JP6482503B2 - Water leak detection system - Google Patents

Water leak detection system Download PDF

Info

Publication number
JP6482503B2
JP6482503B2 JP2016142968A JP2016142968A JP6482503B2 JP 6482503 B2 JP6482503 B2 JP 6482503B2 JP 2016142968 A JP2016142968 A JP 2016142968A JP 2016142968 A JP2016142968 A JP 2016142968A JP 6482503 B2 JP6482503 B2 JP 6482503B2
Authority
JP
Japan
Prior art keywords
water leakage
water
leak
detection zone
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016142968A
Other languages
Japanese (ja)
Other versions
JP2018013407A (en
Inventor
英次 根本
英次 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Techno-Service Co Ltd
Original Assignee
Mitsubishi Electric Building Techno-Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno-Service Co Ltd filed Critical Mitsubishi Electric Building Techno-Service Co Ltd
Priority to JP2016142968A priority Critical patent/JP6482503B2/en
Publication of JP2018013407A publication Critical patent/JP2018013407A/en
Application granted granted Critical
Publication of JP6482503B2 publication Critical patent/JP6482503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、漏水検知システムに関する。   The present invention relates to a water leakage detection system.

従来から、空調システムの冷媒液漏れ等を検知する手段として、漏水検知システムが知られている。漏水検知システムは、漏水検知器と漏水検知帯を含んで構成される。漏水検知帯は、非導通の状態で並行して(例えば撚線の状態で)延設された少なくとも2本の導電線を含んで構成される。漏水検知器は、漏水検知帯に電流を供給する。漏水検知帯周辺で漏水が発生すると、この漏水のために漏水検知帯の導電線同士が導通して短絡回路が形成される。漏水検知器は開放回路から短絡回路への切り替わりを検知することで、漏水が発生したと判定する。   Conventionally, a water leakage detection system is known as means for detecting leakage of refrigerant liquid in an air conditioning system. The water leakage detection system includes a water leakage detector and a water leakage detection zone. The water leakage detection zone is configured to include at least two conductive wires extending in parallel (for example, in a stranded state) in a non-conductive state. The leak detector supplies current to the leak detection zone. When water leakage occurs around the water leakage detection zone, the conductive wires of the water leakage detection zone are conducted to form a short circuit due to this water leakage. The water leakage detector determines that water leakage has occurred by detecting the switching from the open circuit to the short circuit.

例えば特許文献1では、漏水検知帯の単位長さ当たりの抵抗値(配線抵抗)をもとに、漏水検知帯上の漏水箇所を特定している。また特許文献2のように、漏水箇所の特定はせずに、漏水検知帯の任意の場所で漏水が発生したか、それとも漏水検知帯のいずれの場所においても(全長に亘って)漏水が発生していないか、との二者択一的な検知しか行わない場合もある。   For example, in patent document 1, the water leak location on the water leak detection zone is specified based on the resistance value (wiring resistance) per unit length of the water leak detection zone. In addition, as in Patent Document 2, water leakage occurred at any place in the water leakage detection zone without specifying the water leakage location, or water leakage occurred at any location (over the entire length) of the water leakage detection zone. In some cases, only the alternative detection of whether or not it is performed is performed.

実開平6−62282号公報Japanese Utility Model Publication No. 6-62282 特開平8−166313号公報JP-A-8-166313

ところで、漏水箇所を特定可能な漏水検知帯は、単位長さ当たりの抵抗値を均一に揃える等、導電線の加工に高い精度が求められ、その結果相対的に高価となる。このような漏水検知帯を、例えば大規模ビルの冷媒管に沿って設置するとなると、例えば1km程度の長さに亘って漏水検知帯を敷設しなければならない等、コスト押し上げの原因となる。   By the way, the water leak detection zone which can specify a water leak location is required to have high accuracy in the processing of the conductive wire, for example, uniform resistance values per unit length, and is relatively expensive as a result. If such a water leak detection zone is installed along the refrigerant pipe of a large-scale building, for example, it will cause a cost increase, for example, a water leak detection zone must be laid over a length of about 1 km.

その一方で、漏水箇所を特定しない漏水検知帯は、相対的に低コストとなるものの、漏水の発生を検知したときに、その箇所が例えば全長1kmの冷媒管のどの箇所であるかを特定するのは困難となる。そこで本発明は、従来よりも低コストで漏水箇所の特定が可能な、漏水検知システムを提供することを目的とする。   On the other hand, the water leakage detection zone that does not specify the water leakage location is relatively low cost, but when the occurrence of water leakage is detected, the location is, for example, which portion of the refrigerant pipe has a total length of 1 km. It will be difficult. Then, an object of this invention is to provide the water leak detection system which can pinpoint a water leak location at lower cost than before.

本発明は、漏水検知帯と、前記漏水検知帯に電流を供給するとともに、前記漏水検知帯周辺の漏水により生じる短絡を検知する漏水検知器と、前記漏水検知帯の長手方向に間隔を置いて介在する複数の遮断器と、を備える、漏水検知システムに関する。前記複数の遮断器は、前記漏水検知帯の長手方向に沿った前記漏水検知器との離間距離が長いほど、その定格電流が低くなるように設定される。前記漏水検知器は、前記短絡を検知した際に、前記漏水検知帯に供給する電流を段階的に増加させ、遮断動作により短絡解消した際の当該遮断動作した前記遮断器と、当該遮断器よりも前記漏水検知器からみて一つ下流側の前記遮断器の間の領域を漏水発生箇所と判定する、漏水箇所特定処理を実行する。   The present invention provides a leakage detection zone, a leakage detector for supplying a current to the leakage detection zone, and detecting a short circuit caused by leakage in the vicinity of the leakage detection zone, and an interval in the longitudinal direction of the leakage detection zone. The present invention relates to a water leakage detection system including a plurality of interposed circuit breakers. The plurality of circuit breakers are set such that the rated current decreases as the distance from the water leakage detector along the longitudinal direction of the water leakage detection zone increases. When the water leakage detector detects the short circuit, the current supplied to the water leakage detection zone is increased step by step, and the circuit breaker that has performed the circuit break operation when the short circuit is eliminated by the circuit break operation, and the circuit breaker In addition, a leakage point specifying process is performed in which a region between the circuit breakers on the downstream side as viewed from the leakage detector is determined as a leakage occurrence point.

