JP6485402B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP6485402B2
JP6485402B2 JP2016089254A JP2016089254A JP6485402B2 JP 6485402 B2 JP6485402 B2 JP 6485402B2 JP 2016089254 A JP2016089254 A JP 2016089254A JP 2016089254 A JP2016089254 A JP 2016089254A JP 6485402 B2 JP6485402 B2 JP 6485402B2
Authority
JP
Japan
Prior art keywords
peak current
injection valve
arrival time
value
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016089254A
Other languages
Japanese (ja)
Other versions
JP2017198140A (en
Inventor
智洋 中野
智洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016089254A priority Critical patent/JP6485402B2/en
Publication of JP2017198140A publication Critical patent/JP2017198140A/en
Application granted granted Critical
Publication of JP6485402B2 publication Critical patent/JP6485402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、噴射弁の燃料噴射量を制御する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that controls a fuel injection amount of an injection valve.

噴射弁から燃料を噴射させる場合、要求噴射量に応じて同噴射弁の駆動期間の長さが設定される。そして、特許文献1に記載されているように、当該駆動期間のうちの初期では、噴射弁のソレノイドにバッテリの電圧よりも高い開弁用電圧が供給される。このようにソレノイドに開弁用電圧を供給し始めると、同ソレノイドに流れる電流が大きくなり、同電流がピーク電流指示値に達する。すると、同ソレノイドに流れる電流を所定の保持電流近傍で調整できるように、同ソレノイドへの供給電圧が開弁用電圧からバッテリの電圧に切り替えられる。   When fuel is injected from the injection valve, the length of the drive period of the injection valve is set according to the required injection amount. As described in Patent Document 1, in the initial stage of the driving period, a valve opening voltage higher than the battery voltage is supplied to the solenoid of the injection valve. Thus, when the valve opening voltage is started to be supplied to the solenoid, the current flowing through the solenoid increases, and the current reaches the peak current instruction value. Then, the supply voltage to the solenoid is switched from the valve opening voltage to the battery voltage so that the current flowing through the solenoid can be adjusted in the vicinity of a predetermined holding current.

特開2010−249069号公報JP 2010-249069 A

ところで、噴射弁のソレノイドの抵抗値は、同ソレノイドの温度が低いほど小さい。そして、ソレノイドの抵抗値が小さいほど、同ソレノイドに上記開弁電圧を供給したときに同ソレノイドに流れる電流の増大速度が大きくなるため、同電流がピーク電流指示値に達するのに要する時間であるピーク電流到達時間が短くなる。このとき、上記のように同ソレノイドに流れる電流がピーク電流指示値に達したことを契機に同ソレノイドへの供給電圧を開弁用電圧からバッテリの電圧に切り替える場合にあっては、要求噴射量に応じて設定されている駆動期間のうち、噴射弁のソレノイドに上記開弁電圧を供給する期間が短くなるため、同噴射弁が開弁しにくくなる。その結果、噴射弁の燃料噴射量が要求噴射量よりも少なくなってしまう。特に、噴射弁の弁体が全開位置まで変位するよりも前に電圧の供給を停止して燃料噴射を停止するパーシャルリフト噴射を行う場合には、噴射弁の燃料噴射量と要求噴射量とのずれが大きくなりやすい。   By the way, the resistance value of the solenoid of the injection valve is smaller as the temperature of the solenoid is lower. The smaller the resistance value of the solenoid, the faster the current that flows through the solenoid when the valve opening voltage is supplied to the solenoid. Therefore, the time required for the current to reach the peak current instruction value. The peak current arrival time is shortened. At this time, if the supply voltage to the solenoid is switched from the valve opening voltage to the battery voltage when the current flowing through the solenoid reaches the peak current instruction value as described above, the required injection amount In the drive period set according to the above, the period during which the valve opening voltage is supplied to the solenoid of the injection valve is shortened, so that the injection valve is difficult to open. As a result, the fuel injection amount of the injection valve becomes smaller than the required injection amount. In particular, when performing partial lift injection in which the supply of voltage is stopped and fuel injection is stopped before the valve body of the injection valve is displaced to the fully open position, the fuel injection amount of the injection valve and the required injection amount are Deviation tends to increase.

本発明の目的は、噴射弁の燃料噴射量が要求噴射量よりも少なくなることを抑制できる内燃機関の制御装置を提供することにある。   The objective of this invention is providing the control apparatus of the internal combustion engine which can suppress that the fuel injection quantity of an injection valve becomes smaller than a request | requirement injection quantity.

上記課題を解決するための内燃機関の制御装置は、噴射弁から燃料を噴射させる際に、要求噴射量が多いほど同噴射弁の駆動期間を長くし、同駆動期間のうち、同噴射弁に流れる電流がピーク電流指示値に達するまでの期間では第1の電圧を同噴射弁に供給し、同噴射弁に流れる電流がピーク電流指示値に達した以降の期間では第1の電圧よりも低い第2の電圧を同噴射弁に供給する装置を前提としている。この内燃機関の制御装置は、噴射弁の駆動時に、駆動期間のうち、第1の電圧が同噴射弁に供給された期間の長さであるピーク電流到達時間を取得する到達時間取得部と、噴射弁の前回の駆動時に到達時間取得部によって取得されたピーク電流到達時間を基に、ピーク電流補正値を算出する電流補正値算出部と、ピーク電流指示値を、噴射弁に供給される燃料の圧力に応じた値であるベースピーク電流指示値と、電流補正値算出部によって算出されたピーク電流補正値とを加算した和として算出するピーク電流指示値算出部と、を備える。電流補正値算出部は、ピーク電流指示値がベースピーク電流指示値と等しい場合を想定したピーク電流到達時間である目標ピーク電流到達時間を、噴射弁の前回の駆動時におけるピーク電流指示値の算出に用いられたベースピーク電流指示値に基づいて算出する。また、電流補正値算出部は、ピーク電流到達時間のうちベースピーク電流指示値にピーク電流補正値を加算したことによって延長された時間であるピーク電流到達時間補正値を、噴射弁の前回の駆動時に算出したピーク電流補正値に基づいて算出する。そして、電流補正値算出部は、目標ピーク電流到達時間にピーク電流到達時間補正値を加算した和から、噴射弁の前回の駆動時に到達時間取得部によって取得されたピーク電流到達時間を減じた差である偏差が大きいほどピーク電流補正値を大きくする。   The control device for an internal combustion engine for solving the above-described problem increases the drive period of the injection valve as the required injection amount increases when fuel is injected from the injection valve. The first voltage is supplied to the injector during the period until the flowing current reaches the peak current instruction value, and is lower than the first voltage during the period after the current flowing through the injector reaches the peak current instruction value. It is premised on a device that supplies the second voltage to the injection valve. The internal combustion engine control apparatus includes an arrival time acquisition unit that acquires a peak current arrival time that is a length of a period during which the first voltage is supplied to the injection valve during the drive period when the injection valve is driven; A current correction value calculation unit that calculates a peak current correction value based on the peak current arrival time acquired by the arrival time acquisition unit during the previous drive of the injection valve, and a fuel that supplies the peak current instruction value to the injection valve A peak current instruction value calculation unit that calculates a sum of a base peak current instruction value that is a value corresponding to the pressure of the current and a peak current correction value calculated by the current correction value calculation unit. The current correction value calculation unit calculates the target peak current arrival time, which is the peak current arrival time assuming that the peak current instruction value is equal to the base peak current instruction value, and calculates the peak current instruction value during the previous driving of the injector. It is calculated based on the base peak current instruction value used in the above. In addition, the current correction value calculation unit calculates the peak current arrival time correction value, which is the time extended by adding the peak current correction value to the base peak current instruction value in the peak current arrival time, the previous drive of the injection valve. It is calculated based on the peak current correction value calculated at times. Then, the current correction value calculation unit subtracts the peak current arrival time acquired by the arrival time acquisition unit during the previous driving of the injection valve from the sum obtained by adding the peak current arrival time correction value to the target peak current arrival time. The larger the deviation is, the larger the peak current correction value is.

