P-19) Containing Polymer (A-19) Having Hydrophilic Group>
  • Example 6 is carried out in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-19) having a hydrophilic group is contained.
  • An additive for electrolytic capacitor (P-19) was prepared.
  • the Mn of the polymer (A-19) was 7,500, and the Tg was 18 ° C.
  • Example 20 Preparation of Additive for Electrolytic Capacitor (P-20) Containing Polymer (A-20) Having Hydrophilic Group>
  • Example 6 is carried out in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-20) having a hydrophilic group is contained.
  • An additive for electrolytic capacitor (P-20) was prepared.
  • the Mn of the polymer (A-20) was 3,600, and the Tg was 30 ° C.
  • Example 21 Preparation of Additive for Electrolytic Capacitor (P-21) Containing Polymer (A-21) Having Hydrophilic Group>
  • Example 6 is carried out in the same manner as Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and contains a polymer (A-21) having a hydrophilic group.
  • An additive (P-21) for electrolytic capacitor was prepared.
  • the Mn of the polymer (A-21) was 4,500, and the Tg was 55 ° C.
  • Example 22 Preparation of additive (P-22) for electrolytic capacitor containing polymer (A-22) having a hydrophilic group> The same procedure as in Example 1 is repeated except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-22) having a hydrophilic group is contained. An additive (P-22) for electrolytic capacitor was prepared. The Mn of the polymer (A-22) was 4,200, and the Tg was 10 ° C.
  • Example 23 Preparation of Additive for Electrolytic Capacitor (P-23) Containing Polymer (A-23) Having Hydrophilic Group>
  • the same procedure as in Example 1 is repeated except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1, and a polymer having a hydrophilic group (A-23) is contained.
  • An additive for electrolytic capacitor (P-23) was prepared.
  • the Mn of the polymer (A-23) was 6,000, and the Tg was 82 ° C.
  • Example 24 Preparation of Additive for Electrolytic Capacitor (P-24) Containing Polymer (A-24) Having Hydrophilic Group>
  • the same procedure as in Example 1 is carried out except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1, and a polymer (A-24) having a hydrophilic group is contained.
  • An additive for electrolytic capacitor (P-24) was prepared.
  • the Mn of the polymer (A-24) was 6,500, and the Tg was 75 ° C.
  • Example 6 Preparation of Additive for Electrolytic Capacitor (RP-2) Containing Polymer (RA-1) Having No Hydrophilic Group>
  • Example 6 is carried out in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and an electrolysis containing a comparative polymer (RA-1) A capacitor additive (RP-2) was prepared.
  • the Mn of the polymer (RA-1) was 7,500, and the Tg was ⁇ 70 ° C.
  • a comparative polymer (RA-2) having a hydrophilic group but having a high Tg polyvinyl alcohol (JC-25, Tg: 80 ° C., manufactured by Nippon Shokubai Bi-Pobar, Inc.) was used.
  • Acrylic acid [manufactured by Wako Pure Chemical Industries, Ltd.] Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) Succinic acid mono (2-acryloxy ethyl) [made by Tokyo Chemical Industry Co., Ltd.] Succinic acid mono (2-methacryloyloxyethyl) [trade name "Light Ester HO-MS (N)", manufactured by Kyoeisha Chemical Co., Ltd.] 2-Hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.] 2-hydroxypropyl acrylate (made by Tokyo Chemical Industry Co., Ltd.) 4-hydroxybutyl acrylate (trade name "4-HBA”, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 1,4-cyclohexanedimethanol monoacrylate (abbreviated as CHDMMA) (trade name "funcryl FA-610A", manufactured by Hitachi Chemical Co., Ltd.) Glycerin monoacrylate [trade
  • PEDOT / PSS aqueous dispersion (simply the same in the following): aqueous dispersion of poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonic acid (PSS), manufactured by Heraeus, Total weight of PEDOT and PSS (PEDOT / PSS concentration) based on the weight of Clevios PH500, PEDOT / PSS aqueous dispersion: 1.4% by weight
  • Examples 46 to 68 and Comparative Examples 7 to 10 The electrolytic capacitors (S-1) to (S-23) of the present invention and the electrolytic capacitors (RS-1) to (RS-4) for comparison were produced by the method described below.
  • Examples 46 to 66 and Comparative Examples 7 to 10 Preparation of Solid Electrolytic Capacitor 1
  • Anode foil chemically converted aluminum foil: 115HC9-323Vf made by JCC
  • a cathode foil unformed aluminum foil: 80LJ11B made by JCC
  • kraft paper is used as a separator
  • the elements were made to face each other.
  • the element was subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to obtain a capacitor element.
  • the capacitor element was impregnated with a PEDOT / PSS aqueous dispersion and dried at 150 ° C.
  • Example 67 Preparation of Solid Electrolytic Capacitor 2
  • Anode foil chemically converted aluminum foil: 115HC9-323Vf made by JCC
  • a cathode foil unformed aluminum foil: 80LJ11B made by JCC
  • kraft paper is used as a separator
  • the elements were made to face each other.
  • the element was subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to obtain a capacitor element.
  • the capacitor element was impregnated with the conductive polymer dispersion (Q-6) prepared in Example 30, and dried at 150 ° C.
  • Example 68 Preparation of Solid Electrolytic Capacitor 3
  • An electrode tab is connected to an anode foil (chemically converted aluminum foil: JCCV f323) having a dielectric layer and a cathode foil (unformed aluminum foil: 80LJ11B manufactured by JCC), and they are opposed via kraft paper as a separator to obtain an element
  • the capacitor element was impregnated with a commercially available PEDOT / PSS aqueous dispersion and dried at 150 ° C.
  • Example 6 the capacitor element was housed in a case, and caulking was performed to obtain a solid electrolytic capacitor of Example 68 in which the solid electrolyte layer contained the polymer 1 having a hydrophilic group.
  • ⁇ ESR> The ESR value of the solid electrolytic capacitor at 100 kHz was measured using an LCR meter (LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd.). The lower the ESR value, the better the stability of the operation.
  • ⁇ Leakage current> A voltage of 20 V was applied to the solid electrolytic capacitor, and the leakage current after 60 seconds was measured.
  • ⁇ Withstand voltage> A voltage is applied to the solid electrolytic capacitor obtained by the above method in a constant current mode of 0.2 mA with a DC power supply (GP0650-05R, manufactured by Takasago Mfg. Co., Ltd.), and automatic voltage boosting is performed. Withstand voltage.
  • the electrolytic capacitors of Examples 46 to 68 of the present invention gave good results in terms of ESR change rate, leakage current and withstand voltage. On the other hand, in the electrolytic capacitors of Comparative Examples 7 to 10, at least one of the ESR change rate, the leakage current and the withstand voltage deteriorated.
  • Electrolyte Solution Polymer (A) and comparative polymer (A'-1), electrolyte (C) (dimethyl ethylamine and phthalic acid), solvent (B) (ethylene glycol) are mixed according to the blending parts (parts by weight) in Table 4 Then, electrolytic solutions (R-1) to (R-12) and electrolytic solutions (RR-1) to (RR-2) for comparative examples were prepared.
  • electrolytic capacitors (S-24) to (S-) are used.
  • the electrolytic capacitors (RS-5) to (RS-6) of 35) and the comparative example were respectively manufactured by the following procedures.
  • a tab for an electrode is connected to an anode foil (chemically converted aluminum foil: 115HC9-323Vf made by JCC) and a cathode foil (unformed aluminum foil: 80LJ11B made by JCC) having a dielectric layer, and kraft paper is used as a separator
  • the elements were made to face each other.
  • the element was subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to obtain a capacitor element.
  • the capacitor element was impregnated with a commercially available PEDOT / PSS aqueous dispersion, and dried at 150 ° C. for 30 minutes. This operation was repeated three times to form a solid electrolyte layer on the surface of the dielectric layer.
  • the electrolytic solutions (R-1) to (R-12) described in Table 4 and the electrolytic solutions (RR-1) to (RR-2) of the comparative example were each prepared in the above capacitor element at 50 ° C.
  • ⁇ Initial evaluation> As an initial evaluation, capacitance, ESR, leakage current, and withstand voltage were measured. The capacitance was measured at 120 Hz and the ESR value at 100 kHz, and the leakage current was measured after application for 1 minute at the rated voltage.
  • ⁇ Capacitance> The electrostatic capacity at 120 Hz of the solid electrolytic capacitor was measured using an LCR meter (LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd.).
  • ESR> The ESR value of the solid electrolytic capacitor at 100 kHz was measured using an LCR meter (LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd.).
  • ⁇ Leakage current> A voltage of 20 V was applied to the solid electrolytic capacitor, and the leakage current after 60 seconds was measured.
  • ⁇ Withstand voltage> A voltage is applied to the solid electrolytic capacitor obtained by the above method in a constant current mode of 0.2 mA with a DC power supply (GP0650-05R, manufactured by Takasago Mfg. Co., Ltd.), and automatic voltage boosting is performed. Withstand voltage.
  • the electrolytic capacitors of Examples 69 to 80 of the present invention also had good initial characteristics, and good results were obtained in the accelerated test.
  • the electrolytic capacitors for comparison of Comparative Examples 11 and 12 deteriorated in terms of the rate of change in electrostatic capacity, the rate of change in ESR, and the leakage current.
  • the solid electrolytic capacitor containing the additive for an electrolytic capacitor of the present invention has a low ESR, a low leakage current, and a high withstand voltage, and thus can be suitably used as a component of electric products and electronic products that require high performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides an electrolytic capacitor additive used in an electrolytic capacitor comprising a solid electrolyte layer, said additive containing a polymer (A) having a hydrophilic group, wherein the concentration of the hydrophilic group in the polymer (A) is 18 mmol/g or less based on the weight of the polymer (A), and the solubility parameter of the polymer (A) is 12 (cal/cm3)1/2 or more.