また、上記発明において、前記漏水検知器は、前記漏水箇所特定処理として、前記短絡を検知した際に、前記漏水検知帯に供給する電流を段階的に増加させ、その電流値が、前記漏水検知器に最も近い前記遮断器の定格電流値を超過するまで、いずれの前記遮断器においても前記遮断動作が生じないときには、前記漏水検知器と当該漏水検知器に最も近い前記遮断器との間の領域を漏水発生箇所と判定するようにしてもよい。   In the above invention, the water leak detector increases the current supplied to the water leak detection zone step by step when the short circuit is detected as the water leak location specifying process, and the current value is the water leak detection. When the breaking action does not occur in any of the breakers until the rated current value of the breaker closest to the breaker is exceeded, between the leak detector and the breaker closest to the leak detector You may make it determine an area | region as a water leak generation | occurrence | production location.

また、上記発明において、前記漏水発生箇所の判定後に、当該漏水発生箇所を記憶する記憶部を備えてもよい。   Moreover, in the said invention, you may provide the memory | storage part which memorize | stores the said water leak occurrence location after the determination of the said water leak occurrence location.

また、本発明の別態様は、漏水検知帯と、前記漏水検知帯に電流を供給するとともに、前記漏水検知帯周辺の漏水により生じる短絡を検知する漏水検知器と、前記漏水検知帯の長手方向に間隔を置いて介在する複数の遮断器と、前記漏水検知器を制御する制御部と、を備える、漏水検知システムに関する。前記複数の遮断器は、前記漏水検知帯の長手方向に沿った前記漏水検知器との離間距離が長いほど、その定格電流値が低くなるように設定される。前記漏水検知器が前記短絡を検知した際に、前記制御部は、前記漏水検知帯に供給する電流を段階的に増加させ、遮断動作により短絡解消した際の当該遮断動作した前記遮断器と、当該遮断器よりも前記漏水検知器からみて一つ下流側の前記遮断器の間の領域を漏水発生箇所と判定する、漏水箇所特定処理を、前記漏水検知器に実行させる。   Further, another aspect of the present invention is a water leakage detection zone, a water leakage detector for supplying a current to the water leakage detection zone and detecting a short circuit caused by water leakage around the water leakage detection zone, and a longitudinal direction of the water leakage detection zone The present invention relates to a leak detection system including a plurality of circuit breakers interposed at intervals and a control unit that controls the leak detector. The plurality of circuit breakers are set such that the rated current value thereof becomes lower as the separation distance from the water leakage detector along the longitudinal direction of the water leakage detection zone is longer. When the water leakage detector detects the short circuit, the control unit gradually increases the current supplied to the water leakage detection zone, and the circuit breaker that has performed the interruption operation when the short circuit is eliminated by the interruption operation, The water leakage detector is caused to execute a water leakage location specifying process in which a region between the circuit breakers on the downstream side of the water leakage detector with respect to the water leakage detector is determined as a water leakage occurrence location.

本発明によれば、従来よりも低コストで漏水箇所の特定が可能となる。   According to the present invention, it is possible to specify the location of water leakage at a lower cost than before.

本実施形態に係る漏水検知システムの構成を例示する図である。It is a figure which illustrates the composition of the water leak detection system concerning this embodiment. 本実施形態に係る漏水検知システムによる漏水検知及び漏水箇所特定処理を説明する図である。It is a figure explaining the water leak detection by the water leak detection system which concerns on this embodiment, and a water leak location specific process. 本実施形態に係る漏水検知システムによる漏水箇所特定処理を例示するフローチャートである。It is a flowchart which illustrates the water leak location specific process by the water leak detection system which concerns on this embodiment. 漏水箇所特定処理における、漏水検知帯への供給電流の変化過程を例示する図である。It is a figure which illustrates the change process of the electric current supplied to a water leak detection zone in a water leak location specific process.

図1に、本実施形態に係る漏水検知システム10を例示する。漏水検知システム10は、漏水検知器12、漏水検知帯14n(n=1、2、3・・・k+1)、遮断器16k(k=1、2、3・・・)、電源18、ブザー20、ランプ22、及びコントローラ24を備える。 FIG. 1 illustrates a water leakage detection system 10 according to this embodiment. The water leakage detection system 10 includes a water leakage detector 12, a water leakage detection zone 14 n (n = 1, 2, 3... K + 1), a circuit breaker 16 k (k = 1, 2, 3...), A power source 18, A buzzer 20, a lamp 22, and a controller 24 are provided.

漏水検知器12、ブザー20、ランプ22、及びコントローラ24は内部バス26によって接続される。これらの機器はBA(Building Automation)に対応可能とするために、通信プロトコルであるBACnet(Building Automation and Control Network)に準拠するものであってよい。   The water leak detector 12, the buzzer 20, the lamp 22, and the controller 24 are connected by an internal bus 26. These devices may be compliant with a communication protocol BACnet (Building Automation and Control Network) in order to be compatible with BA (Building Automation).

コントローラ24は、例えばPLC(プログラマブルロジックコントローラ)であってよく、ブザー20、ランプ22、漏水検知器12をはじめ、内部バス26に接続された種々の機器を制御可能となっている。   The controller 24 may be a PLC (programmable logic controller), for example, and can control various devices connected to the internal bus 26 including the buzzer 20, the lamp 22, and the water leakage detector 12.

コントローラ24は、メモリ28、ユーザインターフェース30(UI)、CPU32及び外部インターフェース34を備える。   The controller 24 includes a memory 28, a user interface 30 (UI), a CPU 32, and an external interface 34.

