JP6482401B2 - Linear motor cooling unit - Google Patents

Linear motor cooling unit Download PDF

Info

Publication number
JP6482401B2
JP6482401B2 JP2015123700A JP2015123700A JP6482401B2 JP 6482401 B2 JP6482401 B2 JP 6482401B2 JP 2015123700 A JP2015123700 A JP 2015123700A JP 2015123700 A JP2015123700 A JP 2015123700A JP 6482401 B2 JP6482401 B2 JP 6482401B2
Authority
JP
Japan
Prior art keywords
flat plate
cooling unit
cooling
flow path
plate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015123700A
Other languages
Japanese (ja)
Other versions
JP2017011846A (en
Inventor
池田 隆
隆 池田
道太郎 臼井
道太郎 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2015123700A priority Critical patent/JP6482401B2/en
Priority to TW105118777A priority patent/TWI601365B/en
Priority to KR1020160075323A priority patent/KR101865333B1/en
Priority to CN201610435807.7A priority patent/CN106257806B/en
Publication of JP2017011846A publication Critical patent/JP2017011846A/en
Application granted granted Critical
Publication of JP6482401B2 publication Critical patent/JP6482401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges

Description

本発明は、リニアモータの冷却ユニットに関する。   The present invention relates to a cooling unit for a linear motor.

リニアモータのコイルを冷却する冷却ユニットとして、内部を冷媒が流れる2枚の平板状の冷却部と、外部から冷媒が流入し、冷却部に冷媒を供給する流入部と、冷却部からの冷媒が流出する流出部と、を備える冷却ユニットが知られている(例えば特許文献1)。この冷却ユニットでは、2枚の冷却部によってコイルを挟み込み、発熱するコイルを冷却する。   As a cooling unit for cooling the coil of the linear motor, two flat plate-like cooling units in which the refrigerant flows inside, an inflow unit for supplying the refrigerant to the cooling unit from the outside, and a refrigerant from the cooling unit A cooling unit including an outflow portion that flows out is known (for example, Patent Document 1). In this cooling unit, the coil is sandwiched between two cooling units to cool the coil that generates heat.

特開2013−207838号公報JP 2013-207838 A

特許文献1に記載される冷却ユニットでは、流入部および流出部と2枚の平板状の冷却部とは、冷媒が漏れるのを抑止するためのOリングを間に挟み込んだ状態で締結される。   In the cooling unit described in Patent Document 1, the inflow portion and the outflow portion and the two flat plate-like cooling portions are fastened with an O-ring interposed between them for preventing the refrigerant from leaking.

Oリングを挟み込んだ状態で締結すると、Oリングの反発力で冷却部が押されて冷却部が変形しうる。そのため、流路内にリブ部材を設け、Oリングに押される部分を流路内側から押さえることが考えられる。しかしながら、流路内にリブを設けると、その分だけ流路が狭くなり、圧力損失が大きくなる。したがって、冷却部の変形を抑止することはそれほど単純ではない。   If it fastens in the state where the O-ring was inserted, the cooling part could be pushed by the repulsive force of the O-ring, and the cooling part could be deformed. For this reason, it is conceivable to provide a rib member in the flow path and hold the portion pressed by the O-ring from the inside of the flow path. However, if ribs are provided in the flow path, the flow path is narrowed by that amount, and the pressure loss is increased. Therefore, it is not so simple to suppress the deformation of the cooling section.

本発明は、こうした状況に鑑みてなされたものであり、その目的は、冷却部の圧力損失の増大を抑止しつつも冷却部の変形を抑止できるリニアモータの冷却ユニットを提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the cooling unit of the linear motor which can suppress a deformation | transformation of a cooling part, suppressing the increase in the pressure loss of a cooling part.

上記課題を解決するために、本発明のある態様のリニアモータの冷却ユニットは、リニアモータの駆動部を構成するコイルを冷却するための冷却ユニットであって、コイルに密着してコイルを冷却するための冷却部を備える。冷却部は、第1部材と、第1部材に重なる第2部材と、リブ部材と、を含む。第2部材に合わさる第1部材の面には凹部が形成され、凹部と、第1部材と合わさる第2部材の面との隙間は、コイルを冷却するための冷媒の流路を形成し、リブ部材は、第1部材または第2部材の一方に固定され、隙間内において第1部材または第2部材の他方に当接し、流路の一部は、リブ部材によって複数の分割流路に分割され、複数の分割流路の少なくとも1つを形成する第2部材の面の部分に拡大凹部が形成されている。   In order to solve the above-described problems, a cooling unit for a linear motor according to an aspect of the present invention is a cooling unit for cooling a coil constituting a drive unit of the linear motor, and cools the coil in close contact with the coil. A cooling part for the purpose. The cooling unit includes a first member, a second member overlapping the first member, and a rib member. A concave portion is formed on the surface of the first member that meets the second member, and a gap between the concave portion and the surface of the second member that mates with the first member forms a refrigerant flow path for cooling the coil, and ribs The member is fixed to one of the first member and the second member, contacts the other of the first member or the second member in the gap, and a part of the flow path is divided into a plurality of divided flow paths by the rib member. An enlarged recess is formed in a portion of the surface of the second member that forms at least one of the plurality of divided flow paths.

なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。   Note that any combination of the above-described constituent elements, and those obtained by replacing the constituent elements and expressions of the present invention with each other among methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.

本発明によれば、冷却部の圧力損失の増大を抑止しつつも冷却部の変形を抑止できる。   ADVANTAGE OF THE INVENTION According to this invention, a deformation | transformation of a cooling part can be suppressed, suppressing the increase in the pressure loss of a cooling part.