Description

電解コンデンサ用添加剤、導電性高分子分散液、電解液及び電解コンデンサAdditive for electrolytic capacitor, conductive polymer dispersion, electrolytic solution and electrolytic capacitor
 本発明は、電解コンデンサ用添加剤、導電性高分子分散液、電解液及び電解コンデンサに関する。 The present invention relates to an additive for an electrolytic capacitor, a conductive polymer dispersion, an electrolytic solution and an electrolytic capacitor.
 近年、電子製品の小型化に伴い、小型大容量の高周波用コンデンサが求められている。このようなコンデンサとして、等価直列抵抗(以下、ESRと略す)が小さく、周波数特性に優れている電解コンデンサの開発が進められている。電解コンデンサは、アルミニウム及びタンタル等からなる陽極箔と、陽極箔上に形成された酸化アルミニウム及び酸化タンタル等の誘電体層と、陰極箔とを含む。中でも、誘電体層上に陰極材として導電性高分子を含む固体電解質層が形成された電解コンデンサは、固体電解コンデンサとよばれている。 In recent years, with the miniaturization of electronic products, small-sized, large-capacity, high-frequency capacitors have been required. As such a capacitor, development of an electrolytic capacitor having a small equivalent series resistance (hereinafter, abbreviated as ESR) and excellent in frequency characteristics has been advanced. The electrolytic capacitor includes an anode foil made of aluminum, tantalum or the like, a dielectric layer such as aluminum oxide or tantalum oxide formed on the anode foil, and a cathode foil. Among them, an electrolytic capacitor in which a solid electrolyte layer containing a conductive polymer as a cathode material is formed on a dielectric layer is called a solid electrolytic capacitor.
 固体電解コンデンサは導電性高分子を用いるため、電解液を用いた電解コンデンサよりも低いESRを達成できる。
 しかし、固体電解コンデンサは、電解液のような誘電体の修復を担う物質を含まないため、漏れ電流が大きく、耐電圧も低いことから、保障電圧を高くすることができないという問題点があった。
Solid electrolytic capacitors use conductive polymers, and therefore can achieve lower ESR than electrolytic capacitors using electrolytic solutions.
However, since a solid electrolytic capacitor does not contain a substance responsible for the repair of a dielectric such as an electrolytic solution, there is a problem that the guaranteed voltage can not be increased because the leakage current is large and the withstand voltage is low. .
 この問題点を解決するため、特許文献1では誘電体表面をポリビニルアルコールで覆うことで漏れ電流を抑えようとする技術が開示されている。また、特許文献2ではアクリル酸及びビニルフェノール等の共重合体を固体電解質層に導入することで耐電圧を向上させられる技術が開示されている。しかし、これらの技術では、漏れ電流の低減も、耐電圧向上効果も十分ではなかった。 In order to solve this problem, Patent Document 1 discloses a technique for suppressing the leakage current by covering the dielectric surface with polyvinyl alcohol. Further, Patent Document 2 discloses a technique capable of improving the withstand voltage by introducing a copolymer such as acrylic acid and vinyl phenol into a solid electrolyte layer. However, with these techniques, neither the reduction of the leakage current nor the effect of improving the withstand voltage is sufficient.
 また、AV機器や自動車電装機器においては、高信頼化の要求がますます高まっている。そのため、固体電解コンデンサにおいても低ESR化といった性能に加え、低漏れ電流、耐ショート性能の向上が必要になってきている。
 こうした要望に対し、電解質材料としてポリピロール、ポリアニリン及びポリチオフェン等の導電性ポリマーといった固体電解質以外に、誘電体である陽極酸化皮膜の欠陥部の修復作用に優れた電解液を合わせて用いる、いわゆるハイブリッド型電解コンデンサが提案されている(例えば、特許文献3、4)。
In addition, in AV equipment and automotive electrical equipment, the demand for high reliability is increasing. Therefore, it is necessary to improve the low leakage current and the short circuit resistance, in addition to the performance such as low ESR in the solid electrolytic capacitor.
In response to these demands, a so-called hybrid type using, as an electrolyte material, a solid electrolyte such as a conductive polymer such as polypyrrole, polyaniline and polythiophene, as well as an electrolyte solution excellent in the repairing action of the defect portion of the anodic oxide film which is a dielectric. Electrolytic capacitors have been proposed (for example, Patent Documents 3 and 4).
 これらのハイブリッド型電解コンデンサは、導電性ポリマーの固体電解質の隙間に電解液が入り込み、誘電体酸化皮膜と電解質との接触度合が向上する。そのため、静電容量が増大し、ESRが低減すると共に、電解液の作用により、誘電体酸化皮膜の欠陥部の修復ができ、漏れ電流も小さく、ショートを抑制できる。
 しかし、従来のハイブリッド型電解コンデンサでは、漏れ電流の抑制、特に高温環境下における漏れ電流の抑制が十分ではなかった。
In these hybrid electrolytic capacitors, the electrolytic solution gets into the gaps of the solid electrolyte of the conductive polymer, and the degree of contact between the dielectric oxide film and the electrolyte is improved. Therefore, the capacitance is increased and the ESR is reduced, and the defect of the dielectric oxide film can be repaired by the action of the electrolytic solution, the leakage current is small, and the short circuit can be suppressed.
However, in the conventional hybrid electrolytic capacitor, the suppression of the leakage current, in particular, the suppression of the leakage current under a high temperature environment was not sufficient.
特開2001-102255号公報JP 2001-102255 A 国際公開第2015/133121号International Publication No. 2015/133121 特開平11-186110号公報Japanese Patent Application Laid-Open No. 11-186110 特開2014-195116号公報JP, 2014-195116, A
 本発明は、固体電解質層を備える電解コンデンサの漏れ電流を低減させ、耐電圧を向上させることを目的とする。 An object of the present invention is to reduce the leakage current of an electrolytic capacitor provided with a solid electrolyte layer and to improve the withstand voltage.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
 即ち、本発明は、固体電解質層を備える電解コンデンサに用いられる電解コンデンサ用添加剤であって、親水性基を有する重合体(A)を含有し、重合体(A)の親水性基の濃度が重合体(A)の重量に基づき18ミリモル/g以下であり、重合体(A)の溶解度パラメーターが12(cal/cm1/2以上である電解コンデンサ用添加剤である。また本発明は、前記の電解コンデンサ用添加剤を含有する導電性高分子分散液、前記の電解コンデンサ用添加剤を含有する電解液、及び前記の電解コンデンサ用添加剤を含有する電解コンデンサである。
The present inventors arrived at the present invention as a result of studying to achieve the above object.
That is, the present invention is an additive for an electrolytic capacitor used in an electrolytic capacitor provided with a solid electrolyte layer, which contains a polymer (A) having a hydrophilic group, and the concentration of the hydrophilic group of the polymer (A) Is 18 mmol / g or less based on the weight of the polymer (A), and the solubility parameter of the polymer (A) is an additive for an electrolytic capacitor of 12 (cal / cm 3 ) 1/2 or more. Further, the present invention is a conductive polymer dispersion containing the above-mentioned additive for electrolytic capacitor, an electrolytic solution containing the above-mentioned additive for electrolytic capacitor, and an electrolytic capacitor containing the above-mentioned additive for electrolytic capacitor .
 本発明によれば漏れ電流が少なく、耐電圧に優れた電解コンデンサ用添加剤を提供することができる。 According to the present invention, it is possible to provide an additive for an electrolytic capacitor having a small leakage current and an excellent withstand voltage.
 本発明の電解コンデンサ用添加剤は、固体電解質層を備える電解コンデンサに用いられる電解コンデンサ用添加剤であって、親水性基を有する重合体(A)を含有し、重合体(A)の親水性基の濃度が重合体(A)の重量に基づき18ミリモル/g以下であり、重合体(A)の溶解度パラメーターが12(cal/cm1/2以上である電解コンデンサ用添加剤である。 The additive for an electrolytic capacitor of the present invention is an additive for an electrolytic capacitor used in an electrolytic capacitor provided with a solid electrolyte layer, which contains a polymer (A) having a hydrophilic group, and is hydrophilic of the polymer (A) The additive for an electrolytic capacitor, wherein the concentration of the hydrophobic group is 18 mmol / g or less based on the weight of the polymer (A), and the solubility parameter of the polymer (A) is 12 (cal / cm 3 ) 1/2 or more is there.
 まず、前記の親水性基を有する重合体(A)について説明する。
 前記の親水性基とは、特に限定されないが、例えば水酸基、酸性基、塩基性基及び炭素数2~3のオキシアルキレン基とすることができる。酸性基としては、カルボキシル基、スルホン酸基、ホスホン酸基等が挙げられる。塩基性基としてはアミノ基、アンモニウム基等が挙げられる。炭素数2~3のオキシアルキレン基としては、オキシエチレン基及び1,2-又は1,3-オキシプロピレン基が挙げられる。
 これらの親水基のうち、漏れ電流の観点から好ましくは水酸基及び酸性基であり、更に好ましくは水酸基である。
First, the polymer (A) having a hydrophilic group is described.
The hydrophilic group is not particularly limited, and can be, for example, a hydroxyl group, an acid group, a basic group, and an oxyalkylene group having 2 to 3 carbon atoms. As an acidic group, a carboxyl group, a sulfonic acid group, a phosphonic acid group etc. are mentioned. Examples of basic groups include amino groups and ammonium groups. Examples of the oxyalkylene group having a carbon number of 2 to 3 include an oxyethylene group and a 1,2- or 1,3-oxypropylene group.
Among these hydrophilic groups, from the viewpoint of leakage current, preferred are a hydroxyl group and an acidic group, and more preferred is a hydroxyl group.
 親水性基を有する重合体(A)の親水性基の濃度は、重合体(A)の重量に基づき18ミリモル/g以下である。その上限について、好ましくは、13ミリモル/gであり、更に好ましくは10ミリモル/gであり、その下限について、好ましくは2ミリモル/gであり、更に好ましくは4ミリモル/gである。重合体(A)の親水性基の濃度が、18ミリモル/gを超えると分子間力が強くなり低温で析出するため、コンデンサの低温特性が悪化するという問題がある。
 重合体(A)の親水性基の濃度は、構成モノマーの選択、重量比率で調整することができる。
 重合体(A)の親水性基の濃度は、重合体(A)1g中に含有される前記親水性基の物質量(モル数)で定義される。重合体(A)の親水性基の濃度は、以下の方法で測定した。
The concentration of hydrophilic groups in the polymer (A) having a hydrophilic group is 18 mmol / g or less based on the weight of the polymer (A). The upper limit thereof is preferably 13 mmol / g, more preferably 10 mmol / g, and the lower limit thereof is preferably 2 mmol / g, more preferably 4 mmol / g. If the concentration of the hydrophilic group of the polymer (A) exceeds 18 mmol / g, the intermolecular force becomes strong and precipitation occurs at a low temperature, so that there is a problem that the low temperature characteristics of the capacitor are deteriorated.
The concentration of the hydrophilic group in the polymer (A) can be adjusted by the selection of the constituent monomers and the weight ratio.
The concentration of the hydrophilic group in the polymer (A) is defined by the amount of substance (number of moles) of the hydrophilic group contained in 1 g of the polymer (A). The concentration of the hydrophilic group of the polymer (A) was measured by the following method.
 親水性基が水酸基である場合、重合体(A)の親水性基の濃度は、JIS K 0700:1992記載の方法で水酸基価を求め、以下の計算式によって算出される値である。
 重合体(A)の親水性基の濃度(ミリモル/g)
               =水酸基価(mgKOH/g)/56.1
When the hydrophilic group is a hydroxyl group, the concentration of the hydrophilic group of the polymer (A) is a value calculated by the following formula by determining the hydroxyl value by the method described in JIS K 0700: 1992.
Concentration of hydrophilic group in polymer (A) (mmol / g)
= Hydroxyl value (mg KOH / g) /56.1
 親水性基が酸性基である場合、重合体(A)の親水性基の濃度は、JIS K 0700:1992記載の方法で酸価を求め、以下の計算式によって算出される値である。
 重合体(A)の親水性基の濃度(ミリモル/g)
                 =酸価(mgKOH/g)/56.1
When the hydrophilic group is an acidic group, the concentration of the hydrophilic group of the polymer (A) is a value calculated by the following formula by determining the acid value by the method described in JIS K 0700: 1992.
Concentration of hydrophilic group in polymer (A) (mmol / g)
= Acid value (mg KOH / g) / 56.1
 親水性基が塩基である場合、重合体(A)の親水性基の濃度は、JIS K 2501:2003記載の方法で塩基価を求め、以下の計算式によって算出される値である。
 重合体(A)の親水性基の濃度(ミリモル/g)=塩基価/56.1
When the hydrophilic group is a base, the concentration of the hydrophilic group of the polymer (A) is a value calculated by the following formula by determining the base number by the method described in JIS K 2501: 2003.
Concentration of hydrophilic group of the polymer (A) (mmol / g) = base number / 56.1
 親水性基が炭素数2~3のオキシアルキレン基である場合、重合体(A)の親水性基の濃度は以下の方法によって求めることができる。
 重合体(A)を1モル/l水酸化ナトリウム水溶液中で100℃、2時間加水分解させ、オキシアルキレン基を含有するセグメントを重合体より分離した溶液を得る。この溶液をガスクロマトグラフィー質量分析法によって分析することで、オキシアルキレン基を含有するセグメントに含まれる構成単位の分子量及び構成単位中のオキシアルキレン基付加モル数を測定できる。以下の計算式で親水性基濃度を算出できる。
 重合体(A)の親水性基の濃度(ミリモル/g)
        =構成単位中のオキシアルキレン基付加モル数/構成単位の分子量
When the hydrophilic group is an oxyalkylene group having 2 to 3 carbon atoms, the concentration of the hydrophilic group of the polymer (A) can be determined by the following method.
The polymer (A) is hydrolyzed in a 1 mol / l aqueous sodium hydroxide solution at 100 ° C. for 2 hours to obtain a solution in which a segment containing an oxyalkylene group is separated from the polymer. By analyzing this solution by gas chromatography mass spectrometry, it is possible to measure the molecular weight of the constituent unit contained in the segment containing the oxyalkylene group and the number of oxyalkylene group addition moles in the constituent unit. The hydrophilic group concentration can be calculated by the following formula.
Concentration of hydrophilic group in polymer (A) (mmol / g)
= Mole number of oxyalkylene group added in constituent unit / molecular weight of constituent unit
 重合体(A)の溶解度パラメーター(以下、SP値と略記する)は、12(cal/cm1/2以上である。好ましくは、12~20(cal/cm1/2であり、更に好ましくは12~17(cal/cm1/2である。重合体(A)のSP値が、12(cal/cm1/2未満であると酸化皮膜との親和性が低いため、耐電圧が低下するという問題がある。
 重合体(A)のSP値は、構成モノマーのSP値、モル分率を適宜調整することにより調整することができる。重合体(A)のSP値を大きくするためには、構成モノマーとして高極性官能基を有するモノマーを用いればよい。
 重合体(A)のSP値は、Fedors法(Polymer Engineering and Science,Feburuary,1974,Vol.14、No.2 P.147~154)に記載の方法で算出される値である。
 重合体(A)のSP値は、重合体(A)を構成するモノマーそれぞれのSP値を前記の方法で算出し、それぞれのモノマーのSP値を、構成モノマー単位のモル分率に基づいて平均した値である。
The solubility parameter (hereinafter abbreviated as SP value) of the polymer (A) is 12 (cal / cm 3 ) 1/2 or more. Preferably, it is 12 to 20 (cal / cm 3 ) 1/2 , more preferably 12 to 17 (cal / cm 3 ) 1/2 . If the SP value of the polymer (A) is less than 12 (cal / cm 3 ) 1/2 , the affinity to the oxide film is low, and there is a problem that the withstand voltage decreases.
The SP value of the polymer (A) can be adjusted by appropriately adjusting the SP value and the mole fraction of the constituent monomers. In order to increase the SP value of the polymer (A), a monomer having a high polar functional group may be used as a constituent monomer.
The SP value of the polymer (A) is a value calculated by the method described in the Fedors method (Polymer Engineering and Science, February, 1974, Vol. 14, No. 2, P. 147 to 154).
SP value of a polymer (A) calculates SP value of each monomer which comprises a polymer (A) by said method, and SP value of each monomer is an average based on the mole fraction of a constituent monomer unit. Value.
 前記の親水性基を有する重合体(A)は、親水性基を有するエチレン性不飽和モノマー(a)を構成単量体とする重合体であることが好ましい。
 親水性基を有するエチレン性不飽和モノマー(a)としては、水酸基、酸性基、塩基性基及び炭素数2~3のオキシアルキレン基からなる群から少なくとも1種の基を有するエチレン性不飽和モノマーが挙げられる。
The polymer (A) having a hydrophilic group is preferably a polymer having an ethylenically unsaturated monomer (a) having a hydrophilic group as a constituent monomer.
As the ethylenically unsaturated monomer (a) having a hydrophilic group, an ethylenically unsaturated monomer having at least one group selected from the group consisting of a hydroxyl group, an acidic group, a basic group and an oxyalkylene group having 2 to 3 carbon atoms Can be mentioned.
 前記の親水性基を有するエチレン性不飽和モノマー(a)としては、親水性基を有する(メタ)アクリルモノマー、親水性基を有するビニルモノマー、親水性基を有するスチレンモノマー等が挙げられる。
 なお、本出願において、「(メタ)アクリル」の表記はアクリル及び/又はメタクリルを意味し、「(メタ)アクリロイル」の表記はアクリロイル及び/又はメタクリロイルを意味し、「(メタ)アクリロイロキシ」の表記はアクリロイロキシ及び/又はメタクリロイロキシを意味する。
Examples of the ethylenically unsaturated monomer (a) having a hydrophilic group include (meth) acrylic monomers having a hydrophilic group, vinyl monomers having a hydrophilic group, styrene monomers having a hydrophilic group, and the like.
In the present application, the notation "(meth) acrylic" means acrylic and / or methacrylic, the notation "(meth) acryloyl" means acryloyl and / or methacryloyl, and the notation "(meth) acryloyloxy" Means acryloyloxy and / or methacryloyloxy.
 親水性基として水酸基を有するエチレン性不飽和モノマー(a)としては、水酸基を有する(メタ)アクリルモノマー、水酸基を有するビニルモノマー、水酸基を有するスチレンモノマー等が挙げられる。 Examples of the ethylenically unsaturated monomer (a) having a hydroxyl group as a hydrophilic group include (meth) acrylic monomers having a hydroxyl group, vinyl monomers having a hydroxyl group, and styrene monomers having a hydroxyl group.
 親水性基として水酸基を有する(メタ)アクリルモノマーとしては、炭素数4~12のヒドロキシアルキル(メタ)アクリレート、前記の炭素数4~12のヒドロキシアルキル(メタ)アクリレートへのラクトン付加物、及び、前記の炭素数4~12のヒドロキシアルキル(メタ)アクリレートへのアルキレンオキシド付加物等が挙げられる。 As a (meth) acrylic monomer having a hydroxyl group as a hydrophilic group, a hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, a lactone adduct to the above hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, and Examples thereof include alkylene oxide adducts to the above-mentioned hydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms.
 前記の炭素数4~12のヒドロキシアルキル(メタ)アクリレートとしては、炭素数4~12のモノヒドロキシアルキル(メタ)アクリレート[2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート及び2-ヒドロキシブチル(メタ)アクリレート等]、炭素数4~12のジヒドロキシアルキル(メタ)アクリレート及び炭素数4~12のトリヒドロキシアルキル(メタ)アクリレート等が挙げられる。
 炭素数4~12のモノヒドロキシアルキル(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-1-メチルエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-1-メチルプロピル(メタ)アクリレート、2-ヒドロキシ-2-メチルプロピル(メタ)アクリレート、3-ヒドロキシ-1-メチルプロピル(メタ)アクリレート、3-ヒドロキシ-2-メチルプロピル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、7-ヒドロキシヘプチル(メタ)アクリレート及び8-ヒドロキシオクチル(メタ)アクリレート等が挙げられる。
 炭素数4~12のジヒドロキシアルキル(メタ)アクリレートとしては、グリセリンモノ(メタ)アクリレート等が挙げられる。
 炭素数4~12のトリヒドロキシアルキル(メタ)アクリレートとしては、ペンタエリスリトールモノアクリレート等が挙げられる。
Examples of the above-mentioned hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms include monohydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms [2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and —Hydroxybutyl (meth) acrylate and the like], dihydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms, trihydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms, and the like.
Examples of monohydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate and 2-hydroxy-1-methyl Ethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-1-methylpropyl (meth) acrylate, 2-hydroxy- 2-Methylpropyl (meth) acrylate, 3-hydroxy-1-methylpropyl (meth) acrylate, 3-hydroxy-2-methylpropyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 6- Mud carboxymethyl hexyl (meth) acrylate, 7-hydroxy-heptyl (meth) acrylate and 8-hydroxyoctyl (meth) acrylate.
Examples of the dihydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms include glycerin mono (meth) acrylate and the like.
Examples of trihydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms include pentaerythritol monoacrylate and the like.
 前記の炭素数4~12のヒドロキシアルキル(メタ)アクリレートに付加するラクトンとしては、炭素数2~12のラクトンが好ましく、アセトラクトン、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン及びラウロラクトン等が挙げられる。
 前記のラクトンの付加モル数としては、1~15モルであることが好ましく、更に好ましくは1~5モルである。付加するラクトンは1種を単独で用いても2種以上を併用してもよい。
 前記の炭素数4~12のヒドロキシアルキル(メタ)アクリレートへのラクトン1~15モル付加物としては、6-ヒドロキシヘキサン酸2-(メタ)アクリロイロキシエチル、5-ヒドロキシドデカン酸2-(メタ)アクリロイロキシエチル及び2-ヒドロキシエチル(メタ)アクリレートへのカプロラクトン5モル付加物等が挙げられる。
As the lactone to be added to the hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, lactones having 2 to 12 carbon atoms are preferable, and acetolactone, propiolactone, butyrolactone, valerolactone, caprolactone, laurolactone and the like can be mentioned. Be
The addition mole number of the lactone is preferably 1 to 15 moles, more preferably 1 to 5 moles. The lactone to be added may be used alone or in combination of two or more.
Examples of the 1 to 15-mole adduct of lactone to hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms include 2- (meth) acryloyloxyethyl 6-hydroxyhexanoate, 2- (5-hydroxydodecanoate) And the like) and caprolactone 5 mol adduct to acryloyloxyethyl and 2-hydroxyethyl (meth) acrylate.
 前記の炭素数4~12のヒドロキシアルキル(メタ)アクリレートに付加するアルキレンオキシドとしては、炭素数2~10のアルキレンオキシドが好ましく、エチレンオキシド、1,2-又は1,3-プロピレンオキシド、1,2-、1,3-、1,4-又は2,3-ブチレンオキシド、3-メチルテトラヒドロフラン、1,2-デセンオキシド、スチレンオキシド及びエピハロヒドリン(エピクロルヒドリン等)等が挙げられる。
 前記のアルキレンオキシドの付加モル数としては、1~40モルであることが好ましい。付加するアルキレンオキシドは1種を単独で用いても2種以上を併用してもよい。
 炭素数4~12のヒドロキシアルキル(メタ)アクリレートへのアルキレンオキシド付加物としては、(メタ)アクリル酸2-(2-ヒドロキシエトキシ)エチル、(メタ)アクリル酸2-(2-(2-ヒドロキシエトキシ)エトキシ)エチル、(メタ)アクリル酸2-(10-ヒドロキシデトキシ)エチル及び2-ヒドロキシエチル(メタ)アクリレートへのエチレンオキシド30モル付加物等が挙げられる。
As the alkylene oxide to be added to the above-mentioned hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, an alkylene oxide having 2 to 10 carbon atoms is preferable, and ethylene oxide, 1,2- or 1,3-propylene oxide, 1,2 And 1,3-, 1,4-, 2,3-butylene oxide, 3-methyltetrahydrofuran, 1,2-decene oxide, styrene oxide and epihalohydrin (such as epichlorohydrin).
The addition mole number of the alkylene oxide is preferably 1 to 40 moles. The alkylene oxide to be added may be used alone or in combination of two or more.
As an alkylene oxide adduct to a hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, 2- (2-hydroxyethoxy) ethyl (meth) acrylate, 2- (2- (2-hydroxy) acrylate (meth) acrylate Ethoxy) ethoxy) ethyl, 2- (10-hydroxy deoxy) ethyl (meth) acrylate and ethylene oxide 30 mole adduct to 2-hydroxyethyl (meth) acrylate and the like can be mentioned.
 親水性基として水酸基を有するビニルモノマーとしては、ビニルアルコール、アリルアルコール、4-ビニルオキシブタノール、4-ビニルオキシブタノール、3-アリルオキシ-1,2-プロパンジオール等が挙げられる。 Examples of the vinyl monomer having a hydroxyl group as a hydrophilic group include vinyl alcohol, allyl alcohol, 4-vinyloxybutanol, 4-vinyloxybutanol, 3-allyloxy-1,2-propanediol and the like.