メモリ28はROM、RAM、ハードディスクドライブ(HDD)等の不揮発性及び揮発性メモリを含んで構成される。メモリ28には、後述する漏水発生箇所が記憶される。CPU32は、メモリ28に記憶された漏水発生箇所を中央監視装置に送信する他、ブザー20に対して警告音の出力指令を出力し、またランプ22に点灯指令を出力する。ユーザインターフェース30は、ユーザの情報を入力する際に用いられ、また情報を表示する際にも用いられる。外部インターフェース34は外部機器との接続やデータ通信に用いられる。   The memory 28 includes nonvolatile and volatile memories such as ROM, RAM, and hard disk drive (HDD). The memory 28 stores a water leak occurrence location which will be described later. The CPU 32 transmits the water leakage occurrence location stored in the memory 28 to the central monitoring device, outputs a warning sound output command to the buzzer 20, and outputs a lighting command to the lamp 22. The user interface 30 is used when inputting user information and is also used when displaying information. The external interface 34 is used for connection with external devices and data communication.

ブザー20はコントローラ24の出力指令を受けて警告音を出力する。後述するように、漏水検知器12が漏水の発生を検知した際には、漏水検知器12からコントローラ24に警告信号(漏水発生信号)が送信され、これを受けてコントローラ24からブザー20に出力指令が送られる。   The buzzer 20 receives the output command from the controller 24 and outputs a warning sound. As will be described later, when the water leakage detector 12 detects the occurrence of water leakage, a warning signal (water leakage generation signal) is transmitted from the water leakage detector 12 to the controller 24 and is received from the controller 24 and output to the buzzer 20. A command is sent.

同様にして、ランプ22はいわゆる警告ランプであり、コントローラ24の点灯指令を受けて点灯する。後述するように、漏水検知器12が漏水の発生を検知した際には、漏水検知器12からコントローラ24に警告信号が送信され、これを受けてコントローラ24からランプ22に点灯指令が送られる。   Similarly, the lamp 22 is a so-called warning lamp and lights up in response to a lighting command from the controller 24. As will be described later, when the water leakage detector 12 detects the occurrence of water leakage, a warning signal is transmitted from the water leakage detector 12 to the controller 24, and a lighting command is transmitted from the controller 24 to the lamp 22.

漏水検知帯14は、少なくとも2つの導電線が非導通の状態で延設されることで構成される。図1では便宜上、導電線を2本のみ並行して延設させているが、この形態に限らない。例えば3本以上の導電線を撚り合わせた撚線状としてもよい。これら複数の導電線は、例えば吸水性の絶縁被覆で覆われている。これら導電線はいずれも、一端が漏水検知器12に接続され、他端は開放される。漏水検知帯14周辺で漏水が発生すると、その液体が絶縁被覆に吸水され、吸水された液体を介して導電線同士が導通する。   The water leakage detection zone 14 is configured by extending at least two conductive wires in a non-conductive state. In FIG. 1, for convenience, only two conductive wires are extended in parallel, but this is not a limitation. For example, it may be a twisted wire shape in which three or more conductive wires are twisted together. The plurality of conductive wires are covered with a water-absorbing insulating coating, for example. Each of these conductive wires has one end connected to the water leak detector 12 and the other end opened. When water leakage occurs around the water leakage detection zone 14, the liquid is absorbed by the insulating coating, and the conductive wires are conducted through the absorbed liquid.

なお、本実施形態では、漏水検知帯14は遮断器16kによって複数の領域14n(n=1、2、3、・・・k+1)に分割されている。このような構成を備えることで、後述するように、漏水箇所をこの分割領域単位で特定することができる。ここで、図1では説明の便宜上、漏水検知器12から漏水検知帯14の長手方向に沿って遠いほど若い番号が振られている。 In the present embodiment, the water leakage detection zone 14 is divided into a plurality of regions 14 n (n = 1, 2, 3,... K + 1) by the circuit breaker 16 k . By providing such a configuration, it is possible to specify a water leak location in units of the divided areas as described later. Here, in FIG. 1, for convenience of explanation, a younger number is assigned as the distance from the leak detector 12 increases in the longitudinal direction of the leak detection zone 14.

遮断器16は、漏水検知帯14の長手方向に間隔を置いて、当該漏水検知帯14に介在する。例えば、遮断器16kは、漏水検知帯14k+1と14kとの間に介在する。遮断器16の配置間隔は、例えば空調システムの冷媒管に漏水検知帯14を設置するときには、冷媒管が敷設される天井のパネルを開いたときに、作業者が目視できる範囲を、隣り合う遮断器16の配置間隔としてもよい。 The circuit breaker 16 is interposed in the water leakage detection zone 14 with an interval in the longitudinal direction of the water leakage detection zone 14. For example, the circuit breaker 16 k is interposed between the water leakage detection zones 14 k + 1 and 14 k . For example, when the water leakage detection zone 14 is installed in the refrigerant pipe of the air conditioning system, the circuit breaker 16 is arranged adjacent to the area where the operator can visually check when the ceiling panel on which the refrigerant pipe is laid is opened. It is good also as the arrangement interval of the device 16.

遮断器16は、例えばバイメタル36を含んで構成される。バイメタル36は、漏水検知帯14の並行する複数の導電線のうち、少なくとも一つに接続されていればよい。コスト抑制の観点から、漏水検知帯14の複数の導電線のうち、一つのみにバイメタル36を接続させることが好適である。   The circuit breaker 16 includes a bimetal 36, for example. The bimetal 36 may be connected to at least one of the plurality of parallel conductive lines of the water leakage detection zone 14. From the viewpoint of cost reduction, it is preferable to connect the bimetal 36 to only one of the plurality of conductive lines of the water leakage detection zone 14.

