JP6482098B1 - Electrochemical cell and method for producing electrochemical cell - Google Patents

Electrochemical cell and method for producing electrochemical cell Download PDF

Info

Publication number
JP6482098B1
JP6482098B1 JP2017200925A JP2017200925A JP6482098B1 JP 6482098 B1 JP6482098 B1 JP 6482098B1 JP 2017200925 A JP2017200925 A JP 2017200925A JP 2017200925 A JP2017200925 A JP 2017200925A JP 6482098 B1 JP6482098 B1 JP 6482098B1
Authority
JP
Japan
Prior art keywords
positive electrode
electrode
negative electrode
electrochemical cell
overlapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017200925A
Other languages
Japanese (ja)
Other versions
JP2019075294A (en
Inventor
和美 田中
和美 田中
菅野 佳実
佳実 菅野
渡邊 俊二
俊二 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2017200925A priority Critical patent/JP6482098B1/en
Application granted granted Critical
Publication of JP6482098B1 publication Critical patent/JP6482098B1/en
Publication of JP2019075294A publication Critical patent/JP2019075294A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】本発明は、正極本体の位置ずれの少ない電気化学セルの提供を目的とする。【解決手段】本発明の電気化学セルは、並んで配置された複数の正極本体と、隣り合う2つの前記正極本体を接続する電極接続部を有する帯状の正極電極と、並んで配置された複数の負極本体と、隣り合う2つの前記負極本体を接続する電極接続部を有する帯状の負極電極と、前記正極電極と前記負極電極との間に配置されるセパレータを備え、前記正極本体と前記負極本体を前記セパレータを介し、互い違いに重ね合わせた重ね合わせユニットが構成され、この重ね合わせユニットが複数積層され、相互に並列接続されたことを特徴とする。【選択図】図1An object of the present invention is to provide an electrochemical cell in which a positive electrode body is less misaligned. An electrochemical cell according to the present invention includes a plurality of positive electrode bodies arranged side by side, a strip-like positive electrode having an electrode connection portion connecting two adjacent positive electrode bodies, and a plurality of electrode bodies arranged side by side. A negative electrode main body, a strip-shaped negative electrode having an electrode connecting portion for connecting two adjacent negative electrode main bodies, and a separator disposed between the positive electrode and the negative electrode, the positive electrode main body and the negative electrode A superposition unit in which main bodies are alternately superposed via the separator is configured, and a plurality of superposition units are laminated and connected in parallel to each other. [Selection] Figure 1

Description

本発明は、電気化学セルおよび電気化学セルの製造方法に関する。   The present invention relates to an electrochemical cell and a method for producing the electrochemical cell.

従来、スマートフォン、ウエアラブル機器、補聴器などの小型機器の電源として、リチウムイオン二次電池、電気化学キャパシタ等の電気化学セルが広く活用されている。
このような電気化学セルにおいては、電池容量並びに充電電流及び放電電流を大きくする観点から、電気化学セル内で対向している電極どうしの面積を大きくすることが必要である。電気化学セルの構造としては、一対の帯状の電極を帯状のセパレータを介して対向させてケースに収め、電解液を電極及びセパレータに含浸させた構造が知られている。
Conventionally, electrochemical cells such as lithium ion secondary batteries and electrochemical capacitors have been widely used as power sources for small devices such as smartphones, wearable devices, and hearing aids.
In such an electrochemical cell, it is necessary to increase the area of the electrodes facing each other in the electrochemical cell from the viewpoint of increasing the battery capacity and the charging current and discharging current. As a structure of an electrochemical cell, a structure in which a pair of strip electrodes are opposed to each other through a strip separator and stored in a case, and an electrode and a separator are impregnated with an electrolyte is known.

例えば、帯状の電極及び帯状のセパレータを巻回し、筒状又はコイン状のケースに収容した構造、扁平状に変形させた後にラミネートフィルムに収容した構造が知られている。
近年、ウエアラブル機器の薄型化の要求に対応して、帯状の電極及び帯状のセパレータをつづら折り形状とした構成も検討されている。例えば、以下の特許文献1では、帯状の電極をセパレータ袋体に収容した構造が提案されている。
For example, a structure in which a strip-shaped electrode and a strip-shaped separator are wound and accommodated in a cylindrical or coin-shaped case, or a structure that is deformed into a flat shape and then accommodated in a laminate film is known.
In recent years, a configuration in which a belt-like electrode and a belt-like separator are folded in a folded manner has been studied in response to the demand for a thinner wearable device. For example, in the following Patent Document 1, a structure in which a strip-shaped electrode is accommodated in a separator bag is proposed.

特開2005−243455号公報JP-A-2005-243455

しかしながら、帯状の電極をセパレータ袋体に収容する構成では、巻回、積層、つづら折り等を行う場合に電極の積層位置(対面位置)がずれる可能性がある。特に、つづら折り構造の電極を採用する場合、帯状の電極がセパレータ袋体に収容された状態で交互に折り曲げられるため、電極の対向面が位置ずれする可能性が高くなる。
例えば、積層数が少ない場合は対面位置ずれの寸法が小さいので構造的な誤差範囲として吸収できることもあるが、積層数が多い場合、位置ずれの寸法も大きくなるので、電極の位置ずれが無視できなくなるおそれがある。
However, in the configuration in which the strip-shaped electrode is accommodated in the separator bag body, the electrode stacking position (facing position) may be deviated when winding, stacking, zigzag folding, or the like. In particular, when an electrode having a zigzag folded structure is employed, the belt-like electrodes are alternately folded while being accommodated in the separator bag, and therefore the possibility that the opposing surfaces of the electrodes are displaced is increased.
For example, when the number of stacks is small, the size of the face-to-face positional deviation is small, so it may be absorbed as a structural error range. There is a risk of disappearing.

特に電池の容量を大きくするために積層数を大きくした電気化学セルを構成する場合、積層した電極毎の対面位置ずれが無視できなくなるおそれがあった。
つづら折り状の電極を複数積層する場合、1つ下の電極を周回するように次の電極を折り込むので、周回する際の回り込み誤差、つづら折りする際の折り曲げ部分の誤差、積層位置決めの誤差などが累積され、電極毎の対面位置ずれの誤差が大きくなる。
したがって、従来の電気化学セルにおいては、電極の積層位置(対面位置)がずれることを抑制する上で改善の余地があった。
In particular, when an electrochemical cell having a large number of stacked layers is formed in order to increase the capacity of the battery, there is a possibility that the misalignment of the facing surface for each stacked electrode cannot be ignored.
When laminating a plurality of zigzag folded electrodes, the next electrode is folded so as to circulate the next lower electrode. Therefore, wraparound error when wrapping, error of the folded part when zigzag folding, stacking positioning error, etc. are accumulated. As a result, the error of the facing position deviation for each electrode increases.
Therefore, in the conventional electrochemical cell, there was room for improvement in suppressing the shift of the electrode stacking position (facing position).

本発明は、以上説明のような従来の実情に鑑みなされたものであり、つづら折り構造の電極を用いて積層型の電気化学セルを構成する場合、積層した電極毎の対面位置ずれを抑制できる構造とした電気化学セルおよび電気化学セルの製造方法の提供を目的とする。   The present invention has been made in view of the conventional situation as described above, and in the case where a stacked electrochemical cell is configured using a zigzag folded electrode, a structure capable of suppressing the face-to-face positional deviation for each stacked electrode. It is an object of the present invention to provide an electrochemical cell and a method for producing the electrochemical cell.

(1)上記課題を解決するため、本発明の一形態に係る電気化学セルは、並んで配置された複数の正極本体と、隣り合う2つの前記正極本体を接続する電極接続部を有する帯状の正極電極と、並んで配置された複数の負極本体と、隣り合う2つの前記負極本体を接続する電極接続部を有する帯状の負極電極と、前記正極電極と前記負極電極との間に配置されるセパレータを備え、前記正極本体と前記負極本体を前記セパレータを介し、互い違いにつづら折り状に重ね合わせ、前記正極本体の外側と前記負極本体の外側に個々に前記電極接続部を折り返して、前記正極電極と前記負極電極の交互積層型重ね合わせユニットが構成され、この重ね合わせユニットが複数積層され、相互に並列接続される一方、前記セパレータは、並んで配置された複数の張出し部および隣り合う2つの前記張出し部を接続する接続部を備えた帯状であり、前記正極電極の複数の正極本体の表裏面が前記セパレータの張出し部により覆われ、前記正極電極の電極接続部の表裏面が前記セパレータの接続部により覆われて正極構造体が構成されるとともに、前記正極構造体と前記負極電極とが交互に積層されて前記重ね合わせユニットが構成されたことを特徴とする。 (1) In order to solve the above-described problem, an electrochemical cell according to an embodiment of the present invention has a strip-like shape having a plurality of positive electrode bodies arranged side by side and an electrode connection part that connects two adjacent positive electrode bodies. A positive electrode, a plurality of negative electrode bodies arranged side by side, a strip-shaped negative electrode having an electrode connecting portion for connecting two adjacent negative electrode bodies, and the positive electrode and the negative electrode are disposed between the positive electrode and the negative electrode The positive electrode body and the negative electrode body are alternately stacked in a folded manner via the separator, and the electrode connection portions are folded back to the outside of the positive electrode body and the outside of the negative electrode body, respectively. wherein alternate multilayer overlay unit of the negative electrode is constituted with, the superposition unit is stacked, while being connected in parallel with each other, the separator is arranged side by side A plurality of overhang portions and a connecting portion that connects two adjacent overhang portions, and the front and back surfaces of the plurality of positive electrode bodies of the positive electrode are covered by the overhang portions of the separator, and the electrodes of the positive electrode The front and back surfaces of the connecting portion are covered with the connecting portion of the separator to form a positive electrode structure, and the positive electrode structure and the negative electrode are alternately stacked to form the overlapping unit. And

つづら折り状に複数重ね合わせた正極電極と負極電極からなる重ね合わせユニットを複数積層することで、1つの重ね合わせユニットに生じている正極本体の対面位置の位置ずれ量が他の重ね合わせユニットに生じている正極本体の対面位置の位置ずれ量に影響を及ぼさない構造を採用できる。個々の重ね合わせユニットにおける位置ずれ量を少なくしておけば、積層構造全体として正極本体の対面位置ずれ量を小さくできる。   By laminating a plurality of overlapping units composed of positive electrodes and negative electrodes that are stacked in a zigzag manner, the amount of misalignment of the facing position of the positive electrode body that occurs in one overlapping unit is generated in the other overlapping units. It is possible to adopt a structure that does not affect the positional deviation amount of the facing position of the positive electrode body. If the amount of positional deviation in the individual overlapping units is reduced, the amount of positional deviation of the positive electrode body facing the whole laminated structure can be reduced.