 親水性基として水酸基を有するスチレンモノマーとしては、シンナミルアルコール、4-ヒドロキシベンザルアセトン等が挙げられる。 Examples of styrene monomers having a hydroxyl group as a hydrophilic group include cinnamyl alcohol and 4-hydroxybenzalacetone.
 親水性基として酸性基を有するエチレン性不飽和モノマー(a)としては、酸性基を有する(メタ)アクリルモノマー、酸性基を有するビニルモノマー、酸性基を有するスチレンモノマー等が挙げられる。 Examples of the ethylenically unsaturated monomer (a) having an acidic group as a hydrophilic group include (meth) acrylic monomers having an acidic group, vinyl monomers having an acidic group, styrene monomers having an acidic group, and the like.
 親水性基として酸性基を有する(メタ)アクリルモノマーとしては、
カルボキシ基を有する(メタ)アクリルモノマー〔前記水酸基を有する(メタ)アクリルモノマーへの酸無水物(炭素数4~10の酸無水物が好ましい)付加物[コハク酸2-(メタ)アクリロイロキシエチル、マレイン酸2-(メタ)アクリロイロキシエチル、フタル酸2-(メタ)アクリロイロキシエチル及びヘキサヒドロフタル酸2-(メタ)アクリロイロキシエチル等]、(メタ)アクリル酸へのラクトン(前記の炭素数2~12のラクトンが好ましい)付加物(1~5モル付加物が好ましい)[2-((メタ)アクリロイロキシ)エタン酸、3-((メタ)アクリロイロキシ)プロパン酸、4-((メタ)アクリロイロキシ)ブタン酸、5-((メタ)アクリロイロキシ)ペンタン酸、6-((メタ)アクリロイロキシ)ヘキサン酸及び(メタ)アクリル酸へのカプロラクトン5モル付加物等]及び(メタ)アクリル酸等〕;
スルホ基を有する(メタ)アクリルモノマー[(メタ)アクリル酸2-スルホエチル及び2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等];及び
ホスホ基を有する(メタ)アクリルモノマー[リン酸2-((メタ)アクリロイロキシ)エチル等]等が挙げられる。
As a (meth) acrylic monomer having an acidic group as a hydrophilic group,
(Meth) acrylic monomer having a carboxy group [acid anhydride (preferably acid anhydride having 4 to 10 carbon atoms) adduct to the (meth) acrylic monomer having a hydroxyl group (succinic acid 2- (meth) acryloyloxy) Ethyl, 2- (meth) acryloyloxyethyl maleate, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, etc.], Lactone to (meth) acrylic acid (The above-mentioned lactones of 2 to 12 carbon atoms are preferred) Adducts (1 to 5 molar adducts are preferred) [2-((meth) acryloyloxy) ethanoic acid, 3-((meth) acryloyloxy) propanoic acid, 4- (4) ((Meth) acryloyloxy) butanoic acid, 5-((meth) acryloyloxy) pentanoic acid, 6-((meth) acryloyloxy) hexane And (meth) caprolactone 5 mol adduct to acrylic acid] and (meth) acrylic acid];
(Meth) acrylic monomers having a sulfo group [such as 2-sulfoethyl (meth) acrylate and 2- (meth) acrylamido-2-methylpropane sulfonic acid]; and (meth) acrylic monomers having a phospho group [phosphoric acid 2- ((Meth) acryloyloxy) ethyl etc.] and the like.
 親水性基として酸性基を有するビニルモノマーとしては、3-ペンテン酸、3-ヘキセン酸、ビニルスルホン酸、ビニルホスホン酸等が挙げられる。  Examples of the vinyl monomer having an acidic group as a hydrophilic group include 3-pentenoic acid, 3-hexenoic acid, vinylsulfonic acid, vinylphosphonic acid and the like.
 親水性基として酸性基を有するスチレンモノマーとしては、4-ビニル安息香酸、4-スチレンスルホン酸等が挙げられる。 Examples of the styrene monomer having an acidic group as a hydrophilic group include 4-vinylbenzoic acid and 4-styrenesulfonic acid.
 親水性基として塩基性基を有するエチレン性不飽和モノマー(a)としては、塩基性基を有する(メタ)アクリルモノマー、塩基性基を有するビニルモノマー、塩基性基を有するスチレンモノマー等が挙げられる。 Examples of the ethylenically unsaturated monomer (a) having a basic group as a hydrophilic group include (meth) acrylic monomers having a basic group, vinyl monomers having a basic group, styrene monomers having a basic group, etc. .
 親水性基として塩基性基を有する(メタ)アクリルモノマーとしては、炭素数3~20の(メタ)アクリルアミド[(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド及びN,N-ジベンジル(メタ)アクリルアミド等]、炭素数4~12のアミノアルキル(メタ)アクリレート[(メタ)アクリル酸ジメチルアミノエチル]及び炭素数4~12のアミノアルキル(メタ)アクリレートの四級アンモニウム塩[(メタ)アクリル酸トリメチルエチルアンモニウム塩]等が挙げられる。 The (meth) acrylic monomer having a basic group as a hydrophilic group includes (meth) acrylamide [(meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide having 3 to 20 carbon atoms] , Dimethylaminopropyl (meth) acrylamide, N- (2- hydroxyethyl) (meth) acrylamide and N, N- dibenzyl (meth) acrylamide, etc.], aminoalkyl (meth) acrylate having 4 to 12 carbon atoms [(meth) Examples thereof include dimethylaminoethyl acrylate] and quaternary ammonium salts of aminoalkyl (meth) acrylates having 4 to 12 carbon atoms [trimethylethyl ammonium (meth) acrylate] and the like.
 親水性基として塩基性基を有するビニルモノマーとしては、アリルアミン、N,N-ジメチルアリルアミン、N,N-ジエチルアリルアミン等が挙げられる。 Examples of the vinyl monomer having a basic group as a hydrophilic group include allylamine, N, N-dimethylallylamine, N, N-diethylallylamine and the like.
 親水性基として塩基性基を有するスチレンモノマーとしては、4-アミノスチレン等が挙げられる。 As a styrene monomer having a basic group as a hydrophilic group, 4-aminostyrene and the like can be mentioned.
 親水性基として炭素数2~3のオキシアルキレン基を有するエチレン性不飽和モノマー(a)としては、炭素数2~3のオキシアルキレン基を有する(メタ)アクリルモノマー、炭素数2~3のオキシアルキレン基を有するビニルモノマー及び炭素数2~3のオキシアルキレン基を有するスチレンモノマー等が挙げられる。 Examples of the ethylenically unsaturated monomer (a) having an oxyalkylene group having 2 to 3 carbon atoms as a hydrophilic group include (meth) acrylic monomers having an oxyalkylene group having 2 to 3 carbon atoms, and an oxy alkylene group having 2 to 3 carbon atoms Examples thereof include vinyl monomers having an alkylene group and styrene monomers having an oxyalkylene group having 2 to 3 carbon atoms.
 親水性基として炭素数2~3のオキシアルキレン基を有する(メタ)アクリルモノマーとしては、水酸基を有する(メタ)アクリレートへのアルキレンオキシド(アルキレンオキシドの炭素数は2~3である)付加物のアルキル[炭素数1~8のアルキル(メチル、エチル、プロピル及びオクチル等)が好ましい]エーテル等が挙げられる。
 水酸基を有する(メタ)アクリレートへのアルキレンオキシド付加物のアルキルエーテルとしては、メトキシポリエチレングリコールアクリレート、(メタ)アクリル酸2-(2-メトキシエトキシ)エチル、(メタ)アクリル酸2-(2-エトキシエトキシ)エチル及び(メタ)アクリル酸2-(2-オクトキシエトキシ)エチル等が挙げられる。
As a (meth) acrylic monomer having an oxyalkylene group having a carbon number of 2 to 3 as a hydrophilic group, an alkylene oxide (an alkylene oxide having a carbon number of 2 to 3) adduct to a (meth) acrylate having a hydroxyl group is mentioned Examples of the alkyl include alkyl (preferably alkyl having 1 to 8 carbon atoms such as methyl, ethyl, propyl and octyl) and the like.
As alkyl ether of alkylene oxide adduct to (meth) acrylate having hydroxyl group, methoxy polyethylene glycol acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 2- (2-ethoxy) (meth) acrylate Ethoxy) ethyl and 2- (2-octoxyethoxy) ethyl (meth) acrylate and the like can be mentioned.
 親水性基として炭素数2~3のオキシアルキレン基を有するビニルモノマーとしては、ジエチレングリコールモノビニルエーテル等が挙げられる。 Examples of the vinyl monomer having an oxyalkylene group having a carbon number of 2 to 3 as a hydrophilic group include diethylene glycol monovinyl ether and the like.
 及び炭素数2~3のオキシアルキレン基を有するスチレンモノマーとしては、シンナミルアルコールの炭素数2~3のオキシアルキレン付加物及び4-ヒドロキシベンザルアセトンの炭素数2~3のオキシアルキレン付加物等が挙げられる。 And as a styrene monomer having a C 2 to C 3 oxyalkylene group, C 2 to C 3 oxyalkylene adducts of cinnamyl alcohol, C 2 to C 3 oxyalkylene adducts of 4-hydroxybenzalacetone, etc. Can be mentioned.
 これらの親水性基を有するエチレン性不飽和モノマー(a)の内、耐電圧向上の観点から好ましいのは、親水性基を有する(メタ)アクリルモノマーであり、更に好ましいのは、炭素数4~12のヒドロキシアルキル(メタ)アクリレート及び炭素数4~12のヒドロキシアルキル(メタ)アクリレートへの無水コハク酸、無水マレイン酸、無水フタル酸及びヘキサヒドロ無水フタル酸付加物であり、特に好ましいのは、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート及びコハク酸2-(メタ)アクリロイロキシエチルである。
 親水性基を有するエチレン性不飽和モノマー(a)は、1種を単独で用いても2種以上を併用してもよい。
Among the ethylenically unsaturated monomers (a) having such a hydrophilic group, preferred are (meth) acrylic monomers having a hydrophilic group from the viewpoint of improving the withstand voltage, and more preferred are those having 4 to 6 carbon atoms. Succinic anhydride, maleic anhydride, phthalic anhydride and hexahydrophthalic anhydride adducts to 12 hydroxyalkyl (meth) acrylates and hydroxyalkyl (meth) acrylates having 4 to 12 carbon atoms, particularly preferably 2 -Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate and 2- (meth) acryloyloxyethyl succinate.
The ethylenically unsaturated monomers (a) having a hydrophilic group may be used alone or in combination of two or more.
 前記の親水性基を有する重合体(A)は、前記の親水性基を有するエチレン性不飽和モノマー(a)と、親水性基を有するエチレン性不飽和モノマー(a)以外のモノマー(親水性基を有さないエチレン性不飽和モノマー等)との共重合体であってもよい。
 前記の親水性基を有するエチレン性不飽和モノマー(a)以外のモノマーの内、共重合性及び溶剤への溶解性の観点から好ましいものとしては、炭素数4~20のアルキル(メタ)アクリレート[(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル及び(メタ)アクリル酸ラウリル等];炭素数8~20のスチレン化合物(スチレン及びパラメチルスチレン等);炭素数3~20のアリル化合物(アリルメチルエーテル及びアリルブチルエーテル等)及び酢酸ビニル等が挙げられ、更に好ましいのは、炭素数4~20のアルキル(メタ)アクリレートであり、特に好ましいのは、(メタ)アクリル酸ブチル及び(メタ)アクリル酸2-エチルヘキシルである。
 これらの親水性基を有するエチレン性不飽和モノマー(a)以外のモノマーは、1種を単独で用いても2種以上を併用してもよい。
The polymer (A) having a hydrophilic group is a monomer other than the above-mentioned ethylenically unsaturated monomer (a) having a hydrophilic group and the ethylenically unsaturated monomer (a) having a hydrophilic group (hydrophilic It may be a copolymer with a group-free ethylenically unsaturated monomer etc.).
Among monomers other than the above-mentioned ethylenically unsaturated monomer (a) having a hydrophilic group, from the viewpoint of copolymerizability and solubility in solvents, preferred are alkyl (meth) acrylates having 4 to 20 carbon atoms [ Methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and lauryl (meth) acrylate, etc .; styrene compounds having 8 to 20 carbon atoms (styrene and And paramethyl styrene etc .; allyl compounds having 3 to 20 carbon atoms (such as allyl methyl ether and allyl butyl ether) and vinyl acetate etc., more preferably alkyl (meth) acrylates having 4 to 20 carbon atoms, Particularly preferred are butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate.
These monomers other than the ethylenically unsaturated monomer (a) having a hydrophilic group may be used alone or in combination of two or more.
 本発明における親水性基を有する重合体(A)のガラス転移点(以下、Tgと略記する)は、耐電圧の観点から、好ましくは-100~80℃であり、より好ましくは-100~40℃であり、更に好ましくは-100~20℃であり、特に好ましくは-100~5℃であり、最も好ましくは-100~0℃である。
 本発明のTgは、示差走査熱量測定装置[セイコーインスツル(株)製の「DSC20」及び「SSC/580」等]を用いて「ASTM D3418-82」に準拠した方法で測定することができる。
The glass transition point (hereinafter abbreviated as Tg) of the polymer (A) having a hydrophilic group in the present invention is preferably -100 to 80 ° C, more preferably -100 to 40, from the viewpoint of withstand voltage. ° C., more preferably −100 to 20 ° C., particularly preferably −100 to 5 ° C., most preferably −100 to 0 ° C.
The Tg of the present invention can be measured by a method in accordance with "ASTM D 3418-82" using a differential scanning calorimeter ("DSC 20" and "SSC / 580" manufactured by Seiko Instruments Inc., etc.). .
 Tgを前記の範囲内にすることで、耐電圧が向上するメカニズムとしては以下のことが想定される。
 Tgが前記の範囲内である親水性基を有する重合体(A)は、比較的柔軟性が高く、誘電体に存在する欠陥部へ浸透しやすくなるため、修復性が高まり、結果として漏れ電流が小さくなり耐電圧が高くなる。
By making Tg into said range, as a mechanism which a withstand voltage improves, the following is assumed.
The polymer (A) having a hydrophilic group and having a Tg within the above range has relatively high flexibility and easily penetrates into a defect present in the dielectric, thereby improving repairability, resulting in leakage current Becomes smaller and the withstand voltage becomes higher.
 前記の親水性基を有する重合体(A)の数平均分子量(以降、Mnと略記する)は、耐電圧の観点から、1,000~500,000であることが好ましく、更に好ましくは2,000~200,000であり、特に好ましくは3,000~50,000であり、最も好ましくは3,000~30,000である。 The number average molecular weight (hereinafter abbreviated as Mn) of the polymer (A) having a hydrophilic group is preferably 1,000 to 500,000, more preferably 2, from the viewpoint of the withstand voltage. It is preferably in the range of 000 to 200,000, more preferably 3,000 to 50,000, and most preferably 3,000 to 30,000.
 本発明における親水性基を有する重合体(A)のMnは、ゲルパーミエーションクロマトグラフィー(以降GPCと略記)を用いて以下の条件で測定する。
 装置(一例) : 東ソー(株)製HLC-8120
 カラム(一例): TSK GEL GMH6 2本〔東ソー(株)製〕
 測定温度: 40℃
 試料溶液: 0.25重量%のTHF溶液
 溶液注入量: 100μl
 検出装置: 屈折率検出器
 基準物質: 東ソー(株)製標準ポリスチレン(TSKstandard POLYSTYRENE)12点(重量平均分子量: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
The Mn of the polymer (A) having a hydrophilic group in the present invention is measured using gel permeation chromatography (hereinafter abbreviated as GPC) under the following conditions.
Device (example): HLC-8120 manufactured by Tosoh Corporation
Column (one example): Two TSK GEL GMH6 (made by Tosoh Corp.)
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% THF solution Injection volume: 100 μl
Detection device: Refractive index detector Reference substance: Tosoh Corp. standard polystyrene (TSK standard POLYSTYRENE) 12 points (weight average molecular weight: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
 前記親水性基を有する重合体(A)を構成する親水性基を有するエチレン性不飽和モノマー(a)の重量割合は、耐電圧を向上させる観点から、前記親水性基を有する重合体(A)を構成する全てのモノマーの重量を基準として50~100重量%であることが好ましく、更に好ましくは、60~100重量%である。
 前記親水性基を有する重合体(A)を構成する前記の必須構成モノマー以外のモノマーの重量割合は、耐電圧を向上させる観点から、前記親水性基を有する重合体(A)を構成する全てのモノマーの重量を基準として50重量%以下であることが好ましく、更に好ましくは、40重量%以下である。
The weight ratio of the ethylenically unsaturated monomer (a) having a hydrophilic group constituting the polymer (A) having a hydrophilic group is the polymer (A) having the hydrophilic group from the viewpoint of improving the withstand voltage. Preferably, it is 50 to 100% by weight, more preferably 60 to 100% by weight, based on the weight of all the monomers constituting the group).
From the viewpoint of improving the withstand voltage, the weight ratio of monomers other than the above-mentioned essential constituent monomers constituting the polymer (A) having a hydrophilic group is all constituting the polymer (A) having a hydrophilic group It is preferably 50% by weight or less, more preferably 40% by weight or less, based on the weight of monomers of
 前記親水性基を有する重合体(A)は、前記の親水性基を有するエチレン性不飽和モノマー(a)と、必要に応じて親水性基を有するエチレン性不飽和モノマー(a)以外のモノマーを公知の方法で重合することで製造することができる。
 例えば、前記親水性基を有する重合体(A)は、親水性基を有する(メタ)アクリルモノマー等の親水性基を有するエチレン性不飽和モノマー(a)を公知の方法(特開平5-117330号公報等に記載の方法等)で重合することで製造することができる。
 また、重合の際に、重合開始剤を使用することができる。重合開始剤としては、アゾビスイソブチロニトリル等が挙げられる。
 また、前記のビニルアルコールを構成モノマーとする重合体(A)は、ポリ酢酸ビニルの部分ケン化を公知の方法で実施することで製造できる。
 ポリ酢酸ビニルの部分ケン化体は、公知の方法で製造するほか、ゴーセネックスLL[日本合成化学工業(株)製]として、市場から入手することもできる。
The polymer (A) having a hydrophilic group is a monomer other than the ethylenically unsaturated monomer (a) having a hydrophilic group and the ethylenically unsaturated monomer (a) optionally having a hydrophilic group. Can be produced by polymerizing by a known method.
For example, as the polymer (A) having a hydrophilic group, a known method using an ethylenic unsaturated monomer (a) having a hydrophilic group such as a (meth) acrylic monomer having a hydrophilic group is known (JP-A-5-117330) (1) can be produced by polymerization according to the method described in Japanese Patent Application Publication No.
In the polymerization, a polymerization initiator can be used. Examples of the polymerization initiator include azobisisobutyronitrile and the like.
Moreover, the polymer (A) which uses said vinyl alcohol as a structural monomer can be manufactured by implementing partial saponification of polyvinyl acetate by a well-known method.
The partially saponified polyvinyl acetate is produced by a known method, and can also be obtained from the market as Gosenex LL (manufactured by Japan Synthetic Chemical Industry Co., Ltd.).
 本発明の電解コンデンサ用添加剤は、親水性基を有する重合体(A)以外の成分を含んでいてもよく、重合体(A)以外の成分としては、酸化防止剤、熱劣化防止剤等が挙げられる。 The additive for electrolytic capacitor of the present invention may contain components other than the polymer (A) having a hydrophilic group, and as components other than the polymer (A), antioxidants, thermal deterioration inhibitors, etc. Can be mentioned.
 酸化防止剤としては、リン酸化防止剤、ヒンダードフェノール酸化防止剤、チオエーテル酸化防止剤などが挙げられる。
 リン酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(旭電化社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(チバ・スペシャルティ・ケミカルズ社製;商品名:IRUGAFOS168)などが挙げられる。
 ヒンダードフェノール酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(チバ・スペシャルティ・ケミカルズ社製;商品名IRGANOX1076)などが挙げられる。
Examples of the antioxidant include phosphoric acid antioxidants, hindered phenol antioxidants, and thioether antioxidants.
As the antioxidant, 2,2-methylenebis (4,6-di t-butylphenyl) octyl phosphite (manufactured by Asahi Denka Co., Ltd .; trade name: Adekastab HP-10), tris (2,4-di t-) And butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals; trade name: IRUGAFOS 168).
As hindered phenol antioxidants, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Chiba Specialty Chemicals; trade name IRGANOX1010), octadecyl -3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by Ciba Specialty Chemicals Inc .; trade name IRGANOX 1076) and the like.
 熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが挙げられる。 As a thermal deterioration inhibitor, 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: SMILIZER GM), 2 And 4-di-t-amyl-6- (3 ', 5'-di-t-amyl-2'-hydroxy-α-methylbenzyl) phenyl acrylate (Sumitomo Chemical; trade name: SMILIZER GS) etc. Be
 本発明の電解コンデンサ用添加剤において、電解コンデンサ用添加剤の合計重量に対する親水性基を有する重合体(A)の重量割合は、耐電圧向上の観点から、好ましくは80~100重量%であり、更に好ましくは90~100重量%であり、特に好ましくは96~100重量%である。
 本発明の電解コンデンサ用添加剤が前記の酸化防止剤を含有する場合、電解コンデンサ用添加剤の合計重量に対する前記の酸化防止剤の重量割合は、0.01~10重量%であることが好ましく、更に好ましくは0.1~5重量%であり、特に好ましくは0.5~2重量%である。
 本発明の電解コンデンサ用添加剤が前記の熱劣化防止剤を含有する場合、電解コンデンサ用添加剤の合計重量に対する前記の熱劣化防止剤の重量割合は、0.01~10重量%であることが好ましく、更に好ましくは0.1~5重量%であり、特に好ましくは0.5~2重量%である。
In the additive for an electrolytic capacitor of the present invention, the weight ratio of the polymer (A) having a hydrophilic group to the total weight of the additive for an electrolytic capacitor is preferably 80 to 100% by weight from the viewpoint of improving the withstand voltage. More preferably, it is 90 to 100% by weight, and particularly preferably 96 to 100% by weight.
When the additive for electrolytic capacitors of the present invention contains the above-mentioned antioxidant, the weight ratio of the above-mentioned antioxidant to the total weight of the additive for electrolytic capacitors is preferably 0.01 to 10% by weight. More preferably, it is 0.1 to 5% by weight, and particularly preferably 0.5 to 2% by weight.
When the additive for electrolytic capacitors of the present invention contains the above-mentioned thermal deterioration inhibitor, the weight ratio of the above thermal deterioration inhibitor to the total weight of the electrolytic capacitor additive is 0.01 to 10% by weight. Is more preferably 0.1 to 5% by weight, particularly preferably 0.5 to 2% by weight.
 本発明の導電性高分子分散液は、電解コンデンサ用添加剤を含有する導電性高分子分散液である。導電性高分子分散液は、電解コンデンサ用添加剤以外に、溶剤(B)及び導電性高分子(C)を含有することが好ましい。 The conductive polymer dispersion liquid of the present invention is a conductive polymer dispersion liquid containing an additive for an electrolytic capacitor. The conductive polymer dispersion preferably contains a solvent (B) and a conductive polymer (C) in addition to the additive for the electrolytic capacitor.
 溶剤(B)としては、水及び有機溶剤等が挙げられる。
 有機溶剤としては、アルコール溶剤、アミド溶剤、エーテル溶剤、ケトン溶剤、エステル溶剤、ニトリル溶剤、スルホキシド溶剤、スルホン溶剤等が挙げられる。これら有機溶剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
 アルコール溶剤としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコール、モノブチルエーテル及びポリエチレングリコール(Mn:600以下)等が挙げられる。
 アミド溶剤としては、N-メチルホルムアミド及びN,N-ジメチルホルムアミド等が挙げられる。
 エーテル溶剤としては、ジエチルエーテル、ジメチルエーテル、テトラヒドロフラン等が挙げられる。
 ケトン溶剤としては、2-ブタノン、アセトン等が挙げられる。
 エステル溶剤としては、酢酸エチル、α-アセチル-γ-ブチロラクトン、β-ブチロラクトン、γ-ブチロラクトン、γ-バレロラクトン及びδ-バレロラクトン等が挙げられる。
 ニトリル溶剤としては、アセトニトリル、プロピオニトリル、ブチロニトリル、アクリロニトリル、メタクリルニトリル及びベンゾニトリル等が挙げられる。
 スルホキシド溶剤としては、ジメチルスルホキシド、メチルエチルスルホキシド及びジエチルスルホキシド等が挙げられる。
 スルホン溶剤としては、スルホラン、エチルメチルスルホン等が挙げられる。
 これらの溶剤(B)の内、重合体(A)の溶解性の観点から好ましいのは、水、アルコール溶剤、スルホキシド溶剤及びスルホン溶剤であり、更に好ましいのは水、エチレングリコール、ジエチレングリコール及びジメチルスルホキシドである。
 溶剤(B)は、1種を単独で用いても2種以上を併用してもよい。
Water, an organic solvent, etc. are mentioned as a solvent (B).
Examples of the organic solvent include alcohol solvents, amide solvents, ether solvents, ketone solvents, ester solvents, nitrile solvents, sulfoxide solvents, sulfone solvents and the like. These organic solvents may be used alone or in combination of two or more.
Examples of the alcohol solvent include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol, monobutyl ether and polyethylene glycol (Mn: 600 or less).
Examples of the amide solvent include N-methylformamide and N, N-dimethylformamide.
As the ether solvent, diethyl ether, dimethyl ether, tetrahydrofuran and the like can be mentioned.
Examples of the ketone solvent include 2-butanone and acetone.
Examples of ester solvents include ethyl acetate, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-butyrolactone, γ-valerolactone and δ-valerolactone.
Examples of nitrile solvents include acetonitrile, propionitrile, butyronitrile, acrylonitrile, methacrylonitrile and benzonitrile.
As the sulfoxide solvent, dimethyl sulfoxide, methyl ethyl sulfoxide, diethyl sulfoxide and the like can be mentioned.
As the sulfone solvent, sulfolane, ethyl methyl sulfone and the like can be mentioned.
Among these solvents (B), water, alcohol solvents, sulfoxide solvents and sulfone solvents are preferable from the viewpoint of solubility of the polymer (A), and water, ethylene glycol, diethylene glycol and dimethyl sulfoxide are more preferable. It is.