なお、図1に例示する遮断器16はいわゆるボックス型であり、既存の漏水検知帯14への設置が容易になっている。すなわち、漏水検知帯14の導電線の束を任意の箇所で切断し、一つの導電線(切断前は一本の導電線であった一組)にバイメタル36を接続する。他の導電線には渡り線等の接続配線部材を接続させる。   In addition, the circuit breaker 16 illustrated in FIG. 1 is a so-called box type, and is easily installed in the existing water leak detection zone 14. That is, the bundle of conductive wires of the water leakage detection zone 14 is cut at an arbitrary location, and the bimetal 36 is connected to one conductive wire (a set of one conductive wire before cutting). A connecting wiring member such as a jumper wire is connected to the other conductive wires.

また、遮断器16は、漏水検知帯14の長手方向に沿った、漏水検知器12との離間距離が長いほど、その定格電流が低くなるように設定されている。すなわち図1の例では、各遮断器16kの定格電流Irkは、Ir1 < Ir2 <Ir3となる。このように構成することで、後述する漏水箇所特定処理において、漏水検知帯14に供給する電流値を上げていくと、漏水検知器12から遠い(漏水検知帯14の長手方向に沿って遠い)遮断器16から順に遮断することになる。 Moreover, the circuit breaker 16 is set so that the rated current becomes lower as the distance from the water leakage detector 12 along the longitudinal direction of the water leakage detection zone 14 is longer. That is, in the example of FIG 1, rated current Ir k of each breaker 16 k becomes Ir 1 <Ir 2 <Ir 3 . By comprising in this way, in the leak location specific process mentioned later, when the electric current value supplied to the leak detection zone 14 is raised, it is far from the leak detector 12 (far along the longitudinal direction of the leak detection zone 14). The circuit breaker 16 is sequentially disconnected.

漏水検知器12は、内部バス26に接続され、コントローラ24との通信が可能となっている。漏水検知器12は、メモリ38、ユーザインターフェース40(UI)、CPU42、外部インターフェース44、及び電流センサ46を備える。   The water leak detector 12 is connected to the internal bus 26 and can communicate with the controller 24. The water leak detector 12 includes a memory 38, a user interface 40 (UI), a CPU 42, an external interface 44, and a current sensor 46.

メモリ38はROM、RAM、ハードディスクドライブ(HDD)等の不揮発性及び揮発性メモリを含んで構成される。メモリ38には、漏水検知帯14が開放回路を形成しているときの電流センサ46の値、つまり平常値(例えば0A)と、短絡回路を形成したときの電流センサ46の値、つまり漏水発生判定を行う閾値Ith(例えば数μA)が記憶されている。また、メモリ38には、後述する漏水箇所特定処理を実行するためのプログラム等が記憶されている。 The memory 38 includes nonvolatile and volatile memories such as a ROM, a RAM, and a hard disk drive (HDD). In the memory 38, the value of the current sensor 46 when the water leakage detection zone 14 forms an open circuit, that is, a normal value (for example, 0 A), and the value of the current sensor 46 when a short circuit is formed, that is, the occurrence of water leakage A threshold value I th (for example, several μA) for determination is stored. Further, the memory 38 stores a program for executing a water leak location specifying process described later.

CPU42は上述する漏水箇所特定処理を実行する他、電流センサ46の測定値とメモリ38に記憶された閾値とを比較して、漏水の発生有無を判定する。ユーザインターフェース40は、ユーザが情報を入力する際に用いられ、また情報を表示する際にも用いられる。外部インターフェース44は外部機器との接続やデータ通信に用いられる。   In addition to executing the above-described water leakage location specifying process, the CPU 42 compares the measured value of the current sensor 46 with the threshold value stored in the memory 38 to determine whether or not water leakage has occurred. The user interface 40 is used when the user inputs information, and is also used when displaying information. The external interface 44 is used for connection with external devices and data communication.

<漏水検知>
図2を用いて、漏水検知器12による、漏水検知(漏水発生の有無検知)処理を説明する。漏水検知器12は、電源18から漏水検知帯14の少なくとも一つの導電線に対して常時電流を供給する(モニタリング電流I0)。漏水が発生していないときには、導電線同士は絶縁被覆され互いに非導通なので、供給電流が直流電流の場合、電流センサ46の測定値は理論上0Aとなる。
<Water leakage detection>
With reference to FIG. 2, the water leakage detection (detection of occurrence of water leakage) processing by the water leakage detector 12 will be described. The water leakage detector 12 constantly supplies a current from the power source 18 to at least one conductive line of the water leakage detection zone 14 (monitoring current I 0 ). When water leakage does not occur, the conductive wires are insulated and non-conductive with each other. Therefore, when the supply current is a direct current, the measured value of the current sensor 46 is theoretically 0A.

図2のように漏水検知帯14の任意の箇所にて漏水48が発生すると、導電線を覆う絶縁被覆がこの液体を吸水してその結果導電線同士が短絡する。これにより、図2の破線で示すような短絡回路Lが形成される。短絡回路の形成により、電流センサ46の測定値は閾値Ith以上となる。漏水検知器12は、電流センサ46の測定値が平常値(0A)から閾値Ith以上に切り替わったことを検知すると、漏水が発生したと判定(検知)する。当該判定に基づいて、漏水検知器12は警報信号を出力する。当該警報信号はコントローラ24に送信される。コントローラ24では、警報信号を受けて、ブザー20に出力指令を送信し、ランプ22に点灯指令を送信する。 As shown in FIG. 2, when water leakage 48 occurs at an arbitrary location in the water leakage detection zone 14, the insulating coating that covers the conductive wires absorbs the liquid, and as a result, the conductive wires are short-circuited. Thereby, the short circuit L as shown with the broken line of FIG. 2 is formed. Due to the formation of the short circuit, the measured value of the current sensor 46 becomes equal to or greater than the threshold value I th . When the water leakage detector 12 detects that the measured value of the current sensor 46 is switched from the normal value (0 A) to the threshold value I th or more, it determines (detects) that water leakage has occurred. Based on the determination, the water leakage detector 12 outputs an alarm signal. The alarm signal is transmitted to the controller 24. In response to the alarm signal, the controller 24 transmits an output command to the buzzer 20 and transmits a lighting command to the lamp 22.