上記構成によれば、目標ピーク電流到達時間は、噴射弁の前回の駆動時におけるピーク電流到達時間の算出に用いたベースピーク電流指示値に基づいて算出される値であり、噴射弁の前回の駆動時におけるピーク電流指示値がベースピーク電流指示値と等しかったと仮定した場合におけるピーク電流到達時間に相当する。また、ピーク電流到達時間補正値は、噴射弁の前回の駆動時にピーク電流到達時間を算出するために用いたピーク電流補正値に基づいて算出される。また、ピーク電流指示値は、ベースピーク電流指示値に対して補正を行った後の値(すなわち、ベースピーク電流指示値にピーク電流補正値を加算した値)である。   According to the above configuration, the target peak current arrival time is a value calculated based on the base peak current instruction value used for calculating the peak current arrival time during the previous driving of the injector, This corresponds to the peak current arrival time when it is assumed that the peak current instruction value during driving is equal to the base peak current instruction value. Further, the peak current arrival time correction value is calculated based on the peak current correction value used for calculating the peak current arrival time during the previous driving of the injection valve. The peak current instruction value is a value after the base peak current instruction value is corrected (that is, a value obtained by adding the peak current correction value to the base peak current instruction value).

そこで、上記構成では、目標ピーク電流到達時間にピーク電流到達時間補正値を加算した和から、噴射弁の前回の駆動時に取得されたピーク電流到達時間を減じた差である偏差が導出される。第1の電圧を噴射弁に供給する期間における同噴射弁に流れる電流の増大速度が、設計上想定されている増大速度よりも大きく、当該偏差が大きいほど、上記駆動期間のうち、第1の電圧が噴射弁に供給された期間が短くなりやすい。そして、このように第1の電圧が噴射弁に供給された期間が短いほど、同噴射弁が開弁しにくくなるため、同噴射弁の噴射量が要求噴射量よりも少なくなりやすい。   Therefore, in the above configuration, a deviation that is a difference obtained by subtracting the peak current arrival time acquired during the previous driving of the injection valve from the sum obtained by adding the peak current arrival time correction value to the target peak current arrival time is derived. The increase rate of the current flowing through the injection valve during the period during which the first voltage is supplied to the injection valve is larger than the increase rate assumed in design, and the larger the deviation is, the more the first drive period becomes. The period during which the voltage is supplied to the injection valve tends to be short. The shorter the period during which the first voltage is supplied to the injection valve, the more difficult it is to open the injection valve. Therefore, the injection amount of the injection valve tends to be smaller than the required injection amount.

そのため、上記構成では、算出した偏差が大きいほどピーク電流補正値を大きくしている。その結果、噴射弁の次回の燃料噴射に際して設定されるピーク電流指示値を、より大きくすることが可能となる。これにより、第1の電圧を噴射弁に供給する期間での同噴射弁に流れる電流の増大速度が大きくても、同噴射弁に第1の電圧を供給する期間が短くなりにくくなる。したがって、噴射弁が開弁しにくくなることが抑制されるため、同噴射弁の燃料噴射量が要求噴射量よりも少なくなることを抑制できる。   Therefore, in the above configuration, the peak current correction value is increased as the calculated deviation increases. As a result, the peak current instruction value set at the next fuel injection of the injection valve can be further increased. Thereby, even if the increase rate of the electric current which flows into the injection valve in the period which supplies a 1st voltage to an injection valve is large, the period which supplies the 1st voltage to the injection valve becomes difficult to become short. Therefore, since it is suppressed that it becomes difficult to open an injection valve, it can suppress that the fuel injection quantity of the injection valve becomes smaller than a request | requirement injection quantity.

内燃機関の制御装置の一実施形態である制御装置を備える内燃機関の概略を示す構成図。The block diagram which shows the outline of an internal combustion engine provided with the control apparatus which is one Embodiment of the control apparatus of an internal combustion engine. 同実施形態の制御装置において、ピーク電流指示値を算出するために実行される処理ルーチンを説明するフローチャート。The flowchart explaining the processing routine performed in order to calculate a peak electric current instruction value in the control apparatus of the embodiment. 同実施形態の制御装置において、ピーク電流補正値を算出するために実行される処理ルーチンを説明するフローチャート。The flowchart explaining the processing routine performed in order to calculate a peak current correction value in the control apparatus of the embodiment. 同実施形態の制御装置において、デリバリパイプ内の燃料圧力に基づいてベースピーク電流指示値を算出する際に用いられるマップ。The map used when calculating the base peak current instruction value based on the fuel pressure in the delivery pipe in the control device of the embodiment. 同実施形態の制御装置において、ベースピーク電流指示値に基づいて目標ピーク電流到達時間を算出する際に用いられるマップ。In the control apparatus of the embodiment, a map used when calculating a target peak current arrival time based on a base peak current instruction value. 同実施形態の制御装置において、ピーク電流補正値に基づいてピーク電流到達時間補正値を算出する際に用いられるマップ。The map used when calculating the peak current arrival time correction value based on the peak current correction value in the control device of the embodiment. 同実施形態の制御装置において、ピーク電流到達時間偏差に基づいてピーク電流補正値を算出する際に用いられるマップ。The map used when calculating a peak current correction value based on the peak current arrival time deviation in the control device of the embodiment. 同実施形態の制御装置によって筒内噴射弁から燃料を噴射させる場合にソレノイドに流れる電流の推移を示すタイミングチャート。The timing chart which shows transition of the electric current which flows into a solenoid, when fuel is injected from a cylinder injection valve by the control apparatus of the embodiment.