The solvent (B) may be used alone or in combination of two or more.
 導電性高分子(C)は、主鎖がπ共役系で構成されている有機高分子で導電性を示す高分子である。導電性を示し本発明の効果を有する限り特に制限されず、例えば、ポリピロール導電性高分子、ポリチオフェン導電性高分子、ポリアセチレン導電性高分子、ポリフェニレン導電性高分子、ポリフェニレンビニレン導電性高分子、ポリアニリン導電性高分子、ポリアセン導電性高分子、ポリチオフェンビニレン導電性高分子及びこれらの共重合体等が挙げられる。 The conductive polymer (C) is an organic polymer having a main chain composed of a π-conjugated system and exhibiting conductivity. It is not particularly limited as long as it exhibits conductivity and has the effects of the present invention, and examples thereof include polypyrrole conductive polymers, polythiophene conductive polymers, polyacetylene conductive polymers, polyphenylene conductive polymers, polyphenylene vinylene conductive polymers, polyaniline Examples thereof include conductive polymers, polyacene conductive polymers, polythiophene vinylene conductive polymers, and copolymers of these.
 ポリチオフェン導電性高分子としては、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブチレンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。 As polythiophene conductive polymers, polythiophene, poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), Poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly ( 3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly (3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), Poly (3-hydroxythiophene), poly (3-methoxythiophene), poly ( -Ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly ( 3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxythiophene), poly (3,4-diheptyloxythiophene), poly (3,4-dioctyl) Oxythiophene), poly (3,4-didecyloxythiophene), poly (3, -Didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butylenedioxythiophene), poly (3-methyl-4 -Methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), Poly (3-methyl-4-carboxybutylthiophene) and the like can be mentioned.
 ポリピロール導電性高分子としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。 As the polypyrrole conductive polymer, polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole) ), Poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3- Carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), Poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyi) Oxy pyrrole), poly (3-methyl-4-hexyloxy-pyrrole) and the like.
 ポリアニリン導電性高分子としては、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。 Examples of the polyaniline conductive polymer include polyaniline, poly (2-methylaniline), poly (3-isobutylaniline), poly (2-anilinesulfonic acid), poly (3-anilinesulfonic acid) and the like.
 これらの導電性高分子のうち、空気中での安定性及び耐熱性の観点からは、好ましくはポリピロール導電性高分子、ポリチオフェン導電性高分子及びポリアニリン導電性高分子であり、更に好ましくはポリチオフェン導電性高分子であり、導電性の観点から、特に好ましくはポリ(3,4-エチレンジオキシチオフェン)である。
 前記導電性高分子は1種を単独で使用してもよいし、2種以上を併用してもよい。
Among these conductive polymers, from the viewpoint of stability in air and heat resistance, preferred are polypyrrole conductive polymers, polythiophene conductive polymers and polyaniline conductive polymers, and more preferably polythiophene conductive. Polymer, and from the viewpoint of conductivity, particularly preferably poly (3,4-ethylenedioxythiophene).
The conductive polymers may be used alone or in combination of two or more.
 前記導電性高分子は導電性向上のために、ドーパントとともに用いることができる。
 ドーパントとしては、p-トルエンスルホン酸及びポリスチレンスルホン酸等が挙げられる。
The conductive polymer can be used together with a dopant to improve the conductivity.
Examples of the dopant include p-toluenesulfonic acid and polystyrenesulfonic acid.
 導電性高分子分散液は、電解コンデンサ用添加剤を含む導電性高分子分散液である。電解コンデンサ用添加剤、溶剤(B)及び導電性高分子(C)以外に添加剤(D)を含んでいてもよい。
 添加剤(D)としては、ポリエーテル及び界面活性剤等が挙げられる。電導度の観点から好ましくはポリエーテルであり、成膜性の観点から好ましくは界面活性剤である。
The conductive polymer dispersion is a conductive polymer dispersion containing an additive for an electrolytic capacitor. An additive (D) may be contained in addition to the additive for electrolytic capacitor, the solvent (B) and the conductive polymer (C).
As an additive (D), a polyether, surfactant, etc. are mentioned. It is preferably a polyether from the viewpoint of conductivity, and preferably a surfactant from the viewpoint of film formability.
 ポリエーテルとしては、ポリエチレングリコール[商品名「PEG-400」、三洋化成工業(株)製、Mn=400]、ポリエチレングリコール[商品名「PEG-600」、三洋化成工業(株)製、Mn=600]等が挙げられる。 As the polyether, polyethylene glycol [trade name "PEG-400", manufactured by Sanyo Chemical Industries, Ltd., Mn = 400], polyethylene glycol [trade name "PEG-600", manufactured by Sanyo Chemical Industries, Ltd., Mn = 600].
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤及びカチオン界面活性剤等が挙げられる。これらの界面活性剤のうち、保存安定性の観点からノニオン界面活性剤が好ましい。 As surfactant, nonionic surfactant, anionic surfactant, cationic surfactant, etc. are mentioned. Among these surfactants, nonionic surfactants are preferable from the viewpoint of storage stability.
 本発明の導電性高分子分散液において、導電性高分子分散液の重量に対する電解コンデンサ用添加剤の重量割合は、コンデンサ素子への含浸性の観点から0.1~30重量%であることが好ましく、更に好ましくは0.5~25重量%であり、特に好ましくは1~20重量%である。
 本発明の電解液において、導電性高分子分散液の重量に対する溶剤(B)の重量割合は、導電性高分子の分散性の観点から50~99重量%であることが好ましく、更に好ましくは60~99重量%であり、特に好ましくは70~99重量%である。
本発明の導電性高分子分散液において、導電性高分子分散液の重量に対する導電性高分子(C)の重量割合は、導電性高分子の分散性の観点から0.5~10重量%であることが好ましく、更に好ましくは0.8~5重量%である。
本発明の電解液において、導電性高分子分散液の重量に対する前記の添加剤(G)の重量割合は、導電性高分子分散液への溶解度の観点から0.01~5重量%であることが好ましく、更に好ましくは0.05~2重量%である。
In the conductive polymer dispersion liquid of the present invention, the weight ratio of the additive for electrolytic capacitor to the weight of the conductive polymer dispersion liquid is 0.1 to 30% by weight from the viewpoint of the impregnation property to the capacitor element. Preferably, it is more preferably 0.5 to 25% by weight, particularly preferably 1 to 20% by weight.
In the electrolytic solution of the present invention, the weight ratio of the solvent (B) to the weight of the conductive polymer dispersion is preferably 50 to 99% by weight, more preferably 60 from the viewpoint of the dispersibility of the conductive polymer. % To 99% by weight, particularly preferably 70 to 99% by weight.
In the conductive polymer dispersion of the present invention, the weight ratio of the conductive polymer (C) to the weight of the conductive polymer dispersion is 0.5 to 10% by weight from the viewpoint of the dispersibility of the conductive polymer. Is preferably 0.8 to 5% by weight.
In the electrolytic solution of the present invention, the weight ratio of the additive (G) to the weight of the conductive polymer dispersion is 0.01 to 5% by weight from the viewpoint of solubility in the conductive polymer dispersion. Is more preferable, and more preferably 0.05 to 2% by weight.
 本発明の導電性高分子分散液は、例えば、重合体(A)及び導電性高分子(C)を溶剤(B)に分散させた分散液並びに必要に応じて添加剤(D)を、20~80℃の温度範囲で、公知の機械的混合方法(例えばメカニカルスターラーやマグネティックスターラーを用いる方法)を用いることによって均一混合することで、製造することができる。 The conductive polymer dispersion liquid of the present invention is, for example, a dispersion liquid in which the polymer (A) and the conductive polymer (C) are dispersed in a solvent (B) and, if necessary, an additive (D) 20 It can be produced by homogeneous mixing in a temperature range of -80 ° C. by using a known mechanical mixing method (for example, a method using a mechanical stirrer or a magnetic stirrer).
 本発明の電解液は、電解コンデンサ用添加剤を含有する電解液である。電解液は、電解コンデンサ用添加剤以外に、前記の溶剤(B)を含有する。必要により、電解質(F)その他の添加剤(G)を添加することができる。
 電解液として用いる溶剤(B)の内、重合体(A)の溶解性の観点から好ましいのは、水、アルコール溶剤、エステル溶剤、スルホキシド溶剤及びスルホン溶剤であり、更に好ましいのは水、エチレングリコール、γ-ブチロラクトン及びスルホランである。
 溶剤(B)は、1種を単独で用いても2種以上を併用してもよい。
The electrolytic solution of the present invention is an electrolytic solution containing an additive for an electrolytic capacitor. The electrolytic solution contains the above-mentioned solvent (B) in addition to the additive for the electrolytic capacitor. If necessary, an electrolyte (F) and other additives (G) can be added.
Among the solvents (B) used as the electrolytic solution, water, alcohol solvents, ester solvents, sulfoxide solvents and sulfone solvents are preferable from the viewpoint of the solubility of the polymer (A), and water and ethylene glycol are more preferable. , Γ-butyrolactone and sulfolane.
The solvent (B) may be used alone or in combination of two or more.
 本発明の電解液が含有する電解質(F)は、カチオン成分(F1)とアニオン成分(F2)とで構成され、カチオン成分(F1)としては、アンモニア、トリエチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、ジメチルアミン、ジエチルアミン、1-メチルイミダゾール、1,2,3,4-テトラメチルイミダゾリニウム及び1-エチル-3-メチルイミダゾリニウム等が挙げられ、中でもアンモニア、ジメチルエチルアミン、ジエチルアミン、トリエチルアミンが好ましく、更に好ましいのはジメチルエチルアミンである。
 一方、アニオン成分(F2)としてはアジピン酸、アゼライン酸、1,6-デカンジカルボン酸、フタル酸、マレイン酸、安息香酸、リン酸及びそのエステル化物並びにホウ酸及びそのエステル化物等が挙げられ、中でもフタル酸か好ましい。
 電解質(F)は、1種を単独で用いても2種以上を併用してもよい。
The electrolyte (F) contained in the electrolytic solution of the present invention is composed of a cation component (F1) and an anion component (F2), and as the cation component (F1), ammonia, triethylamine, dimethylethylamine, diethylmethylamine, dimethyldimethylamine Amines, diethylamine, 1-methylimidazole, 1,2,3,4-tetramethylimidazolinium, 1-ethyl-3-methylimidazolinium and the like can be mentioned, with preference given to ammonia, dimethylethylamine, diethylamine and triethylamine. More preferred is dimethylethylamine.
On the other hand, examples of the anion component (F2) include adipic acid, azelaic acid, 1,6-decanedicarboxylic acid, phthalic acid, maleic acid, benzoic acid, phosphoric acid and their esters and boric acid and their esters, etc. Among them, phthalic acid is preferable.
The electrolyte (F) may be used alone or in combination of two or more.
 また、(F1)と(F2)とのモル比は、固体電解質(後述の導電性ポリマー)に取り込まれているドーパントを脱ドープさせないという観点から、(F1)/(F2)が好ましくは0.3~1.0であり、更に好ましくは0.5~1.0である。 The molar ratio of (F1) to (F2) is preferably (F1) / (F2) from the viewpoint of not dedoping the dopant incorporated in the solid electrolyte (conductive polymer described later). It is 3 to 1.0, more preferably 0.5 to 1.0.
 その他の添加剤(G)としては、ニトロ化合物(o-ニトロ安息香酸、p-ニトロ安息香酸、m-ニトロ安息香酸、o-ニトロフェノール及びp-ニトロフェノール等)、ホウ酸及びポバール等が挙げられる。 Examples of other additives (G) include nitro compounds (o-nitrobenzoic acid, p-nitrobenzoic acid, m-nitrobenzoic acid, o-nitrophenol and p-nitrophenol etc.), boric acid and poval etc. Be
 本発明の電解液において、電解液の重量に対する重合体(A)の重量割合は、コンデンサ素子への含浸性の観点から5~70重量%であることが好ましく、更に好ましくは10~60重量%であり、特に好ましくは20~50重量%である。
 本発明の電解液において、電解液の重量に対する溶剤(B)の重量割合は、コンデンサ素子のドライアップ抑制の観点から30~95重量%であることが好ましく、更に好ましくは40~90重量%であり、特に好ましくは40~80重量%である。
本発明の電解液において、電解液の重量に対する電解質(F)の重量割合は、誘電体層の化成性の観点から0~20重量%であることが好ましく、更に好ましくは5~15重量%である。
本発明の電解液において、電解液の重量に対する前記の添加剤(G)の重量割合は、電解液への溶解度の観点から0~5重量%であることが好ましく、更に好ましくは0.1~2重量%である。
In the electrolytic solution of the present invention, the weight ratio of the polymer (A) to the weight of the electrolytic solution is preferably 5 to 70% by weight, more preferably 10 to 60% by weight from the viewpoint of the impregnatability to the capacitor element. And particularly preferably 20 to 50% by weight.
In the electrolytic solution of the present invention, the weight ratio of the solvent (B) to the weight of the electrolytic solution is preferably 30 to 95% by weight, more preferably 40 to 90% by weight from the viewpoint of suppressing dry-up of the capacitor element. And particularly preferably 40 to 80% by weight.
In the electrolytic solution of the present invention, the weight ratio of the electrolyte (F) to the weight of the electrolytic solution is preferably 0 to 20% by weight, more preferably 5 to 15% by weight from the viewpoint of the chemical conversion of the dielectric layer. is there.
In the electrolytic solution of the present invention, the weight ratio of the additive (G) to the weight of the electrolytic solution is preferably 0 to 5% by weight, more preferably 0.1 to 5%, from the viewpoint of solubility in the electrolytic solution. It is 2% by weight.
 本発明の電解液は、例えば、重合体(A)及び溶剤(B)並びに必要に応じて電解質(F)及びその他の添加剤(G)を、20~80℃の温度範囲で、公知の機械的混合方法(例えばメカニカルスターラーやマグネティックスターラーを用いる方法)を用いることによって均一混合することで、製造することができる。 The electrolytic solution of the present invention can be prepared, for example, from the polymer (A) and the solvent (B) and, if necessary, the electrolyte (F) and other additives (G) in a known mechanical temperature range from 20 to 80.degree. It can be manufactured by uniform mixing by using a dynamic mixing method (for example, a method using a mechanical stirrer or a magnetic stirrer).
 本発明の電解コンデンサは、固体電解質層を備える電解コンデンサであって、電解コンデンサ用添加剤を含有する電解コンデンサである。本発明の電解コンデンサとしては、誘電体層及び固体電解質層を備える陽極箔に対向して、セパレータ(マニラ麻及びクラフト紙等)を介して陰極箔が配置することにより構成されたコンデンサ等が挙げられる。又はハイブリッド型電解コンデンサにおいては、前記の固体電解質の層が、電解コンデンサ用電解液を含有するコンデンサである。 The electrolytic capacitor of the present invention is an electrolytic capacitor provided with a solid electrolyte layer, and is an electrolytic capacitor containing an additive for electrolytic capacitor. Examples of the electrolytic capacitor of the present invention include a capacitor and the like formed by disposing a cathode foil opposite to an anode foil provided with a dielectric layer and a solid electrolyte layer via a separator (such as manila hemp and kraft paper). . Alternatively, in the hybrid electrolytic capacitor, the solid electrolyte layer is a capacitor containing an electrolytic solution for electrolytic capacitor.
 前記の陽極箔としては、導電性材料を用いることができる。
 前記の導電性材料としては、アルミニウム、チタン、タンタル、ニオブ及びこれらの合金等が挙げられる。
 陽極箔は、エッチングにより多孔質化すること等の方法で、表面積を大きくしたものが好ましい。
A conductive material can be used as the above-mentioned anode foil.
Examples of the conductive material include aluminum, titanium, tantalum, niobium and alloys thereof.
The anode foil is preferably a foil whose surface area is increased by a method such as making it porous by etching.
 誘電体層は、陽極箔表面を化成処理等により陽極酸化することで形成されるため、陽極箔に用いられる導電性物質の酸化物が挙げられる。
 例えば、陽極箔としてアルミニウムを用いた場合、陽極箔の表面に形成される誘電体層は、化成により生成する酸化アルミニウムである。
The dielectric layer is formed by anodizing the surface of the anode foil by chemical conversion treatment or the like, and examples thereof include oxides of a conductive substance used for the anode foil.
For example, when aluminum is used as the anode foil, the dielectric layer formed on the surface of the anode foil is aluminum oxide formed by formation.
 誘電体層表面に形成される固体電解質層は、導電性高分子、ドーパント及び前記親水性基を有する重合体(A)並びに必要により添加剤(D)を含有する層である。
 導電性高分子としては、ポリチオフェン、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)及びポリピロール等が挙げられる。
 また、ドーパントとしては、p-トルエンスルホン酸及びポリスチレンスルホン酸(PSS)等が挙げられる。
 添加剤(D)としては、ポリエーテル及び界面活性剤等が挙げられる。
 ポリエーテルとしては、ポリエチレングリコール[商品名「PEG-400」、三洋化成工業(株)製、Mn=400]、ポリエチレングリコール[商品名「PEG-600」、三洋化成工業(株)製、Mn=600]等が挙げられる。
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤及びカチオン界面活性剤等が挙げられる。これらの界面活性剤のうち、保存安定性の観点からノニオン界面活性剤が好ましい。
The solid electrolyte layer formed on the surface of the dielectric layer is a layer containing a conductive polymer, a dopant, a polymer (A) having the above-mentioned hydrophilic group and optionally an additive (D).
Examples of the conductive polymer include polythiophene, poly (3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole.
In addition, examples of the dopant include p-toluenesulfonic acid and polystyrenesulfonic acid (PSS).
As an additive (D), a polyether, surfactant, etc. are mentioned.
As the polyether, polyethylene glycol [trade name "PEG-400", manufactured by Sanyo Chemical Industries, Ltd., Mn = 400], polyethylene glycol [trade name "PEG-600", manufactured by Sanyo Chemical Industries, Ltd., Mn = 600].
As surfactant, nonionic surfactant, anionic surfactant, cationic surfactant, etc. are mentioned. Among these surfactants, nonionic surfactants are preferable from the viewpoint of storage stability.
 固体電解質層が含有する親水性基を有する重合体(A)の重量割合は、耐電圧の観点から、固体電解質層の重量を基準として、20~80重量%であることが好ましく、更に好ましくは30~60重量%であり、特に好ましくは40~50重量%である。 The weight ratio of the polymer (A) having a hydrophilic group contained in the solid electrolyte layer is preferably 20 to 80% by weight based on the weight of the solid electrolyte layer from the viewpoint of the withstand voltage, and more preferably It is 30 to 60% by weight, particularly preferably 40 to 50% by weight.
 本発明における固体電解質層は、以下の[I]及び[II]等の方法により形成することができる。 The solid electrolyte layer in the present invention can be formed by the following methods [I] and [II].
[I]
 以下の(1)に記載の方法により、固体電解質層を形成させる。
(1)
 誘電体層を有する陽極箔を、前記の導電性高分子分散液[前記の親水性基を有する重合体(A)、導電性高分子(C)及びドーパント及び溶剤(B)(水等)を含有する溶液]に含浸し、その後乾燥させる方法によって、固体電解質層を形成させることができる。
[I]
A solid electrolyte layer is formed by the method described in (1) below.
(1)
An anode foil having a dielectric layer was prepared by using the conductive polymer dispersion described above [the polymer (A) having a hydrophilic group, the conductive polymer (C), the dopant, and the solvent (B) (water, etc. A solid electrolyte layer can be formed by a method in which the solution is impregnated and then dried.
 [I]による固体電解質層形成方法においては、上記の(1)の操作を複数回実施し、固体電解質層を複数層形成させても良い。
 また、少なくとも1回上記の(1)の操作を実施するのであれば、(1)の操作に代えて以下の(2)及び/又は(3)の操作を実施してもよい。
 また、(1)、(2)及び/又は(3)の操作を複数回実施する場合は、(1)、(2)又は(3)の各操作において、誘電体層を有する陽極箔に代えて、直前に(1)、(2)又は(3)の操作を実施して得た誘電体層及び固体電解質層を有する陽極箔を用いればよい。
(2)
 誘電体層を有する陽極箔を、前記の導電性高分子分散液[導電性高分子(C)、ドーパント及び溶剤(B)(水等)を含有する溶液]に含浸し、その後乾燥させる方法によって、固体電解質層を形成させることができる。
 また、前記の導電性高分子分散液は、必要により、ホウ酸及びホウ酸エステルを含有していても良い。
(3)
 誘電体層を有する陽極箔を、固体電解質組成物[導電性高分子(C)を構成するモノマー(チオフェン、エチレンジオキシチオフェン及びピロール等)及びドーパントの溶液(水溶液等)]と、酸化剤(酸化鉄等)の溶液(水溶液等)とに交互に含浸する方法により、導電性高分子を構成するモノマーを重合させることで、固体電解質層を形成させることができる。
In the method of forming a solid electrolyte layer according to [I], the above operation (1) may be performed a plurality of times to form a plurality of solid electrolyte layers.
In addition, if the above operation (1) is performed at least once, the following operations (2) and / or (3) may be performed instead of the operation (1).
In addition, when the operation of (1), (2) and / or (3) is performed a plurality of times, in each operation of (1), (2) or (3), instead of the anode foil having a dielectric layer Then, an anode foil having a dielectric layer and a solid electrolyte layer obtained by performing the operation of (1), (2) or (3) immediately before may be used.
(2)
The anode foil having a dielectric layer is impregnated with the conductive polymer dispersion [a solution containing a conductive polymer (C), a dopant and a solvent (B) (such as water)], and then dried. And a solid electrolyte layer can be formed.
Further, the conductive polymer dispersion may contain boric acid and boric acid ester, if necessary.
(3)
An anode foil having a dielectric layer, a solid electrolyte composition [a monomer (such as thiophene, ethylenedioxythiophene and pyrrole) and a dopant solution (such as aqueous solution) constituting the conductive polymer (C)], an oxidizing agent (such as an aqueous solution) The solid electrolyte layer can be formed by polymerizing the monomers constituting the conductive polymer by a method of alternately impregnating with a solution (aqueous solution or the like) of iron oxide or the like.
[II]
 上記の(2)又は(3)のいずれかの操作を最低1回実施し、陽極箔の誘電体層表面に固体電解質層(親水性基を有する重合体(A)を含有しない)を形成させる。
 その後、誘電体層及び固体電解質層を有する陽極箔を、前記の親水性基を有する重合体(A)の溶液(水溶液等)に含浸し、その後乾燥させる方法によって、親水性基を有する重合体(A)を含有する固体電解質層を形成させることができる。
 また、[II]による固体電解質層形成方法において、(2)及び(3)の操作に代えて、(1)の操作を実施しても良い。
[II]
Perform the above operation (2) or (3) at least once to form a solid electrolyte layer (containing no polymer (A) having a hydrophilic group) on the surface of the dielectric layer of the anode foil .
Thereafter, the anode foil having a dielectric layer and a solid electrolyte layer is impregnated with a solution (such as an aqueous solution) of the polymer (A) having a hydrophilic group described above, and then dried to obtain a polymer having a hydrophilic group. A solid electrolyte layer containing (A) can be formed.
In the method of forming a solid electrolyte layer according to [II], the operation of (1) may be performed instead of the operations of (2) and (3).
 陰極箔としては、カーボンペーストと銀ペーストとの積層物及びアルミ箔等が挙げられる。 Examples of the cathode foil include laminates of carbon paste and silver paste, aluminum foil, and the like.
 本発明の電解コンデンサは、例えば以下の方法により製造できる。
 まず、前記の方法で陽極箔としてのアルミニウムエッチド箔を化成処理し、アルミニウムエッチド箔の表面に誘電体層を形成させ、陽極箔と誘電体層とからなる陽極を作製する。
 その後、陽極箔と陰極箔に電極用タブを接続し、セパレータを介して対向させ素子を作製する。そして、切断面や欠損部を修復するためホウ酸アンモニウム水溶液中で前記素子に250Vの電圧で修復化成を行い、コンデンサ素子を作製する。
 次に、前記の[I]又は[II]の方法において、コンデンサ素子ごと、前記の導電性高分子分散液、前記の固体電解質組成物及び酸化剤の溶液等に浸すことで、コンデンサ素子中の誘電体層を有する陽極箔について、誘電体層表面に、固体電解質層を形成させる。
 以上の方法により、電解コンデンサが作製される。
The electrolytic capacitor of the present invention can be produced, for example, by the following method.