実施形態に係るリニアモータの冷却ユニットを示す斜視図である。It is a perspective view which shows the cooling unit of the linear motor which concerns on embodiment. 平板冷却部を示す分解斜視図である。It is a disassembled perspective view which shows a flat plate cooling part. 平板冷却部を示す横断面図である。It is a cross-sectional view which shows a flat plate cooling part. リブ部材とその周辺を示す断面図である。It is sectional drawing which shows a rib member and its periphery. リブ部材とその周辺を示す断面図である。It is sectional drawing which shows a rib member and its periphery. 流量と圧力損失の関係を示すグラフである。It is a graph which shows the relationship between a flow volume and a pressure loss.

以下、各図面に示される同一または同等の構成要素、部材、工程には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。   Hereinafter, the same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are appropriately omitted. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in the drawings, some of the members that are not important for describing the embodiment are omitted.

図1は、実施形態に係るリニアモータの冷却ユニット100を示す斜視図である。本実施の形態に係る冷却ユニット100を適用したリニアモータは、所定の方向に並設される矩形板状の複数(図1では3枚)のコイル5と、交互に並設され、コイル5と対向する複数のN極の磁石および複数のS極の磁石(いずれも不図示)と、を備える。コイル5に通電されるとN極の磁石とS極の磁石との間で電磁力が発生し、この電磁力により、冷却ユニット100を伴ってコイル5が移動する。このように、コイル5はリニアモータの駆動部を構成する。なお、実施の形態では、コイル5は、3枚でA相、B相の2相を形成する。   FIG. 1 is a perspective view showing a cooling unit 100 of a linear motor according to an embodiment. The linear motor to which the cooling unit 100 according to the present embodiment is applied includes a plurality of rectangular plate-like (three in FIG. 1) coils 5 arranged in parallel in a predetermined direction, and coils 5 arranged alternately. A plurality of opposing N-pole magnets and a plurality of S-pole magnets (both not shown). When the coil 5 is energized, an electromagnetic force is generated between the N-pole magnet and the S-pole magnet, and the coil 5 moves with the cooling unit 100 by this electromagnetic force. Thus, the coil 5 constitutes a drive unit for the linear motor. In the embodiment, three coils 5 form two phases of A phase and B phase.

冷却ユニット100は、コイル5を冷却し、その温度上昇を抑える。冷却ユニット100は、コイル5を両側から挟む2枚の平板冷却部2と、コイル5の並設方向の一方端側に設けられる流入部3と、他方端側に設けられる流出部4と、を備える。   The cooling unit 100 cools the coil 5 and suppresses the temperature rise. The cooling unit 100 includes two flat plate cooling portions 2 sandwiching the coil 5 from both sides, an inflow portion 3 provided on one end side in the parallel arrangement direction of the coils 5, and an outflow portion 4 provided on the other end side. Prepare.

図2、3は、平板冷却部2を示す。図2は、平板冷却部2をコイル5に密着する側から見た斜視図である。図3は、平板冷却部2の横断面図である。平板冷却部2は、第1の平板部材11と、第2の平板部材12と、第3の平板部材13と、リブ部材20と、を含む。第1の平板部材11、第2の平板部材12、第3の平板部材13およびリブ部材20は、例えば金属製、セラミクス性あるいは樹脂製である。第1の平板部材11、第2の平板部材12および第3の平板部材13は、この順に積層されて、拡散接合や熱接合により接合される。   2 and 3 show the flat plate cooling unit 2. FIG. 2 is a perspective view of the flat plate cooling unit 2 as viewed from the side in close contact with the coil 5. FIG. 3 is a cross-sectional view of the flat plate cooling unit 2. The flat plate cooling unit 2 includes a first flat plate member 11, a second flat plate member 12, a third flat plate member 13, and a rib member 20. The first flat plate member 11, the second flat plate member 12, the third flat plate member 13, and the rib member 20 are made of metal, ceramics, or resin, for example. The 1st flat plate member 11, the 2nd flat plate member 12, and the 3rd flat plate member 13 are laminated | stacked in this order, and are joined by diffusion bonding or thermal bonding.

第1の平板部材11は、長方形状の平板である。第1の平板部材11の長手方向の一端側には、平板面を貫通する6つの円形状の流入口11aが形成されている。6つの流入口11aは第1の平板部材11の短手方向に並設される。また、第1の平板部材11の長手方向の他端側には、平板面を貫通する6つの円形状の流出口11bが形成される。6つの流出口11bは第1の平板部材11の短手方向に並設される。   The first flat plate member 11 is a rectangular flat plate. On one end side in the longitudinal direction of the first flat plate member 11, six circular inflow ports 11a penetrating the flat plate surface are formed. The six inflow ports 11 a are arranged in parallel in the short direction of the first flat plate member 11. Further, on the other end side in the longitudinal direction of the first flat plate member 11, six circular outlets 11b penetrating the flat plate surface are formed. The six outlets 11 b are arranged in parallel in the short direction of the first flat plate member 11.