<漏水発生箇所の特定>
漏水発生判定に続き、漏水検知器12は、漏水箇所を特定する。図3には、漏水箇所特定処理のフローチャートが例示されている。短絡、すなわち漏水の発生が検知されると、漏水検知器12は、図4に示すように、モニタリング電流I0から、漏水検知帯14に供給する電流を段階的に増加させる。具体的には、漏水検知器12は、モニタリング電流I0から、遮断器161の定格電流Ir1を超過し、かつ遮断器162の定格電流Ir2以下となる電流I1(Ir1 < I1 ≦Ir2)に、供給電流を嵩上げする(S10)。
<Identification of the location of water leakage>
Following the water leak occurrence determination, the water leak detector 12 identifies the water leak location. FIG. 3 illustrates a flowchart of the water leak location specifying process. When a short circuit, that is, occurrence of water leakage is detected, the water leakage detector 12 gradually increases the current supplied to the water leakage detection zone 14 from the monitoring current I 0 as shown in FIG. Specifically, leakage detector 12, the monitoring current I 0, exceeds the rated current Ir 1 of the circuit breaker 16 1, and the circuit breaker 16 and second current I 1 as a rated current Ir 2 below (Ir 1 < The supply current is raised to I 1 ≦ Ir 2 ) (S10).

このとき、仮に、短絡回路Lに遮断器161が含まれているならば、電流I1の供給に伴って遮断器161が遮断動作し、短絡回路Lは開放状態になる(短絡解消する)。これに伴い、電流センサ46の測定値は閾値Ith未満となる。漏水検知器12は、電流センサ46の測定値を参照し、その値が閾値Ith未満であるか否かを判定する(S12)。 At this time, if the circuit breaker 16 1 is included in the short circuit L, the circuit breaker 16 1 performs an interruption operation with the supply of the current I 1 , and the short circuit L is opened (the short circuit is eliminated). ). Accordingly, the measured value of the current sensor 46 is less than the threshold value I th . The water leak detector 12 refers to the measured value of the current sensor 46 and determines whether or not the value is less than the threshold value I th (S12).

なお、遮断器16のバイメタル36にジュール熱が蓄積して遮断動作に至るまでの期間を考慮して、電流をI0からI1に切り替えるステップS10からステップS12の判定タイミングまで、所定の待ち時間を設定してもよい。 In consideration of the period from when Joule heat is accumulated in the bimetal 36 of the circuit breaker 16 to the circuit breaking operation, a predetermined waiting time is required from step S10 to step S12 for switching the current from I 0 to I 1. May be set.

図2に示す例では、短絡回路Lに遮断器161は含まれていないので、電流をI0からI1に切り上げても、短絡回路Lは開放されない。これを受けて漏水検知器12は、電流値Ikが漏水検知器12に最も近い、つまり、定格電流が最も高い遮断器16kmaxが遮断動作する最大電流値Ikmax(Irkmax < Ikmax)に設定されているか否かを判定する(S14)。まだ最大電流値Ikmaxに設定されていない場合、漏水検知器12はステップS10に戻り、電流値のサフィックスkをインクリメントする。すなわち漏水検知器12は、図4に示すように、電流I1から、遮断器162の定格電流を超過し、かつ遮断器163の定格電流以下となる電流I2に、供給電流を嵩上げする。 In the example shown in FIG. 2, since the short circuit L does not include the circuit breaker 16 1 , the short circuit L is not opened even when the current is rounded up from I 0 to I 1 . In response to this, the leak detector 12 has the current value I k closest to the leak detector 12, that is, the maximum current value I kmax (Ir kmax <I kmax ) at which the breaker 16 kmax having the highest rated current operates. It is determined whether it is set to (S14). If the maximum current value I kmax has not yet been set, the water leakage detector 12 returns to step S10 and increments the suffix k of the current value. That leak detector 12, as shown in FIG. 4, the current I 1, exceeds the rated current of the circuit breaker 16 2, and the current I 2 equal to or less than the rated current of the circuit breaker 16 3, raising the supply current To do.

電流I2が供給されることで、短絡回路Lに含まれる遮断器162が遮断動作する。これに伴い短絡回路Lが開放され(短絡解消され)、電流センサ46の測定値は電流Ith未満となる。このとき、漏水検知器12は、供給電流のサフィックスkについて、k=1であるか否かを判定する(S16)。 By supplying the current I 2 , the circuit breaker 16 2 included in the short circuit L is cut off. Along with this, the short circuit L is opened (short circuit is eliminated), and the measured value of the current sensor 46 becomes less than the current I th . At this time, the water leakage detector 12 determines whether or not k = 1 for the suffix k of the supply current (S16).

図2の例では、k≠1(k=2)であることから、漏水検知器12は、遮断動作した遮断器162とそれより一つ下流側の遮断器161の間の領域、つまり、漏水検知帯142を漏水発生箇所と判定する(S18)。 In the example of FIG. 2, since k ≠ 1 (k = 2), the water leakage detector 12 is a region between the circuit breaker 16 2 that has performed a circuit break operation and the circuit breaker 16 1 on the downstream side, that is, The water leakage detection zone 14 2 is determined as a water leakage occurrence location (S18).

ここで、図2に示す例では、2つの遮断器16に挟まれた領域に漏水箇所があり、遮断動作した遮断器16とそれよりも漏水検知器12から見て一つ下流側の遮断器16との間の領域を漏水発生箇所と判定していたが、漏水発生箇所が2つの遮断器16に挟まれない場合は、以下のように判定する。   Here, in the example shown in FIG. 2, there is a water leakage point in a region sandwiched between two circuit breakers 16, and one circuit breaker on the downstream side as viewed from the circuit breaker 16 that has performed the circuit breakage and the water leakage detector 12. Although the area between 16 was determined to be a leak occurrence location, when the leak occurrence location is not sandwiched between the two circuit breakers 16, it is determined as follows.