First, the aluminum etched foil as an anode foil is subjected to a chemical conversion treatment by the above method to form a dielectric layer on the surface of the aluminum etched foil, and an anode comprising the anode foil and the dielectric layer is produced.
Thereafter, an electrode tab is connected to the anode foil and the cathode foil, and they are opposed to each other through the separator to produce an element. Then, in order to repair the cut surface and the defect portion, the element is subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to prepare a capacitor element.
Next, in the method of [I] or [II], the capacitor element is immersed in the conductive polymer dispersion, the solid electrolyte composition, the solution of the oxidizing agent, etc. For an anode foil having a dielectric layer, a solid electrolyte layer is formed on the surface of the dielectric layer.
An electrolytic capacitor is produced by the above method.
 前記の固体電解質としては、ポリチオフェン及びポリ3,4-エチレンジオキシチオフェン等並びにポリピロール等の導電性ポリマーが挙げられる。
 この導電性ポリマーはドーパントが組み込まれており、ドーパントは導電性を発現する役割を担っている。
 前記のドーパントとしては、p-トルエンスルホン酸及びポリスチレンスルホン酸等が挙げられる。
Examples of the solid electrolyte include polythiophene, poly 3,4-ethylenedioxythiophene and the like, and conductive polymers such as polypyrrole.
The conductive polymer has a dopant incorporated therein, and the dopant plays a role in developing conductivity.
Examples of the above-mentioned dopant include p-toluenesulfonic acid and polystyrenesulfonic acid.
 陰極箔としては、カーボンペーストと銀ペーストとの積層物及びアルミ箔等が挙げられる。 Examples of the cathode foil include laminates of carbon paste and silver paste, aluminum foil, and the like.
 本発明の電解コンデンサの具体的な構成としては、以下の構成が挙げられる。
 コンデンサ素子と、一対のリード線と、外装体とを有する。一対のリード線は、それぞれ、コンデンサ素子に接続されている。外装体はリード線を他方の端部を外部に導出するようにして、コンデンサ素子を封入している。
 外装体は、筒状のケースと、封口体とで構成されており、このケースには後述の方法で電解液を含有させたコンデンサ素子を収納し、封口体にはリード線をそれぞれ挿通させる貫通孔に通し、ケースの外周面に設けた絞り加工部で圧縮することによって封止する。
The following structures are mentioned as a specific structure of the electrolytic capacitor of this invention.
It has a capacitor | condenser element, a pair of lead wire, and an exterior body. The pair of lead wires are each connected to the capacitor element. The outer package encloses the capacitor element in such a manner that the lead wire is led out to the other end.
The exterior body is composed of a cylindrical case and a sealing body, in which case a capacitor element containing an electrolytic solution is accommodated by the method described later, and the lead-through is inserted through the sealing body. It passes through a hole and is sealed by compressing in a drawing portion provided on the outer peripheral surface of the case.
 本発明のコンデンサ素子は、表面に誘電体層を有する陽極箔と、この陽極箔の誘電体層に接触した固体電解質の層とを有する。
 陽極箔はアルミニウム箔をエッチング処理により、粗面化し、更にその表面に誘電体層である陽極酸化皮膜を化成処理することによって形成される。
 次に、誘電体層を有する陽極箔と陰極箔とセパレータを積層して巻回することでコンデンサ素子(固体電解質の層なし)が構成される。
The capacitor element of the present invention has an anode foil having a dielectric layer on the surface, and a layer of solid electrolyte in contact with the dielectric layer of the anode foil.
The anode foil is formed by roughening the aluminum foil by etching, and further forming an anodized film, which is a dielectric layer, on the surface thereof.
Next, the anode foil having the dielectric layer, the cathode foil, and the separator are stacked and wound to form a capacitor element (without a solid electrolyte layer).
 そして、コンデンサ素子(固体電解質の層なし)中の陽極箔と陰極箔との間に、固体電解質の層を作製することで、本発明におけるコンデンサ素子を得ることができる。
 固体電解質の層の作製方法としては、以下の(1)及び(2)等が挙げられる。
(1)
 コンデンサ素子(固体電解質の層なし)を、前記の固体電解質の分散溶液[固体電解質を溶剤(水等)に分散させた溶液]に含浸し、その後乾燥させる方法によって、コンデンサ素子中の誘電体層表面に、固体電解質の層を形成させることができる。
(2)
 コンデンサ素子(固体電解質の層なし)を、固体電解質組成物[固体電解質を構成するモノマー(チオフェン、エチレンジオキシチオフェン及びピロール等)、ドーパント及び溶剤(水等)の混合物]と、酸化剤(酸化鉄等)の溶液(水溶液等)とに交互に含浸する方法により、固体電解質を構成するモノマーを重合させることで、コンデンサ素子中の誘電体層表面に、固体電解質層を形成させることができる。
And the capacitor | condenser element in this invention can be obtained by producing the layer of a solid electrolyte between the anode foil and cathode foil in a capacitor | condenser element (without the layer of a solid electrolyte).
The following (1) and (2) etc. are mentioned as a preparation method of the layer of a solid electrolyte.
(1)
A dielectric element layer in a capacitor element is formed by impregnating a capacitor element (without a layer of solid electrolyte) with the above-mentioned dispersion solution of solid electrolyte [a solution in which a solid electrolyte is dispersed in a solvent (such as water)] and then drying it. A layer of solid electrolyte can be formed on the surface.
(2)
A capacitor element (without a solid electrolyte layer), a solid electrolyte composition [a mixture of monomers (such as thiophene, ethylenedioxythiophene and pyrrole, which constitute the solid electrolyte, a dopant and a solvent (such as water)], an oxidant (oxidation A solid electrolyte layer can be formed on the surface of the dielectric layer in the capacitor element by polymerizing the monomers constituting the solid electrolyte by a method of alternately impregnating with a solution (aqueous solution or the like) of iron or the like.
 以上のようにして形成されたコンデンサ素子を本発明の電解コンデンサ用電解液に浸し、前記の電解液をコンデンサ素子に真空含浸させることで、コンデンサ素子が備える固体電解質の層の隙間に、本発明の電解コンデンサ用電解液が入り込み、本発明の電解コンデンサが作製される。 By immersing the capacitor element formed as described above in the electrolytic solution of the present invention for the electrolytic capacitor of the present invention, and impregnating the electrolytic solution with the above-mentioned electrolytic solution in a vacuum, the gap of the solid electrolyte layer provided in the capacitor element The electrolytic solution for electrolytic capacitor of the above enters and the electrolytic capacitor of the present invention is manufactured.
 以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下において部は重量部を表す。
また、下記の親水性基を有する重合体(A)及び比較用重合体(RA)のMnは、以下の条件のGPCにより測定した。
 装置:東ソー(株)製 HLC-8120
 カラム:TSK GEL GMH6 2本 〔東ソー(株)製〕
 測定温度:40℃
 試料溶液:0.25重量%のTHF溶液
 溶液注入量:100μl
 検出装置:屈折率検出器
 基準物質:東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(重量平均分子量: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
In the following, parts represent parts by weight.
Further, Mn of the following polymer (A) having a hydrophilic group and the comparative polymer (RA) was measured by GPC under the following conditions.
Device: Tosoh Corporation HLC-8120
Column: Two TSK GEL GMH6 (made by Tosoh Corp.)
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% THF solution Injection volume: 100 μl
Detection device: Refractive index detector Reference substance: Tosoh Co., Ltd. standard polystyrene (TSK standard POLYSTYRENE) 12 points (weight average molecular weight: 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
 また、下記の親水性基を有する重合体(A-1~24)及び比較用重合体(RA-1、2)のTgは、示差走査熱量測定装置[セイコーインスツル(株)製の「DSC20」及び「SSC/580」等]を用いて「ASTM  D3418-82」に準拠した方法で測定した。 Further, Tg of the following polymers (A-1 to 24) having a hydrophilic group and the comparative polymers (RA-1 and 2) is a differential scanning calorimeter [DSC 20 manufactured by Seiko Instruments Inc. And “SSC / 580” and the like] in accordance with “ASTM D 3418-82”.
<実施例1:親水性基を有する重合体(A-1)を含有する電解コンデンサ用添加剤(P-1)の作製>
 撹拌機、温度計及び冷却管を取り付けたフラスコに、トルエン[和光純薬工業(株)製]30重量部、アクリル酸[和光純薬工業(株)製]9.5重量部(132ミリモル(以下、mmolと記載する))及び2-ヒドロキシエチルアクリレート[和光純薬工業(株)製]4.6重量部(40mmol)を投入し、攪拌下で80℃まで加熱した。ここにアゾビスイソブチロニトリル[和光純薬工業(株)製]0.9重量部をトルエン重量5部に溶解した溶液を3時間かけて滴下した。滴下終了後、80℃を維持したまま、更に3時間攪拌下で加熱した。その後、0.5kPaの減圧下において100℃に加熱することでトルエンを留去し、親水性基を有する高分子重合体(A-1)を合成し、重合体(A-1)を含有する電解コンデンサ用添加剤(P-1)を作製した。重合体(A-1)のMnは5,600であり、Tgは56℃であった。
Example 1 Preparation of Additive (P-1) for Electrolytic Capacitor Containing Polymer (A-1) Having Hydrophilic Group>
30 parts by weight of toluene [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.5 parts by weight of acrylic acid [manufactured by Wako Pure Chemical Industries, Ltd.] in a flask equipped with a stirrer, a thermometer and a cooling pipe; Hereinafter, it is described as mmol)) and 4.6 parts by weight (40 mmol) of 2-hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.], and heated to 80 ° C. with stirring. A solution of 0.9 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 parts by weight of toluene was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was heated with stirring for 3 hours while maintaining 80 ° C. Thereafter, the toluene is distilled off by heating to 100 ° C. under a reduced pressure of 0.5 kPa to synthesize a polymer (A-1) having a hydrophilic group, and the polymer (A-1) is contained. An additive (P-1) for an electrolytic capacitor was produced. The Mn of the polymer (A-1) was 5,600, and the Tg was 56 ° C.
<実施例2:親水性基を有する重合体(A-2)を含有する電解コンデンサ用添加剤(P-2)の作製>
 実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例1と同様にして行い、親水性基を有する重合体(A-2)を含有する電解コンデンサ用添加剤(P-2)を作製した。重合体(A-2)のMnは5,300であり、Tgは11℃であった。
<Example 2: Preparation of Additive (P-2) for Electrolytic Capacitor Containing Polymer (A-2) Having Hydrophilic Group>
A polymer (A-2) having a hydrophilic group is prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1. An additive (P-2) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-2) was 5,300, and the Tg was 11 ° C.
<実施例3:親水性基を有する重合体(A-3)を含有する電解コンデンサ用添加剤(P-3)の作製>
 実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例1と同様にして行い、親水性基を有する重合体(A-3)を含有する電解コンデンサ用添加剤(P-3)を作製した。重合体(A-3)のMnは5,500であり、Tgは4℃であった。
<Example 3: Preparation of Additive (P-3) for Electrolytic Capacitor Containing Polymer (A-3) Having Hydrophilic Group>
A polymer (A-3) having a hydrophilic group is prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1. An additive (P-3) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-3) was 5,500, and the Tg was 4 ° C.
<実施例4:親水性基を有する重合体(A-4)を含有する電解コンデンサ用添加剤(P-4)の作製>
 実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例1と同様にして行い、親水性基を有する重合体(A-4)を含有する電解コンデンサ用添加剤(P-4)を作製した。重合体(A-4)のMnは6,100であり、Tgは-2℃であった。
<Example 4: Preparation of additive (P-4) for electrolytic capacitor containing polymer (A-4) having a hydrophilic group>
A polymer (A-4) having a hydrophilic group was prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group was changed to the monomer described in Table 1 in Example 1. An additive (P-4) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-4) was 6,100, and the Tg was −2 ° C.
<実施例5:親水性基を有する重合体(A-5)を含有する電解コンデンサ用添加剤(P-5)の作製>
 実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例1と同様にして行い、親水性基を有する重合体(A-5)を含有する電解コンデンサ用添加剤(P-5)を作製した。重合体(A-5)のMnは4,600であり、Tgは-40℃であった。
Example 5 Preparation of Additive (P-5) for Electrolytic Capacitor Containing Polymer (A-5) Having Hydrophilic Group>
A polymer (A-5) having a hydrophilic group was prepared in the same manner as in Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group was changed to the monomer described in Table 1 in Example 1. An additive (P-5) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-5) was 4,600, and the Tg was −40 ° C.
<実施例6:親水性基を有する重合体(A-6)を含有する電解コンデンサ用添加剤(P-6)の作製>
 撹拌機、温度計及び冷却管を取り付けたフラスコに、トルエン[和光純薬工業(株)製]30重量部及び2-ヒドロキシエチルアクリレート14.1重量部(121mmol)を投入し、攪拌下で80℃まで加熱した。ここにアゾビスイソブチロニトリル[和光純薬工業(株)製]0.9重量部をトルエン5部に溶解した溶液を3時間かけて滴下した。滴下終了後、80℃を維持したまま、更に3時間攪拌下で加熱した。その後、0.5kPaの減圧下において100℃に加熱することでトルエンを留去し、親水性基を有する重合体(A-6)を含有する電解コンデンサ用添加剤(P-6)を作製した。重合体(A-7)のMnは6,100であり、Tgは-15℃であった。
<Example 6: Preparation of additive (P-6) for electrolytic capacitor containing polymer (A-6) having a hydrophilic group>
30 parts by weight of toluene [manufactured by Wako Pure Chemical Industries, Ltd.] and 14.1 parts by weight (121 mmol) of 2-hydroxyethyl acrylate are charged into a flask equipped with a stirrer, a thermometer and a cooling pipe, and 80 is stirred. Heated to ° C. A solution of 0.9 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 parts of toluene was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was heated with stirring for 3 hours while maintaining 80 ° C. Thereafter, the toluene was distilled off by heating to 100 ° C. under a reduced pressure of 0.5 kPa to prepare an additive (P-6) for an electrolytic capacitor containing a polymer (A-6) having a hydrophilic group . The Mn of the polymer (A-7) was 6,100, and the Tg was -15.degree.
<実施例7:親水性基を有する重合体(A-7)を含有する電解コンデンサ用添加剤(P-7)の作製>
 実施例6において、アゾビスイソブチロニトリル0.9重量部を1.8重量部に変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-7)を含有する電解コンデンサ用添加剤(P-7)を作製した。重合体(A-7)のMnは2,500であり、Tgは-15℃であった。
Example 7 Preparation of Additive for Electrolytic Capacitor (P-7) Containing Polymer (A-7) Having Hydrophilic Group>
Example 6 is carried out in the same manner as in Example 6 except that 0.9 parts by weight of azobisisobutyronitrile is changed to 1.8 parts by weight, and a polymer (A-7) having a hydrophilic group is obtained An additive (P-7) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-7) was 2,500, and the Tg was −15 ° C.
<実施例8:親水性基を有する重合体(A-8)を含有する電解コンデンサ用添加剤(P-8)の作製>
 実施例6において、トルエン30部をメチルエチルケトン[和光純薬工業(株)製]30重量部に変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-8)を含有する電解コンデンサ用添加剤(P-8)を作製した。重合体(A-8)のMnは3,100であり、Tgは-15℃であった。
Example 8 Preparation of Additive for Electrolytic Capacitor (P-8) Containing Polymer (A-8) Having Hydrophilic Group>
In Example 6, except that 30 parts by weight of toluene was changed to 30 parts by weight of methyl ethyl ketone [manufactured by Wako Pure Chemical Industries, Ltd.], the same procedure as in Example 6 was performed, and a polymer having a hydrophilic group (A-8) Were prepared (P-8). The Mn of the polymer (A-8) was 3,100, and the Tg was −15 ° C.
<実施例9:親水性基を有する重合体(A-9)を含有する電解コンデンサ用添加剤(P-9)の作製>
 実施例6において、アゾビスイソブチロニトリル0.9重量部を0.4重量部に変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-9)を含有する電解コンデンサ用添加剤(P-9)を作製した。重合体(A-9)のMnは15,000であり、Tgは-15℃であった。
Example 9 Preparation of Additive for Electrolytic Capacitor (P-9) Containing Polymer (A-9) Having Hydrophilic Group>
A polymer (A-9) having a hydrophilic group is obtained in the same manner as in Example 6 except that in Example 6, 0.9 parts by weight of azobisisobutyronitrile is changed to 0.4 parts by weight. An additive (P-9) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-9) was 15,000, and the Tg was −15 ° C.
<実施例10:親水性基を有する重合体(A-10)を含有する電解コンデンサ用添加剤(P-10)の作製>
 実施例6において、アゾビスイソブチロニトリル0.9重量部を0.2重量部に変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-10)を含有する電解コンデンサ用添加剤(P-10)を作製した。重合体(A-10)のMnは36,000であり、Tgは-15℃であった。
Example 10 Preparation of Additive for Electrolytic Capacitor (P-10) Containing Polymer (A-10) Having Hydrophilic Group>
A polymer (A-10) having a hydrophilic group was prepared in the same manner as in Example 6 except that in Example 6, 0.9 parts by weight of azobisisobutyronitrile was changed to 0.2 parts by weight. An additive (P-10) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-10) was 36,000, and the Tg was −15 ° C.
<実施例11:親水性基を有する重合体(A-11)を含有する電解コンデンサ用添加剤(P-11)の作製>
実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-11)を含有する電解コンデンサ用添加剤(P-11)を作製した。重合体(A-11)のMnは5,600であり、Tgは-7℃であった。
Example 11 Preparation of Additive for Electrolytic Capacitor (P-11) Containing Polymer (A-11) Having Hydrophilic Group>
A polymer (A-11) having a hydrophilic group is obtained in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 6. An additive (P-11) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-11) was 5,600, and the Tg was −7 ° C.
<実施例12:親水性基を有する重合体(A-12)を含有する電解コンデンサ用添加剤(P-12)の作製>
実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-12)を含有する電解コンデンサ用添加剤(P-12)を作製した。重合体(A-12)のMnは6,200であり、Tgは-40℃であった。
Example 12 Preparation of Additive for Electrolytic Capacitor (P-12) Containing Polymer (A-12) Having Hydrophilic Group>
A polymer (A-12) having a hydrophilic group is prepared in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 6. An additive (P-12) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-12) was 6,200, and the Tg was −40 ° C.
<実施例13:親水性基を有する重合体(A-13)を含有する電解コンデンサ用添加剤(P-13)の作製>
 撹拌機、温度計及び冷却管を取り付けたフラスコに、トルエン[和光純薬工業(株)製]30部、4-ヒドロキシブチルアクリレート12.7重量部(88.2mmol)及びブチルアクリレート1.4重量部(10.9mmol)を投入し、攪拌下で80℃まで加熱した。ここにアゾビスイソブチロニトリル[和光純薬工業(株)製]0.9重量部をトルエン5重量部に溶解した溶液を3時間かけて滴下した。滴下終了後、80℃を維持したまま、更に3時間攪拌下で加熱した。その後、0.5kPaの減圧下において100℃に加熱することでトルエンを留去し、親水性基を有する高分子重合体(A-13)を含有する電解コンデンサ用添加剤(P-13)を作製した。高分子重合体(A-13)のMnは5,800であり、Tgは-42℃であった。
Example 13 Preparation of Additive for Electrolytic Capacitor (P-13) Containing Polymer (A-13) Having Hydrophilic Group>
30 parts of toluene [manufactured by Wako Pure Chemical Industries, Ltd.], 12.7 parts by weight of 4-hydroxybutyl acrylate (88.2 mmol) and 1.4 parts of butyl acrylate in a flask equipped with a stirrer, a thermometer and a condenser A portion (10.9 mmol) was charged and heated to 80 ° C. with stirring. A solution of 0.9 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 5 parts by weight of toluene was added dropwise over 3 hours. After completion of the dropwise addition, the mixture was heated with stirring for 3 hours while maintaining 80 ° C. Thereafter, the toluene is distilled off by heating to 100 ° C. under a reduced pressure of 0.5 kPa, and an additive (P-13) for an electrolytic capacitor containing a polymer (A-13) having a hydrophilic group is obtained. Made. The Mn of the polymer (A-13) was 5,800, and the Tg was -42 ° C.
<実施例14:親水性基を有する重合体(A-14)を含有する電解コンデンサ用添加剤(P-14)の作製>
 実施例13において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例13と同様にして行い、親水性基を有する重合体(A-14)を含有する電解コンデンサ用添加剤(P-14)を作製た。重合体(A-14)のMnは4,800であり、Tgは-40℃であった。
Example 14 Preparation of Additive for Electrolytic Capacitor (P-14) Containing Polymer (A-14) Having Hydrophilic Group>
A polymer (A-14) having a hydrophilic group is prepared in the same manner as in Example 13 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to a monomer described in Table 1 in Example 13. An additive (P-14) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-14) was 4,800, and the Tg was −40 ° C.
<実施例15:親水性基を有する重合体(A-15)を含有する電解コンデンサ用添加剤(P-15)の作製>
 実施例13において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例1と同様にして行い、親水性基を有する重合体(A-15)を含有する電解コンデンサ用添加剤(P-15)を作製た。重合体(A-15)のMnは6,300であり、Tgは16℃であった。
Example 15 Preparation of Additive for Electrolytic Capacitor (P-15) Containing Polymer (A-15) Having Hydrophilic Group>
Example 13 is carried out in the same manner as Example 1 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer having a hydrophilic group (A-15) is obtained An additive (P-15) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-15) was 6,300, and the Tg was 16 ° C.
<実施例16:親水性基を有する重合体(A-16)を含有する電解コンデンサ用添加剤(P-16)の作製>
実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例6と同様にして行い、親水性基を有する重合体(A-16)を含有する電解コンデンサ用添加剤(P-16)を作製した。重合体(A-16)のMnは5,800であり、Tgは165℃であった。
Example 16 Preparation of Additive for Electrolytic Capacitor (P-16) Containing Polymer (A-16) Having Hydrophilic Group>
A polymer (A-16) having a hydrophilic group is obtained in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to a monomer described in Table 1 in Example 6. An additive (P-16) for an electrolytic capacitor to be contained was produced. The Mn of the polymer (A-16) was 5,800, and the Tg was 165 ° C.
<実施例17:親水性基を有する重合体(A-17)を含有する電解コンデンサ用添加剤(P-17)の作製>
実施例7において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例7と同様にして行い、親水性基を有する重合体(A-17)を含有する電解コンデンサ用添加剤(P-17)を作製した。重合体(A-17)のMnは6,500であり、Tgは-50℃であった。
Example 17 Preparation of Additive for Electrolytic Capacitor (P-17) Containing Polymer (A-17) Having Hydrophilic Group>
A polymer (A-17) having a hydrophilic group is prepared in the same manner as in Example 7 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to a monomer described in Table 1 in Example 7. The additive for electrolytic capacitors (P-17) to contain was produced. The Mn of the polymer (A-17) was 6,500, and the Tg was −50 ° C.
<実施例18:親水性基を有する重合体(A-18)を含有する電解コンデンサ用添加剤(P-18)の作製>
実施例13において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例13と同様にして行い、親水性基を有する重合体(A-18)を含有する電解コンデンサ用添加剤(P-18)を作製した。重合体(A-18)のMnは4,100であり、Tgは65℃であった。
Example 18 Preparation of Additive for Electrolytic Capacitor (P-18) Containing Polymer (A-18) Having Hydrophilic Group>
Example 13 is carried out in the same manner as in Example 13 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-18) having a hydrophilic group is contained. An additive for electrolytic capacitor (P-18) was prepared. The Mn of the polymer (A-18) was 4,100, and the Tg was 65 ° C.