第2の平板部材12は、第1の平板部材11と同じ大きさの長方形状の平板である。第2の平板部材12には、平板面を貫通する3つの長方形状の開口12aが形成される。3つの開口12aは第2の平板部材12の短手方向に並設され、第2の平板部材12の長手方向に延在する。各開口12aの一端側には、2つの円形状の開口12bがそれぞれ形成され、他端側にも2つの円形状の開口12cがそれぞれ形成される。つまり、第2の平板部材12には、計6つの開口12bと計6つの開口12cが形成される。開口12b、開口12cはそれぞれ、流入口11a、流出口11bに対応する位置に設けられる。したがって、第1の平板部材11の平板面と第2の平板部材12の平板面とを重ね合わせると、流入口11aと開口12bとが連通し、流出口11bと開口12cとが連通する。   The second flat plate member 12 is a rectangular flat plate having the same size as the first flat plate member 11. In the second flat plate member 12, three rectangular openings 12a penetrating the flat plate surface are formed. The three openings 12 a are juxtaposed in the short direction of the second flat plate member 12 and extend in the longitudinal direction of the second flat plate member 12. Two circular openings 12b are respectively formed on one end side of each opening 12a, and two circular openings 12c are also formed on the other end side. That is, the second flat plate member 12 is formed with a total of six openings 12b and a total of six openings 12c. The opening 12b and the opening 12c are provided at positions corresponding to the inlet 11a and the outlet 11b, respectively. Therefore, when the flat plate surface of the first flat plate member 11 and the flat plate surface of the second flat plate member 12 are overlapped, the inflow port 11a and the opening 12b communicate with each other, and the outflow port 11b and the opening 12c communicate with each other.

第1の平板部材11の平板面と第2の平板部材12の平板面とを重ね合わせると、第2の平板部材12の3つの開口12aの一方が塞がれ、3つの凹部(以下、凹部14aと呼ぶ)を有する1枚の平板部材(第4の平板部材14と呼ぶ)が形成される。なお、第1の平板部材11と第2の平板部材12とを別体として形成せずに、それらを一体に形成してよい。つまり、あらかじめ、3つの凹部14aを有する第4の平板部材14として形成してもよい。   When the flat plate surface of the first flat plate member 11 and the flat plate surface of the second flat plate member 12 are overlapped, one of the three openings 12a of the second flat plate member 12 is closed, and three concave portions (hereinafter referred to as concave portions). A single flat plate member (referred to as a fourth flat plate member 14) having 14a) is formed. Note that the first flat plate member 11 and the second flat plate member 12 may be integrally formed without forming them separately. That is, you may form beforehand as the 4th flat plate member 14 which has the three recessed parts 14a.

第3の平板部材13は、第1の平板部材11および第2の平板部材12と同じ大きさの長方形状の平板である。第3の平板部材13の平板面には、拡大凹部13a(後述)が形成されている。第3の平板部材13の平板面と、第4の平板部材14の凹部14aを有する側の面とを重ね合わせて接合することにより、3つの凹部14aの開口が塞がれて平板冷却部2内に3つの隙間7a〜7c(以下、これらをまとめて「隙間7」とも呼ぶ)が形成される。3つの隙間7a〜7cは、平板冷却部2内を長手方向に延びる3つの流路8a〜8c(以下、これらをまとめて「流路8」とも呼ぶ)として機能する。例えば冷却水などの冷媒がこの流路8を流れる。流路8a〜8cは、この順番で流入部3の上流側に連結される。   The third flat plate member 13 is a rectangular flat plate having the same size as the first flat plate member 11 and the second flat plate member 12. An enlarged concave portion 13 a (described later) is formed on the flat plate surface of the third flat plate member 13. By overlapping and joining the flat plate surface of the third flat plate member 13 and the surface of the fourth flat plate member 14 on the side having the concave portions 14a, the openings of the three concave portions 14a are closed and the flat plate cooling portion 2 is closed. Three gaps 7 a to 7 c (hereinafter collectively referred to as “gap 7”) are formed therein. The three gaps 7 a to 7 c function as three flow paths 8 a to 8 c (hereinafter, collectively referred to as “flow paths 8”) extending in the longitudinal direction in the flat plate cooling unit 2. For example, a coolant such as cooling water flows through the flow path 8. The flow paths 8a to 8c are connected to the upstream side of the inflow portion 3 in this order.

リブ部材20は、第2の平板部材12の開口12aの長手方向の両端にそれぞれ設けられる。具体的には、リブ部材20は、開口12aの端部であって開口12bとの連結部分12dと、開口12aの端部であって開口12cとの連結部分12eと、に設けられる。本実施の形態では、リブ部材20は第2の平板部材12と一体に形成される。したがって、リブ部材20は、第2の平板部材12の開口12aの縁と繋がっている。リブ部材20の構成については、図4、5で後述する。   The rib members 20 are provided at both ends in the longitudinal direction of the opening 12a of the second flat plate member 12, respectively. Specifically, the rib member 20 is provided at an end portion of the opening 12a and a connecting portion 12d with the opening 12b, and an end portion of the opening 12a and a connecting portion 12e with the opening 12c. In the present embodiment, the rib member 20 is formed integrally with the second flat plate member 12. Therefore, the rib member 20 is connected to the edge of the opening 12 a of the second flat plate member 12. The configuration of the rib member 20 will be described later with reference to FIGS.

