JP6484361B2 - 車両エネルギー管理および自律運転のためのリアルタイム車両状態軌道予測 - Google Patents

車両エネルギー管理および自律運転のためのリアルタイム車両状態軌道予測 Download PDF

Info

Publication number
JP6484361B2
JP6484361B2 JP2018031538A JP2018031538A JP6484361B2 JP 6484361 B2 JP6484361 B2 JP 6484361B2 JP 2018031538 A JP2018031538 A JP 2018031538A JP 2018031538 A JP2018031538 A JP 2018031538A JP 6484361 B2 JP6484361 B2 JP 6484361B2
Authority
JP
Japan
Prior art keywords
vehicle
vehicles
speed
portions
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018031538A
Other languages
English (en)
Other versions
JP2019001450A (ja
Inventor
ロナーリ ヤショディープ
ロナーリ ヤショディープ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JP2019001450A publication Critical patent/JP2019001450A/ja
Application granted granted Critical
Publication of JP6484361B2 publication Critical patent/JP6484361B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/3617Destination input or retrieval using user history, behaviour, conditions or preferences, e.g. predicted or inferred from previous use or current movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Social Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本開示は一般には車両システムを対象とし、より詳細には予測された車両軌道および速度に基づいて車両を制御するためのシステムおよび方法に関する。
従来技術の実装では、道路プレビュー情報がADAS(先進運転支援システム:advanced driver assistance system)などのシステム用の自動車アプリケーションに適用される。そのようなプレビュー情報のタイムスケールは比較的短期間(たとえば、約50〜400秒)である。関連技術の実装は、短期間の道路プレビュー情報を利用して車両エネルギー消費を削減している。
本開示の例示的実装は、たとえば、クラウドサーバ、車両−その他間通信(V2X:Vehicle to other communication)、および全地球測位衛星(GPS:Global Positioning Satellite)デバイスなどのシステムと通信して、経路選択、天気、今後の交通速度、交通信号フェーズおよびタイミング、ならびに所与の経路のイベント情報を受信するように構成される車載型車両デバイスを含む。経路を走行した車両または他の車両(たとえば、同一のタイプの車両または異なるタイプの車両)についての以前の過去の運転データを併せたそのような情報を利用して、エレクトロニックホライズンなどの事前定義されたまたは動的なホライズンにおける将来の車両速度などの将来の車両状態を予測する。車両エネルギー消費削減の問題は、都市および高速道路の運転の運転履歴の変動を含めて現実世界のドライビングスケジュール/サイクルで実現されるエネルギー利用を最適化することによって対処される。
本開示の例示的実装は、運転プレビューの短期および長期の道路プレビュー情報(たとえば、10秒〜30分)の取得を容易化する。長期プレビュー情報を利用することによって、本明細書に記載の例示的実装は、パワートレイン−車両システム挙動の最適なスケジューリングによって燃料の大幅な節減を達成することができる。例示的実装では、所与の経路に関するプレビュー道路情報を利用して、運転効率の悪い領域への脱線を最小化し、パワートレイン(たとえば、ディーゼル、ガソリン、電気自動車、後処理)、および充電式エネルギー貯蔵システムの前向きな事前にスケジュールされた動作を提供する。
例示的実装は機械学習ベースの車両速度予測を利用して、エレクトリックホライズンを決定する。GPSおよび交通流速からの入力を利用して、所与の経路における車両速度を予測するための人工ニューラルネットワーク(ANN:artificial neural network)モデルを訓練する。モデルを利用して試験経路についての車両速度を予測し、予測された速度および試験車両経路速度は良好な相関をもたらし得る。推定速度軌道/ドライブサイクルを使用してドライブサイクルを分類し、過去の運転データから同等物または同等なドライブサイクルを決定することができる。
将来のホライズンにおける車両状態軌道予測は車両エネルギー管理システムにとって重要なステップであり得、接続された車両および自律車両のより安全な制御を提供することができる。予測された車両速度軌道を利用して、効率的なギアシフト戦略、ハイブリッド車両のトポロジ制御、車両隊列制御、エンジン制御および後処理制御などを開発することができる。また、予測された車両速度軌道は、パワートレインシステムの経年劣化を考慮したエレクトリックホライズンにおける最適なパワートレイン性能を容易化することができる。さらに、予測された車両状態は、クラウド内でまたは電力処理能力コントローラを用いて車載でホストされる車両およびパワートレインモデルへの入力として提供される。
本開示の態様は、1つまたは複数のセンサと、プロセッサとを有する車両を含むことができる。プロセッサは、経路の1つまたは複数の部分についての車両の予想速度を決定することと、経路の1つまたは複数の部分についての予想速度を、1つまたは複数のセンサから受信されたデータに基づいて修正することと、修正された予想速度に基づいて車両の後処理システムおよびギアシフトシステムの少なくとも1つを制御することとを行う。
本開示の態様は、1つまたは複数の車両から経路情報を受信することと、1つまたは複数の車両のそれぞれの予想速度を、1つまたは複数の車両のそれぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定することと、1つまたは複数の車両のそれぞれの予想速度を送信することとを含み得る、方法をさらに含むことができる。
本開示の態様は、処理を実行するための命令を記憶する非一時的コンピュータ可読媒体をさらに含むことができ、命令は、1つまたは複数の車両から経路情報を受信することと、1つまたは複数の車両のそれぞれの予想速度を、1つまたは複数の車両のそれぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定することと、1つまたは複数の車両のそれぞれの予想速度を送信することとを含むことができる。
本開示の態様は、1つまたは複数の車両から経路情報を受信するための手段と、1つまたは複数の車両のそれぞれの予想速度を、1つまたは複数の車両のそれぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定するための手段と、1つまたは複数の車両のそれぞれの予想速度を送信するための手段とを含み得る、システムをさらに含むことができる。
本開示の態様は、経路情報を提供するように構成される1つまたは複数の車両と、1つまたは複数の車両から経路情報を受信することと、1つまたは複数の車両のそれぞれの予想速度を、1つまたは複数の車両のそれぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定することと、1つまたは複数の車両のそれぞれの予想速度を送信することとを行うように構成されるプロセッサを含む管理装置とを含み得る、システムをさらに含むことができる。