以下、内燃機関の制御装置の一実施形態を図1〜図8に従って説明する。
図1には、本実施形態の内燃機関の制御装置である制御装置50を備える内燃機関10が図示されている。図1に示すように、内燃機関10は複数(図1では1つのみを図示)の気筒11を有しており、気筒11内におけるピストン12よりも上方域は、燃料を含む混合気が燃焼される燃焼室13となっている。また、内燃機関10には、燃焼室13に燃料を直接噴射する筒内噴射弁14と、混合気に対して点火を行う点火プラグ15とが設けられている。燃焼室13には吸気通路16及び排気通路17が接続されており、吸気通路16の燃焼室13に対する開閉は吸気バルブ18によって行われ、排気通路17の燃焼室13に対する開閉は排気バルブ19によって行われるようになっている。
Hereinafter, an embodiment of a control device for an internal combustion engine will be described with reference to FIGS.
FIG. 1 illustrates an internal combustion engine 10 including a control device 50 that is a control device for the internal combustion engine of the present embodiment. As shown in FIG. 1, the internal combustion engine 10 has a plurality of cylinders 11 (only one is shown in FIG. 1), and an air-fuel mixture containing fuel burns in an area above the piston 12 in the cylinder 11. Combustion chamber 13 is formed. Further, the internal combustion engine 10 is provided with an in-cylinder injection valve 14 that directly injects fuel into the combustion chamber 13 and an ignition plug 15 that ignites the air-fuel mixture. An intake passage 16 and an exhaust passage 17 are connected to the combustion chamber 13. The intake passage 16 is opened and closed with respect to the combustion chamber 13 by an intake valve 18, and the exhaust passage 17 is opened and closed with respect to the combustion chamber 13 by an exhaust valve 19. It has come to be.

筒内噴射弁14は、そのソレノイドへの電圧の供給によって開弁する電磁式の噴射弁であり、フルリフト噴射(以下、「F/L噴射」という。)と、パーシャルリフト噴射(以下、「P/L噴射」という。)とを実行可能である。F/L噴射は、筒内噴射弁14の弁体が全開位置まで変位した後に電圧の供給を停止して燃料噴射を停止する噴射形態である一方、P/L噴射は、筒内噴射弁14の弁体が全開位置まで変位するよりも前に電圧の供給を停止して燃料噴射を停止する噴射形態である。   The in-cylinder injection valve 14 is an electromagnetic injection valve that is opened by supplying a voltage to the solenoid, and includes full lift injection (hereinafter referred to as “F / L injection”) and partial lift injection (hereinafter referred to as “P”). / L injection ”). The F / L injection is an injection mode in which the supply of voltage is stopped after the valve body of the in-cylinder injection valve 14 is displaced to the fully open position to stop the fuel injection, while the P / L injection is the in-cylinder injection valve 14. This is an injection mode in which the fuel supply is stopped by stopping the supply of voltage before the valve body is displaced to the fully open position.

図1に示すように、内燃機関10の燃料供給系20は、筒内噴射弁14に供給する燃料が一時的に貯留されるデリバリパイプ21と、燃料タンクからデリバリパイプ21に燃料を圧送する高圧燃料ポンプ22とを備えている。そして、この燃料供給系20では、高圧燃料ポンプ22の作動によって、デリバリパイプ21内の燃料圧力PDPを制御することができる。なお、このデリバリパイプ21内の燃料圧力PDPは、燃圧センサ101によって検出することができる。   As shown in FIG. 1, the fuel supply system 20 of the internal combustion engine 10 includes a delivery pipe 21 in which fuel supplied to the in-cylinder injection valve 14 is temporarily stored, and a high pressure that pumps fuel from the fuel tank to the delivery pipe 21. And a fuel pump 22. In the fuel supply system 20, the fuel pressure PDP in the delivery pipe 21 can be controlled by the operation of the high-pressure fuel pump 22. The fuel pressure PDP in the delivery pipe 21 can be detected by the fuel pressure sensor 101.

次に、図1を参照し、制御装置50の機能構成について説明する。
図1に示すように、制御装置50は、筒内噴射弁14を駆動させるための機能部として、昇圧回路51、電源切替部52、駆動回路53、到達時間取得部54、電流補正値算出部55、ピーク電流指示値算出部56及び噴射弁制御部57を有している。
Next, the functional configuration of the control device 50 will be described with reference to FIG.
As shown in FIG. 1, the control device 50 includes a booster circuit 51, a power supply switching unit 52, a drive circuit 53, an arrival time acquisition unit 54, and a current correction value calculation unit as functional units for driving the in-cylinder injection valve 14. 55, a peak current command value calculation unit 56 and an injection valve control unit 57.

昇圧回路51は、車載のバッテリ70の電圧であるバッテリ電圧VLを昇圧する。そして、昇圧回路51は、バッテリ電圧VLを昇圧した電圧である昇圧電圧VHを電源切替部52に出力する。すなわち、本実施形態では、昇圧電圧VH及びバッテリ電圧VLのうち、昇圧電圧VHが「第1の電圧」に相当し、バッテリ電圧VLが「第2の電圧」に相当する。   The booster circuit 51 boosts the battery voltage VL that is the voltage of the vehicle-mounted battery 70. Then, the booster circuit 51 outputs a boosted voltage VH that is a voltage obtained by boosting the battery voltage VL to the power supply switching unit 52. That is, in the present embodiment, among the boosted voltage VH and the battery voltage VL, the boosted voltage VH corresponds to the “first voltage”, and the battery voltage VL corresponds to the “second voltage”.

電源切替部52は、噴射弁制御部57の指令に基づき駆動する回路である。すなわち、電源切替部52は、同指令に基づいてバッテリ電圧VL及び昇圧電圧VHのうち何れか一方を選択し、選択した電圧を駆動回路53に出力する。   The power supply switching unit 52 is a circuit that is driven based on a command from the injection valve control unit 57. That is, the power supply switching unit 52 selects either the battery voltage VL or the boosted voltage VH based on the command, and outputs the selected voltage to the drive circuit 53.

駆動回路53は、噴射弁制御部57の指令に基づき駆動する回路であり、電源切替部52から入力された電圧を基に筒内噴射弁14を駆動させるための駆動信号を生成し、同駆動信号を筒内噴射弁14に出力する。   The drive circuit 53 is a circuit that is driven based on a command from the injection valve control unit 57, generates a drive signal for driving the in-cylinder injection valve 14 based on the voltage input from the power supply switching unit 52, and drives the drive circuit 53. A signal is output to the cylinder injection valve 14.

到達時間取得部54は、筒内噴射弁14が駆動する場合、そのソレノイドに昇圧電圧VHが供給された期間の長さであるピーク電流到達時間TM1の計測を行っている。そして、到達時間取得部54は、計測したピーク電流到達時間TM1を電流補正値算出部55に出力する。   When the in-cylinder injection valve 14 is driven, the arrival time acquisition unit 54 measures the peak current arrival time TM1, which is the length of the period during which the boosted voltage VH is supplied to the solenoid. Then, the arrival time acquisition unit 54 outputs the measured peak current arrival time TM1 to the current correction value calculation unit 55.

電流補正値算出部55は、到達時間取得部54から取得したピーク電流到達時間TM1を基にピーク電流補正値IRRを算出する。そして、電流補正値算出部55は、算出したピーク電流補正値IRRをピーク電流指示値算出部56に出力する。   The current correction value calculation unit 55 calculates the peak current correction value IRR based on the peak current arrival time TM1 acquired from the arrival time acquisition unit 54. Then, the current correction value calculation unit 55 outputs the calculated peak current correction value IRR to the peak current instruction value calculation unit 56.

ピーク電流指示値算出部56は、電流補正値算出部55から入力されたピーク電流補正値IRRと、筒内噴射弁14に供給される燃料の圧力、すなわち燃圧センサ101によって検出されているデリバリパイプ21内の燃料圧力PDPとを基にピーク電流指示値IRを算出し、算出したピーク電流指示値IRを噴射弁制御部57に出力する。   The peak current instruction value calculation unit 56 receives the peak current correction value IRR input from the current correction value calculation unit 55 and the pressure of the fuel supplied to the in-cylinder injection valve 14, that is, the delivery pipe detected by the fuel pressure sensor 101. The peak current instruction value IR is calculated based on the fuel pressure PDP in the engine 21, and the calculated peak current instruction value IR is output to the injection valve control unit 57.