この点、積層するべき全ての正極本体が繋がってつづら折り状に重ね合わされる構造であると、重ね合わせ構造の始端側から終端側まで位置ずれが順次累積されて大きくなる。このため、正極本体の対面位置の位置ずれ量が大きくなる問題がある。
つづら折り状に複数重ね合わせた正極本体と負極本体からなる重ね合わせユニットを複数積層し、重ね合わせユニット単位で生じる正極本体の位置ずれ量を少なくしておくことにより、積層構造全体とした場合の正極本体の対面位置ずれを抑制できる。正極本体の対面位置ずれを抑制することで、電気化学セルの容量低下を防止できる。また、複数の重ね合わせユニットを並列接続することで高容量の電気化学セルを提供できる。
In this regard, when all the positive electrode bodies to be stacked are connected and stacked in a folded manner, positional deviations are sequentially accumulated and increased from the start end side to the end side of the overlap structure. For this reason, there is a problem that the amount of positional deviation of the facing position of the positive electrode main body becomes large.
A plurality of superposition units composed of a positive electrode body and a negative electrode body, which are stacked in a zigzag form, are stacked, and the amount of displacement of the positive electrode body generated in each overlap unit is reduced, so that the positive electrode in the case of the entire laminated structure The facing position shift of the main body can be suppressed. By suppressing the facing position shift of the positive electrode main body, it is possible to prevent a decrease in capacity of the electrochemical cell. Moreover, a high capacity | capacitance electrochemical cell can be provided by connecting a some overlap unit in parallel.

(2)前記一形態の電気化学セルでは、前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記負極本体の外周輪郭の内側に前記正極本体の外周輪郭が配置されたことが好ましい。 (2) In the electrochemical cell according to the aspect, it is preferable that the outer peripheral contour of the positive electrode body is disposed inside the outer peripheral contour of the negative electrode body viewed along the overlapping direction in the one overlapping unit.

電気化学セルの構造において、負極本体の外周輪郭の内側に正極本体の外周輪郭が配置されていることが望ましい。正極本体の外周輪郭のはみ出し量が大きい場合、電気化学セルに適用されるイオンを構成する金属の析出のおそれ、容量低下のおそれを生じる。   In the structure of the electrochemical cell, it is desirable that the outer peripheral contour of the positive electrode body is disposed inside the outer peripheral contour of the negative electrode body. When the amount of protrusion of the outer peripheral contour of the positive electrode main body is large, there is a risk of precipitation of metal constituting ions applied to the electrochemical cell and a decrease in capacity.

(3)前記一形態の電気化学セルにおいて、前記正極電極における前記複数の電極接続部の長さが同一とされ、前記負極電極における前記複数の電極接続部の長さが同一とされ、前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記正極本体の外周輪郭が重ね合わせ層ごとに位置ずれされ、該位置ずれ量が最大の層において前記正極本体の外周輪郭が前記負極本体の外周輪郭の内側に配置されたことが好ましい。 (3) In the electrochemical cell according to one aspect, the lengths of the plurality of electrode connection portions in the positive electrode are the same, and the lengths of the plurality of electrode connection portions in the negative electrode are the same. The outer peripheral contour of the positive electrode body viewed along the overlapping direction in one overlapping unit is displaced for each overlapping layer, and the outer peripheral contour of the positive electrode body is the outer periphery of the negative electrode body in the layer having the largest positional displacement amount. It is preferable that it is arranged inside the contour.

電気化学セルの構造において、負極本体の外周輪郭の内側に正極本体の外周輪郭が配置されていることが望ましい。正極本体のはみ出し量が大きい場合、電気化学セルに適用されるイオンを構成する金属の析出のおそれ、容量低下のおそれがある。個々の重ね合わせユニットにおいて位置ずれ量の最大の層であっても正極本体の外周輪郭が負極本体の外周輪郭の内側に配置されていることでこれらの問題を回避できる。   In the structure of the electrochemical cell, it is desirable that the outer peripheral contour of the positive electrode body is disposed inside the outer peripheral contour of the negative electrode body. When the amount of protrusion of the positive electrode main body is large, there is a risk of precipitation of metal constituting ions applied to the electrochemical cell and a decrease in capacity. These problems can be avoided by arranging the outer peripheral contour of the positive electrode main body inside the outer peripheral contour of the negative electrode main body even in the layer having the largest positional deviation amount in each superposition unit.

1つの重ね合わせユニットにおいて、正極本体と負極本体を交互に重ね合わせると、電極接続部と電極接続部の長さが同一の場合、重ね合わせの層数増加に応じ、重ね合わせ誤差等によって負極本体に対する正極本体の重ね合わせ位置が徐々にずれてくる。
電気化学セル全体として必要な正極本体の数を1つの重ね合わせユニットではなく、複数の重ね合わせユニットに分けて個々につづら折りとするので、1つの重ね合わせユニットに必要な折り畳み数を削減できる。その分、1つの重ね合わせユニットにおける正極本体の対面位置ずれ量を小さくできる。
In one superposition unit, when the positive electrode body and the negative electrode body are alternately superposed, if the electrode connection portion and the electrode connection portion have the same length, the negative electrode body is caused by an overlay error or the like in accordance with an increase in the number of layers of superposition. The position where the positive electrode main body is superimposed on is gradually shifted.
Since the number of positive electrode bodies necessary for the entire electrochemical cell is divided into a plurality of overlapping units instead of one overlapping unit and individually folded, the number of folding required for one overlapping unit can be reduced. Accordingly, the amount of misalignment of the facing of the positive electrode main body in one overlapping unit can be reduced.

(4)前記一態様の電気化学セルにおいて、前記帯状の正極電極と前記帯状の負極電極において重ね合わせの始端側より終端側において、前記正極本体と前記負極本体の重ね合わせ方向に沿って見た個々の外周輪郭の位置ずれ量が大きくされた構成を採用できる。 (4) In the electrochemical cell of the one aspect, the belt-like positive electrode and the belt-like negative electrode are viewed along the overlapping direction of the positive electrode main body and the negative electrode main body from the start end side to the terminal end side of the overlap. A configuration in which the amount of positional deviation of each outer peripheral contour is increased can be employed.

帯状の正極電極と帯状の負極電極をつづら折りしながら重ね合わせる構造とすると、電極接続部どうしの長さが同じ場合、重ね合わせの数が増える度に正極本体の位置ずれ量が累積されて大きくなる。この構造であっても、複数の重ね合わせユニット単位で正極本体の位置ずれ量を抑えておけば、正極本体の位置ずれ量の累積を小さくすることができ、正極本体の位置ずれ量を抑制した電気化学セルを提供できる。   When the belt-like positive electrode and the belt-like negative electrode are overlapped while being folded, if the lengths of the electrode connecting portions are the same, the amount of displacement of the positive electrode body is accumulated and increased each time the number of overlaps increases. . Even with this structure, if the amount of positional deviation of the positive electrode body is suppressed in units of a plurality of overlapping units, the accumulation of the amount of positional deviation of the positive electrode body can be reduced, and the amount of positional deviation of the positive electrode body is suppressed. An electrochemical cell can be provided.

(5)前記一形態の電気化学セルにおいて、前記積層された隣接する重ね合わせユニットにおいて、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接正極電極どうしから正極側接続電極端子が導出され、これらの正極側接続電極端子どうしが接続され、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接負極電極どうしから負極側接続電極端子が導出され、これらの負極側接続電極端子どうしが接続された構成を採用できる。 (5) In the electrochemical cell of the one aspect, in the stacked adjacent overlapping units, a positive electrode side connection electrode terminal is derived from the closest positive electrodes of one overlapping unit and the other overlapping unit, These positive electrode side connection electrode terminals are connected to each other, the negative electrode side connection electrode terminals are derived from the closest negative electrode electrodes of one overlapping unit and the other overlapping unit, and these negative electrode side connection electrode terminals are connected to each other. Can be adopted.