図1に戻り、流入部3は、直方体状の上部3bと、上部3bを厚み方向(すなわち平板冷却部2の平板面に直交する方向)両側から絞るように小さくした直方体状の下部3cと、を含む。上部3bには上面に開口して下方に延びる流入口3aが設けられる。下部3cは、コイル5と略同一の厚みを有し、2枚の平板冷却部2により挟まれる。流入部3は、下部3cが2枚の平板冷却部2で挟まれ上部3bの下面が平板冷却部2の上面に接した状態で、ボルト締結により平板冷却部2に固定される。流入部3は特に、平板冷却部2との間に、冷媒が漏れるのを抑止するためのOリング6(図1では不図示)を挟んだ状態で平板冷却部2に固定される。また、下部3cの側面(すなわち第1の平板部材11と密着する面)には、複数の貫通孔(不図示)が形成されている。流入部3が平板冷却部2に固定されているとき、各貫通孔は平板冷却部2の各流入口11aと連通する。つまり、流入部3と平板冷却部2の3つの流路8a〜8c(すなわち3つの隙間7a〜7c)とが連通する。   Returning to FIG. 1, the inflow portion 3 includes a rectangular parallelepiped upper portion 3 b, and a rectangular parallelepiped lower portion 3 c that is reduced so that the upper portion 3 b is narrowed from both sides in the thickness direction (that is, the direction orthogonal to the flat plate surface of the flat plate cooling portion 2). including. The upper portion 3b is provided with an inflow port 3a that opens to the upper surface and extends downward. The lower part 3 c has substantially the same thickness as the coil 5 and is sandwiched between the two flat plate cooling parts 2. The inflow portion 3 is fixed to the flat plate cooling portion 2 by bolt fastening in a state where the lower portion 3c is sandwiched between the two flat plate cooling portions 2 and the lower surface of the upper portion 3b is in contact with the upper surface of the flat plate cooling portion 2. The inflow part 3 is fixed to the flat plate cooling part 2 with an O-ring 6 (not shown in FIG. 1) sandwiching between the inflow part 3 and the flat plate cooling part 2 in particular. A plurality of through holes (not shown) are formed on the side surface of the lower portion 3c (that is, the surface that is in close contact with the first flat plate member 11). When the inflow portion 3 is fixed to the flat plate cooling portion 2, each through hole communicates with each inflow port 11 a of the flat plate cooling portion 2. That is, the three flow paths 8a to 8c (that is, the three gaps 7a to 7c) of the inflow portion 3 and the flat plate cooling portion 2 communicate with each other.

流出部4は、流入部3と同様、直方体状の上部4bと、上部4bを厚み方向両側から絞るように小さくした直方体状の下部4cと、を含む。上部4bには上面に開口して下方に延びる流出口4aが設けられる。流出部4は、流入部3と同様に、下部4cが2枚の平板冷却部2で挟まれ上部4bの下面が平板冷却部2の上面に接した状態で、ボルト締結により平板冷却部2に固定される。流出部4は特に、平板冷却部2との間にOリング6を挟んだ状態で平板冷却部2に固定される。また、下部4cの側面には、複数の貫通孔(不図示)が形成されている。流出部4が平板冷却部2に固定されているとき、各貫通孔は平板冷却部2の各流出口11bと連通する。つまり、平板冷却部2の3つの流路8a〜8c(すなわち3つの隙間7a〜7c)と流出部4とが連通する。   Like the inflow portion 3, the outflow portion 4 includes a rectangular parallelepiped upper portion 4b and a rectangular parallelepiped lower portion 4c that is reduced so that the upper portion 4b is narrowed from both sides in the thickness direction. The upper portion 4b is provided with an outlet 4a that opens to the upper surface and extends downward. Similarly to the inflow portion 3, the outflow portion 4 is connected to the flat plate cooling portion 2 by bolt fastening in a state where the lower portion 4 c is sandwiched between the two flat plate cooling portions 2 and the lower surface of the upper portion 4 b is in contact with the upper surface of the flat plate cooling portion 2. Fixed. In particular, the outflow part 4 is fixed to the flat plate cooling part 2 with an O-ring 6 sandwiched between the flat plate cooling part 2. A plurality of through holes (not shown) are formed on the side surface of the lower portion 4c. When the outflow part 4 is being fixed to the flat plate cooling part 2, each through-hole communicates with each outflow port 11b of the flat plate cooling part 2. That is, the three flow paths 8a to 8c (that is, the three gaps 7a to 7c) of the flat plate cooling part 2 and the outflow part 4 communicate with each other.

流出部4および流入部3を平板冷却部2に対して固定した状態で流入部3の流入口3aに冷却水を流入させると、冷媒は流入部3から平板冷却部2の各流入口11aを通り、平板冷却部2内の3つの流路8a〜8cを流通して各流出口11bを通った後、流出部4の流出口4aから外部に流出する。   When the cooling water is caused to flow into the inlet 3a of the inflow portion 3 with the outflow portion 4 and the inflow portion 3 fixed to the flat plate cooling portion 2, the refrigerant flows from the inflow portion 3 to the respective inlets 11a of the flat plate cooling portion 2. After passing through the three flow paths 8a to 8c in the flat plate cooling unit 2 and passing through the respective outlets 11b, the liquid flows out from the outlet 4a of the outlet part 4 to the outside.