電流値I1のときにステップS12にて電流センサ46の測定値が閾値Ithを下回った場合、ステップS16からステップS20に進む。漏水検知器12は、最下流の遮断器161よりも下流側の漏水検知帯14の末端領域141を漏水発生箇所と判定する(S20)。 If the measured value of the current sensor 46 at step S12 when the current value I 1 is below the threshold value I th, the process proceeds from step S16 to step S20. Water leak detector 12 determines that the leakage occurrence point the terminal region 14 1 of the leak detection zone 14 downstream of the circuit breaker 16 1 most downstream (S20).

一方、ステップS10、S12、S14が繰り返され、漏水検知器12に最も近い、すなわち、定格電流Irkが最も高い遮断器163が遮断動作する最大電流値I3(k=kmax=3、Ir3 < I3)となるように供給電流Ikが設定される。これによっても短絡回路Lが開放されない場合、言い換えると、いずれの遮断器161,162,163においても遮断動作が生じない場合は、漏水検知器12は、遮断器163と漏水検知器12の間の領域、つまり漏水検知帯144を漏水発生箇所と判定する(S22)。 On the other hand, steps S10, S12 and S14 are repeated, and the maximum current value I 3 (k = kmax = 3, Ir) closest to the water leakage detector 12, that is, the circuit breaker 16 3 having the highest rated current Ir k operates. The supply current I k is set so that 3 <I 3 ). If the short circuit L is not opened by this, in other words, if no breaking operation occurs in any of the circuit breakers 16 1 , 16 2 , 16 3 , the water leakage detector 12 is connected to the circuit breaker 16 3 and the water leakage detector. the region between the 12, i.e. determines water leak detection zone 14 4 and leak occurrence point (S22).

ステップS18、S20、及びS22にて漏水発生箇所が判定されると、漏水検知器12は、漏水発生箇所をメモリ38(記憶部)に記録するとともにコントローラ24に通報する(S24)。漏水規模が比較的小さい場合、短絡回路Lの形成に伴う発熱で液体が蒸発し、漏水箇所の確認が困難となる場合があるが、このように、漏水発生箇所の判定後、直ちにその箇所を記録することで、容易に確認作業が行える。   When the leak occurrence location is determined in steps S18, S20, and S22, the leak detector 12 records the leak occurrence location in the memory 38 (storage unit) and notifies the controller 24 (S24). If the scale of water leakage is relatively small, the liquid may evaporate due to the heat generated by the formation of the short circuit L, making it difficult to confirm the location of the water leakage. By recording, confirmation work can be easily performed.

さらに漏水検知器12は、漏水検知帯14に供給する電流値を平常値I0に戻す(S26)。これにより、大電流の供給による漏水検知帯14の負荷が低減される。 Furthermore, the water leak detector 12 returns the current value supplied to the water leak detection zone 14 to the normal value I 0 (S26). Thereby, the load of the water leak detection zone 14 by supply of a large current is reduced.

<別の実施形態>
上述の実施形態では、漏水検知器12が漏水箇所特定処理を実行していたが、この形態に限らない。例えば上述したように、漏水検知器12は漏水発生の有無検知を行い、その結果、漏水が発生した旨の警報信号がコントローラ24(制御部)に送られる。コントローラ24では、警報信号を受けて、漏水検知器12に対して漏水箇所特定処理を実行するように漏水検知器12を操作してもよい。
<Another embodiment>
In the above-described embodiment, the water leak detector 12 executes the water leak location specifying process, but the present invention is not limited to this mode. For example, as described above, the water leakage detector 12 detects the presence or absence of water leakage, and as a result, an alarm signal indicating that water leakage has occurred is sent to the controller 24 (control unit). In the controller 24, the water leak detector 12 may be operated so as to execute a water leak location specifying process for the water leak detector 12 in response to the alarm signal.

具体的には、図3の漏水箇所特定処理のフローチャートにおいて、コントローラ24から漏水検知器12に対して、モニタリング電流I0から電流I1に供給電流を嵩上げする指令を送る(S10)。コントローラ24は電流センサ46の測定値を参照し、その値が閾値Ith未満であるか否かを判定する(S12)。 Specifically, in the flowchart of the water leakage location specifying process of FIG. 3, the controller 24 sends a command for raising the supply current from the monitoring current I 0 to the current I 1 to the water leakage detector 12 (S10). The controller 24 refers to the measurement value of the current sensor 46, it determines whether the value is less than the threshold value I th (S12).

電流センサ46の測定値が電流Ith未満であるとき、コントローラ24は、供給電流のサフィックスkについて、k=1であるか否かを判定し(S16)、漏水検知帯14の末端領域141を漏水発生箇所と判定する(S20)。 When the measured value of the current sensor 46 is less than the current I th, the controller 24, the suffix k of the supply current, it is determined whether or not k = 1 (S16), distal region 14 1 of water leakage detecting band 14 Is determined as a water leak occurrence location (S20).

ステップS12にて電流センサ46の測定値が電流Ith以上であるとき、コントローラ24は、電流値Ikが最大電流値Ikmaxに設定されているか否かを判定し(S14)、まだ最大電流値Ikmaxに設定されていない場合、ステップS10に戻り、電流値のサフィックスkをインクリメントする。 When the measured value of the current sensor 46 at step S12 is a current I th or more, the controller 24 determines whether or not the current value I k is set to the maximum current value I kmax (S14), yet the maximum current If the value I kmax is not set, the process returns to step S10 to increment the suffix k of the current value.