隣接する重ね合わせユニットどうしの最近接の正極側接続電極端子どうし、最近接の負極側接続電極端子どうしを接続するならば、他の位置から接続電極端子を導出する場合と比較し、積層体側面側への接続電極端子の回り込み量を少なくできる。このため、回り込み量の少ない状態で積層体の外方に接続電極端子を導出できる。   If the adjacent positive electrode side connection electrode terminals of adjacent overlapping units are connected to each other and the closest negative electrode side connection electrode terminals are connected to each other, the side surface of the laminate is compared with the case where the connection electrode terminals are derived from other positions. The amount of connection electrode terminal wraparound to the side can be reduced. For this reason, a connection electrode terminal can be derived | led-out to the outer side of a laminated body in the state with little wraparound amount.

(6)前記一形態の電気化学セルにおいて、前記正極電極と負極電極の少なくとも一方において、重ね合わせの始端側の接続部の長さより重ね合わせの終端側の接続部の長さが長くされた構成を採用できる。 (6) In the electrochemical cell according to the one aspect, in at least one of the positive electrode and the negative electrode, the length of the connecting portion on the end side of the overlapping is longer than the length of the connecting portion on the starting end side of the overlapping Can be adopted.

重ね合わせの始端側の接続部の長さより重ね合わせの終端側の接続部の長さを長くしておくと、重ね合わせにより電極全体の厚さが徐々に厚くなっても長い接続部を用いて正極本体または負極本体の対面位置のずれを解消するように積層できる。   If the length of the connection portion on the end side of the overlap is made longer than the length of the connection portion on the start end side of the overlap, a long connection portion is used even if the overall thickness of the electrode gradually increases due to the overlap. It can laminate | stack so that the shift | offset | difference of the facing position of a positive electrode main body or a negative electrode main body may be eliminated.

(7)本発明の一態様に係る電気化学セルの製造方法は、並んで配置された複数の正極本体および隣り合う2つの前記正極本体を接続する電極接続部を有する帯状の正極電極と、並んで配置された複数の負極本体および隣り合う2つの前記負極本体を接続する電極接続部を有する帯状の負極電極とを、前記正極本体と前記負極本体の間にセパレータを介し、前記正極本体の外側と前記負極本体の外側に個々に前記電極接続部を折り返し、互い違いにつづら折り状に重ね合わせて前記正極電極と前記負極電極の交互積層型重ね合わせユニットを構成し、この重ね合わせユニットを複数積層し、相互に並列接続するに際し、前記セパレータは、並んで配置された複数の張出し部および隣り合う2つの前記張出し部を接続する接続部を備えた帯状であり、前記正極電極の複数の正極本体の表裏面を前記セパレータの張出し部で覆い、前記正極電極の電極接続部の表裏面を前記セパレータの接続部で覆って正極構造体を構成するとともに、前記正極構造体と前記負極電極とを交互に積層して前記重ね合わせユニットを構成することを特徴とする。 (7) The method for producing an electrochemical cell according to one aspect of the present invention includes a plurality of positive electrode bodies arranged side by side and a belt-like positive electrode having electrode connection portions that connect two adjacent positive electrode bodies. A plurality of negative electrode bodies arranged in a strip and a strip-shaped negative electrode having an electrode connecting portion for connecting two adjacent negative electrode bodies, with a separator interposed between the positive electrode body and the negative electrode body, outside the positive electrode body The electrode connection portions are folded individually on the outside of the negative electrode body, and alternately stacked in a zigzag manner to form an alternately stacked type overlapping unit of the positive electrode and the negative electrode, and a plurality of the overlapping units are stacked. , when connected in parallel to each other, the separator is a strip having a connection portion connecting the two said projecting portions adjacent the plurality of overhang and disposed side by side And covering the front and back surfaces of the plurality of positive electrode bodies of the positive electrode with the protruding portion of the separator, and covering the front and back surfaces of the electrode connecting portion of the positive electrode with the connecting portion of the separator, and constituting the positive electrode structure, The superposition unit is configured by alternately stacking positive electrode structures and the negative electrodes .

つづら折り状に複数重ね合わせた正極電極と負極電極からなる重ね合わせユニットを複数積層することで、1つの重ね合わせユニットに生じている正極本体または負極本体の位置ずれ量が他の重ね合わせユニットに生じている正極本体または負極本体の位置ずれ量に影響を及ぼさない構造の電気化学セルを製造できる。個々の重ね合わせユニットの位置ずれ量を少なくしておけば、積層構造全体としての正極本体の位置ずれ量を小さくできる。   By laminating a plurality of overlapping units composed of positive electrodes and negative electrodes that are superimposed in a zigzag manner, the amount of displacement of the positive electrode body or negative electrode body that occurs in one overlapping unit is generated in another overlapping unit. It is possible to manufacture an electrochemical cell having a structure that does not affect the amount of displacement of the positive electrode body or the negative electrode body. If the amount of positional deviation of the individual overlapping units is reduced, the amount of positional deviation of the positive electrode main body as the entire laminated structure can be reduced.

この点、積層するべき全ての正極本体が繋がって重ね合わされる構造になると、重ね合わせ構造の始端側から終端側まで位置ずれが順次累積されて大きくなる。このため、正極本体の位置ずれ量が大きくなる問題がある。
つづら折り状に複数重ね合わせた正極本体と負極本体からなる重ね合わせユニットを複数積層する電気化学セルとすることで、重ね合わせユニット単位で生じる位置ずれ量を少なくしておくことで積層構造全体の位置ずれ量を抑制できる。
In this regard, when the structure is such that all the positive electrode bodies to be stacked are connected and overlapped, the positional deviation is sequentially accumulated and increased from the start end side to the end side of the overlap structure. For this reason, there is a problem that the amount of positional deviation of the positive electrode main body becomes large.
The position of the entire laminated structure can be reduced by reducing the amount of misalignment that occurs in each overlapping unit by using an electrochemical cell that stacks multiple overlapping units composed of positive and negative electrode bodies stacked in a zigzag manner. The amount of deviation can be suppressed.

(8)前記一態様の電気化学セルの製造方法では、前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記負極本体の外周輪郭の内側に前記正極本体の外周輪郭が入るように重ね合わせることが好ましい。 (8) In the method for manufacturing an electrochemical cell according to the one aspect, the superposition is performed so that the outer peripheral contour of the positive electrode main body is placed inside the outer peripheral contour of the negative electrode main body viewed along the overlapping direction in the one overlapping unit. It is preferable to match.

電気化学セルの構造において、負極本体の外周輪郭の内側に正極本体の外周輪郭が配置されていることが望ましく、正極本体のはみ出し量が大きい場合、電気化学セルに適用されるイオンを構成する金属の析出のおそれ、容量低下のおそれがある。上述の製造方法では、負極本体の外周輪郭の内側に前記正極本体の外周輪郭が入るように重ね合わせることで電気化学セル用のイオンを構成する金属の析出のおそれのない、容量低下のおそれのない電気化学セルを提供できる。   In the structure of the electrochemical cell, it is desirable that the outer peripheral contour of the positive electrode main body is disposed inside the outer peripheral contour of the negative electrode main body. When the amount of protrusion of the positive electrode main body is large, the metal constituting the ions applied to the electrochemical cell There is a risk of precipitation and a decrease in capacity. In the above manufacturing method, there is no risk of precipitation of the metal constituting the ions for the electrochemical cell by overlapping the outer peripheral contour of the positive electrode main body so that the outer peripheral contour of the positive electrode main body enters, and there is a risk of capacity reduction. Can provide no electrochemical cell.

(9)前記一態様の電気化学セルの製造方法において、前記複数の電極接続部の長さが同一の正極電極と、前記複数の電極接続部の長さが同一の負極電極を用い、前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記正極本体の外周輪郭が重ね合わせ層ごとに位置ずれするように、該位置ずれ量が最大の層において前記正極本体の外周輪郭が前記負極本体の外周輪郭の内側に入るように重ね合わせることが好ましい。 (9) In the method of manufacturing an electrochemical cell according to one aspect, the positive electrode having the same length of the plurality of electrode connection portions and the negative electrode having the same length of the plurality of electrode connection portions are used. The outer peripheral contour of the positive electrode body in the layer with the largest amount of displacement is the negative electrode body so that the outer peripheral contour of the positive electrode body viewed along the overlapping direction in one overlapping unit is displaced for each overlapping layer. It is preferable to superimpose so that it may enter inside the outer periphery outline.

電気化学セルの構造において、負極本体の外周輪郭の内側に正極本体の外周輪郭が配置されていることが望ましく、正極本体のはみ出し量が大きい場合、電気化学セルに適用されるイオンを構成する金属の析出のおそれ、容量低下のおそれがある。各重ね合わせユニットにおいて位置ずれ量の最大の層であっても正極本体の外周輪郭が負極本体の外周輪郭の内側に配置されていることで電解質成分析出のおそれを解消でき、容量低下のおそれを生じない。   In the structure of the electrochemical cell, it is desirable that the outer peripheral contour of the positive electrode main body is disposed inside the outer peripheral contour of the negative electrode main body. When the amount of protrusion of the positive electrode main body is large, the metal constituting the ions applied to the electrochemical cell There is a risk of precipitation and a decrease in capacity. Even if it is the layer with the largest amount of misalignment in each superposition unit, the outer peripheral contour of the positive electrode main body is arranged inside the outer peripheral contour of the negative electrode main body, which can eliminate the risk of electrolyte component deposition and may reduce the capacity. Does not occur.