一例示的実装による1つまたは複数の車両および管理装置を含むシステムの図である。 一例示的実装による一例示的車両システムの図である。 一例示的実装による推定速度に基づいて車両を制御するための一例示的フローである。 一例示的実装による例示的管理情報の図である。 一例示的実装による例示的管理情報の図である。 一例示的実装による機械学習処理の態様の図である。 一例示的実装による機械学習処理の態様の図である。 一例示的実装による推定速度軌道に基づく車両制御の態様の図である。 一例示的実装による推定速度軌道に基づく車両制御の態様の図である。 一例示的実装による推定速度軌道に基づく車両制御の態様の図である。 いくつかの例示的実装での使用に適した一例示的コンピュータデバイスを有する一例示的コンピューティング環境の図である。
以下の詳細な説明は、図のさらなる詳細と、本出願の例示的実装とを与える。図の間の冗長な要素の参照番号および説明は明確さのために省略されている。説明全体にわたって使用される用語は例として与えられており、限定するものではない。たとえば、「自動」という用語の使用は、本出願の実装を実施する当業者の所望の実装に応じて、実装の特定の態様へのユーザまたは管理者の制御を含む、全自動または半自動の実装を含むことができる。選択は、ユーザによりユーザインターフェースまたは他の入力手段を介して行われ得、または所望のアルゴリズムを介して実装され得る。本明細書に記載の例示的実装は単独でまたは組み合わせて使用され得、例示的実装の機能は所望の実装に応じて任意の手段を介して実装され得る。
例示的実装は機械学習ベースのアルゴリズムの利用を対象とする。関連技術では、広範囲にわたる機械学習ベースのアルゴリズムが、画像またはパターン認識、たとえば、障害物もしくは他の車の交通信号の認識、または特定の訓練に基づく要素のカテゴリ化に適用されている。電力計算の進歩を考慮して、例示的実装は所与の経路についての車両の予想速度をモデル化することに機械学習を利用することができる。
例示的実装は車両の接続および車載センサの使用に基づいて車両の効率化を容易にすることを対象とする。本明細書に記載の例示的実装には複数の態様が存在し得る。第1の態様では、ベクトル軌道推定が存在し、これは車両が次の期間(たとえば、10分、20分)に何をするかを決定することを対象とする。そのような推定は車両速度、ドライブサイクル、および他のパラメータを所望の実装に応じて含むことができる。車両軌道推定は、経路の1つまたは複数の部分(たとえば、道路区間)に関する過去の運転データ、ならびに車両−インフラストラクチャ間推定、および車両−車両間推定からの他の入力に適用される機械学習から決定される。推定速度軌道/ドライブサイクルを使用してドライブサイクルを分類し、過去の運転データから同等なドライブサイクルを決定する。
推定が取得されると、車両コントローラは車両速度プロファイルに基づいて制御の最適化を実施することができる。したがって、例示的実装では、車両軌道推定は機械学習を使用する。そのため、その経路、その道路区間に関する過去の運転データからの情報を、車両−インフラストラクチャ間通信および車両−車両間通信からの他の入力と融合させる。車載センサは推定の任意の誤差を補正して、機械学習予測を車両の現在の状況に適用することができる。車載センサによって検出された誤差はクラウドサーバに折り返し報告され、これは推定を改善するために使用される。
図1は一例示的実装による1つまたは複数の車両および管理装置を含むシステムを示す。1つまたは複数の車両または車両システム、たとえば、車載診断(OBD:on board diagnostics)101−1、101−2、101−3、および101−4は、ネットワーク100に通信可能に結合され、これは管理装置102に接続される。管理装置102はデータベース103を管理し、これはネットワーク100内の車両および車両システムから集約されたデータフィードバックを含む。例示的実装では、車両および車両システム101−1、101−2、101−3、および101−4からのデータフィードバックは、企業資源計画システムまたはクラウドストレージシステムなどの車両または車両システムからデータを集約する独自のデータベースなどの中央リポジトリまたは中央データベースに集約され得、管理装置102は中央リポジトリまたは中央データベースからデータにアクセスするまたは検索することができる。
図1の一例示的実装では、車両システム101−1、101−2、101−3、および101−4は、経路情報(たとえば、車両が通過することになるGPS経路)を管理装置102に提供するように構成され得る。図4(b)に示されるように、管理装置102は、1つまたは複数の車両から経路情報を受信することと、1つまたは複数の車両のそれぞれの予想速度を、1つまたは複数の車両のそれぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定することと、1つまたは複数の車両のそれぞれの予想速度を送信することとを行うように構成される。所望の実装に応じて、図3(a)および図3(b)に示されるように、管理装置102は、1つまたは複数の車両のそれぞれの予想速度を、1つまたは複数の車両のそれぞれに入力されたGPS経路および過去のトリップ情報に基づいて決定するように構成され得る。1つまたは複数の車両は、1つまたは複数の車両の1つまたは複数のセンサから受信されたデータに基づいて経路の1つまたは複数の部分についての予想速度を修正するように構成され得る。
一例示的実装では、図4(a)および図4(b)に示されるように、管理装置102は、機械学習処理から経路の1つまたは複数の部分についての車両の予想速度を決定するための速度軌道推定関数を構築することであって、機械学習処理が、1つまたは複数の過去の経路についての過去のGPS情報および過去の交通情報を入力として処理することと、予想速度を決定するために入力として1つまたは複数の車両のそれぞれの経路を処理するように構成される速度軌道推定関数を生成することとを行うように構成される、構築することを行うように構成され得る。
一例示的実装では、管理装置102は、図5(a)のフロー図を実行して、経路情報に基づいて1つまたは複数の車両から隊列に参加可能な車両を特定することと、1つまたは複数の車両の推定速度に基づいて特定された車両に関する経路情報の1つまたは複数の道路区間についての隊列構成を決定することと、隊列構成に入るための命令を特定された車両に送信することであって、命令が1つまたは複数の道路区間についての速度および軌道を含む、送信することとを行うように構成される。
一例示的実装では、図5(b)に示されるように、管理装置102は、後処理システム、ギア制御システムおよびパワートレイン制御システムの少なくとも1つについてのモデルを1つまたは複数の車両に提供することであって、モデルのそれぞれが、経路情報の1つまたは複数の道路区間についての推定速度の入力に基づいて車両を制御するように構成される、提供することを行うように構成される。
図2は一例示的実装による一例示的車両システム101を示す。車載システム101は、センサ、すなわち、全地球測位衛星(GPS)110、交通情報111、速度計112、1つまたは複数のカメラ113、および車載診断(OBD)インターフェースまたはカーエリアネットワーク(CAN)インターフェースを介した車両内の通信を容易化するだけでなく、無線または他の方法でクラウドまたは管理装置102と通信するように構成されるネットワークインターフェース(I/F)115を所望の実装に応じて含むことができる。また、車両システム101は、所望の実装に基づいて、車両システム101の機能を管理するだけでなく、本明細書に記載の例示的実装を実行するように構成される車載コンピュータ(OBC:on board computer)114を含むことができる。また、車両システム101は、センサデータ120および所与の経路についての速度推定121、ならびに後処理、ギアシフトおよびパワートレイン機能のモデルを提供するように構成され得る車両モデル122を記憶するように構成され得る。
図3(a)に示されるように、OBC114は、経路の1つまたは複数の部分についての車両の予想速度を決定することと、経路の1つまたは複数の部分についての予想速度を、1つまたは複数のセンサから受信されたデータに基づいて修正することと、修正された予想速度に基づいて車両の後処理システムおよびギアシフトシステムの少なくとも1つを制御することとを行うように構成される1つまたは複数のプロセッサによって構成され得る。図3(b)に示されるように、OBC114は、車両の予想速度を、車両に入力されたGPS経路および過去のトリップ情報に基づいて決定するように構成され得、1つまたは複数のセンサから受信されたデータは経路に沿った交通情報を含む。
所望の実装に応じて、OBC114は、機械学習処理から経路の1つまたは複数の部分についての車両の予想速度を決定するための速度軌道推定関数を構築することであって、機械学習処理が、図3(b)に示されるように1つまたは複数の過去の経路についての過去のGPS情報および過去の交通情報を入力として処理することと、図4(a)および図4(b)に示されるように予想速度を決定するために入力として車両の経路を処理するように構成される速度軌道推定関数を生成することとを行うように構成される、構築することを行うように構成され得る。