噴射弁制御部57は、要求噴射量が多いほど長くなるように筒内噴射弁14の駆動期間の長さを設定する。そして、噴射弁制御部57は、この駆動期間では、ピーク電流指示値算出部56から入力されたピーク電流指示値IRを基に、電源切替部52及び駆動回路53を制御する。すなわち、噴射弁制御部57は、駆動期間のうち、筒内噴射弁14のソレノイドに流れる電流Iinjがピーク電流指示値IRに達するまでの期間では昇圧電圧VHがソレノイドに供給されるように電源切替部52を動作させる。そして、噴射弁制御部57は、筒内噴射弁14のソレノイドに昇圧電圧VHを供給する期間では、継続的に昇圧電圧VHがソレノイドに供給されるように駆動回路53を動作させる。これにより、ソレノイドに流れる電流Iinjが大きくなる。一方、噴射弁制御部57は、駆動期間のうち、筒内噴射弁14のソレノイドに流れる電流Iinjがピーク電流指示値IRに達した以降の期間では、バッテリ電圧VLがソレノイドに供給されるように電源切替部52を動作させる。そして、噴射弁制御部57は、筒内噴射弁14のソレノイドにバッテリ電圧VLを供給する期間では、ソレノイドに流れる電流Iinjが保持電流近傍で保持されるように駆動回路53を動作させる。   The injection valve control unit 57 sets the length of the drive period of the in-cylinder injection valve 14 so as to increase as the required injection amount increases. The injection valve control unit 57 controls the power supply switching unit 52 and the drive circuit 53 based on the peak current instruction value IR input from the peak current instruction value calculation unit 56 during this drive period. That is, the injection valve control unit 57 switches the power source so that the boosted voltage VH is supplied to the solenoid during the drive period until the current Iinj flowing through the solenoid of the in-cylinder injection valve 14 reaches the peak current instruction value IR. The unit 52 is operated. The injection valve control unit 57 operates the drive circuit 53 so that the boosted voltage VH is continuously supplied to the solenoid during a period in which the boosted voltage VH is supplied to the solenoid of the in-cylinder injection valve 14. This increases the current Iinj flowing through the solenoid. On the other hand, the injection valve control unit 57 causes the battery voltage VL to be supplied to the solenoid during the period after the current Iinj flowing through the solenoid of the in-cylinder injection valve 14 reaches the peak current instruction value IR in the drive period. The power switching unit 52 is operated. The injection valve control unit 57 operates the drive circuit 53 so that the current Iinj flowing through the solenoid is held in the vicinity of the holding current during the period in which the battery voltage VL is supplied to the solenoid of the in-cylinder injection valve 14.

次に、図2に示すフローチャートを参照し、ピーク電流指示値IRを算出するために制御装置50のピーク電流指示値算出部56が実行する処理ルーチンについて説明する。なお、本処理ルーチンは、所定の制御サイクル毎に実行される。   Next, a processing routine executed by the peak current instruction value calculation unit 56 of the control device 50 in order to calculate the peak current instruction value IR will be described with reference to the flowchart shown in FIG. This processing routine is executed every predetermined control cycle.

図2に示すように、本処理ルーチンにおいて、ピーク電流指示値算出部56は、図4に示すマップを用い、燃圧センサ101によって検出されているデリバリパイプ21内の燃料圧力PDPに基づいてベースピーク電流指示値IRBを算出する(ステップS11)。   As shown in FIG. 2, in this processing routine, the peak current instruction value calculation unit 56 uses the map shown in FIG. 4, and base peak based on the fuel pressure PDP in the delivery pipe 21 detected by the fuel pressure sensor 101. A current instruction value IRB is calculated (step S11).

筒内噴射弁14は、デリバリパイプ21内の燃料圧力PDPが高いほど開弁しにくくなる。そのため、燃料圧力PDPが高い場合ほど、筒内噴射弁14のソレノイドに流れる電流Iinjを大きくし、筒内噴射弁14で大きな電磁力を発生させる必要がある。図4に示すマップは、デリバリパイプ21内の燃料圧力PDPとベースピーク電流指示値IRBとの関係を示している。そして、図4に示すように、このマップを用いて算出されるベースピーク電流指示値IRBは、燃料圧力PDPが高いほど大きくなる。   The in-cylinder injection valve 14 becomes more difficult to open as the fuel pressure PDP in the delivery pipe 21 is higher. Therefore, the higher the fuel pressure PDP is, the larger the current Iinj flowing through the solenoid of the in-cylinder injection valve 14 is, and it is necessary to generate a larger electromagnetic force in the in-cylinder injection valve 14. The map shown in FIG. 4 shows the relationship between the fuel pressure PDP in the delivery pipe 21 and the base peak current instruction value IRB. As shown in FIG. 4, the base peak current instruction value IRB calculated using this map increases as the fuel pressure PDP increases.

図2に戻り、ピーク電流指示値算出部56は、算出したベースピーク電流指示値IRBと、電流補正値算出部55によって算出されたピーク電流補正値IRRとの和としてピーク電流指示値IR(=IRB+IRR)を算出する(ステップS12)。そして、ピーク電流指示値算出部56は、本処理ルーチンを一旦終了する。   Returning to FIG. 2, the peak current instruction value calculation unit 56 calculates the peak current instruction value IR (== the sum of the calculated base peak current instruction value IRB and the peak current correction value IRR calculated by the current correction value calculation unit 55. IRB + IRR) is calculated (step S12). Then, the peak current instruction value calculation unit 56 once ends this processing routine.

次に、図3に示すフローチャートを参照し、ピーク電流指示値IRを算出するために制御装置50の電流補正値算出部55が実行する処理ルーチンについて説明する。なお、本処理ルーチンは、所定の制御サイクル毎に実行される。   Next, a processing routine executed by the current correction value calculation unit 55 of the control device 50 to calculate the peak current instruction value IR will be described with reference to the flowchart shown in FIG. This processing routine is executed every predetermined control cycle.

図3に示すように、本処理ルーチンにおいて、電流補正値算出部55は、筒内噴射弁14の前回の駆動時に到達時間取得部54によって計測されたピーク電流到達時間TM1を取得する(ステップS21)。例えば、到達時間取得部54は、筒内噴射弁14の駆動時にそのソレノイドへの昇圧電圧VHの供給が開始されてから、ソレノイドに流れる電流Iinjがピーク電流指示値IRに達するまでの時間を計測することで、ピーク電流到達時間TM1を取得している。   As shown in FIG. 3, in this processing routine, the current correction value calculation unit 55 acquires the peak current arrival time TM1 measured by the arrival time acquisition unit 54 when the in-cylinder injection valve 14 was driven last time (step S21). ). For example, the arrival time acquisition unit 54 measures the time until the current Iinj flowing through the solenoid reaches the peak current instruction value IR after the supply of the boosted voltage VH to the solenoid is started when the in-cylinder injection valve 14 is driven. Thus, the peak current arrival time TM1 is acquired.