電流値のサフィックスkがインクリメントされ、電流値Ikが段階的に増加された後、コントローラ24は電流センサ46の測定値を参照する(S12)。参照した測定値が閾値Ith未満である場合、コントローラ24は、短絡解消した遮断器16kと下流側に隣接する遮断器16k-1の間の領域、つまり、漏水検知帯14kを漏水発生箇所と判定する(S18)。 After the current value suffix k is incremented and the current value I k is increased stepwise, the controller 24 refers to the measured value of the current sensor 46 (S12). When the measured value referred to is less than the threshold value I th , the controller 24 leaks the region between the circuit breaker 16 k that has cleared the short circuit and the circuit breaker 16 k-1 adjacent to the downstream side, that is, the water leakage detection zone 14 k . The occurrence location is determined (S18).

また、最大電流I3を供給しても遮断動作が生じないときには、コントローラ24は、遮断器163と漏水検知器12の間の領域、つまり漏水検知帯144を漏水発生箇所と判定する(S22)。 Further, when the shut-off operation does not occur even when the maximum current I 3 is supplied, the controller 24 determines that the region between the breaker 16 3 and the water leak detector 12, that is, the water leak detection zone 14 4 is the location where the water leak has occurred ( S22).

ステップS18、S20、及びS22にて漏水発生箇所が判定されると、コントローラ24は、漏水発生箇所をメモリ28に記録するとともに中央監視装置に通報する(S24)。さらにコントローラ24は、漏水検知帯14に供給する電流値を平常値I0に戻す(S26)。 When the leak occurrence location is determined in steps S18, S20, and S22, the controller 24 records the leak occurrence location in the memory 28 and notifies the central monitoring device (S24). Furthermore, the controller 24 returns the current value supplied to the water leakage detection zone 14 to the normal value I 0 (S26).

このように、本実施形態では、漏水検知器12のメモリ38には漏水箇所特定処理のプログラムを記憶させずに、コントローラ24が遠隔操作で漏水検知器12に対して漏水箇所特定処理を実行させる。これにより、既存の、つまり漏水検知の機能のみしか持たない漏水検知器12に対しても、本実施形態に係る漏水箇所特定処理が実行可能となる。   As described above, in the present embodiment, the controller 24 causes the leak detector 12 to execute the leak point specifying process by remote operation without storing the leak point specifying process program in the memory 38 of the leak detector 12. . Thereby, the water leak location specifying process according to the present embodiment can be executed even for the existing water leak detector 12 that has only the water leak detection function.

具体的には、既存の漏水検知帯14を適宜分割して遮断器16を介在させるとともに、既存の漏水検知器12のCPU42が受け入れ可能なプロトコルで、コントローラ24から漏水箇所特定処理の指令を適宜出力することで、本実施形態に係る漏水検知システム10を構築できる。   Specifically, the existing water leak detection zone 14 is appropriately divided and the circuit breaker 16 is interposed, and the controller 24 accepts a water leak location specifying command from the controller 24 according to a protocol that the CPU 42 of the existing water leak detector 12 can accept. By outputting, the water leak detection system 10 according to the present embodiment can be constructed.

10 漏水検知システム、12 漏水検知器、14 漏水検知帯、16 遮断器、18 電源、20 ブザー、22 ランプ、24 コントローラ、36 バイメタル、46 電流センサ。   10 Water Leakage Detection System, 12 Water Leakage Detector, 14 Water Leakage Detection Zone, 16 Circuit Breaker, 18 Power Supply, 20 Buzzer, 22 Lamp, 24 Controller, 36 Bimetal, 46 Current Sensor.

Claims (4)

漏水検知帯と、
前記漏水検知帯に電流を供給するとともに、前記漏水検知帯周辺の漏水により生じる短絡を検知する漏水検知器と、
前記漏水検知帯の長手方向に間隔を置いて介在する複数の遮断器と、
を備える、漏水検知システムであって、
前記複数の遮断器は、前記漏水検知帯の長手方向に沿った前記漏水検知器との離間距離が長いほど、その定格電流値が低くなるように設定され、
前記漏水検知器は、前記短絡を検知した際に、前記漏水検知帯に供給する電流を段階的に増加させ、遮断動作により短絡解消した際の当該遮断動作した前記遮断器と、当該遮断器よりも前記漏水検知器からみて一つ下流側の前記遮断器の間の領域を漏水発生箇所と判定する、漏水箇所特定処理を実行する、
ことを特徴とする、漏水検知システム。
A leak detection zone,
A water leak detector for supplying a current to the water leak detection zone and detecting a short circuit caused by water leak around the water leak detection zone,
A plurality of circuit breakers interposed at intervals in the longitudinal direction of the water leakage detection zone;
A water leakage detection system comprising:
The plurality of circuit breakers are set so that the rated current value is lower as the separation distance from the water leakage detector along the longitudinal direction of the water leakage detection zone is longer.
When the water leakage detector detects the short circuit, the current supplied to the water leakage detection zone is increased step by step, and the circuit breaker that has performed the circuit break operation when the short circuit is eliminated by the circuit break operation, and the circuit breaker Also determine a region between the circuit breakers on the one downstream side as seen from the water leak detector as a water leak occurrence location, and execute a water leak location specifying process.
A water leakage detection system characterized by that.
請求項1に記載の漏水検知システムであって、
前記漏水検知器は、前記漏水箇所特定処理として、前記短絡を検知した際に、前記漏水検知帯に供給する電流を段階的に増加させ、その電流値が、前記漏水検知器に最も近い前記遮断器の定格電流値を超過するまで、いずれの前記遮断器においても前記遮断動作が生じないときには、前記漏水検知器と当該漏水検知器に最も近い前記遮断器との間の領域を漏水発生箇所と判定する、
ことを特徴とする、漏水検知システム。
The water leakage detection system according to claim 1,
The water leakage detector increases the current supplied to the water leakage detection zone step by step when the short circuit is detected as the water leakage location specifying process, and the current value is closest to the water leakage detector. When the breaking operation does not occur in any of the breakers until the rated current value of the breaker is exceeded, a region between the leak detector and the breaker closest to the leak detector is defined as a leak occurrence point. judge,
A water leakage detection system characterized by that.
請求項1または2に記載の漏水検知システムであって、
前記漏水発生箇所の判定後に、当該漏水発生箇所を記憶する記憶部を備えることを特徴とする、漏水検知システム。
The water leakage detection system according to claim 1 or 2,
A water leak detection system comprising a storage unit for storing the water leak occurrence location after determination of the water leak occurrence location.
漏水検知帯と、
前記漏水検知帯に電流を供給するとともに、前記漏水検知帯周辺の漏水により生じる短絡を検知する漏水検知器と、
前記漏水検知帯の長手方向に間隔を置いて介在する複数の遮断器と、
前記漏水検知器を制御する制御部と、
を備える、漏水検知システムであって、
前記複数の遮断器は、前記漏水検知帯の長手方向に沿った前記漏水検知器との離間距離が長いほど、その定格電流値が低くなるように設定され、
前記漏水検知器が前記短絡を検知した際に、前記制御部は、前記漏水検知帯に供給する電流を段階的に増加させ、遮断動作により短絡解消した際の当該遮断動作した前記遮断器と、当該遮断器よりも前記漏水検知器からみて一つ下流側の前記遮断器の間の領域を漏水発生箇所と判定する、漏水箇所特定処理を、前記漏水検知器に実行させる、
ことを特徴とする、漏水検知システム。
A leak detection zone,
A water leak detector for supplying a current to the water leak detection zone and detecting a short circuit caused by water leak around the water leak detection zone,
A plurality of circuit breakers interposed at intervals in the longitudinal direction of the water leakage detection zone;
A control unit for controlling the water leakage detector;
A water leakage detection system comprising:
The plurality of circuit breakers are set so that the rated current value is lower as the separation distance from the water leakage detector along the longitudinal direction of the water leakage detection zone is longer.
When the water leakage detector detects the short circuit, the control unit gradually increases the current supplied to the water leakage detection zone, and the circuit breaker that has performed the interruption operation when the short circuit is eliminated by the interruption operation, Determining the region between the circuit breakers on the downstream side as viewed from the water leakage detector relative to the circuit breaker as a water leakage occurrence location, causing the water leakage detector to execute a water leakage location specifying process,
A water leakage detection system characterized by that.
JP2016142968A 2016-07-21 2016-07-21 Water leak detection system Active JP6482503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016142968A JP6482503B2 (en) 2016-07-21 2016-07-21 Water leak detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142968A JP6482503B2 (en) 2016-07-21 2016-07-21 Water leak detection system