OBC114は、図3(a)に示されるように車両隊列システムに従事することと、修正された予想速度に基づいた経路の1つまたは複数の部分の中の部分についての車両隊列命令を受信することと、修正された予想速度に基づいた経路の1つまたは複数の部分の中の部分についての車両隊列命令と、経路の1つまたは複数の部分の中の部分について決定された軌道とに従って車両を制御することとを行うように構成され得る。
図5(b)に記載されたように、OBC114は、修正された予想速度に基づいてNOを発生させるように車両の後処理システムを制御し、修正された予想速度に基づいて経路の1つまたは複数の部分についての後処理システムのNO発生を決定するように構成され得る。同様に、OBC114は、修正された予想速度に基づいて経路の1つまたは複数の部分について車両のギアシフトおよびギア比の少なくとも1つを制御することを行うように構成され得る。
図3(a)は一例示的実装による推定速度に基づいて車両を制御するための一例示的フローを示す。車両システム101において、車両が運転中である場合、センサデータ(たとえば、GPS110、交通情報111、速度計112、カメラ113)などの情報は、300において車両システム101のメモリに記録および記憶される。次いで、301において、過去の交通情報および現在の経路と併せたセンサデータは速度推定121に提供され、速度推定は(たとえば、次のx期間の)現在の経路に沿った今後の速度を予測するように構成される。そのような推定は、所望の実装に応じて、経路の1つまたは複数のセクションまたは道路区間(たとえば、特定の直線、ブロックごと、信号機ごと、など)について提供され得る。次いで、そのような情報を推定補正302に提供して、現在のセンサ情報に基づいて予測速度を修正する。たとえば、問題の道路区間が交通事故または工事によって混乱している場合、現在のセンサデータ(たとえば、更新された交通情報)を利用して、所望の実装に応じて影響を受けた区間についての推定速度を更新することができる。
修正された推定速度が決定された後、そのような情報は車両の制御システム310に提供され、これは隊列制御システム311、エンジン制御システム312、ギアシフト/制御システム313、および電源制御314にパラメータ/命令を供給するように構成され得る。また、車両の他の機能も所望の実装に応じて制御され得、本開示は図3(a)の例に特に限定されない。
一例示的実装では、車両隊列制御システム311は、車両の領域内の車両間の車両隊列を容易化するための命令を管理装置102または他の車両101から受信する。そのような命令は、車両軌道の変更、近隣の車両間の車間距離の維持、近隣の車両に基づく速度の調整などを所望の実装に応じて含むことができる。そのような例示的実装では、管理装置102は、所望の実装に応じて、予測された車両軌道に基づいて車両に近接するまたは近接すると予測される車両から推定速度を受信し、隊列命令を提供するように構成され得る。また、そのような分析は隊列に参加する車両によって側端で実施され得、そのような通信はネットワークI/F115から車両−車両間(V2V:vehicle to vehicle)インターフェースを介して車両間で伝送され得る。
一例示的実装では、エンジン制御システム312はエンジンおよび後処理システムの態様を制御するように構成され得る。車両軌道推定からの予測速度が与えられた場合、エンジン制御システム312はエンジン速度および燃料噴射タイミングを変更して、許可されたNO発生の制約内で、NOの発生を最適化、たとえば、最大化しつつ、発生したNOに基づいて燃料消費を最適化、たとえば、最小化するように構成され得る。それによって、そのような例示的実装は、後処理システムの経年劣化を管理し、システムの寿命を伸ばすことができる。所望の実装に応じて、たとえば、排気温度、始動/停止制御など、他の態様はエンジン制御システム312によって制御され得る。
一例示的実装では、ギア制御313は推定速度軌道に基づいてギア変更および制動イベントを制御するように構成され得る。たとえば、今後の道路区間についての今後の予想速度に基づいて、ギアがシフトされ得、および/またはギア比が変更され得、同様に回生制動がかけられ得る。ギア制御313は、車両隊列制御システム313から生成されたスタガード隊列(staggered platoon)に基づいてギアシフトタイミングまたはギア比を制御するように構成され得、これはスタガード隊列に入ることを見据えてギア制御313に隊列構成を提供する。
一例示的実装では、電力制御システム314は、車両およびパワートレインの他の機能への電力入力を制御するために使用され得る。そのような機能は、エンジン電力入力、エンジン始動−停止、ならびに暖房、換気および空調(HVAC:heating,ventilating,and air conditioning)負荷などを所望の実装に応じて含むことができる。
図3(b)および図3(c)は一例示的実装による例示的管理情報を示す。具体的には、図3(b)は機械学習処理において利用され得る例示的な過去の情報を示す。そのような情報は、車両または他の車両が走行した過去の経路(たとえば、車両Xについての地点Aから地点Bへの経路)、経路に関連するGPSデータ、経路に沿った交通情報(たとえば、渋滞度、気象データ、道路種別、道路等級など)などを所望の実装に応じて含むことができる。同様に含まれ得る他の情報は、経路のトリップ時間、車両の平均速度、および機械学習のために考慮され得る他の情報を含む。
図3(c)は一例示的実装による、機械学習により生成された関数の実行に基づく例示的管理データを示す。車両がある地点から他の地点へ走行するための経路が選択された場合、経路は道路区間に分割され得、そのそれぞれが速度軌道に関連付けられる。速度軌道は車両の予測速度を車両の予想方向と共に含むことができる。また、車両軌道は車両の1つまたは複数のセンサから受信されたセンサ情報に基づいて修正され得る。たとえば、通常の交通量より高いために速度が高くなるとは予想されないことを現在の交通情報が示す場合、速度は交通量レベルに基づいて下方に修正され得る。
速度軌道情報が決定されると、速度軌道情報を後処理およびギア制御に関連するモデルに適用して、道路区間ごとの制御システムのパラメータを生成することができる。そのようなモデルは、車両モデル122に記憶された道路区間のそれぞれについてのギアシフトまたはギア比、ならびに道路区間のそれぞれについてのNOの発生を決定することを含むことができる。モデルは所望の実装に応じて、管理装置102から提供され得、または車両内に事前に構成され得る。
図4(a)および図4(b)は一例示的実装による一例示的機械学習処理を示す。図4(a)に示されるように、例示的実装は機械学習ベースの車両速度予測を利用してエレクトリックホライズンを決定する。GPSおよび交通流速からの入力を利用して、所与の経路についての車両速度を予測するための人工ニューラルネットワーク(ANN)モデルを訓練することができる。モデルを利用して、十分な相関が満足されるまで試験経路についての車両速度を予測する。図4(a)に示されるように、入力は、車両のGPS(緯度/経度)、1つまたは複数の経路のそれぞれについての車両の現在の速度および1つまたは複数の過去の経路のそれぞれについての自由流速を含む交通情報を含むことができる。ANNモデルが所望の誤差範囲内の所与の試験経路についての推定速度を提供するように構成されるまで、ANNモデルを訓練するために入力が訓練処理に供給される。ANNモデルは、生成されると、現在の経路(たとえば、経路のGPS情報)および過去の交通情報が与えられた場合に車両の推定速度を決定するために利用され得る。
図4(b)は一例示的実装による機械学習処理を適用するための一例示的フロー図を示す。例示的実装では、機械学習を適用して、図4(a)に示されたように経路が与えられた場合に車両軌道を推定するための関数を生成する。所望の実装に応じて、図4(b)のフローは車両システム101、管理装置102において実装され得、または図4(b)に記載の機能は両方のシステム間で分割され得る。
401において、フローは過去の経路情報を処理する。過去のデータはデータベース103に記憶されたデータおよび/または図2に示されたセンサデータ120を含むことができる。402において、フローは図4(a)に示されたように機械学習を過去の経路情報に適用することから速度軌道推定関数を生成する。所望の実装に応じて、速度軌道推定関数は、選択された試験経路について特定の相関内で推定速度を提供するように最適化され得る。それによって、車両軌道推定関数は、図4(b)に示されるように所与の経路の1つまたは複数の道路区間についての今後の速度および軌道を予測し、次いでそのような推定を車両の様々な機能を制御する車両コントローラに提供するように構成される。