図4、5は、リブ部材20とその周辺を示す断面図である。図4は、上部3bに最も近い開口12aに設けられる(すなわち流路8a内に設けられる)リブ部材20のうちの1つを代表して示す。図5は、上部3bから遠い2つの開口12aに設けられる(すなわち流路8b内または流路8c内に設けられる)リブ部材20のうちの1つを代表して示す。図4、5は、連結部分12dまたは連結部分12eの周辺を示す断面図ともいえる。Oリング6は、平板冷却部2と流入部3との間に設けられる。リブ部材20は、基部20aと2つの突起部20bとを含む。基部20aは、第2の平板部材12よりも薄く形成され、開口12aの縁と繋がっている。2つの突起部20bは、基部20aから第3の平板部材13側に突出し、各隙間7内において第3の平板部材13に当接する。したがって、連結部分12dや連結部分12eでは、2つの突起部20bによって各隙間7すなわち各流路8が3つに分割される。流入口11aから平板冷却部2内に流入した冷媒は、分割されたこの3つの流路(以下、「分割流路」と呼ぶ)を通って流れる。   4 and 5 are cross-sectional views showing the rib member 20 and its periphery. FIG. 4 shows one of the rib members 20 provided in the opening 12a closest to the upper part 3b (that is, provided in the flow path 8a) as a representative. FIG. 5 shows one of the rib members 20 provided in the two openings 12a far from the upper part 3b (that is, provided in the flow path 8b or the flow path 8c). 4 and 5 can be said to be cross-sectional views showing the periphery of the connecting portion 12d or the connecting portion 12e. The O-ring 6 is provided between the flat plate cooling part 2 and the inflow part 3. The rib member 20 includes a base portion 20a and two projecting portions 20b. The base portion 20a is formed thinner than the second flat plate member 12, and is connected to the edge of the opening 12a. The two projecting portions 20 b protrude from the base portion 20 a to the third flat plate member 13 side and come into contact with the third flat plate member 13 in each gap 7. Therefore, in the connection part 12d and the connection part 12e, each gap | interval 7, ie, each flow path 8, is divided | segmented into three by the two projection parts 20b. The refrigerant flowing into the flat plate cooling unit 2 from the inflow port 11a flows through the three divided flow paths (hereinafter referred to as “divided flow paths”).

図5に示すように、第3の平板部材13の平板面のうち、流路8bまたは流路8aの分割流路を形成する部分には、それぞれ拡大凹部13aが形成されている。各拡大凹部13aは矩形状の断面形状を有している。各拡大凹部13aは、U字形状、V字形状、その他の断面形状を有していてもよい。本実施の形態では、各拡大凹部13aは、同じ大きさに形成される。すなわち、各拡大凹部13aの幅W、深さD、および長さL(図2参照)は同じである。一方、図4に示すように、第3の平板部材13の平板面のうち、流路8aの分割流路を形成する部分には、拡大凹部13aは形成されていない。   As shown in FIG. 5, in the flat plate surface of the third flat plate member 13, enlarged recesses 13 a are formed in the portions forming the flow channels 8 b or the divided flow channels of the flow channels 8 a, respectively. Each enlarged recess 13a has a rectangular cross-sectional shape. Each enlarged recess 13a may have a U shape, a V shape, or other cross-sectional shapes. In the present embodiment, each enlarged recess 13a is formed in the same size. That is, the width W, the depth D, and the length L (see FIG. 2) of each enlarged recess 13a are the same. On the other hand, as shown in FIG. 4, the enlarged recess 13 a is not formed in a portion of the flat plate surface of the third flat plate member 13 that forms the divided flow channel of the flow channel 8 a.

以上説明した実施の形態に係る冷却ユニット100によると、連結部分12d、12eにおいてリブ部材20の突起部20bが第3の平板部材13に当接する。したがって、平板冷却部2と流入部3および流出部4とがOリングを間に挟み込んだ状態で締結され、Oリングの反発力で第1の平板部材11が押されても、第1の平板部材11はリブ部材20によって反対側からも押さえられる。これにより、第1の平板部材11が変形するのが抑止される。加えて、第3の平板部材13の平板面のうち、分割流路を形成する部分には、拡大凹部13aが形成される。ここで、連結部分12dや連結部分12eでは、リブ部材20を設けた分だけ流路が狭くなるところ、拡大凹部13aを設けた分だけ流路が大きくなる。したがって、リブ部材20を設けても、流路が狭くなるのを抑止でき、圧力損失が大きくなるのを抑止できる。このように、本実施の形態に係る冷却ユニット100によると、平板冷却部2の圧力損失の増大を抑止しつつも平板冷却部2の変形を抑止できる。   According to the cooling unit 100 according to the embodiment described above, the protruding portion 20b of the rib member 20 contacts the third flat plate member 13 at the connecting portions 12d and 12e. Therefore, even if the flat plate cooling portion 2 and the inflow portion 3 and the outflow portion 4 are fastened with the O-ring sandwiched therebetween, and the first flat plate member 11 is pushed by the repulsive force of the O-ring, the first flat plate The member 11 is pressed by the rib member 20 from the opposite side. Thereby, it is suppressed that the 1st flat plate member 11 deform | transforms. In addition, an enlarged recess 13a is formed in a portion of the flat plate surface of the third flat plate member 13 where the divided flow path is formed. Here, in the connecting portion 12d and the connecting portion 12e, the flow path is narrowed by the amount provided with the rib member 20, but the flow path is increased by the amount provided with the enlarged recess 13a. Therefore, even if the rib member 20 is provided, it is possible to suppress the narrowing of the flow path and to suppress an increase in pressure loss. Thus, according to the cooling unit 100 which concerns on this Embodiment, the deformation | transformation of the flat plate cooling part 2 can be suppressed, suppressing the increase in the pressure loss of the flat plate cooling part 2. FIG.