続いて、電流補正値算出部55は、図5に示すマップを用い、筒内噴射弁14の前回の駆動時におけるピーク電流指示値IRの算出に用いられたベースピーク電流指示値IRBに基づいて目標ピーク電流到達時間TMTrを算出する(ステップS22)。   Subsequently, the current correction value calculation unit 55 uses the map shown in FIG. 5 based on the base peak current instruction value IRB used for calculating the peak current instruction value IR when the in-cylinder injection valve 14 is driven last time. The target peak current arrival time TMTr is calculated (step S22).

この目標ピーク電流到達時間TMTrは、筒内噴射弁14の前回の駆動時にピーク電流指示値IRがベースピーク電流指示値IRBと等しい場合を想定したピーク電流到達時間である。図5に示すマップは、ベースピーク電流指示値IRBと目標ピーク電流到達時間TMTrとの関係を示している。そして、図5に示すように、このマップを用いて算出される目標ピーク電流到達時間TMTrは、筒内噴射弁14の前回の駆動時におけるピーク電流指示値IRの算出に用いられたベースピーク電流指示値IRBが大きいほど大きくなる。   This target peak current arrival time TMTr is a peak current arrival time assuming that the peak current instruction value IR is equal to the base peak current instruction value IRB when the in-cylinder injection valve 14 is driven last time. The map shown in FIG. 5 shows the relationship between the base peak current instruction value IRB and the target peak current arrival time TMTr. As shown in FIG. 5, the target peak current arrival time TMTr calculated using this map is the base peak current used for calculating the peak current instruction value IR when the in-cylinder injection valve 14 was driven last time. The larger the instruction value IRB is, the larger it is.

図3に戻り、電流補正値算出部55は、図6に示すマップを用い、筒内噴射弁14の前回の駆動時におけるピーク電流補正値IRRに基づいてピーク電流到達時間補正値TMRを算出する(ステップS23)。   Returning to FIG. 3, the current correction value calculation unit 55 uses the map shown in FIG. 6 to calculate the peak current arrival time correction value TMR based on the peak current correction value IRR at the previous driving time of the in-cylinder injection valve 14. (Step S23).

このピーク電流到達時間補正値TMRは、筒内噴射弁14の前回の駆動時のピーク電流到達時間TM1のうちベースピーク電流指示値IRBにピーク電流補正値IRRを加算したことによって延長された時間である。図6に示すマップは、ピーク電流補正値IRRとピーク電流到達時間補正値TMRとの関係を示している。そして、図6に示すように、このマップを用いて算出されるピーク電流到達時間補正値TMRは、筒内噴射弁14の前回の駆動時におけるピーク電流補正値IRRが大きいほど大きくなる。なお、本実施形態では、ピーク電流補正値IRRが「0」であることがあるが、この場合のピーク電流到達時間補正値TMRは「0」となる。   This peak current arrival time correction value TMR is a time extended by adding the peak current correction value IRR to the base peak current instruction value IRB in the peak current arrival time TM1 when the in-cylinder injection valve 14 is driven last time. is there. The map shown in FIG. 6 shows the relationship between the peak current correction value IRR and the peak current arrival time correction value TMR. As shown in FIG. 6, the peak current arrival time correction value TMR calculated using this map increases as the peak current correction value IRR during the previous driving of the in-cylinder injection valve 14 increases. In this embodiment, the peak current correction value IRR may be “0”. In this case, the peak current arrival time correction value TMR is “0”.

図3に戻り、電流補正値算出部55は、目標ピーク電流到達時間TMTrにピーク電流到達時間補正値TMRを加算した和からピーク電流到達時間TM1を減じた差であるピーク電流到達時間偏差ΔTM1(=TMTr−TM1+TMR)を導出する(ステップS24)。   Returning to FIG. 3, the current correction value calculation unit 55 calculates the peak current arrival time deviation ΔTM1 (the difference obtained by subtracting the peak current arrival time TM1 from the sum of the peak current arrival time correction value TMR and the target peak current arrival time TMTr. = TMTr-TM1 + TMR) is derived (step S24).

ここで、筒内噴射弁14のソレノイドの抵抗値は、ソレノイドの温度によって変化する。また、昇圧回路51を構成する素子の特性(抵抗値など)が昇圧回路51の温度によって変わるため、同昇圧回路51によって生成される昇圧電圧VHの大きさもまた昇圧回路51の温度によって変わることがある。このように筒内噴射弁14のソレノイドの抵抗値やソレノイドに供給される昇圧電圧VHが変化すると、昇圧電圧VHをソレノイドに供給する期間での電流Iinjの増大速度が変わる。例えば、ソレノイドの温度が極端に低く、ソレノイドの抵抗値が小さい場合、ソレノイドに昇圧電圧VHを供給し始めてから同ソレノイドに流れる電流Iinjがピーク電流指示値IRに達するまでの期間の長さであるピーク電流到達時間TM1が短くなりやすい。そして、ピーク電流到達時間TM1が短いほど、筒内噴射弁14が開弁しにくくなる。また、筒内噴射弁14の駆動期間は要求噴射量に応じた値に設定されている。そのため、ピーク電流到達時間TM1が短いと、筒内噴射弁14の燃料噴射量が要求噴射量よりも少なくなってしまう。   Here, the resistance value of the solenoid of the cylinder injection valve 14 varies depending on the temperature of the solenoid. In addition, since the characteristics (resistance value, etc.) of the elements constituting the booster circuit 51 vary depending on the temperature of the booster circuit 51, the magnitude of the boosted voltage VH generated by the booster circuit 51 also varies depending on the temperature of the booster circuit 51. is there. Thus, when the resistance value of the solenoid of the in-cylinder injection valve 14 and the boosted voltage VH supplied to the solenoid change, the increasing speed of the current Iinj during the period during which the boosted voltage VH is supplied to the solenoid changes. For example, when the temperature of the solenoid is extremely low and the resistance value of the solenoid is small, it is the length of the period from when the boosted voltage VH starts to be supplied to the solenoid until the current Iinj flowing through the solenoid reaches the peak current instruction value IR. The peak current arrival time TM1 tends to be short. And the shorter the peak current arrival time TM1, the more difficult the cylinder injection valve 14 opens. The driving period of the in-cylinder injection valve 14 is set to a value corresponding to the required injection amount. Therefore, if the peak current arrival time TM1 is short, the fuel injection amount of the in-cylinder injection valve 14 will be smaller than the required injection amount.