(10)前記一態様の電気化学セルの製造方法において、前記帯状の正極電極と前記帯状の負極電極において重ね合わせの始端側より終端側において、前記正極本体と前記負極本体の重ね合わせ方向に沿って見た個々の外周輪郭の位置ずれ量が大きくなるように重ね合わせた構造としても良い。 (10) In the method for manufacturing an electrochemical cell according to the aspect, the positive electrode main body and the negative electrode main body are aligned in the overlapping direction of the belt-shaped positive electrode and the belt-shaped negative electrode from the start end side to the terminal end side of the overlap. It is also possible to have a structure in which the positions of the individual outer peripheral contours viewed are overlapped so as to increase.

帯状の正極電極と帯状の負極電極をつづら折りしながら重ね合わせる構造とすると、電極接続部どうしの長さが同じであって、電極接続部どうしの長さが同じ場合、重ね合わせの数が増える度に正極本体の位置ずれ量が累積されて大きくなる。この構造であっても、複数の重ね合わせユニットを並列接続し、重ね合わせユニット単位で位置ずれ量を抑えておけば、正極本体の位置ずれ量の累積を小さくすることができ、結果的に位置ずれ量を抑制した電気化学セルを提供できる。   When the belt-like positive electrode and the belt-like negative electrode are overlapped while zigzag, the length of the electrode connection portions is the same and the length of the electrode connection portions is the same. In addition, the amount of displacement of the positive electrode main body is accumulated and increased. Even with this structure, if a plurality of overlapping units are connected in parallel and the amount of positional deviation is suppressed in units of overlapping units, the cumulative amount of positional deviation of the positive electrode body can be reduced, and as a result An electrochemical cell in which the amount of deviation is suppressed can be provided.

(11)前記一態様の電気化学セルの製造方法において、前記重ね合わせユニットを積層する際、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接正極電極どうしから正極側接続電極端子を導出し、これらの正極側接続電極端子どうしを接続するとともに、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接負極電極どうしから負極側接続電極端子を導出し、これらの負極側接続電極端子どうしを接続する構成を採用できる。 (11) In the method of manufacturing an electrochemical cell according to one aspect, when stacking the superposition units, a positive electrode side connection electrode terminal is derived from the closest positive electrodes of one superposition unit and the other superposition unit. The positive electrode side connection electrode terminals are connected to each other, and the negative electrode side connection electrode terminals are derived from the closest negative electrode electrodes of the one overlapping unit and the other overlapping unit, and the negative electrode side connection electrode terminals are connected to each other. A connection configuration can be adopted.

隣接する重ね合わせユニットどうしの最近接の正極側接続電極端子どうし、最近接の負極側接続電極端子どうしを接続するならば、他の位置から接続電極端子を導出する場合と比較し、電気化学セルの側面側への接続電極端子の回り込み量を少なくしつつ電気化学セルの外方に接続電極端子を導出できる構造の電気化学セルを製造できる。   If the adjacent positive electrode side connection electrode terminals and adjacent negative electrode side connection electrode terminals of adjacent overlapping units are connected to each other, compared to the case where the connection electrode terminals are derived from other positions, the electrochemical cell It is possible to manufacture an electrochemical cell having a structure in which the connection electrode terminal can be led out to the outside of the electrochemical cell while reducing the amount of the connection electrode terminal that wraps around the side surface.

本発明によりつづら折り状に複数重ね合わせた正極電極と負極電極からなる重ね合わせユニットを複数積層することで、1つの重ね合わせユニットに生じている正極本体の位置ずれ量が他の重ね合わせユニットに生じている正極本体の位置ずれ量に影響を及ぼさない構造の電気化学セルを提供できる。個々の重ね合わせユニットの位置ずれ量を少なくしておけば、電気化学セル全体として正極本体の負極本体に対する位置ずれ量を小さくできる。   By laminating a plurality of overlapping units composed of positive electrodes and negative electrodes stacked in a zigzag manner according to the present invention, the positional deviation amount of the positive electrode body generated in one overlapping unit is generated in another overlapping unit. It is possible to provide an electrochemical cell having a structure that does not affect the positional deviation amount of the positive electrode body. If the amount of positional deviation of the individual overlapping units is reduced, the amount of positional deviation of the positive electrode body relative to the negative electrode body can be reduced as a whole electrochemical cell.

第1実施形態に係る電池の平面図である。It is a top view of the battery concerning a 1st embodiment. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 第1実施形態に係る電池に組み込まれている第1の重ね合わせユニットを示すもので、(A)は斜視図、(B)は平面図である。The 1st superposition unit built in the battery concerning a 1st embodiment is shown, (A) is a perspective view and (B) is a top view. 第1実施形態に係る電池に組み込まれている正極構造体の一例を示す斜視図である。It is a perspective view which shows an example of the positive electrode structure incorporated in the battery which concerns on 1st Embodiment. 第1実施形態に係る電池に組み込まれている第2の重ね合わせユニットを示すもので、(A)は斜視図、(B)は平面図である。The 2nd superposition unit built in the battery concerning a 1st embodiment is shown, (A) is a perspective view and (B) is a top view. 第1実施形態に係る電池に組み込まれている正極構造体の展開図である。It is an expanded view of the positive electrode structure incorporated in the battery which concerns on 1st Embodiment. 第1実施形態に係る電池に組み込まれている正極構造体を製造する工程の一例を示す工程図である。It is process drawing which shows an example of the process of manufacturing the positive electrode structure incorporated in the battery which concerns on 1st Embodiment. 同正極構造体を製造する工程において図6に続く工程図である。FIG. 7 is a process drawing following FIG. 6 in a process for manufacturing the positive electrode structure. 第1実施形態に係る電池に組み込まれている重ね合わせユニットの展開図を示すもので、(A)は第1の重ね合わせユニットの展開図、(B)は第2の重ね合わせユニットの展開図である。1A and 1B are development views of a superposition unit incorporated in a battery according to the first embodiment, in which FIG. 1A is a development view of a first superposition unit, and FIG. 2B is a development view of a second superposition unit. It is. 第1実施形態に係る電池に組み込まれている第1の重ね合わせユニットと第2の重ね合わせユニットを積層する状態を説明するための簡略平面図である。It is a simplified top view for demonstrating the state which laminates | stacks the 1st superposition unit and the 2nd superposition unit incorporated in the battery which concerns on 1st Embodiment. 同電池の内部構造において接続電極端子の配置例を示す略図である。2 is a schematic diagram showing an example of arrangement of connection electrode terminals in the internal structure of the battery. 第1実施形態に係る電池を製造する方法の一例を示すフローチャートである。It is a flowchart which shows an example of the method of manufacturing the battery which concerns on 1st Embodiment.

以下、本発明に係る実施形態について図面を参照して説明する。以下の実施形態では、電気化学セルの一例として、コイン型のリチウムイオン二次電池(以下、単に「電池」という。)を挙げて説明する。なお、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In the following embodiments, a coin-type lithium ion secondary battery (hereinafter simply referred to as “battery”) will be described as an example of an electrochemical cell. In the drawings used for the following description, the scale of each member is appropriately changed in order to make each member a recognizable size.

<第1実施形態>
[電池]
図1に示すように、本実施形態の電池1は、平面視円形をなしている。図2を併せて参照し、電池1は、第1の重ね合わせユニット2Aと第2の重ね合わせユニット2Bからなる積層体2と、積層体2に含浸される不図示の電解質溶液と、積層体2を収容する外装体10と、を備えている。
<First Embodiment>
[battery]
As shown in FIG. 1, the battery 1 of the present embodiment has a circular shape in plan view. Referring also to FIG. 2, the battery 1 includes a laminated body 2 including a first overlapping unit 2A and a second overlapping unit 2B, an electrolyte solution (not shown) impregnated in the laminated body 2, and a laminated body. And an exterior body 10 that accommodates 2.

[積層体]
図3(A)に示すように、第1の重ね合わせユニット2Aは、つづら折り形状に折り畳まれた負極電極3と、負極電極3と互い違いに積層するように負極電極3と交差する方向につづら折り形状に折り畳まれた正極構造体4を備えている。正極構造体4のみの構成について図4に概要を示す。
また、第2の重ね合わせユニット2Bも、図5(A)に示すようにつづら折り形状に折り畳まれた負極電極3と、負極電極3と互い違いに積層するように負極電極3と交差する方向につづら折り形状に折り畳まれた正極構造体4を備えている。そして、第1の重ね合わせユニット2Aと第2の重ね合わせユニット2Bが積み重ねられ、並列接続されて図2に示す積層体2が構成されている。
[Laminate]
As shown in FIG. 3A, the first overlapping unit 2A has a negative electrode 3 folded in a zigzag shape and a zigzag shape in a direction intersecting with the negative electrode 3 so as to be alternately stacked with the negative electrode 3 The positive electrode structure 4 is provided. The outline of the structure of only the positive electrode structure 4 is shown in FIG.
Further, the second overlapping unit 2B is also folded in a direction intersecting with the negative electrode 3 so as to be alternately stacked with the negative electrode 3 folded in a zigzag shape as shown in FIG. The positive electrode structure 4 folded into a shape is provided. Then, the first overlapping unit 2A and the second overlapping unit 2B are stacked and connected in parallel to form the stacked body 2 shown in FIG.