403において、運転中の所与の車両について、フローは車両に入力されたまたは運転中の車両に関連する経路についての速度軌道を決定する。そのような経路情報は、所望の実装に応じて、運転者によって車両に入力されるGPS情報を含むことができ、モバイルデバイス上のアプリケーションまたは他の方法を介して伝達され得る。過去の運転データに基づいて、運転の目的地が推定され得、運転者は目的地を確認するよう求められ得る。一例示的実装では、OBCは、次の「x」時間(秒/分)の間の経路を、明示的な運転者の入力なしで過去の運転データに基づいて継続的に推定する。
404において、車両が運転中である間にセンサデータ120が記録され、車両が運転中である間に推定速度および軌道を更新するために利用される。さらに、そのようなデータは記憶され、図4(a)に示された機械学習処理を再生成または更新するために機械学習処理に適用される過去のセンサデータとして利用され得るセンサデータ120となる。
図5(a)および図5(b)は一例示的実装による推定速度軌道に基づく車両制御の態様を示す。図5(a)の例は隊列構成システム311に従事するための一例示的フローを示すが、フローの1つまたは複数は所望の実装に応じて管理装置102においても実行され得る。501において、フローは経路情報に基づいて隊列に参加することが可能な車両を特定する。そのような特定は、所望の実装に応じて、所与の道路区間について互いの近傍にあると判定されたまたは近傍となる車両に基づくことができ、または他の方法によるものとすることができる。502において、フローは隊列に入る資格がある特定された車両全ての推定速度軌道を取得する。推定速度軌道はネットワーク100を介して各車両に伝達され得る。503において、フローは取得された推定速度軌道に基づいて隊列構成を決定する。そのような構成は、所望の実装に応じて構築された1つまたは複数のモデルの実装を介して隊列構成システム311に基づいて、または管理装置102によって決定され得る。次いで、504において、隊列を形成するために指定された道路区間について指定された速度および軌道で運転する命令が、隊列内の車両に提供される。命令は隊列構成システムに提供され得、これは次いで隊列を容易化するように車両を制御することができる。
図5(b)は車両モデル122に適用される推定速度に基づく車両制御の態様を示す。車両モデルは、エンジン制御システム312によって利用される後処理モデル、ギア制御313によって利用されるギアモデル、および電力制御314によって利用される電力モデルを含むことができる。511において、車両は管理装置102から車両モデル122を更新するように構成される。そのようなモデルはエンジン制御システム312のための後処理システム、ギア制御システム313およびパワートレイン制御314を含むことができ、モデルのそれぞれが所与の経路の1つまたは複数の道路区間についての推定速度の入力に基づいて車両を制御するように構成される。利用され得る他のモデルは、制御およびプラントモデル、ならびに最適化されるシステム/サブシステムのための一般的な較正パラメータ/マップを含む。
512において、修正された予想速度軌道は、エンジン制御システム312によって利用される後処理モデルに提供され得る。後処理システムは燃料消費を最小化するための関数に基づいて車両のNOの発生を制御するように構成され得る。そのような関数の一例は次式とすることができる:
Figure 0006484361
ここで、xは車両システムの様々な状態を表現可能な状態変数(たとえば、エンジンオンまたはオフ、バッテリー充電状態(SOC:state of charge))であり、uは制御入力(たとえば、噴射の開始、ギア数、スロットル、燃圧など)であり、
Figure 0006484361
は燃料流速であり、Ppowertrainはパワートレインシステムからの電力であり、Pdriverは運転者の電力需要である。
したがって、エンジン制御システムは修正された予想速度軌道に応じてトルクおよびエンジン速度を修正するように構成され得る。
513において、修正された予想速度軌道をギア制御システム313に適用してギア比またはギアシフトを変更することができる。たとえば、車両がより低い速度になることを今後の道路区間が示す場合、所望の実装に応じて、反応的な行動ではなく予測的な方法でギアが下方にシフトされ得、逆も同様であり、これによってシステムの応答および効率を向上させる。
514において、修正された予想車両軌道がパワートレイン制御314に適用され得る。そのような電力制御は、HVAC、エンジンへの電力入力、バッテリー制御、および他の動作を所望の実装に応じて含むことができる。
図5(c)は一例示的実装によるエンジン制御システム312の一例示的フローを示す。エンジン制御システム312はエンジンコントローラ520、エンジン521、後処理522、および後処理制御523を含むことができる。予測速度に基づいて、後処理制御523は、消費燃料520を最小化しながらエンジンからの排気化学種または排気ガス(たとえば、NO)の発生を増加または減少させ、後処理522への尿素(urea)注入を管理するための命令を発行するように構成される。エンジンコントローラ520はエンジン521からのセンサデータおよび後処理制御523からのフィードバックを処理して、エンジン521の空気経路アクチュエータに命令を送信する。次いで、エンジン521はエンジン521のアクチュエータ制御に基づいて後処理522のNO発生を容易化し、次いで後処理522は、規制された限度内となるように関心対象の排気化学種(目的に応じて、NO、HC、COなど)を酸化または還元する。
図6は、たとえば、図1に示された管理装置102および/または図2に示された車両システム101/OBC114など、いくつかの例示的実装での使用に適した一例示的コンピュータデバイスを有する一例示的コンピューティング環境を示す。本明細書に記載の機能は所望の実装に応じて、管理装置102、車両システム101、OBC114において実装され得、またはそのような要素の何らかの組み合わせに基づくシステムを介して容易化することができる。
コンピューティング環境600内のコンピュータデバイス605は、1つまたは複数の処理ユニット、コア、またはプロセッサ610、メモリ615(たとえば、RAM、ROM、および/または同様のもの)、内部ストレージ620(たとえば、磁気、光学、ソリッドステートストレージ、および/またはオーガニック)、ならびに/あるいはI/Oインターフェース625を含むことができ、これらはいずれも情報を伝達するための通信メカニズムもしくはバス630上で結合され得、またはコンピュータデバイス605に組み込まれ得る。I/Oインターフェース625はまた、所望の実装に応じて、カメラから画像を受信する、またはプロジェクタもしくはディスプレイに画像を提供するようにさらに構成される。
コンピュータデバイス605は、入力/ユーザインターフェース635および出力デバイス/インターフェース640に通信可能に結合され得る。入力/ユーザインターフェース635および出力デバイス/インターフェース640の一方または両方は、有線または無線インターフェースとすることができ、取り外し可能にすることができる。入力/ユーザインターフェース635は、入力を与えるのに使用され得る物理的または仮想的な任意のデバイス、コンポーネント、センサ、またはインターフェース(たとえば、ボタン、タッチスクリーンインターフェース、キーボード、ポインティング/カーソルコントロール、マイクロフォン、カメラ、点字、モーションセンサ、光学リーダ、および/または同様のもの)を含むことができる。出力デバイス/インターフェース640は、ディスプレイ、テレビジョン、モニタ、プリンタ、スピーカー、点字などを含むことができる。いくつかの例示的実装では、入力/ユーザインターフェース635および出力デバイス/インターフェース640は、コンピュータデバイス605に組み込まれ得、または物理的に結合され得る。他の例示的実装では、他のコンピュータデバイスは、コンピュータデバイス605に対して入力/ユーザインターフェース635および出力デバイス/インターフェース640として機能する、またはそれらの機能を提供することができる。
コンピュータデバイス605の例は、限定はされないが、高移動性のデバイス(たとえば、スマートフォン、車両および他の機械内のデバイス、人間および動物によって持ち運ばれるデバイスなど)、移動性のデバイス(たとえば、タブレット、ノートブック、ラップトップ、パーソナルコンピュータ、ポータブルテレビジョン、ラジオなど)、ならびに移動用に設計されていないデバイス(たとえば、デスクトップコンピュータ、他のコンピュータ、情報キオスク、1つまたは複数のプロセッサが組み込まれたおよび/または結合されたテレビジョン、ラジオなど)を含むことができる。