ピーク電流指示値IRは、ベースピーク電流指示値IRBに対して補正を行った後の値(すなわち、ベースピーク電流指示値IRBにピーク電流補正値IRRを加算した値)である。一方、目標ピーク電流到達時間TMTrは、筒内噴射弁14の前回の駆動時におけるピーク電流指示値IRがベースピーク電流指示値IRBと等しかったと仮定した場合におけるピーク電流到達時間である。そこで、本実施形態では、ベースピーク電流指示値IRBとピーク電流補正値IRRとの和からピーク電流指示値IRを減じることでピーク電流到達時間偏差ΔTM1を求めている。このピーク電流到達時間偏差ΔTM1が「0」とほぼ等しいときには、筒内噴射弁14の燃料噴射量と要求噴射量とのずれがほとんどないと判断することができる。一方、ピーク電流到達時間偏差ΔTM1が「0」よりも大きい場合、ピーク電流到達時間偏差ΔTM1が大きいほど、要求噴射量から筒内噴射弁14の燃料噴射量を減じた差である噴射量差が大きいと判断することができる。   The peak current instruction value IR is a value after the base peak current instruction value IRB is corrected (that is, a value obtained by adding the peak current correction value IRR to the base peak current instruction value IRB). On the other hand, the target peak current arrival time TMTr is the peak current arrival time when it is assumed that the peak current instruction value IR at the previous driving of the in-cylinder injection valve 14 is equal to the base peak current instruction value IRB. Therefore, in this embodiment, the peak current arrival time deviation ΔTM1 is obtained by subtracting the peak current instruction value IR from the sum of the base peak current instruction value IRB and the peak current correction value IRR. When the peak current arrival time deviation ΔTM1 is substantially equal to “0”, it can be determined that there is almost no deviation between the fuel injection amount of the in-cylinder injection valve 14 and the required injection amount. On the other hand, when the peak current arrival time deviation ΔTM1 is larger than “0”, the larger the peak current arrival time deviation ΔTM1, the more the injection amount difference, which is the difference obtained by subtracting the fuel injection amount of the in-cylinder injection valve 14 from the required injection amount. It can be judged that it is large.

そのため、電流補正値算出部55は、算出したピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きいか否かを判定する(ステップS25)。この偏差判定値ΔTM1THは、「0」よりも大きい値に設定されており、上記噴射量差を「0」に近づけるためにピーク電流指示値IRの補正が必要であるか否かを判断するために設定された値である。したがって、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合には、ソレノイドに流れる電流Iinjの増大速度が過度に大きく、筒内噴射弁14に昇圧電圧VHを供給する期間が短くなると判断できるため、ピーク電流指示値IRの補正が必要であると判断することができる。   Therefore, the current correction value calculation unit 55 determines whether or not the calculated peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH (step S25). This deviation determination value ΔTM1TH is set to a value larger than “0”, and it is determined whether or not the peak current instruction value IR needs to be corrected in order to bring the injection amount difference close to “0”. Is the value set to. Therefore, when the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH, it is determined that the increasing speed of the current Iinj flowing through the solenoid is excessively large and the period for supplying the boosted voltage VH to the in-cylinder injection valve 14 is shortened. Therefore, it can be determined that the peak current instruction value IR needs to be corrected.

そして、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合(ステップS25:YES)、電流補正値算出部55は、図7に示すマップを用い、ピーク電流到達時間偏差ΔTM1に基づいてピーク電流補正値IRRを算出する(ステップS26)。図7に示すマップは、ピーク電流到達時間偏差ΔTM1とピーク電流補正値IRRとの関係を示している。そして、図7に示すように、このマップを用いて算出されるピーク電流補正値IRRは、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合、ピーク電流到達時間偏差ΔTM1が大きいほど大きくなる。その後、電流補正値算出部55は、本処理ルーチンを一旦終了する。   When the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH (step S25: YES), the current correction value calculation unit 55 uses the map shown in FIG. 7 and peaks based on the peak current arrival time deviation ΔTM1. A current correction value IRR is calculated (step S26). The map shown in FIG. 7 shows the relationship between the peak current arrival time deviation ΔTM1 and the peak current correction value IRR. As shown in FIG. 7, the peak current correction value IRR calculated using this map is larger as the peak current arrival time deviation ΔTM1 is larger when the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH. Become. Thereafter, the current correction value calculation unit 55 once ends this processing routine.

その一方で、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1TH以下である場合には、筒内噴射弁14のソレノイドに流れる電流Iinjの増大速度がそれほど大きくならないため、ピーク電流指示値IRの補正が不要であると判断することができる。そのため、図3に示すように、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1TH以下である場合(ステップS25:NO)、電流補正値算出部55は、ピーク電流補正値IRRを「0」とする(ステップS27)。その後、電流補正値算出部55は、本処理ルーチンを一旦終了する。   On the other hand, when the peak current arrival time deviation ΔTM1 is equal to or less than the deviation determination value ΔTM1TH, the increase rate of the current Iinj flowing through the solenoid of the in-cylinder injection valve 14 does not increase so much. It can be determined that it is unnecessary. Therefore, as shown in FIG. 3, when the peak current arrival time deviation ΔTM1 is equal to or smaller than the deviation determination value ΔTM1TH (step S25: NO), the current correction value calculation unit 55 sets the peak current correction value IRR to “0”. (Step S27). Thereafter, the current correction value calculation unit 55 once ends this processing routine.

次に、図8を参照し、筒内噴射弁14の燃料噴射時の作用を効果とともに説明する。なお、図8において、破線は、筒内噴射弁14のソレノイドの温度が常温であり、同ソレノイドの抵抗値が小さくなっていないときにおける電流Iinjの推移を表している。また、実線は、ソレノイドの温度が極端に低く、同ソレノイドの抵抗値が小さいときにおける電流Iinjの推移を表している。さらに、二点鎖線は、ソレノイドの温度が極端に低く、同ソレノイドの抵抗値が小さい場合でも、ピーク電流指示値IRがベースピーク電流指示値IRBと等しい場合における電流Iinjの推移を表している。   Next, with reference to FIG. 8, the operation of the in-cylinder injection valve 14 during fuel injection will be described together with effects. In FIG. 8, the broken line represents the transition of the current Iinj when the temperature of the solenoid of the in-cylinder injection valve 14 is normal temperature and the resistance value of the solenoid is not small. The solid line represents the transition of the current Iinj when the solenoid temperature is extremely low and the resistance value of the solenoid is small. Further, the two-dot chain line represents the transition of the current Iinj when the peak current instruction value IR is equal to the base peak current instruction value IRB even when the solenoid temperature is extremely low and the resistance value of the solenoid is small.

図8に示すように、冷間始動時などのように筒内噴射弁14のソレノイドの温度が極端に低く、同ソレノイドの抵抗値が小さいときには、昇圧電圧VHをソレノイドに供給する期間でのソレノイドに流れる電流Iinjの増大速度が、設計上想定されている増大速度よりも大きくなる。なお、ここでいう設計上想定されている増大速度とは、ソレノイドの温度が常温であるときにおける電流Iinjの増大速度のことであり、図8では破線で表されている。   As shown in FIG. 8, when the temperature of the solenoid of the in-cylinder injection valve 14 is extremely low and the resistance value of the solenoid is small, such as during cold start, the solenoid during the period during which the boosted voltage VH is supplied to the solenoid The increase rate of the current Iinj flowing through the capacitor becomes larger than the increase rate assumed in design. The increase rate assumed in this design is the increase rate of the current Iinj when the temperature of the solenoid is normal temperature, and is represented by a broken line in FIG.