図3(A)に示す第1の重ね合わせユニット2Aは図2に示す第1の重ね合わせユニット2Aに対し上下関係を逆にして描いている。また、図5(A)に示す第2の重ね合わせユニット2Bは図2に示す第2の重ね合わせユニット2Bと上下関係は同じ向きに描かれている。即ち、図5(A)に示す第2の重ね合わせユニット2に対し、図3(A)に示す第1の重ね合わせユニット2Aを上下逆転させ、後に説明する延出部(負極電極端子)21どうしと、延出部(正極電極端子)31どうしを個々に接続することにより、重ね合わせユニット2A、2Bが並列接続されている。これらの並列接続構造については後に図10を利用して再度説明する。


The first overlapping unit 2A shown in FIG. 3A is drawn with the vertical relationship reversed with respect to the first overlapping unit 2A shown in FIG. Further, the second overlapping unit 2B shown in FIG. 5A is drawn in the same direction as the second overlapping unit 2B shown in FIG. That is, FIG. 5 for the second overlay unit 2 B of (A), the extended portion for explaining the first overlay unit 2A shown in FIG. 3 (A) is upside down, after the (negative electrode terminal) The overlapping units 2A and 2B are connected in parallel by connecting 21 and the extending portion (positive electrode terminal) 31 individually. These parallel connection structures will be described again later using FIG.


[負極電極]
負極電極3は、帯状をなしている。負極電極3は、後述する正極電極5と同様、複数の電極接続部3aと、複数の張出し部(負極本体)3bと、を備えている。
[Negative electrode]
The negative electrode 3 has a strip shape. The negative electrode 3 includes a plurality of electrode connection portions 3a and a plurality of overhang portions (negative electrode main bodies) 3b, similarly to the positive electrode 5 described later.

図2に示すように、負極電極3は、負極集電体20と、負極集電体20の両面に形成された負極活物質層22と、を備えている。なお、後に説明するように、負極集電体20は帯状をなしている。図3(A)に示すように、負極電極3の一端部には、負極集電体20の延出部(負極電極端子)21が形成されている。負極電極端子21は、負極集電体20のうち、負極電極3の長手方向において負極本体3bよりも外側に延在されている部分である。   As shown in FIG. 2, the negative electrode 3 includes a negative electrode current collector 20 and a negative electrode active material layer 22 formed on both surfaces of the negative electrode current collector 20. As will be described later, the negative electrode current collector 20 has a strip shape. As shown in FIG. 3A, an extension portion (negative electrode terminal) 21 of the negative electrode current collector 20 is formed at one end portion of the negative electrode 3. The negative electrode terminal 21 is a portion of the negative electrode current collector 20 that extends outward from the negative electrode body 3 b in the longitudinal direction of the negative electrode 3.

例えば、負極集電体20は、銅、ニッケル及びステンレス等の金属材料で形成されている。負極活物質層22は、負極活物質、導電助剤、結着剤及び増粘剤等を含む。例えば、負極活物質層22は、黒鉛等の炭素材料で形成されている。例えば、導電助剤としては、カーボンブラック類、炭素材料及び金属微粉等が挙げられる。例えば、結着剤としては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)及びポリテトラフルオロエチレン(PTFE)等の樹脂材料が挙げられる。例えば、増粘剤としては、カルボキシメチルセルロース(CMC)等の樹脂材料が挙げられる。   For example, the negative electrode current collector 20 is formed of a metal material such as copper, nickel, and stainless steel. The negative electrode active material layer 22 includes a negative electrode active material, a conductive additive, a binder, a thickener, and the like. For example, the negative electrode active material layer 22 is formed of a carbon material such as graphite. For example, examples of the conductive assistant include carbon blacks, carbon materials, and metal fine powders. Examples of the binder include resin materials such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and polytetrafluoroethylene (PTFE). For example, as a thickener, resin materials, such as carboxymethylcellulose (CMC), are mentioned.

[正極構造体]
図4に示すように、正極構造体4は、正極電極5と、正極電極5を覆うセパレータ6と、を備えている。正極構造体4は、正極電極5とセパレータ6とを一体化したものである。正極構造体4の外形は、負極電極3の外形と実質的に同じ大きさである。
[Positive electrode structure]
As shown in FIG. 4, the positive electrode structure 4 includes a positive electrode 5 and a separator 6 that covers the positive electrode 5. The positive electrode structure 4 is obtained by integrating a positive electrode 5 and a separator 6. The outer shape of the positive electrode structure 4 is substantially the same as the outer shape of the negative electrode 3.

[正極電極]
正極電極5は、帯状をなしている。具体的に、正極電極5は、複数の電極接続部5aと、複数の正極本体5bを備えている。以下、正極電極5の長手方向と直交する方向を「正極電極5の幅方向」という。電極接続部5aは、正極電極5の幅方向内側に窪んでいる。
図6に示すように正極電極5を展開した状態において、正極本体5bは、正極電極5の長手方向で電極接続部5aと隣り合う位置に配置されている。正極本体5bは、正極電極5の幅方向で電極接続部5aよりも外側に円弧状に張り出している。この実施形態で正極本体5bは、円板状をなし、電極接続部5aを介し6個直線状に接続されている。
[Positive electrode]
The positive electrode 5 has a strip shape. Specifically, the positive electrode 5 includes a plurality of electrode connection portions 5a and a plurality of positive electrode bodies 5b. Hereinafter, the direction orthogonal to the longitudinal direction of the positive electrode 5 is referred to as the “width direction of the positive electrode 5”. The electrode connecting portion 5 a is recessed to the inner side in the width direction of the positive electrode 5.
As shown in FIG. 6, in a state where the positive electrode 5 is expanded, the positive electrode main body 5 b is disposed at a position adjacent to the electrode connection portion 5 a in the longitudinal direction of the positive electrode 5. The positive electrode main body 5b protrudes in an arc shape outside the electrode connection portion 5a in the width direction of the positive electrode 5. In this embodiment, the positive electrode main body 5b has a disk shape and is connected in a straight line via the electrode connection portion 5a.

図4に示すように、正極構造体4のつづら折り構造において、各正極本体5bは互いに実質的に平行に配置されている。電極接続部5aは、正極電極5の長手方向において各正極本体5bの端縁に連なっている。すなわち、電極接続部5aは、隣り合う2つの正極本体5bどうしを直列に接続している。   As shown in FIG. 4, in the zigzag structure of the positive electrode structure 4, the positive electrode main bodies 5 b are arranged substantially parallel to each other. The electrode connecting portion 5 a is continuous with the edge of each positive electrode body 5 b in the longitudinal direction of the positive electrode 5. That is, the electrode connecting portion 5a connects two adjacent positive electrode bodies 5b in series.

図3〜図5を併せて参照し、正極電極5の外形(積層方向に沿って平面視した場合の外周輪郭)は、負極電極3の外形(積層方向に沿って平面視した場合の外周輪郭)よりも若干小さい。すなわち、正極電極5における電極接続部5a及び正極本体5bの外形は、負極電極3における電極接続部3a及び負極本体3bの外形よりも若干小さい。   3 to 5, the outer shape of the positive electrode 5 (outer contour when viewed in plan along the stacking direction) is the outer contour of the negative electrode 3 (outer contour when viewed in plan along the stacking direction). ) Is slightly smaller. That is, the outer shapes of the electrode connection portion 5 a and the positive electrode main body 5 b in the positive electrode 5 are slightly smaller than the outer shapes of the electrode connection portion 3 a and the negative electrode main body 3 b in the negative electrode 3.

図2に示すように、正極電極5は、帯状の正極集電体30と、正極集電体30の両面に形成された正極活物質層32を備えている。図4または図6に示すように、正極電極5の一端部には、正極集電体30の延出部(正極電極端子)31が形成されている。正極電極端子31は、正極集電体30のうち、正極電極5の長手方向において正極本体5bよりも外側に延在されている部分である。   As shown in FIG. 2, the positive electrode 5 includes a strip-shaped positive electrode current collector 30 and a positive electrode active material layer 32 formed on both surfaces of the positive electrode current collector 30. As shown in FIG. 4 or 6, an extension part (positive electrode terminal) 31 of the positive electrode current collector 30 is formed at one end part of the positive electrode 5. The positive electrode terminal 31 is a portion of the positive electrode current collector 30 that extends outward from the positive electrode body 5 b in the longitudinal direction of the positive electrode 5.

例えば、正極集電体30は、アルミニウム及びステンレス等の金属材料で形成されている。正極活物質層32は、正極活物質、導電助剤、結着剤及び増粘剤等を含む。例えば、正極活物質層32は、コバルト酸リチウム、ニッケル酸リチウム等の複合金属酸化物で形成されている。例えば、導電助剤としては、カーボンブラック類、炭素材料及び金属微粉等が挙げられる。例えば、結着剤としては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)及びポリテトラフルオロエチレン(PTFE)等の樹脂材料が挙げられる。例えば、増粘剤としては、カルボキシメチルセルロース(CMC)等の樹脂材料が挙げられる。   For example, the positive electrode current collector 30 is formed of a metal material such as aluminum and stainless steel. The positive electrode active material layer 32 includes a positive electrode active material, a conductive additive, a binder, a thickener, and the like. For example, the positive electrode active material layer 32 is formed of a composite metal oxide such as lithium cobaltate or lithium nickelate. For example, examples of the conductive assistant include carbon blacks, carbon materials, and metal fine powders. Examples of the binder include resin materials such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and polytetrafluoroethylene (PTFE). For example, as a thickener, resin materials, such as carboxymethylcellulose (CMC), are mentioned.