コンピュータデバイス605は、外部ストレージ645と、同一のまたは異なる構成の1つまたは複数のコンピュータデバイスを含む、任意数のネットワーク化されたコンポーネント、デバイス、およびシステムと通信するためのネットワーク650とに(たとえば、I/Oインターフェース625を介して)通信可能に結合され得る。コンピュータデバイス605または任意の接続されたコンピュータデバイスは、サーバ、クライアント、シンサーバ、汎用マシン、専用マシン、または他のラベルとして機能することができ、これらのサービスを提供することができ、またはこれらと称され得る。
I/Oインターフェース625は、限定はされないが、コンピューティング環境600内の少なくとも全ての接続されたコンポーネント、デバイス、およびネットワークへ、および/またはこれらから情報を伝達するための任意の通信またはI/Oプロトコルまたは規格(たとえば、イーサネット(登録商標)、802.11x、ユニバーサルシリアルバス、WiMax、モデム、セルラーネットワークプロトコルなど)を使用する有線および/または無線インターフェースを含むことができる。ネットワーク650は、任意のネットワークまたはネットワークの組み合わせ(たとえば、インターネット、ローカルエリアネットワーク、ワイドエリアネットワーク、電話ネットワーク、セルラーネットワーク、衛星ネットワークなど)とすることができる。
コンピュータデバイス605は、一時的媒体および非一時的媒体を含むコンピュータ使用可能またはコンピュータ可読媒体を使用する、および/またはこれらを使用して通信することができる。一時的媒体は、伝送媒体(たとえば、メタルケーブル、光ファイバ)、信号、搬送波などを含む。非一時的媒体は、磁気媒体(たとえば、ディスクおよびテープ)、光学媒体(たとえば、CD ROM、デジタルビデオディスク、ブルーレイディスク)、ソリッドステートメディア(たとえば、RAM、ROM、フラッシュメモリ、ソリッドステートストレージ)、および他の不揮発性ストレージまたはメモリを含む。
コンピュータデバイス605は、いくつかの例示的コンピューティング環境において、技法、方法、アプリケーション、処理、またはコンピュータ実行可能命令を実施するために使用され得る。コンピュータ実行可能命令は、一時的媒体から取り出され、非一時的媒体に記憶されこれから取り出され得る。実行可能命令は、任意のプログラミング言語、スクリプティング言語、および機械語(たとえば、C、C++、C#、Java(登録商標)、Visual Basic、Python、Perl、JavaScript(登録商標)など)の1つまたは複数から生じ得る。
プロセッサ610は、ネイティブまたは仮想環境において任意のオペレーティングシステム(OS)(図示せず)の下で実行することができる。論理ユニット660、アプリケーションプログラミングインターフェース(API)ユニット665、入力ユニット670、出力ユニット675、ならびに異なるユニットが互いと、OSと、および他のアプリケーション(図示せず)と通信するためのユニット間通信メカニズム695を含む1つまたは複数のアプリケーションが配備され得る。記載のユニットおよび要素は、設計、機能、構成、または実装が変更され得、与えられた記載に限定されない。
いくつかの例示的実装では、情報または実行命令がAPIユニット665によって受信された場合、1つまたは複数の他のユニット(たとえば、論理ユニット660、入力ユニット670、出力ユニット675)に伝達され得る。いくつかの例では、論理ユニット660は、ユニット間の情報フローを制御し、上述のいくつかの例示的実装においてAPIユニット665、入力ユニット670、出力ユニット675によって提供されるサービスを管理するように構成され得る。たとえば、1つまたは複数の処理または実装のフローは、論理ユニット660によって単独で、またはAPIユニット665と連携して制御され得る。入力ユニット670は、例示的実装に記載された計算のための入力を取得するように構成され得、出力ユニット675は、例示的実装に記載された計算に基づいて出力を提供するように構成され得る。
メモリ615は、図3(b)に示された過去の交通情報と、経路が車両101のGPS110に与えられた場合は、図3(c)に示された道路区間、推定速度軌道、および車両パラメータに関する経路の1つまたは複数の部分についての管理情報とを記憶するように構成され得る。
詳細な説明の一部は、アルゴリズムと、コンピュータ内の動作のシンボル表現との観点で提示されている。これらのアルゴリズム的記述およびシンボル表現は、データ処理技術の当業者によって、彼らの革新の本質を他の当業者に伝えるために使用される手段である。アルゴリズムは、所望の終了状態または結果をもたらす一連の定義されたステップである。例示的実装では、実施されるステップは、有形の結果を実現するために有形の量の物理的操作を必要とする。
特記しない限り、本議論から明らかなように、本説明全体にわたって、「処理」、「コンピューティング」、「計算」、「決定」、「表示」などの用語を使用する議論が、コンピュータシステムのレジスタおよびメモリ内の物理(電子)量として表現されるデータを、コンピュータシステムのメモリもしくはレジスタまたは他の情報記憶、伝送もしくは表示デバイス内の物理量として同様に表現される他のデータに操作および変換するコンピュータシステムまたは他の情報処理デバイスの行動および処理を含むことができることは理解されよう。
また、例示的実装は本明細書の動作を実施するための装置に関することができる。この装置は必要な目的のために特別に構築され得、あるいは1つまたは複数のコンピュータプログラムによって選択的にアクティブ化または再構成される1つまたは複数の汎用コンピュータを含むことができる。そのようなコンピュータプログラムは、コンピュータ可読媒体、たとえば、コンピュータ可読記憶媒体またはコンピュータ可読信号媒体に記憶され得る。コンピュータ可読記憶媒体は、有形媒体、たとえば、限定はされないが、光ディスク、磁気ディスク、読み出し専用メモリ、ランダムアクセスメモリ、ソリッドステートデバイスおよびドライブ、または電子情報を記憶するのに適した任意の他のタイプの有形もしくは非一時的媒体を含むことができる。コンピュータ可読信号媒体は、搬送波などの媒体を含むことができる。本明細書で提示されたアルゴリズムおよびディスプレイは、任意の特定のコンピュータまたは他の装置に本質的に関連するものではない。コンピュータプログラムは、所望の実装の動作を実施する命令を含む純粋なソフトウェア実装を含むことができる。
様々な汎用システムは、本明細書の例に従うプログラムおよびモジュールと共に使用され得、または所望の方法ステップを実施するためのより特化した装置を構築することが好都合であるとわかる場合がある。加えて、例示的実装は、任意の特定のプログラミング言語に関して記載されていない。種々のプログラミング言語が本明細書に記載の例示的実装の教示を実装するために使用され得ることは理解されよう。プログラミング言語の命令は、1つまたは複数の処理デバイス、たとえば、中央処理装置(CPU)、プロセッサまたはコントローラによって実行され得る。
当技術分野で知られているように、上述の動作は、ハードウェア、ソフトウェア、またはソフトウェアおよびハードウェアの何らかの組み合わせによって実施され得る。例示的実装の様々な態様は回路および論理デバイス(ハードウェア)を使用して実装され得、他の態様は、プロセッサによって実行された場合に、プロセッサに本出願の実装を実施するための方法を実行させる、機械可読媒体に記憶された命令(ソフトウェア)を使用して実装され得る。さらに、本出願のいくつかの例示的実装はハードウェアのみで実施され得、他の例示的実装はソフトウェアのみで実施され得る。その上、記載の様々な機能は単一のユニットで実施され得、または任意数の方法でいくつかのコンポーネントにわたって拡散され得る。ソフトウェアによって実施される場合、本方法は、コンピュータ可読媒体に記憶された命令に基づいて汎用コンピュータなどのプロセッサによって実行され得る。所望であれば、命令は媒体に、圧縮および/または暗号化された形式で記憶され得る。
その上、本出願の他の実装は、本明細書を考察し、本出願の教示を実践することから当業者に明らかとなろう。記載された例示的実装の様々な態様および/またはコンポーネントは、単一でまたは任意の組み合わせで使用され得る。本明細書および例示的実装が単なる例とみなされ、本出願の真の範囲および精神が以下の特許請求の範囲によって示されることが意図されている。