そして、このような場合、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きくなるため、ピーク電流到達時間TM1を基にピーク電流補正値IRRが算出される。その結果、ピーク電流指示値IRは、その時点のデリバリパイプ21内の燃料圧力PDPに基づいたベースピーク電流指示値IRBよりも大きくなる。すなわち、ピーク電流到達時間TM1は、ベースピーク電流指示値IRBに基づいた目標ピーク電流到達時間TMTrよりも、ピーク電流補正値IRRに基づいたピーク電流到達時間補正値TMRだけ長くなる。これにより、昇圧電圧VHを筒内噴射弁14のソレノイドに供給する期間でのソレノイドに流れる電流Iinjの増大速度が大きくても、同ソレノイドに昇圧電圧VHを供給する期間が短くなりにくくなる。その結果、筒内噴射弁14では十分に大きな電磁力が発生するため、筒内噴射弁14が開弁しやすくなる。したがって、このように筒内噴射弁14が開弁しにくくなることが抑制されるため、筒内噴射弁14の燃料噴射量が要求噴射量よりも少なくなることを抑制できる。なお、このような効果は、要求噴射量が少ないP/L噴射を行う際に顕著に表れる。   In such a case, since the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH, the peak current correction value IRR is calculated based on the peak current arrival time TM1. As a result, the peak current instruction value IR becomes larger than the base peak current instruction value IRB based on the fuel pressure PDP in the delivery pipe 21 at that time. That is, the peak current arrival time TM1 is longer than the target peak current arrival time TMTr based on the base peak current instruction value IRB by the peak current arrival time correction value TMR based on the peak current correction value IRR. As a result, even if the increasing speed of the current Iinj flowing through the solenoid during the period during which the boosted voltage VH is supplied to the solenoid of the in-cylinder injection valve 14 is large, the period during which the boosted voltage VH is supplied to the solenoid is not easily shortened. As a result, the in-cylinder injection valve 14 generates a sufficiently large electromagnetic force, so that the in-cylinder injection valve 14 is easily opened. Therefore, since it is suppressed that the in-cylinder injection valve 14 becomes difficult to open as described above, it is possible to suppress the fuel injection amount of the in-cylinder injection valve 14 from being smaller than the required injection amount. Such an effect is prominent when performing P / L injection with a small required injection amount.

また、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合、ピーク電流補正値IRRは、ピーク電流到達時間偏差ΔTM1に応じた値に設定される(図7参照)。そのため、ピーク電流補正値IRRとベースピーク電流指示値IRBとの和であるピーク電流指示値IRが適正な値に設定される。   When the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH, the peak current correction value IRR is set to a value corresponding to the peak current arrival time deviation ΔTM1 (see FIG. 7). Therefore, the peak current instruction value IR that is the sum of the peak current correction value IRR and the base peak current instruction value IRB is set to an appropriate value.

なお、上記実施形態は以下のような別の実施形態に変更してもよい。
・上記実施形態では、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合、ピーク電流到達時間偏差ΔTM1が大きくなるにつれてピーク電流補正値IRRを徐々に大きくしている。しかし、これに限らず、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合、ピーク電流到達時間偏差ΔTM1が大きいほどピーク電流補正値IRRが大きくなるように、ピーク電流補正値IRRを段階的に大きくするようにしてもよい。
The above embodiment may be changed to another embodiment as described below.
In the above embodiment, when the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH, the peak current correction value IRR is gradually increased as the peak current arrival time deviation ΔTM1 increases. However, the present invention is not limited to this, and when the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH, the peak current correction value IRR is stepped so that the peak current correction value IRR increases as the peak current arrival time deviation ΔTM1 increases. It may be made larger.

また、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きい場合にはピーク電流補正値IRRを所定値(>0)で固定し、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1TH以下である場合にはピーク電流補正値IRRを「0」とするようにしてもよい。   When the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH, the peak current correction value IRR is fixed at a predetermined value (> 0), and the peak current arrival time deviation ΔTM1 is equal to or less than the deviation determination value ΔTM1TH. Alternatively, the peak current correction value IRR may be set to “0”.

・ピーク電流到達時間偏差ΔTM1が「0」よりも大きい場合には、ピーク電流到達時間偏差ΔTM1が偏差判定値ΔTM1THよりも大きいか否かに拘わらず、ピーク電流補正値IRRを「0」よりも大きい値に設定するようにしてもよい。この場合、ピーク電流補正値IRRを、ピーク電流到達時間偏差ΔTM1が大きいほど大きくするようにしてもよい。   When the peak current arrival time deviation ΔTM1 is larger than “0”, the peak current correction value IRR is set to be smaller than “0” regardless of whether the peak current arrival time deviation ΔTM1 is larger than the deviation determination value ΔTM1TH. You may make it set to a big value. In this case, the peak current correction value IRR may be increased as the peak current arrival time deviation ΔTM1 increases.

・ピーク電流到達時間偏差ΔTM1が「0」よりも小さい場合、昇圧電圧VHを筒内噴射弁14のソレノイドに供給する期間での同ソレノイドに流れる電流Iinjの増大速度が、設計上想定されている増大速度よりも小さいため、昇圧電圧VHを筒内噴射弁14のソレノイドに供給する期間が長くなりやすいと判断することができる。そのため、ピーク電流到達時間偏差ΔTM1が「0」よりも小さい場合、ピーク電流補正値IRRを「0」よりも小さい値に設定し、ピーク電流指示値IRを、ベースピーク電流指示値IRBよりも小さくするようにしてもよい。この場合、ピーク電流補正値IRRを、ピーク電流到達時間偏差ΔTM1が小さいほど小さい値にするようにしてもよい。この構成によれば、筒内噴射弁14が開弁しやすいときほどピーク電流指示値IRを小さくすることができるため、筒内噴射弁14における電力消費量を低減することができる。   When the peak current arrival time deviation ΔTM1 is smaller than “0”, the increase rate of the current Iinj flowing through the solenoid during the period during which the boosted voltage VH is supplied to the solenoid of the in-cylinder injection valve 14 is assumed in the design. Since it is smaller than the increasing speed, it can be determined that the period during which the boosted voltage VH is supplied to the solenoid of the in-cylinder injection valve 14 tends to be long. Therefore, when the peak current arrival time deviation ΔTM1 is smaller than “0”, the peak current correction value IRR is set to a value smaller than “0”, and the peak current instruction value IR is smaller than the base peak current instruction value IRB. You may make it do. In this case, the peak current correction value IRR may be set to a smaller value as the peak current arrival time deviation ΔTM1 is smaller. According to this configuration, the peak current instruction value IR can be reduced as the in-cylinder injection valve 14 is more easily opened, so that the power consumption in the in-cylinder injection valve 14 can be reduced.

・上記実施形態では、内燃機関の制御装置を、デリバリパイプ21内の燃料圧力PDPを可変させる内燃機関に適用した例を説明しているが、デリバリパイプ21内の燃料圧力PDPを予め設定された所定圧力で保持する内燃機関に適用してもよい。この場合、ベースピーク電流指示値IRBは所定圧力に応じた値で固定されるため、ベースピーク電流指示値IRBを制御装置50のメモリに予め記憶させておくようにしてもよい。   In the above embodiment, the example in which the control device for the internal combustion engine is applied to the internal combustion engine that varies the fuel pressure PDP in the delivery pipe 21 has been described. However, the fuel pressure PDP in the delivery pipe 21 is preset. You may apply to the internal combustion engine hold | maintained with a predetermined pressure. In this case, since the base peak current instruction value IRB is fixed at a value corresponding to the predetermined pressure, the base peak current instruction value IRB may be stored in the memory of the control device 50 in advance.