[セパレータ]
図4または図6に示すように、セパレータ6は、展開状態で帯状をなしている。セパレータ6は、上述した正極電極5と同様、複数の電極接続部6aと、6つの張出し部6bを備えている。セパレータ6における電極接続部6a及び張出し部6bの外形は、負極電極3における電極接続部3a及び負極本体3bと実質的に同じ大きさである。
[Separator]
As shown in FIG. 4 or FIG. 6, the separator 6 has a strip shape in the developed state. Like the positive electrode 5 described above, the separator 6 includes a plurality of electrode connection portions 6a and six overhang portions 6b. The outer shapes of the electrode connection portion 6a and the overhang portion 6b in the separator 6 are substantially the same size as the electrode connection portion 3a and the negative electrode body 3b in the negative electrode 3.

セパレータ6は、リチウムイオン導電性を有する細孔構造の薄膜である。例えば、セパレータ6は、ポリプロピレン(PP)及びポリエチレン(PE)等のポリオレフィン並びにポリテトラフルオロエチレン(PTFE)等の樹脂材料で形成されている。セパレータ6は、図7に示す一対の第一セパレータ41及び第二セパレータ42どうしが熱融着により一体化されることで形成されている。なお、図4おいては、図7に示す一対の第一セパレータ41及び第二セパレータ42を切り出して負極電極3の外形と実質的に同じ大きさとされた状態の第一セパレータ41及び第二セパレータ42を示している。   The separator 6 is a thin film having a pore structure having lithium ion conductivity. For example, the separator 6 is formed of a polyolefin material such as polypropylene (PP) and polyethylene (PE) and a resin material such as polytetrafluoroethylene (PTFE). The separator 6 is formed by integrating a pair of first separator 41 and second separator 42 shown in FIG. 7 by heat fusion. In FIG. 4, the first separator 41 and the second separator in a state where the pair of the first separator 41 and the second separator 42 shown in FIG. 42 is shown.

[重ね合わせユニット]
本実施形態の重ね合わせユニット2Aは、図6に示す構成のセパレータ6を備えた正極構造体4と、セパレータ6の平面視外形と相似外形の負極電極3をそれぞれ交互に重なるようにつづら折りして積層することで構成されている。重ね合わせユニット2Aを図3(B)に示すように積層方向に沿って平面視した場合、セパレータ6の張出し部6bの円形状の外周輪郭の内側に正極本体5bの円形状の外周輪郭が配置されている。
[Overlay unit]
The superposition unit 2A of the present embodiment is formed by bending the positive electrode structure 4 including the separator 6 having the configuration shown in FIG. 6 and the negative electrode 3 having a similar external shape to the separator 6 in a plan view so as to alternately overlap each other. It is configured by stacking. When the overlapping unit 2A is viewed in plan along the stacking direction as shown in FIG. 3B, the circular outer peripheral contour of the positive electrode body 5b is arranged inside the circular outer peripheral contour of the overhanging portion 6b of the separator 6. Has been.

本実施形態の重ね合わせユニット2Bは、負極電極3と正極構造体4をそれぞれ交互に重なるようにつづら折りすることで構成されている。重ね合わせユニット2Bを図5(B)に示すように積層方向に沿って平面視した場合、負極電極3の負極本体3bの円形状の外周輪郭の内側に正極電極5の正極本体5bの円形状の外周輪郭が配置されている。この配置関係は、重ね合わせユニット2Bの全ての正極本体5bにおいて同等である。   The overlapping unit 2B of the present embodiment is configured by bending the negative electrode 3 and the positive electrode structure 4 so as to alternately overlap each other. When the superposition unit 2B is viewed in plan along the stacking direction as shown in FIG. 5B, the circular shape of the positive electrode body 5b of the positive electrode 5 is inside the circular outer peripheral contour of the negative electrode body 3b of the negative electrode 3. The outer peripheral contour is arranged. This arrangement relationship is the same in all the positive electrode bodies 5b of the superposition unit 2B.

なお、図3(A)に示す重ね合わせユニット2Aと図5(A)に示す重ね合わせユニット2Bは、理想的につづら折りされた構造のモデルとして描いている。ところが、生産現場において実際につづら折り構造を製造する場合、電極接続部3a、5aの長さが均一であると、つづら折りする場合に1つ下の層に配置した正極本体5bと負極本体3bの厚さが加わり、積層した電極全体厚が徐々に大きくなる。このため、全ての正極電極5の正極本体5bの中心を全ての負極電極3の負極本体3bの中心に正確に位置合わせすることは容易ではない問題がある。
このため、図では略しているが、重ね合わせユニット2Aと重ね合わせユニット2Bにおいて、つづら折りして重ね合わせた層ごとに厳密には正極本体5bに位置ずれを生じている。
Note that the superposition unit 2A shown in FIG. 3A and the superposition unit 2B shown in FIG. 5A are drawn as models of ideally folded structures. However, when the zigzag folded structure is actually manufactured at the production site, if the lengths of the electrode connecting portions 3a and 5a are uniform, the thickness of the positive electrode main body 5b and the negative electrode main body 3b arranged in the lower layer when zigzag folding is performed. As a result, the total thickness of the stacked electrodes gradually increases. For this reason, there is a problem that it is not easy to accurately align the centers of the positive electrode bodies 5 b of all the positive electrodes 5 with the centers of the negative electrode bodies 3 b of all the negative electrodes 3.
For this reason, although not shown in the figure, in the overlapping unit 2A and the overlapping unit 2B, the positive electrode body 5b is strictly misaligned for each layer folded and overlapped.

しかし、本実施形態の重ね合わせユニット2Aにおいては、重ね合わせ方向に沿って平面視した場合、全ての正極本体5bの円形状の外周輪郭が多少の位置ずれを有しているとしても、負極本体3bの円形状の外周輪郭の内側に配置されている。また、重ね合わせユニット2Bにおいては、重ね合わせ方向に沿って平面視した場合、全ての正極本体5bの円形状の外周輪郭が多少の位置ずれを有しているとしても、負極電極3の負極本体3bの円形状の外周輪郭の内側に配置されている。
このように重ね合わせユニット2A、2Bにおいて位置ずれを小さくできるのは、重ね合わせユニット2A、2Bの正極本体積層数が6つ程度であるためである。この理由については後に詳述する。
However, in the superposition unit 2A of the present embodiment, when viewed in plan along the superposition direction, even if the circular outer peripheral contours of all the positive electrode main bodies 5b have some positional deviation, the negative electrode main body It is arranged inside the circular outer contour of 3b. Further, in the superposition unit 2B, when viewed in plan along the superposition direction, the negative electrode main body of the negative electrode 3 even if the circular outer peripheral contours of all the positive electrode main bodies 5b have some misalignment. It is arranged inside the circular outer contour of 3b.
The reason why the misalignment can be reduced in the overlapping units 2A and 2B is that the number of stacked positive electrode bodies of the overlapping units 2A and 2B is about six. The reason for this will be described in detail later.

[外装体]
図1及び図2を併せて参照し、外装体10は、正極缶体11と、負極缶体12と、正極缶体11と負極缶体12との間を電気的に絶縁するガスケット13を備えている。
正極缶体11及び負極缶体12は、偏平型の有底円筒状をなしている。正極缶体11の内径は、負極缶体12の外径よりも若干大きい。負極缶体12の筒状部が正極缶体11に挿入された状態で、積層体2は、負極缶体12の底面と正極缶体11の底面との間に挟まれている。
[Exterior body]
1 and 2 together, the outer package 10 includes a positive electrode can body 11, a negative electrode can body 12, and a gasket 13 that electrically insulates the positive electrode can body 11 and the negative electrode can body 12 from each other. ing.
The positive electrode can body 11 and the negative electrode can body 12 have a flat bottomed cylindrical shape. The inner diameter of the positive electrode can body 11 is slightly larger than the outer diameter of the negative electrode can body 12. The laminated body 2 is sandwiched between the bottom surface of the negative electrode can body 12 and the bottom surface of the positive electrode can body 11 with the cylindrical portion of the negative electrode can body 12 being inserted into the positive electrode can body 11.

ガスケット13は、負極缶体12の筒状部の外周面と正極缶体11の筒状部の内周面との間に配置されている。このガスケット13により、積層体2が外装体10に封止されている。図2、図3、図5を併せて参照し、正極缶体11は、重ね合わせユニット2Aの正極集電体30の延出部31と接続されており、正極として機能する。一方、負極缶体12は、重ね合わせユニット2Bの負極集電体20の延出部21と接続されており、負極端子として機能する。なお、図2においては、電極端子21、31の図示を省略している。   The gasket 13 is disposed between the outer peripheral surface of the cylindrical portion of the negative electrode can body 12 and the inner peripheral surface of the cylindrical portion of the positive electrode can body 11. The laminate 2 is sealed to the exterior body 10 by the gasket 13. Referring to FIGS. 2, 3 and 5 together, the positive electrode can body 11 is connected to the extending portion 31 of the positive electrode current collector 30 of the superposition unit 2A and functions as a positive electrode. On the other hand, the negative electrode can body 12 is connected to the extending portion 21 of the negative electrode current collector 20 of the overlapping unit 2B, and functions as a negative electrode terminal. In FIG. 2, the electrode terminals 21 and 31 are not shown.

本実施形態の電池1にあっては、積層体2が第1の重ね合わせユニット2Aと第2の重ね合わせユニット2Bの並列接続構造からなる。積層体2を重ね合わせユニット2A、2Bから構成することで以下の特徴を有する。
本実施形態の構造にあっては、一例として、重ね合わせユニット2Aが6つの正極本体5bと6つの負極本体3bの重ね合わせ構造となるので、セパレータ6を除くと正極本体と負極本体のみで合計12層構造とされている。重ね合わせユニット2Bにおいても同様の積層構造である。
In the battery 1 of the present embodiment, the stacked body 2 has a parallel connection structure of the first overlapping unit 2A and the second overlapping unit 2B. The laminated body 2 is composed of the overlapping units 2A and 2B and has the following characteristics.
In the structure of the present embodiment, as an example, the superposition unit 2A has a superposition structure of six positive electrode bodies 5b and six negative electrode bodies 3b. It has a 12-layer structure. The overlapping unit 2B has a similar stacked structure.