Claims (6)

  1. 車両であって、
    1つまたは複数のセンサと、
    プロセッサと
    を備え、
    前記プロセッサが、経路の1つまたは複数の部分についての前記車両の予想速度を決定するための速度軌道推定関数を、機械学習処理から構築し、
    前記機械学習処理は、1つまたは複数の過去の経路についての過去の全地球測位衛星(GPS)情報および過去の交通情報の他に、前記1つまたは複数のセンサからの過去のセンサデータを、車両速度を予想するための人工ニューラルネットワーク(ANN)モデルの訓練のために当該ANNモデルに入力することを含み、
    前記プロセッサが、
    経路の1つまたは複数の部分についての前記車両の予想速度を、前記速度軌道推定関数を用いて決定することと、
    前記経路の前記1つまたは複数の部分についての前記予想速度を、前記1つまたは複数のセンサから受信されたセンサデータに基づいて修正し、且つ、当該受信されたセンサデータを前記機械学習処理の後の機械学習処理において過去のセンサデータとして利用されるために当該受信されたセンサデータを格納することと、
    前記修正された予想速度に基づいて前記車両の後処理システムおよびギアシフトシステムを制御するために、当該後処理システムおよびギアシフトシステムについて、後処理およびギア制御に関連するモデルを用いて、前記経路の前記1つまたは複数の部分についてのギアシフトまたはギア比、ならびに、前記経路の前記1つまたは複数の部分についてのNOxといった制御パラメータを生成することと
    を行う、車両。
  2. 前記プロセッサが、
    前記修正された予想速度に基づいた前記経路の前記1つまたは複数の部分の中の部分についての車両隊列命令を受信することと、
    前記修正された予想速度に基づいた前記経路の前記1つまたは複数の部分の中の前記部分についての前記車両隊列命令と、前記経路の前記1つまたは複数の部分の中の前記部分について決定された軌道とに従って前記車両を制御することと
    を行う、
    請求項1に記載の車両。
  3. 1つまたは複数の車両の経路の1つまたは複数の部分についての前記車両の予想速度を決定するための速度軌道推定関数を、機械学習処理から構築するステップと、
    前記機械学習処理は、1つまたは複数の過去の経路についての過去の全地球測位衛星(GPS)情報および過去の交通情報の他に、前記1つまたは複数のセンサからの過去のセンサデータを、車両速度を予想するための人工ニューラルネットワーク(ANN)モデルの訓練のために当該ANNモデルに入力することを含み、
    1つまたは複数の車両から経路情報を受信するステップと、
    前記1つまたは複数の車両のそれぞれの予想速度を、前記速度軌道推定関数を用いて、前記1つまたは複数の車両の前記それぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定するステップと、
    前記経路の前記1つまたは複数の部分についての前記予想速度を、前記1つまたは複数の車両のセンサから受信されたセンサデータに基づいて修正し、且つ、当該受信されたセンサデータを前記機械学習処理の後の機械学習処理において過去のセンサデータとして利用されるために当該受信されたセンサデータを格納するステップと、
    前記1つまたは複数の車両の前記それぞれの前記修正された予想速度を送信するステップと
    を有し、
    前記1つまたは複数の車両のそれぞれは、前記修正された予想速度に基づいて、当該車両の後処理システムおよびギアシフトシステムを制御するために、当該後処理システムおよびギアシフトシステムについて、後処理およびギア制御に関連するモデルを用いて、前記経路の前記1つまたは複数の部分についてのギアシフトまたはギア比、ならびに、前記経路の前記1つまたは複数の部分についてのNOxといった制御パラメータを生成するようになっている、
    方法。
  4. 前記経路情報に基づいて前記1つまたは複数の車両から隊列に参加可能な車両を特定するステップと、
    前記1つまたは複数の車両の前記推定速度に基づいて前記特定された車両に関する前記経路情報の1つまたは複数の道路区間についての隊列構成を決定するステップと、
    前記1つまたは複数の道路区間についての速度および軌道に関する、前記隊列構成に入るための命令を、前記特定された車両に送信するステップと
    をさらに有する、
    請求項に記載の方法。
  5. 経路情報を提供するように構成される1つまたは複数の車両と、
    管理装置と
    を備え、
    前記管理装置が、前記1つまたは複数の車両の経路の1つまたは複数の部分についての前記車両の予想速度を決定するための速度軌道推定関数を、機械学習処理から構築し、
    前記機械学習処理は、1つまたは複数の過去の経路についての過去の全地球測位衛星(GPS)情報および過去の交通情報の他に、前記1つまたは複数のセンサからの過去のセンサデータを、車両速度を予想するための人工ニューラルネットワーク(ANN)モデルの訓練のために当該ANNモデルに入力することを含み、
    前記管理装置が、
    1つまたは複数の車両から前記経路情報を受信することと、
    前記1つまたは複数の車両のそれぞれの予想速度を、前記速度軌道推定関数を用いて、前記1つまたは複数の車両の前記それぞれに関連する経路情報から決定される経路の1つまたは複数の部分について決定することと、
    前記経路の前記1つまたは複数の部分についての前記予想速度を、前記1つまたは複数の車両のセンサから受信されたセンサデータに基づいて修正し、且つ、当該受信されたセンサデータを前記機械学習処理の後の機械学習処理において過去のセンサデータとして利用されるために当該受信されたセンサデータを格納することと、
    前記1つまたは複数の車両の前記それぞれの前記予想速度を送信することと
    を行
    前記1つまたは複数の車両のそれぞれは、前記修正された予想速度に基づいて、当該車両の後処理システムおよびギアシフトシステムを制御するために、当該後処理システムおよびギアシフトシステムについて、後処理およびギア制御に関連するモデルを用いて、前記経路の前記1つまたは複数の部分についてのギアシフトまたはギア比、ならびに、前記経路の前記1つまたは複数の部分についてのNOxといった制御パラメータを生成するようになっている、
    システム。
  6. 前記管理装置が、
    前記経路情報に基づいて前記1つまたは複数の車両から隊列に参加可能な車両を特定することと、
    前記1つまたは複数の車両の前記推定速度に基づいて前記特定された車両に関する前記経路情報の1つまたは複数の道路区間についての隊列構成を決定することと、
    前記特定された車両に、前記1つまたは複数の道路区間についての速度および軌道に関する、前記隊列構成に入るための命令を、送信することと、
    を行う、
    請求項に記載のシステム。
JP2018031538A 2017-06-19 2018-02-26 車両エネルギー管理および自律運転のためのリアルタイム車両状態軌道予測 Active JP6484361B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/627,277 US10551842B2 (en) 2017-06-19 2017-06-19 Real-time vehicle state trajectory prediction for vehicle energy management and autonomous drive
US15/627,277 2017-06-19