・制御装置50が、大きさの異なる複数種類の昇圧電圧を生成可能な場合、各昇圧電圧のうち、第2の電圧よりも低いのであれば、バッテリ電圧VLよりも高い昇圧電圧を第1の電圧として用いるようにしてもよい。   When the control device 50 can generate a plurality of types of boosted voltages having different sizes, if the boosted voltage is lower than the second voltage, the boosted voltage higher than the battery voltage VL is set to the first boosted voltage. It may be used as a voltage.

10…内燃機関、14…筒内噴射弁、50…制御装置、54…到達時間取得部、55…電流補正値算出部、56…ピーク電流指示値算出部。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 14 ... In-cylinder injection valve, 50 ... Control apparatus, 54 ... Arrival time acquisition part, 55 ... Current correction value calculation part, 56 ... Peak electric current instruction value calculation part.

Claims (1)

噴射弁から燃料を噴射させる際に、要求噴射量が多いほど同噴射弁の駆動期間を長くし、同駆動期間のうち、同噴射弁に流れる電流がピーク電流指示値に達するまでの期間では第1の電圧を同噴射弁に供給し、同噴射弁に流れる電流がピーク電流指示値に達した以降の期間では前記第1の電圧よりも低い第2の電圧を同噴射弁に供給する内燃機関の制御装置において、
前記噴射弁の駆動時に、前記駆動期間のうち、前記第1の電圧が同噴射弁に供給された期間の長さであるピーク電流到達時間を取得する到達時間取得部と、
前記噴射弁の前回の駆動時に前記到達時間取得部によって取得された前記ピーク電流到達時間を基に、ピーク電流補正値を算出する電流補正値算出部と、
前記ピーク電流指示値を、前記噴射弁に供給される燃料の圧力に応じた値であるベースピーク電流指示値と、前記電流補正値算出部によって算出されたピーク電流補正値とを加算した和として算出するピーク電流指示値算出部と、を備え、
前記電流補正値算出部は、
前記ピーク電流指示値が前記ベースピーク電流指示値と等しい場合を想定した前記ピーク電流到達時間である目標ピーク電流到達時間を、前記噴射弁の前回の駆動時におけるピーク電流指示値の算出に用いられた前記ベースピーク電流指示値に基づいて算出し、
前記ピーク電流到達時間のうち前記ベースピーク電流指示値に前記ピーク電流補正値を加算したことによって延長された時間であるピーク電流到達時間補正値を、前記噴射弁の前回の駆動時に算出したピーク電流補正値に基づいて算出し、
前記目標ピーク電流到達時間に前記ピーク電流到達時間補正値を加算した和から、前記噴射弁の前回の駆動時に前記到達時間取得部によって取得された前記ピーク電流到達時間を減じた差である偏差が大きいほど前記ピーク電流補正値を大きくする
ことを特徴とする内燃機関の制御装置。
When fuel is injected from the injection valve, the drive period of the injection valve is lengthened as the required injection amount increases, and in the period of the drive period, the current flowing through the injection valve reaches the peak current indication value. An internal combustion engine that supplies a voltage of 1 to the injection valve and supplies a second voltage lower than the first voltage to the injection valve in a period after the current flowing through the injection valve reaches a peak current instruction value. In the control device of
An arrival time acquisition unit that acquires a peak current arrival time that is the length of a period during which the first voltage is supplied to the injection valve during the drive period when the injection valve is driven;
A current correction value calculation unit that calculates a peak current correction value based on the peak current arrival time acquired by the arrival time acquisition unit during the previous drive of the injection valve;
The peak current instruction value is a sum obtained by adding a base peak current instruction value that is a value corresponding to the pressure of fuel supplied to the injection valve and a peak current correction value calculated by the current correction value calculation unit. A peak current instruction value calculation unit for calculating,
The current correction value calculator is
The target peak current arrival time, which is the peak current arrival time assuming that the peak current instruction value is equal to the base peak current instruction value, is used for calculation of the peak current instruction value during the previous driving of the injector. Calculated based on the base peak current indication value,
A peak current arrival time correction value, which is a time extended by adding the peak current correction value to the base peak current indication value in the peak current arrival time, is calculated when the injection valve is last driven. Calculate based on the correction value,
A deviation that is a difference obtained by subtracting the peak current arrival time acquired by the arrival time acquisition unit during the previous driving of the injection valve from the sum of adding the peak current arrival time correction value to the target peak current arrival time. The control apparatus for an internal combustion engine, wherein the peak current correction value is increased as the value increases.
JP2016089254A 2016-04-27 2016-04-27 Control device for internal combustion engine Active JP6485402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089254A JP6485402B2 (en) 2016-04-27 2016-04-27 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089254A JP6485402B2 (en) 2016-04-27 2016-04-27 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017198140A JP2017198140A (en) 2017-11-02
JP6485402B2 true JP6485402B2 (en) 2019-03-20

Family

ID=60237680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089254A Active JP6485402B2 (en) 2016-04-27 2016-04-27 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6485402B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074448B2 (en) * 2009-04-17 2012-11-14 日立オートモティブシステムズ株式会社 Fuel injection control device
JP5029663B2 (en) * 2009-09-03 2012-09-19 株式会社デンソー Fuel injection control device
JP5831502B2 (en) * 2013-06-07 2015-12-09 トヨタ自動車株式会社 Control device for fuel injection valve
JP6206329B2 (en) * 2014-05-30 2017-10-04 株式会社デンソー Fuel injection control device for internal combustion engine
JP6314733B2 (en) * 2014-08-06 2018-04-25 株式会社デンソー Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP2017198140A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP2010255444A (en) Device and method for fuel injection control of internal combustion engine
JP6157889B2 (en) Control device for fuel injection valve
JP5053868B2 (en) Fuel injection control device
US10156199B2 (en) Drive system and drive method for fuel injection valves
US9376982B2 (en) Control apparatus for fuel injector
WO2015182042A1 (en) Fuel injection control device for internal combustion engine
JP6121552B2 (en) Fuel injection control device for internal combustion engine
JP2016037870A (en) Fuel injection control device of internal combustion engine
US9938924B2 (en) Control device and control method for fuel injection valve
JP6483495B2 (en) Boost control device for fuel injection valve
JP7298555B2 (en) Injection control device
JP2007315390A (en) Improvement relating to fuel injector control
JP7107057B2 (en) Injection control device
JP2011032922A (en) Device for controlling drive of solenoid valve
JP6609111B2 (en) Ignition device
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
JP6493334B2 (en) Fuel injection control device for internal combustion engine
JP6485402B2 (en) Control device for internal combustion engine
JP2012102657A (en) Fuel injection control device of internal combustion engine
JP2019082150A (en) Control device of fuel injection valve and control method of fuel injection valve
JP5815590B2 (en) Solenoid valve drive
JP6748743B2 (en) Fuel injection control device and fuel injection control method
JP2012102658A (en) Fuel injection control device of internal combustion engine
JP4735621B2 (en) Injection amount learning device
JP2020139432A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R151 Written notification of patent or utility model registration

Ref document number: 6485402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151