<実施例19:親水性基を有する重合体(A-19)を含有する電解コンデンサ用添加剤(P-19)の作製>
 実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例6と同様にして行い、親水性基を有する重合体(A-19)を含有する電解コンデンサ用添加剤(P-19)を作製した。重合体(A-19)のMnは7,500であり、Tgは18℃であった。
Example 19 Preparation of Additive for Electrolytic Capacitor (P-19) Containing Polymer (A-19) Having Hydrophilic Group>
Example 6 is carried out in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-19) having a hydrophilic group is contained. An additive for electrolytic capacitor (P-19) was prepared. The Mn of the polymer (A-19) was 7,500, and the Tg was 18 ° C.
<実施例20:親水性基を有する重合体(A-20)を含有する電解コンデンサ用添加剤(P-20)の作製>
実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例6と同様にして行い、親水性基を有する重合体(A-20)を含有する電解コンデンサ用添加剤(P-20)を作製した。重合体(A-20)のMnは3,600であり、Tgは30℃であった。
Example 20 Preparation of Additive for Electrolytic Capacitor (P-20) Containing Polymer (A-20) Having Hydrophilic Group>
Example 6 is carried out in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-20) having a hydrophilic group is contained. An additive for electrolytic capacitor (P-20) was prepared. The Mn of the polymer (A-20) was 3,600, and the Tg was 30 ° C.
<実施例21:親水性基を有する重合体(A-21)を含有する電解コンデンサ用添加剤(P-21)の作製>
実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例6と同様にして行い、親水性基を有する重合体(A-21)を含有する電解コンデンサ用添加剤(P-21)を作製した。重合体(A-21)のMnは4,500であり、Tgは55℃であった。
Example 21 Preparation of Additive for Electrolytic Capacitor (P-21) Containing Polymer (A-21) Having Hydrophilic Group>
Example 6 is carried out in the same manner as Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and contains a polymer (A-21) having a hydrophilic group. An additive (P-21) for electrolytic capacitor was prepared. The Mn of the polymer (A-21) was 4,500, and the Tg was 55 ° C.
<実施例22:親水性基を有する重合体(A-22)を含有する電解コンデンサ用添加剤(P-22)の作製>
実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例1と同様にして行い、親水性基を有する重合体(A-22)を含有する電解コンデンサ用添加剤(P-22)を作製した。重合体(A-22)のMnは4,200であり、Tgは10℃であった。
<Example 22: Preparation of additive (P-22) for electrolytic capacitor containing polymer (A-22) having a hydrophilic group>
The same procedure as in Example 1 is repeated except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and a polymer (A-22) having a hydrophilic group is contained. An additive (P-22) for electrolytic capacitor was prepared. The Mn of the polymer (A-22) was 4,200, and the Tg was 10 ° C.
<実施例23:親水性基を有する重合体(A-23)を含有する電解コンデンサ用添加剤(P-23)の作製>
 実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例1と同様にして行い、親水性基を有する重合体(A-23)を含有する電解コンデンサ用添加剤(P-23)を作製した。重合体(A-23)のMnは6,000であり、Tgは82℃であった。
Example 23 Preparation of Additive for Electrolytic Capacitor (P-23) Containing Polymer (A-23) Having Hydrophilic Group>
The same procedure as in Example 1 is repeated except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1, and a polymer having a hydrophilic group (A-23) is contained. An additive for electrolytic capacitor (P-23) was prepared. The Mn of the polymer (A-23) was 6,000, and the Tg was 82 ° C.
<実施例24:親水性基を有する重合体(A-24)を含有する電解コンデンサ用添加剤(P-24)の作製>
 実施例1において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更した以外は実施例1と同様にして行い、親水性基を有する重合体(A-24)を含有する電解コンデンサ用添加剤(P-24)を作製した。重合体(A-24)のMnは6,500であり、Tgは75℃であった。
Example 24 Preparation of Additive for Electrolytic Capacitor (P-24) Containing Polymer (A-24) Having Hydrophilic Group>
The same procedure as in Example 1 is carried out except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1 in Example 1, and a polymer (A-24) having a hydrophilic group is contained. An additive for electrolytic capacitor (P-24) was prepared. The Mn of the polymer (A-24) was 6,500, and the Tg was 75 ° C.
<比較例1:親水性基を有さない重合体(RA-1)を含有する電解コンデンサ用添加剤(RP-2)の作製>
 実施例6において、親水性基を有するエチレン性不飽和モノマーを表1に記載のモノマーに変更したこと以外は実施例6と同様にして行い、比較用重合体(RA-1)を含有する電解コンデンサ用添加剤(RP-2)を作製した。重合体(RA-1)のMnは7,500であり、Tgは-70℃であった。
Comparative Example 1 Preparation of Additive for Electrolytic Capacitor (RP-2) Containing Polymer (RA-1) Having No Hydrophilic Group>
Example 6 is carried out in the same manner as in Example 6 except that the ethylenically unsaturated monomer having a hydrophilic group is changed to the monomer described in Table 1, and an electrolysis containing a comparative polymer (RA-1) A capacitor additive (RP-2) was prepared. The Mn of the polymer (RA-1) was 7,500, and the Tg was −70 ° C.
 親水性基を有するがTgの高い比較用重合体(RA-2)としてポリビニルアルコール(日本酢ビ・ポバール社製、JC-25、Tg:80℃)を用いた。 As a comparative polymer (RA-2) having a hydrophilic group but having a high Tg, polyvinyl alcohol (JC-25, Tg: 80 ° C., manufactured by Nippon Shokubai Bi-Pobar, Inc.) was used.
 上記の重合体(A-1)~(A-24)及び比較用重合体(RA-1)~(RA-2)について、構造、Mn及びTg等を表1にまとめた。なお、組成欄の数値の単位は重量部、カッコ書きの中はミリモルである。
 また、使用したモノマーは以下の通りである。
 アクリル酸[和光純薬工業(株)製]
 メタクリル酸[和光純薬工業(株)製]
 コハク酸モノ(2-アクリロイロキシエチル)[東京化成工業(株)製]
 コハク酸モノ(2-メタクリロイロキシエチル)[商品名「ライトエステルHO-MS(N)」、共栄社化学(株)製]
 2-ヒドロキシエチルアクリレート[和光純薬工業(株)製]
 2-ヒドロキシプロピルアクリレート[東京化成工業(株)製]
 4-ヒドロキシブチルアクリレート[商品名「4-HBA」、大阪有機化学工業(株)製]
 1,4-シクロヘキサンジメタノールモノアクリレート(CHDMMAと略記する)[商品名「ファンクリルFA-610A」、日立化成(株)製]
 グリセリンモノアクリレート[商品名「ブレンマーGLM」、日油(株)製]
 2-ヒドロキシエチルメタクリレート(HEMAと略記する)[東京化成工業(株)製]
 N-(2-ヒドロキシエチル)アクリルアミド[東京化成工業(株)製]
 アクリルアミド[東京化成工業(株)製]
 2-ヒドロキシエチルアクリレートのエチレンオキサイド2モル付加物(HEA 2EOと略記する)[商品名「ブレンマーAE90」、日油(株)製]
The structures, Mn, Tg and the like of the above polymers (A-1) to (A-24) and comparative polymers (RA-1) to (RA-2) are summarized in Table 1. In addition, the unit of the numerical value of a composition column is a weight part and it is a millimole in parentheses.
Moreover, the used monomers are as follows.
Acrylic acid [manufactured by Wako Pure Chemical Industries, Ltd.]
Methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
Succinic acid mono (2-acryloxy ethyl) [made by Tokyo Chemical Industry Co., Ltd.]
Succinic acid mono (2-methacryloyloxyethyl) [trade name "Light Ester HO-MS (N)", manufactured by Kyoeisha Chemical Co., Ltd.]
2-Hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.]
2-hydroxypropyl acrylate (made by Tokyo Chemical Industry Co., Ltd.)
4-hydroxybutyl acrylate (trade name "4-HBA", manufactured by Osaka Organic Chemical Industry Co., Ltd.)
1,4-cyclohexanedimethanol monoacrylate (abbreviated as CHDMMA) (trade name "funcryl FA-610A", manufactured by Hitachi Chemical Co., Ltd.)
Glycerin monoacrylate [trade name "Blenmer GLM", manufactured by NOF Corporation]
2-Hydroxyethyl methacrylate (abbreviated as HEMA) [manufactured by Tokyo Chemical Industry Co., Ltd.]
N- (2-hydroxyethyl) acrylamide [manufactured by Tokyo Chemical Industry Co., Ltd.]
Acrylamide [manufactured by Tokyo Chemical Industry Co., Ltd.]
Ethylene oxide 2-mole adduct of 2-hydroxyethyl acrylate (abbreviated as HEA 2 EO) (trade name "Blenmer AE90", manufactured by NOF Corporation)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例25~45及び比較例3~6:導電性高分子分散液の調製>
 表2に記載の重量部数の組成で混合し、導電性高分子分散液(Q-1)~(Q-21)及び比較の導電性高分子分散液(RQ-1)~(RQ-4)を調製した。
<Examples 25 to 45 and Comparative Examples 3 to 6: Preparation of Conductive Polymer Dispersion>
Conductive polymer dispersions (Q-1) to (Q-21) and comparative conductive polymer dispersions (RQ-1) to (RQ-4) were mixed according to the composition of parts by weight described in Table 2. Was prepared.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に記載する化合物としては、以下のものを使用した。
 PEDOT/PSS水分散液(以下において、同じものを意味する):ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)にポリスチレンスルホン酸(PSS)をドープしたものの水分散液、ヘレウス社製、CleviosPH500、PEDOT/PSS水分散液の重量に基づくPEDOT及びPSSの合計重量(PEDOT/PSS濃度):1.4重量%
The following compounds were used as the compounds described in Table 2.
PEDOT / PSS aqueous dispersion (simply the same in the following): aqueous dispersion of poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonic acid (PSS), manufactured by Heraeus, Total weight of PEDOT and PSS (PEDOT / PSS concentration) based on the weight of Clevios PH500, PEDOT / PSS aqueous dispersion: 1.4% by weight
<実施例46~68及び比較例7~10>
 以下に記載の方法で、本発明の電解コンデンサ(S-1)~(S-23)及び比較用の電解コンデンサ(RS-1)~(RS-4)を作製した。
Examples 46 to 68 and Comparative Examples 7 to 10
The electrolytic capacitors (S-1) to (S-23) of the present invention and the electrolytic capacitors (RS-1) to (RS-4) for comparison were produced by the method described below.
<実施例46~66及び比較例7~10:固体電解コンデンサの作製1>
 誘電体層を有する陽極箔(化成済みアルミ箔:JCC社製、115HC9‐323Vf)と陰極箔(未化成アルミ箔:JCC社製、80LJ11B)に電極用タブを接続し、セパレータとしてクラフト紙を介して対向させ素子を得た。切断面や欠損部を修復するためホウ酸アンモニウム水溶液中で前記素子に250Vの電圧で修復化成を行い、コンデンサ素子を得た。
 次にPEDOT/PSS水分散液にコンデンサ素子を含浸し、150℃で30分間乾燥させ、誘電体層表面に固体電解質層を形成した。
 続いて表2に記載の実施例25~45及び比較調製例3~7の導電性高分子分散液に含浸し、150℃で30分間乾燥させ、更に固体電解質層を形成した。
 最後にコンデンサ素子をケースに格納し、カシメを行うことで、実施例46~66及び比較例7~10の電解コンデンサを得た。
Examples 46 to 66 and Comparative Examples 7 to 10 Preparation of Solid Electrolytic Capacitor 1
A tab for an electrode is connected to an anode foil (chemically converted aluminum foil: 115HC9-323Vf made by JCC) and a cathode foil (unformed aluminum foil: 80LJ11B made by JCC) having a dielectric layer, and kraft paper is used as a separator The elements were made to face each other. In order to repair the cut surface and the defect portion, the element was subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to obtain a capacitor element.
Next, the capacitor element was impregnated with a PEDOT / PSS aqueous dispersion and dried at 150 ° C. for 30 minutes to form a solid electrolyte layer on the surface of the dielectric layer.
Subsequently, the conductive polymer dispersions of Examples 25 to 45 and Comparative Preparations 3 to 7 described in Table 2 were impregnated, and dried at 150 ° C. for 30 minutes to form a solid electrolyte layer.
Finally, the capacitor element was stored in a case and caulking was performed to obtain electrolytic capacitors of Examples 46 to 66 and Comparative Examples 7 to 10.
<実施例67:固体電解コンデンサの作製2>
 誘電体層を有する陽極箔(化成済みアルミ箔:JCC社製、115HC9‐323Vf)と陰極箔(未化成アルミ箔:JCC社製、80LJ11B)に電極用タブを接続し、セパレータとしてクラフト紙を介して対向させ素子を得た。切断面や欠損部を修復するためホウ酸アンモニウム水溶液中で前記素子に250Vの電圧で修復化成を行い、コンデンサ素子を得た。
 次に実施例30で調製した導電性高分子分散液(Q-6)にコンデンサ素子を含浸し、150℃で30分間乾燥させ、誘電体層表面に固体電解質層を形成した。
 続いてPEDOT/PSS水分散液に含浸し、150℃で30分間乾燥させ、更に固体電解質層を形成した。 最後にコンデンサ素子をケースに格納し、カシメを行うことで、実施例67の固体電解コンデンサを得た。
Example 67 Preparation of Solid Electrolytic Capacitor 2
A tab for an electrode is connected to an anode foil (chemically converted aluminum foil: 115HC9-323Vf made by JCC) and a cathode foil (unformed aluminum foil: 80LJ11B made by JCC) having a dielectric layer, and kraft paper is used as a separator The elements were made to face each other. In order to repair the cut surface and the defect portion, the element was subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to obtain a capacitor element.
Next, the capacitor element was impregnated with the conductive polymer dispersion (Q-6) prepared in Example 30, and dried at 150 ° C. for 30 minutes to form a solid electrolyte layer on the surface of the dielectric layer.
Subsequently, it was impregnated with a PEDOT / PSS aqueous dispersion and dried at 150 ° C. for 30 minutes to form a solid electrolyte layer. Finally, the capacitor element was stored in a case, and caulking was performed to obtain a solid electrolytic capacitor of Example 67.
<実施例68:固体電解コンデンサの作製3>
 誘電体層を有する陽極箔(化成済みアルミ箔:JCCVf323)と陰極箔(未化成アルミ箔:JCC社製、80LJ11B)に電極用タブを接続し、セパレータとしてクラフト紙を介して対向させ素子を得た。切断面や欠損部を修復するためホウ酸アンモニウム水溶液中で前記素子に120Vの電圧で修復化成を行い、コンデンサ素子を得た。
 次に市販のPEDOT/PSS水分散液にコンデンサ素子を含浸し、150℃で30分間乾燥させ、誘電体層表面に固体電解質層を形成した。
 また、再度、PEDOT/PSS水分散液に含浸し、150℃で30分間乾燥させ、更に固体電解質層を形成した。
 続いて実施例6で製造した親水性基を有する重合体(A-6)の水溶液(固形分濃度:30重量%)に含浸し、150℃で30分間乾燥させた。
 最後にコンデンサ素子をケースに格納し、カシメを行うことで、固体電解質層が親水性基を有する重合体1を含有する実施例68の固体電解コンデンサを得た。
Example 68 Preparation of Solid Electrolytic Capacitor 3
An electrode tab is connected to an anode foil (chemically converted aluminum foil: JCCV f323) having a dielectric layer and a cathode foil (unformed aluminum foil: 80LJ11B manufactured by JCC), and they are opposed via kraft paper as a separator to obtain an element The In order to repair the cut surface and the defective portion, the element was subjected to a restoration formation at a voltage of 120 V in an aqueous solution of ammonium borate to obtain a capacitor element.
Next, the capacitor element was impregnated with a commercially available PEDOT / PSS aqueous dispersion and dried at 150 ° C. for 30 minutes to form a solid electrolyte layer on the surface of the dielectric layer.
Further, the resultant was again impregnated with a PEDOT / PSS aqueous dispersion, and dried at 150 ° C. for 30 minutes to form a solid electrolyte layer.
Subsequently, the resultant was impregnated with an aqueous solution (solid content concentration: 30% by weight) of the polymer (A-6) having a hydrophilic group produced in Example 6, and dried at 150 ° C. for 30 minutes.
Finally, the capacitor element was housed in a case, and caulking was performed to obtain a solid electrolytic capacitor of Example 68 in which the solid electrolyte layer contained the polymer 1 having a hydrophilic group.
 実施例46~68及び比較例7~10で得た固体電解コンデンサについて、「等価直列抵抗(ESR)」、「漏れ電流」及び「耐電圧」を下記方法で評価した。結果を表3に示す。 The “equivalent series resistance (ESR)”, “leakage current” and “withstand voltage” of the solid electrolytic capacitors obtained in Examples 46 to 68 and Comparative Examples 7 to 10 were evaluated by the following methods. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<ESR>
 固体電解コンデンサについて、100kHzにおけるESR値を、LCRメーター(日置電機製LCRハイテスタ3532-50)を用いて測定した。
 ESR値が低い程、動作の安定性に優れるコンデンサであることを示す。
<漏れ電流>
 固体電解コンデンサに20Vの電圧を印可し、60秒後の漏れ電流を測定した。
<耐電圧>
 上記の方法で得られた固体電解コンデンサに直流電源装置(高砂製作所製、GP0650-05R)で0.2mAの定電流モードで電圧を印加、自動昇圧し、放電により電圧が急落する直前の電圧を耐電圧とした。
<ESR>
The ESR value of the solid electrolytic capacitor at 100 kHz was measured using an LCR meter (LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd.).
The lower the ESR value, the better the stability of the operation.
<Leakage current>
A voltage of 20 V was applied to the solid electrolytic capacitor, and the leakage current after 60 seconds was measured.
<Withstand voltage>
A voltage is applied to the solid electrolytic capacitor obtained by the above method in a constant current mode of 0.2 mA with a DC power supply (GP0650-05R, manufactured by Takasago Mfg. Co., Ltd.), and automatic voltage boosting is performed. Withstand voltage.
 本発明の実施例46~68の電解コンデンサは、ESR変化率、漏れ電流及び耐電圧のいずれの項目も良好な結果となった。
 一方、比較例7~10の比較用の電解コンデンサは、ESR変化率、漏れ電流及び耐電圧のうち、少なくともいずれか1つの項目が悪化した。
The electrolytic capacitors of Examples 46 to 68 of the present invention gave good results in terms of ESR change rate, leakage current and withstand voltage.
On the other hand, in the electrolytic capacitors of Comparative Examples 7 to 10, at least one of the ESR change rate, the leakage current and the withstand voltage deteriorated.
<実施例69~80及び比較例11~12:電解液>
 重合体(A)及び比較用の重合体(A’-1)、電解質(C)(ジメチルエチルアミン及びフタル酸)、溶媒(B)(エチレングリコール)を表4の配合部数(重量部)に従って混合し、電解液(R-1)~(R-12)及び比較例用の電解液(RR-1)~(RR-2)を作製した。
Examples 69 to 80 and Comparative Examples 11 to 12: Electrolyte Solution
Polymer (A) and comparative polymer (A'-1), electrolyte (C) (dimethyl ethylamine and phthalic acid), solvent (B) (ethylene glycol) are mixed according to the blending parts (parts by weight) in Table 4 Then, electrolytic solutions (R-1) to (R-12) and electrolytic solutions (RR-1) to (RR-2) for comparative examples were prepared.
 次に、上記の電解液(R-1)~(R-12)及び比較例の電解液(RR-1)~(RR-2)を用いて、電解コンデンサ(S-24)~(S-35)及び比較例の電解コンデンサ(RS-5)~(RS-6)を以下の手順でそれぞれ作製した。
 誘電体層を有する陽極箔(化成済みアルミ箔:JCC社製、115HC9‐323Vf)と陰極箔(未化成アルミ箔:JCC社製、80LJ11B)に電極用タブを接続し、セパレータとしてクラフト紙を介して対向させ素子を得た。切断面や欠損部を修復するためホウ酸アンモニウム水溶液中で前記素子に250Vの電圧で修復化成を行い、コンデンサ素子を得た。
 次に市販のPEDOT/PSS水分散液にコンデンサ素子を含浸し、150℃で30分間乾燥させた。本操作を3回繰り返し、誘電体層表面に固体電解質層を形成した。
 続いて表4に記載の電解液(R-1)~(R-12)及び比較例の電解液(RR-1)~(RR-2)を、それぞれ上記コンデンサ素子に50℃にて、1分間真空含浸(真空度:20mmHg)させた。
 最後にコンデンサ素子をケースに格納し、カシメを行うことで、電解コンデンサ(S-24)~(S-35)及び比較例の電解コンデンサ(RS-5)~(RS-6)を得た。
Next, using the above electrolytes (R-1) to (R-12) and the electrolytes (RR-1) to (RR-2) of the comparative example, electrolytic capacitors (S-24) to (S-) are used. The electrolytic capacitors (RS-5) to (RS-6) of 35) and the comparative example were respectively manufactured by the following procedures.
A tab for an electrode is connected to an anode foil (chemically converted aluminum foil: 115HC9-323Vf made by JCC) and a cathode foil (unformed aluminum foil: 80LJ11B made by JCC) having a dielectric layer, and kraft paper is used as a separator The elements were made to face each other. In order to repair the cut surface and the defect portion, the element was subjected to a restoration formation at a voltage of 250 V in an aqueous solution of ammonium borate to obtain a capacitor element.
Next, the capacitor element was impregnated with a commercially available PEDOT / PSS aqueous dispersion, and dried at 150 ° C. for 30 minutes. This operation was repeated three times to form a solid electrolyte layer on the surface of the dielectric layer.
Subsequently, the electrolytic solutions (R-1) to (R-12) described in Table 4 and the electrolytic solutions (RR-1) to (RR-2) of the comparative example were each prepared in the above capacitor element at 50 ° C. Vacuum impregnation was carried out for a minute (vacuum degree: 20 mmHg).
Finally, the capacitor element was stored in a case and caulking was performed to obtain electrolytic capacitors (S-24) to (S-35) and electrolytic capacitors (RS-5) to (RS-6) of Comparative Examples.
 作製した電解コンデンサの初期特性と試験後の特性を、以下の方法で測定、評価した。結果を表4に示す。 The initial characteristics of the produced electrolytic capacitor and the characteristics after the test were measured and evaluated by the following methods. The results are shown in Table 4.
<初期評価>
 初期評価として、静電容量、ESR、漏れ電流、耐電圧を計測した。
 静電容量は120Hz、ESR値は100kHzで測定し、漏れ電流は定格電圧1分間印加後の値を計測した。
<静電容量>
 固体電解コンデンサについて、120Hzにおける静電容量を、LCRメーター(日置電機製LCRハイテスタ3532-50)を用いて測定した。
<ESR>
 固体電解コンデンサについて、100kHzにおけるESR値を、LCRメーター(日置電機製LCRハイテスタ3532-50)を用いて測定した。
<漏れ電流>
 固体電解コンデンサに20Vの電圧を印可し、60秒後の漏れ電流を測定した。
<耐電圧>
 上記の方法で得られた固体電解コンデンサに直流電源装置(高砂製作所製、GP0650-05R)で0.2mAの定電流モードで電圧を印加、自動昇圧し、放電により電圧が急落する直前の電圧を耐電圧とした。
<Initial evaluation>
As an initial evaluation, capacitance, ESR, leakage current, and withstand voltage were measured.
The capacitance was measured at 120 Hz and the ESR value at 100 kHz, and the leakage current was measured after application for 1 minute at the rated voltage.
<Capacitance>
The electrostatic capacity at 120 Hz of the solid electrolytic capacitor was measured using an LCR meter (LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd.).
<ESR>
The ESR value of the solid electrolytic capacitor at 100 kHz was measured using an LCR meter (LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd.).
<Leakage current>
A voltage of 20 V was applied to the solid electrolytic capacitor, and the leakage current after 60 seconds was measured.
<Withstand voltage>
A voltage is applied to the solid electrolytic capacitor obtained by the above method in a constant current mode of 0.2 mA with a DC power supply (GP0650-05R, manufactured by Takasago Mfg. Co., Ltd.), and automatic voltage boosting is performed. Withstand voltage.
<加速試験後の評価>
 溶剤(B)の揮発を加速することで加速試験を実施するために、ケースに格納せずにコンデンサ素子を開放した状態で125℃、500時間、恒温槽に放置した後に、初期評価と同様の評価を行った。
 また、静電容量及びESRは、初期特性の値に基づく変化率を算出した。
<Evaluation after accelerated test>
In order to carry out an accelerated test by accelerating the volatilization of the solvent (B), after leaving in a thermostatic chamber at 125 ° C. for 500 hours with the capacitor element opened without being stored in the case, the same as the initial evaluation I made an evaluation.
Moreover, the capacitance and ESR calculated the change rate based on the value of the initial characteristics.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の実施例69~80の電解コンデンサは、初期特性も良好であり、加速試験でも良好な結果となった。
 一方、比較例11及び12の比較用の電解コンデンサは、静電容量の変化率、ESR変化率、漏れ電流の項目で悪化した。
The electrolytic capacitors of Examples 69 to 80 of the present invention also had good initial characteristics, and good results were obtained in the accelerated test.
On the other hand, the electrolytic capacitors for comparison of Comparative Examples 11 and 12 deteriorated in terms of the rate of change in electrostatic capacity, the rate of change in ESR, and the leakage current.
 本発明の電解コンデンサ用添加剤を含有する固体電解コンデンサは、ESRが低く、漏れ電流が少なく、耐電圧が高いため、高性能が要求される電気製品及び電子製品の部品として好適に使用できる。
 