このように積層数が多い構造の場合、仮に2つの重ね合わせユニットではなく、1つの重ね合わせユニットにすると、電極接続部3a、5aが同じ長さであると仮定すると、積層の度に正極本体5bの中心位置が負極本体3bの中心位置に対して少しずつ位置ずれを生じる。これは、つづら折りする場合に積層した負極本体3bと正極本体5bの積み重ねにより徐々に積層体が厚くなること、つづら折りする場合の折り曲げ精度の影響、正極本体5bなどの位置合わせのズレによる影響、などの複合的要因からなる。   In the case of such a structure having a large number of stacks, assuming that the electrode connecting portions 3a and 5a have the same length, assuming that one stack unit is used instead of two stack units, the positive electrode main body is required for each stack. The position of the center of 5b is slightly shifted from the center position of the negative electrode body 3b. This is because the laminated body gradually thickens due to the stacking of the negative electrode body 3b and the positive electrode body 5b stacked when zigzag folding, the influence of the folding accuracy when zigzag folding, the influence of misalignment of the positive electrode body 5b, etc. It consists of multiple factors.

また、電池1を構成する場合、容量を確保するために正極本体5bと負極本体3bの外形をできるだけ大きく形成し、電極接続部3a、5aの長さをできるだけ短く形成し、つづら折り状態において電極接続部3a、5aの外側への張出量をできるだけ小さくする設計がなされていることにも影響されて対面位置ずれが大きくなる。なお、図3〜図5では、電極接続部3a、5aの折り曲げ部分について、余裕を持たせた形状に描いたが、実際の構成では電極接続部3a、5aの折り曲げ部分はこれらの図より張出量の少ない、曲率半径の小さい折り曲げ部分とされる。   When the battery 1 is configured, the positive electrode body 5b and the negative electrode body 3b are formed as large as possible in order to ensure capacity, and the electrode connection portions 3a and 5a are formed as short as possible. The face-to-face position shift increases due to the fact that the design is made to minimize the amount of protrusion of the portions 3a and 5a to the outside. 3 to 5, the bent portions of the electrode connecting portions 3a and 5a are drawn in a shape having a margin, but in the actual configuration, the bent portions of the electrode connecting portions 3a and 5a are more stretched than those drawings. The bent part has a small curvature and a small radius of curvature.

従って、正極本体5bや負極本体3bの積層数が6〜12層程度であって少ない積層数の場合は位置ずれ量が小さいが、これらより積層数が多い場合には位置ずれ量が無視できなくなり、積層数によっては正極本体5bの外周輪郭が負極本体3bの外周輪郭からはみ出すおそれがある。平面視した場合の負極本体3bの外周輪郭から正極本体5bの外周輪郭がはみ出す場合、はみ出し量が大きいとリチウムイオン電池においては、金属リチウム析出のおそれがある。   Accordingly, when the number of stacks of the positive electrode body 5b and the negative electrode body 3b is about 6 to 12 layers and the number of stacks is small, the amount of misalignment is small, but when the number of stacks is larger than these, the amount of misalignment cannot be ignored. Depending on the number of stacked layers, the outer peripheral contour of the positive electrode body 5b may protrude from the outer peripheral contour of the negative electrode body 3b. When the outer peripheral contour of the positive electrode main body 5b protrudes from the outer peripheral contour of the negative electrode main body 3b in plan view, if the amount of protrusion is large, there is a risk of metallic lithium deposition in the lithium ion battery.

この点において上述のように2つの重ね合わせユニット2A、2Bから積層体2を構成していると、個々の重ね合わせユニットにおいては、正極本体5bの対面位置ずれ量の最大値を、1つの重ね合わせユニットで積層体全体を構成する場合より小さくすることが可能となる。従って、本実施形態の構造を採用することで、正極本体5bの対面位置ずれの少ない電池1を提供できる。   In this respect, when the stacked body 2 is constituted by the two overlapping units 2A and 2B as described above, in each of the overlapping units, the maximum value of the positional deviation amount of the positive electrode main body 5b is set to one overlap. It becomes possible to make smaller than the case where the whole laminated body is comprised with a unit. Therefore, by adopting the structure of the present embodiment, it is possible to provide the battery 1 in which the positive electrode main body 5b has little misalignment with the facing surface.

即ち、本実施形態の構造では、1つの重ね合わせユニット2Aに生じている正極本体5bの対面位置の位置ずれ量が他の重ね合わせユニット2Bに生じている正極本体5bの対面位置の位置ずれ量に影響を及ぼさない構造になっている。従って、個々の重ね合わせユニット2A、2Bの対面位置ずれ量を少なくしておけば、電池1の全体として正極本体5bの対面位置ずれ量を小さくできる。   That is, in the structure of this embodiment, the positional deviation amount of the facing position of the positive electrode body 5b generated in one superposition unit 2A is the positional deviation amount of the facing position of the positive electrode body 5b generated in the other superposition unit 2B. The structure does not affect the. Therefore, if the amount of misalignment between the individual overlapping units 2A and 2B is reduced, the amount of misalignment of the positive electrode body 5b as a whole can be reduced.

また、積層体が1つの重ね合わせユニットから構成され、積層するべき全ての正極本体が繋がって重ね合わされる構造であると、重ね合わせ構造の始端側から終端側まで位置ずれが順次累積されて大きくなる。このため、正極本体の対面位置の位置ずれ量が大きくなる問題がある。本実施形態では、この問題を解消できる。
なお、本実施形態の電池1では、積層体2において重ね合わせユニット2A、2Bを並列接続しているので、重ね合わせユニットが1つの電池に対比し、容量を2倍にできる効果がある。
Further, when the laminated body is composed of one superposition unit and all the positive electrode bodies to be laminated are connected and superposed, the positional deviation is accumulated sequentially from the start side to the end side of the superposition structure. Become. For this reason, there is a problem that the amount of positional deviation of the facing position of the positive electrode main body becomes large. In this embodiment, this problem can be solved.
In the battery 1 of this embodiment, since the overlapping units 2A and 2B are connected in parallel in the stacked body 2, the overlapping unit has an effect that the capacity can be doubled as compared with one battery.

ところで、第1実施形態の構造においては、正極本体5bを6つ、負極本体3bを6つ設け、電極本体のみで12層構造の電気化学セルに本発明を適用したが、本発明を適用する電極本体の積層数は特に制限はなく、何層構造であっても適用可能である。
また、第1実施形態の構造においては、積層体2を2つの重ね合わせユニットに分割したが、分化数も任意で良い。例えば、3つまた4つ、あるいはそれ以上の数の重ね合わせユニットから積層体2を構成しても良い。
By the way, in the structure of the first embodiment, six positive electrode bodies 5b and six negative electrode bodies 3b are provided, and the present invention is applied to an electrochemical cell having a 12-layer structure with only the electrode body. However, the present invention is applied. The number of stacked electrode bodies is not particularly limited, and any number of layers can be applied.
Moreover, in the structure of 1st Embodiment, although the laminated body 2 was divided | segmented into two superposition units, the number of differentiation may be arbitrary. For example, the laminate 2 may be configured from three, four, or more overlapping units.

図11は、積層体2を2つの重ね合わせユニット2A、2Bで構成した場合、正極電極端子31と負極電極端子21を延長して配線した状態の一例を示す構成図である。
例えば、重ね合わせユニット2Aから引き出した正極電極端子31と重ね合わせユニット2Bから引き出した正極電極端子31を重ね合わせた上で、重ね合わせユニット2Aから引き出した正極電極端子31を延長して延長部31aを形成し、この延長部31aを積層体2の底面側に配置することができる。
また、重ね合わせユニット2Aから引き出した負極電極端子21と重ね合わせユニット2Bから引き出した負極電極端子21を重ね合わせた上で、重ね合わせユニット2Bから引き出した負極電極端子21を延長して延長部21aを形成し、この延長部31aを積層体2の上面側に配置することができる。
FIG. 11 is a configuration diagram illustrating an example of a state in which the positive electrode terminal 31 and the negative electrode terminal 21 are extended and wired when the laminate 2 is configured by two overlapping units 2A and 2B.
For example, after the positive electrode terminal 31 drawn out from the superposition unit 2A and the positive electrode terminal 31 drawn out from the superposition unit 2B are superposed, the positive electrode terminal 31 drawn out from the superposition unit 2A is extended to extend the extension 31a. And the extended portion 31a can be disposed on the bottom surface side of the stacked body 2.
Further, the negative electrode terminal 21 drawn from the superposition unit 2A and the negative electrode terminal 21 drawn from the superposition unit 2B are overlapped, and then the negative electrode terminal 21 drawn from the superposition unit 2B is extended to extend the extension 21a. And the extension 31a can be disposed on the upper surface side of the stacked body 2.