また、実施の形態に係る冷却ユニット100によると、第3の平板部材13の平板面のうち、流路8aの分割流路を形成する部分には、拡大凹部13aは形成されない。ここで、一般に、流入部3の上流側に連結される流路は圧力損失が小さく、下流側に連結される流路は圧力損失が比較的大きい。したがって、流入部3の上流側に連結される流路8aに拡大凹部13aを設けないことによって、上流側に連結される流路8aと、下流側に連結される流路8b、8cとの圧力損失のバランスが取れ、より均一に各流路に冷媒が流れる。   Moreover, according to the cooling unit 100 which concerns on embodiment, the expansion recessed part 13a is not formed in the part which forms the division | segmentation flow path of the flow path 8a among the flat surfaces of the 3rd flat plate member 13. FIG. Here, in general, the flow path connected to the upstream side of the inflow portion 3 has a small pressure loss, and the flow path connected to the downstream side has a relatively large pressure loss. Therefore, the pressure of the flow path 8a connected to the upstream side and the flow paths 8b and 8c connected to the downstream side by not providing the enlarged recess 13a in the flow path 8a connected to the upstream side of the inflow portion 3. Loss is balanced and the refrigerant flows through each flow path more uniformly.

本発明者らは、実施の形態に係る冷却ユニットによる圧力損失の増大の抑止効果を確認するためのシミュレーションを行った。図6は、流量と圧力損失の関係を示すグラフである。図6において、横軸は流量(L/min)を示し、縦軸は圧力損失(kPa)を示す。グラフ50は、拡大凹部13aが設けられていない従来の冷却ユニットのシミュレーション結果を示し、グラフ52は拡大凹部13aが設けられた実施の形態の冷却ユニット100のシミュレーション結果を示す。このシミュレーション結果から、実施の形態の冷却ユニット100によると、従来の冷却ユニットに比べて圧力損失が約半分になることがわかる。   The present inventors performed a simulation for confirming the effect of suppressing the increase in pressure loss by the cooling unit according to the embodiment. FIG. 6 is a graph showing the relationship between flow rate and pressure loss. In FIG. 6, the horizontal axis indicates the flow rate (L / min), and the vertical axis indicates the pressure loss (kPa). The graph 50 shows the simulation result of the conventional cooling unit in which the enlarged concave portion 13a is not provided, and the graph 52 shows the simulation result of the cooling unit 100 of the embodiment in which the enlarged concave portion 13a is provided. From this simulation result, it can be seen that according to the cooling unit 100 of the embodiment, the pressure loss is about half that of the conventional cooling unit.

以上、実施の形態に係る冷却ユニットについて説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下変形例を示す。   The cooling unit according to the embodiment has been described above. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there. A modification is shown below.

(変形例1)
実施の形態では、流路8aの分割流路を形成する第3の平板部材13の平板面の部分には拡大凹部13aが形成されない場合について説明したが、これに限られない。流路8aの分割流路を形成する第3の平板部材13の平板面の部分に拡大凹部13aが形成されてもよい。
(Modification 1)
In the embodiment, a case has been described in which the enlarged concave portion 13a is not formed in the portion of the flat plate surface of the third flat plate member 13 that forms the divided flow channel of the flow channel 8a. However, the present invention is not limited to this. An enlarged recess 13a may be formed in the portion of the flat plate surface of the third flat plate member 13 that forms the divided flow channel of the flow channel 8a.

(変形例2)
実施の形態では、流路8a以外の流路については、すべての分割流路に対応する拡大凹部13aが形成される場合について説明したが、これに限られない。各流路の3つの分割流路のうち、少なくとも1つの分割流路に対応する拡大凹部13aが設けられてもよい。また、例えば2つの分割流路を跨る共通の拡大凹部13aが形成されてもよい。
(Modification 2)
In the embodiment, the flow channels other than the flow channel 8a have been described with respect to the case where the enlarged recesses 13a corresponding to all the divided flow channels are formed, but the present invention is not limited to this. An enlarged recess 13a corresponding to at least one divided flow path among the three divided flow paths of each flow path may be provided. For example, the common expansion recessed part 13a which straddles two division flow paths may be formed.

また実施の形態では、各拡大凹部13aの大きさが同じ場合について説明したが、これに限られず、各拡大凹部13aの大きさは同じでなくてもよい。例えば、流入部3の下流側に連結される分割流路を形成する第3の平板部材13の平板面に形成される拡大凹部13aほど大きくしてもよい。この場合、拡大凹部13aの深さD、幅Wまたは長さLの少なくとも1つを大きくすることによって、拡大凹部13aを大きくすればよい。これにより、流入部3の下流側に連結される流路の分割流路ほど広くなり、流入部3の上流側に連結される流路と下流側に連結される流路との圧力損失のバランスが取れ、より均一に各流路に冷媒が流れる。   Further, in the embodiment, the case where the size of each enlarged recess 13a is the same has been described. However, the present invention is not limited to this, and the size of each enlarged recess 13a may not be the same. For example, you may enlarge as the expansion recessed part 13a formed in the flat plate surface of the 3rd flat plate member 13 which forms the division | segmentation flow path connected with the downstream of the inflow part 3. FIG. In this case, the enlarged concave portion 13a may be enlarged by increasing at least one of the depth D, the width W, or the length L of the enlarged concave portion 13a. Thereby, the divided flow path of the flow path connected to the downstream side of the inflow portion 3 becomes wider, and the balance of the pressure loss between the flow path connected to the upstream side of the inflow portion 3 and the flow path connected to the downstream side. The refrigerant flows through each flow path more uniformly.