 
The solid electrolytic capacitor containing the additive for an electrolytic capacitor of the present invention has a low ESR, a low leakage current, and a high withstand voltage, and thus can be suitably used as a component of electric products and electronic products that require high performance.

Claims (10)

  1.  固体電解質層を備える電解コンデンサに用いられる電解コンデンサ用添加剤であって、親水性基を有する重合体(A)を含有し、重合体(A)の親水性基の濃度が重合体(A)の重量に基づき18ミリモル/g以下であり、重合体(A)の溶解度パラメーターが12(cal/cm1/2以上である電解コンデンサ用添加剤。 An additive for an electrolytic capacitor used in an electrolytic capacitor comprising a solid electrolyte layer, which comprises a polymer (A) having a hydrophilic group, wherein the concentration of the hydrophilic group in the polymer (A) is a polymer (A) The additive for an electrolytic capacitor, having a solubility parameter of polymer (A) of 12 (cal / cm 3 ) 1/2 or more based on the weight of the polymer (A).
  2.  前記親水性基が、水酸基、酸性基、塩基性基及び炭素数2~3のオキシアルキレン基からなる群から選ばれる少なくとも1種の基である請求項1に記載の電解コンデンサ用添加剤。 The additive for electrolytic capacitor according to claim 1, wherein the hydrophilic group is at least one group selected from the group consisting of a hydroxyl group, an acidic group, a basic group and an oxyalkylene group having a carbon number of 2 to 3.
  3.  重合体(A)が、前記親水性基を有するエチレン性不飽和モノマー(a)を構成モノマーとする重合体である請求項1又は2に記載の電解コンデンサ用添加剤。 The additive for an electrolytic capacitor according to claim 1 or 2, wherein the polymer (A) is a polymer having as a constituent monomer the ethylenically unsaturated monomer (a) having the hydrophilic group.
  4.  前記親水性基を有するエチレン性不飽和モノマー(a)が、水酸基を有する(メタ)アクリルモノマー、酸性基を有する(メタ)アクリルモノマー、塩基性基を有する(メタ)アクリルモノマー、及び、前記水酸基を有する(メタ)アクリルモノマーへのアルキレンオキシド付加物のアルキルエーテル、からなる群から選ばれる少なくとも1種であり、
     前記水酸基を有する(メタ)アクリルモノマーに付加するアルキレンオキシドが炭素数2~3のアルキレンオキシドであり、
     水酸基を有する(メタ)アクリルモノマーが、炭素数4~12のヒドロキシアルキル(メタ)アクリレート、前記炭素数4~12のヒドロキシアルキル(メタ)アクリレートへのラクトン付加物及び前記炭素数4~12のヒドロキシアルキル(メタ)アクリレートへのアルキレンオキシド付加物からなる群から選ばれる少なくとも1種であり、
     酸性基を有する(メタ)アクリルモノマーが、前記水酸基を有する(メタ)アクリルモノマーへの酸無水物付加物、(メタ)アクリル酸へのラクトン付加物及び(メタ)アクリル酸からなる群から選ばれる少なくとも1種であり、
     塩基性基を有する(メタ)アクリルモノマーが、炭素数3~20の(メタ)アクリルアミド及び炭素数4~12のアミノアルキル(メタ)アクリレートからなる群から選ばれる少なくとも1種である、請求項3に記載の電解コンデンサ用添加剤。
    The (meth) acrylic monomer having a hydroxyl group, the (meth) acrylic monomer having an acid group, the (meth) acrylic monomer having a basic group, and the hydroxyl group At least one selected from the group consisting of alkyl ethers of alkylene oxide adducts to (meth) acrylic monomers having
    The alkylene oxide added to the (meth) acrylic monomer having a hydroxyl group is an alkylene oxide having 2 to 3 carbon atoms,
    The (meth) acrylic monomer having a hydroxyl group is a hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, a lactone adduct to the above hydroxyalkyl (meth) acrylate having 4 to 12 carbon atoms, and the above hydroxy having 4 to 12 carbon atoms At least one member selected from the group consisting of alkylene oxide adducts to alkyl (meth) acrylates,
    The (meth) acrylic monomer having an acidic group is selected from the group consisting of an acid anhydride adduct to the (meth) acrylic monomer having a hydroxyl group, a lactone adduct to (meth) acrylic acid and (meth) acrylic acid At least one,
    The (meth) acrylic monomer having a basic group is at least one selected from the group consisting of (meth) acrylamides having 3 to 20 carbon atoms and aminoalkyl (meth) acrylates having 4 to 12 carbon atoms. The additive for electrolytic capacitors as described in.
  5.  重合体(A)を構成する親水性基を有するエチレン性不飽和モノマー(a)の合計重量の割合が、重合体(A)を構成する全てのモノマーの重量に基づき50~100重量%である請求項3又は4に記載の電解コンデンサ用添加剤。 The proportion of the total weight of the ethylenically unsaturated monomers (a) having a hydrophilic group constituting the polymer (A) is 50 to 100% by weight based on the weight of all the monomers constituting the polymer (A) The additive for electrolytic capacitors according to claim 3 or 4.
  6.  重合体(A)の数平均分子量が、1,000~500,000である請求項1~5のいずれかに記載の電解コンデンサ用添加剤。 The additive for an electrolytic capacitor according to any one of claims 1 to 5, wherein the number average molecular weight of the polymer (A) is 1,000 to 500,000.
  7.  重合体(A)のガラス転移点が、-100~80℃である請求項1~6のいずれかに記載の電解コンデンサ用添加剤。 The additive for an electrolytic capacitor according to any one of claims 1 to 6, wherein the glass transition point of the polymer (A) is -100 to 80 ° C.
  8.  請求項1~7のいずれかに記載された電解コンデンサ用添加剤を含有する導電性高分子分散液。 A conductive polymer dispersion containing the additive for an electrolytic capacitor according to any one of claims 1 to 7.
  9.  請求項1~7のいずれかに記載された電解コンデンサ用添加剤を含有する電解液。 An electrolytic solution containing the additive for an electrolytic capacitor according to any one of claims 1 to 7.
  10.  請求項1~7のいずれかに記載された電解コンデンサ用添加剤を含有する電解コンデンサ。
     