Publications (2)

Publication Number Publication Date
JP2019001450A JP2019001450A (ja) 2019-01-10
JP6484361B2 true JP6484361B2 (ja) 2019-03-13

Family

ID=61027550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031538A Active JP6484361B2 (ja) 2017-06-19 2018-02-26 車両エネルギー管理および自律運転のためのリアルタイム車両状態軌道予測

Country Status (4)

Country Link
US (1) US10551842B2 (ja)
EP (1) EP3418996A1 (ja)
JP (1) JP6484361B2 (ja)
CN (1) CN109131345B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021007106A1 (en) * 2019-07-05 2021-01-14 Zoox, Inc. Prediction on top-down scenes based on action data

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953472B2 (en) * 2016-05-04 2018-04-24 General Electric Company System and method for determining grade errors of a route
KR101973627B1 (ko) * 2017-07-11 2019-04-29 엘지전자 주식회사 차량에 구비된 차량 제어 장치 및 차량의 제어방법
US10621448B2 (en) * 2017-08-02 2020-04-14 Wing Aviation Llc Systems and methods for determining path confidence for unmanned vehicles
GB2567154B (en) * 2017-10-02 2020-03-04 Jaguar Land Rover Ltd Method and apparatus for assisting in the maintenance of a vehicle speed within a speed range, and a vehicle comprising such an apparatus
CN109711591B (zh) * 2017-10-25 2022-02-01 腾讯科技(深圳)有限公司 一种路段速度预测方法、装置、服务器及存储介质
US10791543B2 (en) * 2017-10-31 2020-09-29 Toyota Jidosha Kabushiki Kaisha Service discovery and provisioning for a macro-vehicular cloud
EP3591637A1 (en) * 2018-07-05 2020-01-08 2TIL International UG Method and system for distributing the cost among platooning vehicles based on collected sensor data
WO2020014128A1 (en) * 2018-07-10 2020-01-16 Cavh Llc Vehicle on-board unit for connected and automated vehicle systems
US10831207B1 (en) * 2018-08-22 2020-11-10 BlueOwl, LLC System and method for evaluating the performance of a vehicle operated by a driving automation system
JP7176376B2 (ja) * 2018-11-30 2022-11-22 トヨタ自動車株式会社 車両の制御装置
US10824947B2 (en) * 2019-01-31 2020-11-03 StradVision, Inc. Learning method for supporting safer autonomous driving without danger of accident by estimating motions of surrounding objects through fusion of information from multiple sources, learning device, testing method and testing device using the same
JP7133497B2 (ja) * 2019-03-05 2022-09-08 株式会社日立製作所 移動範囲設定システム及び移動範囲設定方法
US11364904B2 (en) * 2019-03-26 2022-06-21 GM Global Technology Operations LLC Path-planning fusion for a vehicle
DE102019205521A1 (de) * 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zur Reduzierung von Abgasemissionen eines Antriebssystems eines Fahrzeugs mit Verbrennungsmotor
DE102019205519A1 (de) 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zum Ermitteln von Fahrverläufen
DE102019205520A1 (de) * 2019-04-16 2020-10-22 Robert Bosch Gmbh Verfahren zum Ermitteln von Fahrverläufen
JP6885421B2 (ja) * 2019-05-28 2021-06-16 村田機械株式会社 搬送制御装置
GB2601060B (en) * 2019-05-29 2023-02-01 Motional Ad Llc Estimating speed profiles
CN110415516B (zh) * 2019-07-15 2021-06-22 厦门大学 基于图卷积神经网络的城市交通流预测方法及介质
EP3790295B1 (en) * 2019-09-09 2024-05-29 Volkswagen AG Method, computer program, and apparatus for determining a minimum inter-vehicular distance for a platoon, vehicle, traffic control entity
DE102019216156A1 (de) * 2019-10-21 2021-04-22 Zf Active Safety Gmbh Steuerungssystem und Steuerungsverfahren
CN113383283B (zh) * 2019-12-30 2024-06-18 深圳元戎启行科技有限公司 感知信息处理方法、装置、计算机设备和存储介质
CN111260950B (zh) * 2020-01-17 2021-03-26 清华大学 一种基于轨迹预测的轨迹跟踪方法、介质和车载设备
EP3859192B1 (en) * 2020-02-03 2022-12-21 Robert Bosch GmbH Device, method and machine learning system for determining a state of a transmission for a vehicle
EP3859614A1 (en) * 2020-02-03 2021-08-04 Robert Bosch GmbH Device, method and machine learning system for determining a velocity for a vehicle
CN111231955B (zh) * 2020-02-25 2021-06-01 芜湖雄狮汽车科技有限公司 纵向车速的控制方法、装置、系统及存储介质
DE102020202540A1 (de) * 2020-02-27 2021-09-02 Psa Automobiles Sa Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt sowie Kraftfahrzeug
US11960298B2 (en) * 2020-04-09 2024-04-16 The Regents Of The University Of Michigan Multi-range vehicle speed prediction using vehicle connectivity for enhanced energy efficiency of vehicles
CN111912423B (zh) * 2020-10-13 2021-02-02 北京三快在线科技有限公司 一种预测障碍物轨迹以及模型训练的方法及装置
KR102445622B1 (ko) * 2020-12-31 2022-09-21 주식회사 아이카 클라우드를 이용한 차량 연료 분석 시스템
EP4275192A2 (en) * 2021-01-08 2023-11-15 Mobileye Vision Technologies Ltd. Systems and methods for common speed mapping and navigation
CN115503681B (zh) * 2021-10-21 2024-10-01 吉林大学 一种混合动力工程车辆轨迹跟踪控制系统及方法
US20230192147A1 (en) * 2021-12-22 2023-06-22 Gm Cruise Holdings Llc Using maps at multiple resolutions and scale for trajectory prediction