(変形例3)
実施の形態では特に言及しなかったが、拡大凹部13aを設けない場合と比べて平板冷却部2全体としての圧力損失を下げられればよく、分割流路を形成する第3の平板部材13の平板面の少なくとも一部に、逆に隙間に突出する凸部が形成されてもよい。
(Modification 3)
Although not particularly mentioned in the embodiment, it is only necessary to reduce the pressure loss of the flat plate cooling unit 2 as a whole as compared with the case where the enlarged recess 13a is not provided, and the flat plate of the third flat plate member 13 forming the divided flow path. On at least a part of the surface, a convex portion that protrudes into the gap may be formed.

(変形例4)
実施の形態では、リブ部材20が第2の平板部材12と一体に形成される場合についてに設けられる場合について説明したが、これに限られない。リブ部材20は、第1の平板部材11や第3の平板部材13と一体に形成されてもよい。第3の平板部材13と一体に形成される場合、リブ部材20の突起部20bは、第1の平板部材11側に突出してもよい。または、リブ部材20は、第1の平板部材11、第2の平板部材12、第3の平板部材13とは別体として形成された後、それらに結合されてもよい。
(Modification 4)
In the embodiment, the case where the rib member 20 is provided in the case where the rib member 20 is formed integrally with the second flat plate member 12 has been described, but the present invention is not limited thereto. The rib member 20 may be formed integrally with the first flat plate member 11 and the third flat plate member 13. When formed integrally with the third flat plate member 13, the protruding portion 20 b of the rib member 20 may protrude toward the first flat plate member 11. Alternatively, the rib member 20 may be formed separately from the first flat plate member 11, the second flat plate member 12, and the third flat plate member 13 and then coupled to them.

(変形例5)
実施の形態では、冷却ユニット100が適用されるリニアモータは3枚のコイルを含み、これら3枚のコイルでA相、B相の2相を形成する場合について説明したが、これに限られない。リニアモータは1枚、2枚または4枚以上のコイルを含んでいてもよく、すなわちリニアモータは少なくとも1枚のコイルを含んでいればよく、この少なくとも1枚のコイルでA相、B相の2相を形成してもよい。また、リニアモータは3の整数倍の枚数のコイルを含み、3の整数倍の枚数のコイルでU相、V相、W相の3相を形成してもよい。
(Modification 5)
In the embodiment, the linear motor to which the cooling unit 100 is applied includes three coils, and the three coils form the two phases of A phase and B phase. However, the present invention is not limited to this. . The linear motor may include one, two, or four or more coils. That is, the linear motor only needs to include at least one coil, and the at least one coil is used for A phase and B phase. Two phases may be formed. The linear motor may include a number of coils that is an integral multiple of 3 and may form three phases of the U phase, the V phase, and the W phase with a coil that is an integral multiple of 3.

上述した実施の形態と変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。   Any combination of the above-described embodiments and modifications is also useful as an embodiment of the present invention. The new embodiment generated by the combination has the effects of the combined embodiment and the modified examples.

2 平板冷却部、 2a 隙間、 3 流入部、 5 コイル、 6 Oリング、 7 隙間、 8 流路、 13 第3の平板部材、 13a 拡大凹部、 14 第4の平板部材、 20 リブ部材、 20a 基部、 20b 突起部、 100 冷却ユニット。   2 flat plate cooling section, 2a gap, 3 inflow section, 5 coil, 6 O-ring, 7 gap, 8 flow path, 13 third flat plate member, 13a enlarged recess, 14 fourth flat plate member, 20 rib member, 20a base 20b Protrusion, 100 Cooling unit.

Claims (4)

リニアモータの駆動部を構成するコイルを冷却するための冷却ユニットであって、
前記コイルに密着して前記コイルを冷却するための冷却部を備え、
前記冷却部は、第1部材と、前記第1部材に重なる第2部材と、リブ部材と、を含み、
前記第2部材に合わさる前記第1部材の面には凹部が形成され、
前記凹部と、前記第1部材に重ね合わさる前記第2部材との隙間は、前記コイルを冷却するための冷媒の流路を形成し、
前記リブ部材は、前記第1部材または前記第2部材の一方に固定され、前記隙間内において前記第1部材または前記第2部材の他方に当接し、
前記流路の一部は、前記リブ部材によって複数の分割流路に分割され、前記複数の分割流路の少なくとも1つを形成する前記第2部材の面の部分に拡大凹部が形成されていることを特徴とするリニアモータの冷却ユニット。
A cooling unit for cooling a coil constituting a drive unit of a linear motor,
A cooling unit for closely contacting the coil and cooling the coil;
The cooling unit includes a first member, a second member overlapping the first member, and a rib member,
A concave portion is formed on the surface of the first member that fits the second member,
A gap between the concave portion and the second member superimposed on the first member forms a refrigerant flow path for cooling the coil,
The rib member is fixed to one of the first member or the second member, contacts the other of the first member or the second member in the gap,
A part of the flow path is divided into a plurality of divided flow paths by the rib member, and an enlarged recess is formed in a portion of the surface of the second member forming at least one of the plurality of divided flow paths. A cooling unit for a linear motor.
前記複数の分割流路を形成する前記第2部材の面のそれぞれの部分に拡大凹部が形成されていることを特徴とする請求項1に記載のリニアモータの冷却ユニット。   2. The linear motor cooling unit according to claim 1, wherein an enlarged concave portion is formed in each portion of the surface of the second member forming the plurality of divided flow paths. 前記冷却部には複数の流路が形成され、
前記複数の流路はそれぞれ、冷却水を供給する流入部に連結され、
前記流入部の最も上流側に連結される流路の分割流路を形成する前記第2部材の面の部分には前記拡大凹部が形成されないことを特徴とする請求項1または2に記載のリニアモータの冷却ユニット。
A plurality of flow paths are formed in the cooling unit,
Each of the plurality of flow paths is connected to an inflow portion that supplies cooling water,
3. The linear according to claim 1, wherein the enlarged concave portion is not formed in a portion of the surface of the second member that forms a divided flow path of a flow path connected to the most upstream side of the inflow portion. Motor cooling unit.
前記冷却部には複数の流路が形成され、
前記複数の流路はそれぞれ、冷却水を供給する流入部に連結され、
前記流入部のより下流側に連結される流路の分割流路ほど広くなるように、前記拡大凹部が形成されることを特徴とする請求項1または2に記載のリニアモータの冷却ユニット。
A plurality of flow paths are formed in the cooling unit,
Each of the plurality of flow paths is connected to an inflow portion that supplies cooling water,
More so wide as divided passages of consolidation is the flow path on the downstream side, the linear motor of the cooling unit according to claim 1 or 2, characterized in that said enlarged recesses are formed in the inlet portion.
JP2015123700A 2015-06-19 2015-06-19 Linear motor cooling unit Active JP6482401B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015123700A JP6482401B2 (en) 2015-06-19 2015-06-19 Linear motor cooling unit
TW105118777A TWI601365B (en) 2015-06-19 2016-06-15 Linear motor cooling unit
KR1020160075323A KR101865333B1 (en) 2015-06-19 2016-06-16 Cooling unit for linear motor
CN201610435807.7A CN106257806B (en) 2015-06-19 2016-06-17 The cooling unit of linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123700A JP6482401B2 (en) 2015-06-19 2015-06-19 Linear motor cooling unit