Publications (2)

Publication Number Publication Date
JP2018013407A JP2018013407A (en) 2018-01-25
JP6482503B2 true JP6482503B2 (en) 2019-03-13

Family

ID=61019542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142968A Active JP6482503B2 (en) 2016-07-21 2016-07-21 Water leak detection system

Country Status (1)

Country Link
JP (1) JP6482503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998908B2 (en) * 2018-04-18 2022-01-18 タツタ電線株式会社 Position detection system and position detection method
CN108519200B (en) * 2018-04-28 2023-10-13 出门问问信息科技有限公司 Monitoring system and monitoring method for circuit board
JP6971920B2 (en) * 2018-06-22 2021-11-24 三菱電機ビルテクノサービス株式会社 Leakage detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221143A (en) * 1982-06-16 1983-12-22 Kubota Ltd Leakage detector for heat insulation pipeline
JPH0259636A (en) * 1988-08-25 1990-02-28 Taikisha Ltd Liquid leakage detector
JPH0544761Y2 (en) * 1988-12-15 1993-11-15
JP3375710B2 (en) * 1993-03-30 2003-02-10 タツタ電線株式会社 Liquid leak detection device
JP2004170333A (en) * 2002-11-22 2004-06-17 Maeda Corp Water leakage position detector
AT501758B1 (en) * 2005-07-13 2006-11-15 Bier Guenther Ing METHOD OF LOCATING LEAKAGE IN TUBE
JP5452902B2 (en) * 2008-01-21 2014-03-26 スリーエム イノベイティブ プロパティズ カンパニー Liquid leakage detection system and liquid leakage detection method

Also Published As

Publication number Publication date
JP2018013407A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
RU2654046C2 (en) Distributed arc fault protection between outlet and circuit breaker
US7801648B2 (en) Automatic trip device and control method thereof
JP6482503B2 (en) Water leak detection system
JP6580881B2 (en) Power measuring apparatus and power management method
KR102369649B1 (en) Outlet module capable of pre-fire prevention and production equipment applying the same
KR101875028B1 (en) Monitoring and Managing system for preventing collapse of telegraph poles
US20060165023A1 (en) Wireless gateway and controller for network protector relays
JP6851955B2 (en) Leakage detection system
US11367336B2 (en) Short-circuit isolator
KR20190001203U (en) Bus duct temperature monitoring system having warning light
EP3699619B1 (en) Wiring-integrity automatic monitoring system having improved features
JP2016014584A (en) Abnormality detection device for vehicle charge cable
CN210983664U (en) Cable type linear temperature-sensing fire detector capable of alarming fire when circuit is broken
JP6278815B2 (en) Terminal block and power equipment
KR200423095Y1 (en) Automatic trip device for interrupting power, network system using it and controlling method thereof
CN112447017B (en) Cable type linear temperature-sensing fire detector for alarming fire during circuit breaking
JP6045619B2 (en) Power plug temperature detection circuit
JP7016461B1 (en) Digital Electric Safety Control System
TWI824524B (en) Plug in device for electric power transmission bus and connecting method
WO2020066413A1 (en) Device for predicting disconnection of electrical line
CN118393263B (en) Cable performance detection data processing method and system
CN107152977A (en) A kind of intelligent Bus monitoring system detected based on partial node
JP2018196232A (en) Power supply control system and power supply control method
CN117269669A (en) Street code safety monitoring method and device and computer equipment
JP2022029998A (en) Circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250