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195316A (en) * 1989-12-27 1993-03-23 Nissan Motor Co., Ltd. Exhaust gas purifying device for an internal combustion engine
US5893894A (en) * 1996-02-23 1999-04-13 Kabushikikaisha Equos Research Apparatus for controlling an automatic transmission of an automobile and method thereof
JPH10184877A (ja) * 1996-12-24 1998-07-14 Toyota Motor Corp 有段変速機の制御装置
US7146264B2 (en) * 2001-03-30 2006-12-05 International Business Machines Corporation Method and system for controlling an automatic transmission using a GPS assist having a learn mode
JP3823923B2 (ja) * 2003-01-16 2006-09-20 日産自動車株式会社 排気浄化装置
DE102004005072B4 (de) * 2004-02-02 2018-06-07 Robert Bosch Gmbh Verfahren zum Regenerieren einer Abgasnachbehandlungsanlage
US8712650B2 (en) 2005-11-17 2014-04-29 Invent.Ly, Llc Power management systems and designs
DE102006005505A1 (de) * 2005-12-05 2007-06-06 Robert Bosch Gmbh Verfahren zur Steuerung einer Abgasreinigungsanlage
US9376971B2 (en) 2006-03-20 2016-06-28 General Electric Company Energy management system and method for vehicle systems
DE102008008566B4 (de) * 2008-02-08 2023-03-23 Robert Bosch Gmbh Verfahren zum Regenerieren einer Abgasnachbehandlungsanlage
US8315775B2 (en) * 2009-02-06 2012-11-20 GM Global Technology Operations LLC Cruise control systems and methods with adaptive speed adjustment rates
EP2221581B1 (en) * 2009-02-18 2017-07-19 Harman Becker Automotive Systems GmbH Method of estimating a propulsion-related operating parameter
CN102460534B (zh) * 2009-04-22 2014-10-29 因瑞克斯有限公司 基于历史和当前数据预测期望道路交通状况的计算机实现的方法和计算系统
US20100305798A1 (en) 2009-05-29 2010-12-02 Ford Global Technologies, Llc System And Method For Vehicle Drive Cycle Determination And Energy Management
US8881505B2 (en) * 2009-08-13 2014-11-11 Cummins Ip, Inc. Apparatus, system, and method for adaptive engine system control with integrated global position sensing
GB201113112D0 (en) * 2011-02-03 2011-09-14 Tomtom Dev Germany Gmbh Method of generating expected average speeds of travel
US10254764B2 (en) * 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
WO2013033347A1 (en) * 2011-08-29 2013-03-07 5D Robotics, Inc. Fuel efficiency improving system for vehicle
US10377379B2 (en) * 2011-10-29 2019-08-13 Robotic Research, Llc Method and system for utilizing the energy storage provided by a vehicle's mass in the form of potential and kinetic energy to optimize fuel consumption
SE536264C2 (sv) * 2011-12-22 2013-07-23 Scania Cv Ab Metod och modul för att styra ett fordons hastighet genom simulering
ES2411629B1 (es) 2011-12-30 2014-03-11 Seat, S.A. Dispositivo y método para la predicción "on-line" del ciclo de conducción en un vehículo automóvil.
US8862346B2 (en) * 2012-03-20 2014-10-14 Eaton Corporation System and method for simulating the performance of a virtual vehicle
US9002612B2 (en) * 2012-03-20 2015-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. Prediction of driver-specific cruise speed using dynamic modeling
US20140032087A1 (en) 2012-07-25 2014-01-30 Mobiwize Solutions Ltd. Reducing fuel consumption by accommodating to anticipated road and driving conditions
US8768587B2 (en) * 2012-07-25 2014-07-01 Caterpillar Inc. Worksite management system with gear recommendation
DE102012016768A1 (de) * 2012-08-23 2014-05-15 Elektrobit Automotive Gmbh Technik zum Verarbeiten kartographischer Daten für das Bestimmen energiesparender Routen
US9102320B2 (en) * 2012-09-13 2015-08-11 Ford Global Technologies, Llc Predictive aftertreatment scheduling for a vehicle
US9371766B2 (en) * 2012-09-14 2016-06-21 Ford Global Technologies, Llc Engine-on time predictor for aftertreatment scheduling for a vehicle
EP2953110B1 (en) * 2013-02-01 2021-11-10 Hitachi Astemo, Ltd. Travel control device and travel control system
US9081651B2 (en) * 2013-03-13 2015-07-14 Ford Global Technologies, Llc Route navigation with optimal speed profile
SE537482C2 (sv) * 2013-09-30 2015-05-12 Scania Cv Ab Metod och system för gemensam körstrategi för fordonståg
GB201318706D0 (en) * 2013-10-23 2013-12-04 Jaguar Land Rover Ltd Improvements in vehicle speed control
US9090260B2 (en) * 2013-12-04 2015-07-28 Mobileye Vision Technologies Ltd. Image-based velocity control for a turning vehicle
US20150197247A1 (en) * 2014-01-14 2015-07-16 Honda Motor Co., Ltd. Managing vehicle velocity
US9272621B2 (en) * 2014-04-24 2016-03-01 Cummins Inc. Systems and methods for vehicle speed management
US9321447B2 (en) * 2014-05-16 2016-04-26 International Business Machines Corporation Vehicle powertrain synchronization based on predicted driver actions
US9663111B2 (en) * 2014-05-30 2017-05-30 Ford Global Technologies, Llc Vehicle speed profile prediction using neural networks
JP2016128997A (ja) * 2015-01-09 2016-07-14 住友電気工業株式会社 車載装置、管理装置、走行モードの判定方法及びコンピュータプログラム
US9732646B2 (en) * 2015-01-12 2017-08-15 Ford Global Technologies, Llc Systems and methods for opportunistic diesel particulate filter regeneration
SE541205C2 (en) 2015-03-31 2019-04-30 Scania Cv Ab System and method for coordination of platoon formation
JP6394497B2 (ja) * 2015-05-25 2018-09-26 トヨタ自動車株式会社 車両の自動運転システム
US10023188B2 (en) * 2015-11-09 2018-07-17 Cummins Inc. Systems and methods for pre-hill cruise speed adjustment
US9953472B2 (en) * 2016-05-04 2018-04-24 General Electric Company System and method for determining grade errors of a route
US10089882B2 (en) * 2016-09-21 2018-10-02 Wabco Europe Bvba Method for controlling an own vehicle to participate in a platoon
CN106710307A (zh) * 2017-01-06 2017-05-24 汽-大众汽车有限公司 一种车辆辅助驾驶方法和装置
US10029685B1 (en) * 2017-02-24 2018-07-24 Speedgauge, Inc. Vehicle speed limiter
US10309793B2 (en) * 2017-05-26 2019-06-04 Ford Global Technologies, Llc Systems and methods for particulate filter regeneration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021007106A1 (en) * 2019-07-05 2021-01-14 Zoox, Inc. Prediction on top-down scenes based on action data

Also Published As

Publication number Publication date
CN109131345A (zh) 2019-01-04
US10551842B2 (en) 2020-02-04
CN109131345B (zh) 2022-06-21
JP2019001450A (ja) 2019-01-10
US20180364725A1 (en) 2018-12-20
EP3418996A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6484361B2 (ja) 車両エネルギー管理および自律運転のためのリアルタイム車両状態軌道予測
Wang et al. A review on cooperative adaptive cruise control (CACC) systems: Architectures, controls, and applications
US11176503B2 (en) Managing vehicles using mobility agent
CN109131340B (zh) 基于驾驶员行为的主动车辆性能调整
US11597395B2 (en) Systems and methods to manage vehicles under anomalous driving behavior
US11106209B2 (en) Anomaly mapping by vehicular micro clouds
US11567495B2 (en) Methods and systems for selecting machine learning models to predict distributed computing resources
US11794757B2 (en) Systems and methods for prediction windows for optimal powertrain control
US20230284049A1 (en) Connected vehicle network data transfer optimization
US20210056854A1 (en) Hierarchical ai assisted safe and efficient platooning
WO2015051289A1 (en) System and method for vehicle energy estimation, adaptive control and routing
US11267362B2 (en) Systems and methods for adaptive optimization for electric vehicle fleet charging
US20190061545A1 (en) Systems and methods for electric vehicle charging with automated trip planning integration
Siegel et al. Algorithms and architectures: A case study in when, where and how to connect vehicles
JP2024511928A (ja) 車線レベルルートプランナにおける学習
JP2024514078A (ja) マップを改良するために新しい道路を探索するためのルートプランナ及び意思決定
US11993287B2 (en) Fleet-level AV simulation system and method
JP2024511707A (ja) 自律走行車用の車線レベルルートプランナ
US11172341B2 (en) Mobility-aware assignment of computational sub-tasks in a vehicular cloud
US12085399B2 (en) Modular machine-learning based system for predicting vehicle energy consumption during a trip
WO2023136977A1 (en) Systems and methods for pareto domination-based learning
CN115996225A (zh) 车辆生态系统通信的智能消息框架
US11233717B2 (en) System and method for collaborative centralized latency characterization
US20220318691A1 (en) Personalizing a shared ride in a mobility-on-demand service
Zhu Reinforcement Learning in Eco-driving for Connected and Automated Vehicles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150