Publications (2)

Publication Number Publication Date
JP2017011846A JP2017011846A (en) 2017-01-12
JP6482401B2 true JP6482401B2 (en) 2019-03-13

Family

ID=57714237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123700A Active JP6482401B2 (en) 2015-06-19 2015-06-19 Linear motor cooling unit

Country Status (4)

Country Link
JP (1) JP6482401B2 (en)
KR (1) KR101865333B1 (en)
CN (1) CN106257806B (en)
TW (1) TWI601365B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240016196A (en) 2022-07-28 2024-02-06 가부시키가이샤 소딕 Armature, linear motor and cooling unit of linear motor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703418A (en) * 1996-03-22 1997-12-30 Northern Magnetics, Inc. DC cooled linear motor
JP4636354B2 (en) * 2001-02-06 2011-02-23 株式会社安川電機 Linear motor and table feeding device having the same
KR20030025419A (en) * 2001-09-20 2003-03-29 주식회사 져스텍 Linear motor
JP5423392B2 (en) * 2007-06-13 2014-02-19 株式会社安川電機 Canned linear motor armature and canned linear motor
JP2009266880A (en) * 2008-04-22 2009-11-12 Nikon Corp Temperature regulator and aligner
JP2010220396A (en) * 2009-03-17 2010-09-30 Yaskawa Electric Corp Canned linear-motor armature and canned linear motor
JP5598757B2 (en) * 2010-01-26 2014-10-01 株式会社安川電機 Refrigerant cooling linear motor
JP5859361B2 (en) * 2012-03-27 2016-02-10 住友重機械工業株式会社 Linear motor cooling structure
JP5609921B2 (en) * 2012-05-30 2014-10-22 株式会社安川電機 Linear motor armature and linear motor
JP6166926B2 (en) * 2013-03-26 2017-07-19 山洋電気株式会社 Linear motor
CN103683798B (en) * 2013-09-24 2019-05-03 雅科贝思精密机电(上海)有限公司 A kind of system for improveing linear motor rigidity and heat dissipation
TWI508417B (en) * 2013-10-07 2015-11-11 Hiwin Mikrosystem Corp With the heat module of the moving element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240016196A (en) 2022-07-28 2024-02-06 가부시키가이샤 소딕 Armature, linear motor and cooling unit of linear motor

Also Published As

Publication number Publication date
KR101865333B1 (en) 2018-06-08
TWI601365B (en) 2017-10-01
CN106257806A (en) 2016-12-28
TW201703404A (en) 2017-01-16
CN106257806B (en) 2018-11-27
KR20160150038A (en) 2016-12-28
JP2017011846A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5859361B2 (en) Linear motor cooling structure
KR101509285B1 (en) Linear motor armature and linear motor
JP4411335B2 (en) Water jacket structure for water-cooled internal combustion engine
US9325223B2 (en) Linear motor cooling structure
JP6531325B2 (en) Heat exchanger
US11502023B2 (en) Semiconductor device with partition for refrigerant cooling
JP2008235725A (en) Water-cooled heat sink
JP2013118153A (en) Battery module
JP2019149404A (en) Heat radiation fin structure and cooling structure of electronic substrate using the same
JP2013207838A5 (en)
JP6482401B2 (en) Linear motor cooling unit
JP7402102B2 (en) Linear motor cooling unit, linear motor, linear motor cooling unit manufacturing method
KR20180060262A (en) Plate heat exchanger
JP2013207835A5 (en)
US10873245B2 (en) Cold plate for a linear motor
JP2016059117A (en) Armature for linear motor
CN111279596B (en) Linear motor with armature cooling channel
JP7213078B2 (en) Laminated heat exchanger
JP2016111216A (en) Stationary induction electric device and manufacturing method thereof
JP5836756B2 (en) Heat exchanger
JP2018006458A (en) Radiator for electric equipment
JP2015177710A (en) Armature for linear motor
JP2009224557A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150