    An electrolytic capacitor comprising the additive for an electrolytic capacitor according to any one of claims 1 to 7.
PCT/JP2018/029129 2017-08-04 2018-08-02 Electrolytic capacitor additive, conductive polymer dispersion, electrolytic solution and electrolytic capacitor WO2019027019A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880044315.2A CN110832611B (en) 2017-08-04 2018-08-02 Additive for electrolytic capacitor and application thereof
JP2019534589A JP7173972B2 (en) 2017-08-04 2018-08-02 Additives for electrolytic capacitors, conductive polymer dispersions, electrolytic solutions and electrolytic capacitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-151989 2017-08-04
JP2017151989 2017-08-04
JP2017-152197 2017-08-07
JP2017152197 2017-08-07

Publications (1)

Publication Number Publication Date
WO2019027019A1 true WO2019027019A1 (en) 2019-02-07

Family

ID=65232829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029129 WO2019027019A1 (en) 2017-08-04 2018-08-02 Electrolytic capacitor additive, conductive polymer dispersion, electrolytic solution and electrolytic capacitor

Country Status (4)

Country Link
JP (1) JP7173972B2 (en)
CN (1) CN110832611B (en)
TW (1) TWI705078B (en)
WO (1) WO2019027019A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180208A (en) * 2019-04-25 2020-11-05 東洋インキScホールディングス株式会社 Coloring composition, photosensitive coloring composition, color filter, and liquid crystal display device using them
WO2023127826A1 (en) * 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor and liquid component for electrolytic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229611A (en) * 1990-11-29 1992-08-19 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2014041888A (en) * 2012-08-22 2014-03-06 Japan Carlit Co Ltd Conductive polymer dispersion for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured using the same
JP2014101224A (en) * 2012-11-22 2014-06-05 Kanie Puropan Kk Lamination sheet peeling device and lamination sheet peeling method
JP2015010118A (en) * 2013-06-27 2015-01-19 東レ株式会社 Resin composition and molding using the same
JP2017017188A (en) * 2015-07-01 2017-01-19 Necトーキン株式会社 Composition for gel electrolyte, gel electrolyte including the same, and electrolytic capacitor
JP2017115052A (en) * 2015-12-25 2017-06-29 信越ポリマー株式会社 Conductive polymer dispersion, conductive film and film, and method of producing the film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127319A1 (en) * 2003-12-10 2005-06-16 Sanyo Chemical Industries, Ltd. Electrolytic solution for an electrochemical capacitor and an electrochemical capacitor using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229611A (en) * 1990-11-29 1992-08-19 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2014041888A (en) * 2012-08-22 2014-03-06 Japan Carlit Co Ltd Conductive polymer dispersion for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured using the same
JP2014101224A (en) * 2012-11-22 2014-06-05 Kanie Puropan Kk Lamination sheet peeling device and lamination sheet peeling method
JP2015010118A (en) * 2013-06-27 2015-01-19 東レ株式会社 Resin composition and molding using the same
JP2017017188A (en) * 2015-07-01 2017-01-19 Necトーキン株式会社 Composition for gel electrolyte, gel electrolyte including the same, and electrolytic capacitor
JP2017115052A (en) * 2015-12-25 2017-06-29 信越ポリマー株式会社 Conductive polymer dispersion, conductive film and film, and method of producing the film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180208A (en) * 2019-04-25 2020-11-05 東洋インキScホールディングス株式会社 Coloring composition, photosensitive coloring composition, color filter, and liquid crystal display device using them
JP7429850B2 (en) 2019-04-25 2024-02-09 artience株式会社 Coloring composition, photosensitive coloring composition, color filter, and liquid crystal display device using them
WO2023127826A1 (en) * 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor and liquid component for electrolytic capacitor

Also Published As

Publication number Publication date
JP7173972B2 (en) 2022-11-16
TW201920311A (en) 2019-06-01
CN110832611B (en) 2021-10-22
CN110832611A (en) 2020-02-21
TWI705078B (en) 2020-09-21
JPWO2019027019A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6115918B2 (en) Method for improving electrical parameters in capacitors containing PEDOT / PSS as solid electrolyte with polyalkylene glycol
CN108292565B (en) Electrolytic capacitor
JP5152882B1 (en) Conductive polymer solution, conductive polymer composition, solid electrolytic capacitor using the same, and method for producing the same
CN102763181B (en) Electrolytic capacitor
JP5388811B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US10692657B2 (en) Electrolytic capacitor and method for manufacturing same
JP5891160B2 (en) Capacitor and manufacturing method thereof
JP6610264B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US7004983B2 (en) Polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor
JP7173972B2 (en) Additives for electrolytic capacitors, conductive polymer dispersions, electrolytic solutions and electrolytic capacitors
JP2017069390A (en) Electrolytic capacitor and manufacturing method thereof
US6839222B2 (en) Electrolytic capacitor
US11309136B2 (en) Electrolyte solution for electrolytic capacitor and electrolytic capacitor utilizing said electrolyte solution
JP6767527B2 (en) Electrolyte for hybrid electrolytic capacitors
JP2008288342A (en) Method of forming electrolyte for electrolytic capacitor
JP2004253537A (en) Solid electrolytic capacitor
US20240177941A1 (en) Electrolytic capacitor and liquid component for electrolytic capacitor
JP7210004B2 (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
WO2024070288A1 (en) Solid electrolytic capacitor and manufacturing method
JP2013207096A (en) Electrolytic capacitor
TWI838403B (en) Solid Electrolytic Capacitors
WO2024070287A1 (en) Solid electrolytic capacitor
JP2023095765A (en) Electrolytic solution for hybrid electrolytic capacitor and hybrid electrolytic capacitor using the same
JP2022003704A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2020174215A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841326

Country of ref document: EP

Kind code of ref document: A1