図11に示す配線構造を採用すると、積層体2の厚さ半分程度を回り込むことで正極電極端子31と負極電極端子21を正極缶体11または負極缶体12に接続できる。この配線構造であれば、積層体2の側面の全高さに渡るように電極端子を配置しない配線とすることができ、正極側と負極側で均等長さの配線ができる。
また、図11に示すように重ね合わせユニット2A、2Bから引き出した正極電極端子31と負極電極端子21の一方を短くして重ね合わせ部分を少なくしておくならば、積層体2の側面側外方に対する端子部分の張り出し量を少なくすることができる。
また、正極電極端子31と負極電極端子21の一方を短くすることにより、両方を長くした構造に比べ、端子2枚分の厚さを減らすことができる効果がある。このため、電池の構造を薄型化できる効果を有するか、厚さが同じ電池とするならば、電極の量を増やすことができる効果がある。
When the wiring structure shown in FIG. 11 is employed, the positive electrode terminal 31 and the negative electrode terminal 21 can be connected to the positive electrode can body 11 or the negative electrode can body 12 by going around about half the thickness of the laminate 2. With this wiring structure, it is possible to use a wiring in which no electrode terminals are arranged so as to extend over the entire height of the side surface of the laminate 2, and wiring with a uniform length can be formed on the positive electrode side and the negative electrode side.
Further, as shown in FIG. 11, if one of the positive electrode terminal 31 and the negative electrode terminal 21 drawn out from the overlapping units 2A and 2B is shortened to reduce the overlapping portion, the outer side of the laminated body 2 is removed. The protruding amount of the terminal portion with respect to the direction can be reduced.
Further, by shortening one of the positive electrode terminal 31 and the negative electrode terminal 21, there is an effect that the thickness of two terminals can be reduced as compared with a structure in which both are made longer. For this reason, if it has the effect which can make the structure of a battery thin, or if it is set as a battery with the same thickness, there exists an effect which can increase the quantity of an electrode.

ところで、これまで説明した電池1の負極本体3b、正極本体5bについて、いずれも電極接続部3a、5aを介し直線状に配置した電極構造について説明した。しかし、負極電極3、正極電極5は、直線状である必要は無く、折れ曲がり形状、曲線状などの形状に接続された形状であっても、つづら折り状に折り畳み可能であれば正極電極または負極電極の形状は問わない。   By the way, about the negative electrode main body 3b and the positive electrode main body 5b of the battery 1 demonstrated so far, all demonstrated the electrode structure arrange | positioned linearly via the electrode connection part 3a, 5a. However, the negative electrode 3 and the positive electrode 5 do not have to be linear, and even if they are connected in a shape such as a bent shape or a curved shape, the positive electrode or the negative electrode can be folded in a zigzag manner. The shape of is not questioned.

また、これまで説明した実施形態では、電極接続部3a、5aの長さを全て同一とした構造について説明した。しかし、電極接続部3a、5aの長さが一定である必要は無く、異なっていても良い。例えば、つづら折り構造とする場合、折り返しの始端側より終端側において電極接続部3a、5aの長さが長くなる構成を採用しても良い。また、つづら折り構造とする場合、折り返しの始端側より終端側において電極接続部3a、5aの長さが徐々に長くなる構成を採用しても良い。
これらの構造を採用することにより、積層数に応じて積層体の厚さが増加しても、常に同じ位置に正極本体5bを配置することが可能となる。このため、大量生産時などにおいて大量の電池1を製造する場合であっても、電極接続部3a、5aの長さの管理が可能である場合は、上述の構造を採用しても良い。
Moreover, in embodiment described so far, the structure which made all the length of electrode connection part 3a, 5a demonstrated was demonstrated. However, the lengths of the electrode connecting portions 3a and 5a are not necessarily constant and may be different. For example, in the case of the zigzag folding structure, a configuration in which the lengths of the electrode connecting portions 3a and 5a are longer on the terminal end side than the folding start end side may be adopted. In the case of the zigzag folding structure, a configuration in which the lengths of the electrode connecting portions 3a and 5a are gradually increased from the folding start end side to the termination end side may be adopted.
By adopting these structures, it is possible to always arrange the positive electrode body 5b at the same position even if the thickness of the stacked body increases according to the number of stacked layers. For this reason, even when a large number of batteries 1 are manufactured at the time of mass production or the like, the above-described structure may be employed when the length of the electrode connecting portions 3a and 5a can be managed.

更に、前記実施形態では、積層体2を外装体10に封入してコイン型とした例を挙げて説明したが、本発明はこの構造に限定されるものではなく、積層体2をラミネートフィルムからなるラミネートパックに封入し、積層体2と電気的に接続したリード線をラミネートパックから外部に突出させた構造を採用しても良い。
ラミネートフィルムからなるラミネートパックである場合、正極缶体11および負極缶体12とガスケット13からなる缶体構造よりも封止性に優れているので、電池としての長期信頼性に優れる特徴を有する。
Furthermore, in the said embodiment, although the laminated body 2 was enclosed in the exterior body 10 and the example which was made into the coin type | mold was demonstrated, this invention is not limited to this structure, The laminated body 2 is made from a laminate film. A structure in which a lead wire sealed in a laminate pack and electrically connected to the laminate 2 protrudes from the laminate pack may be employed.
In the case of a laminate pack made of a laminate film, since it has better sealing properties than the can structure composed of the positive electrode can body 11, the negative electrode can body 12, and the gasket 13, it has a feature of excellent long-term reliability as a battery.

[電池の製造方法]
次に、上述した電池1の製造方法の一例について説明する。
図12に示すように、電池1の製造方法は、正極電極5を所定形状に加工する電極加工工程S1と、正極電極5をセパレータ6で覆う電極被覆工程S2と、被覆した正極電極5を別途所定形状に加工した負極電極3と組み合わせる電極組み合わせ工程S3と、正極構造体4と負極電極3とをセパレータ6を介した状態に交互に重ねてつづら折り形状に折り畳むつづら折り工程S4を含む。
[Battery manufacturing method]
Next, an example of the manufacturing method of the battery 1 described above will be described.
As shown in FIG. 12, the manufacturing method of the battery 1 includes an electrode processing step S1 for processing the positive electrode 5 into a predetermined shape, an electrode covering step S2 for covering the positive electrode 5 with a separator 6, and a coated positive electrode 5 separately. An electrode combination step S3 combined with the negative electrode 3 processed into a predetermined shape, and a zigzag folding step S4 in which the positive electrode structure 4 and the negative electrode 3 are alternately stacked in a state of being sandwiched via the separator 6 and folded into a zigzag shape.

本実施形態では、重ね合わせユニット2A、2Bを作成するので、S1〜S4工程と同等の工程であるS11工程(電極加工工程)、S12工程(電極被覆工程)、S13工程(電極組み合わせ工程)、S14工程(電極組み合わせ工程)を実施し、これらの工程により重ね合わせユニット2A、2Bを作成する。以下では工程S1〜S4を主体として説明する。   In this embodiment, since the overlapping units 2A and 2B are created, the S11 step (electrode processing step), the S12 step (electrode covering step), the S13 step (electrode combination step), which are equivalent to the steps S1 to S4, The S14 step (electrode combination step) is performed, and the overlapping units 2A and 2B are created by these steps. Hereinafter, steps S1 to S4 will be mainly described.

まず(すなわち、電極加工工程S1の前)、正極活物質層32及び負極活物質層22を形成するための構成材料を含む塗布液(スラリー)を調整する。以下、正極活物質層32を形成するための構成材料を含む塗布液を「正極用スラリー」、負極活物質層22を形成するための構成材料を含む塗布液を「負極用スラリー」という。正極用スラリーは、上述の正極活物質、導電助剤、結着剤及び増粘剤等を含む。負極用スラリーは、上述の負極活物質、導電助剤、結着剤及び増粘剤等を含む。なお、スラリーの溶媒としては、結着剤及び増粘剤を溶解し、かつ活物質及び導電助剤を分散するものであればよい。   First (that is, before the electrode processing step S1), a coating liquid (slurry) containing constituent materials for forming the positive electrode active material layer 32 and the negative electrode active material layer 22 is adjusted. Hereinafter, the coating liquid containing the constituent material for forming the positive electrode active material layer 32 is referred to as “positive electrode slurry”, and the coating liquid containing the constituent material for forming the negative electrode active material layer 22 is referred to as “negative electrode slurry”. The positive electrode slurry contains the above-described positive electrode active material, conductive additive, binder, thickener, and the like. The slurry for negative electrode contains the above-mentioned negative electrode active material, conductive additive, binder, thickener and the like. The solvent for the slurry may be any solvent that dissolves the binder and the thickener and disperses the active material and the conductive additive.

次に、正極集電体30及び負極集電体20を用意する。
そして、正極集電体30の両面に正極用スラリーを塗布する。その後、正極用スラリーを乾燥させる。これにより、正極集電体30の両面に正極活物質層32を形成して正極用シートを得る。そして、正極用シートをスリッター等で上述した帯状に切り出して正極電極5を得る(電極加工工程S1、S11)。
Next, the positive electrode current collector 30 and the negative electrode current collector 20 are prepared.
Then, a positive electrode slurry is applied to both surfaces of the positive electrode current collector 30. Thereafter, the positive electrode slurry is dried. Thereby, the positive electrode active material layer 32 is formed on both surfaces of the positive electrode current collector 30 to obtain a positive electrode sheet. And the sheet | seat for positive electrodes is cut out in the strip | belt shape mentioned above with the slitter etc., and the positive electrode 5 is obtained (electrode processing process S1, S11).

一方、負極集電体20の両面に負極用スラリーを塗布する。その後、負極用スラリーを乾燥させる。これにより、負極集電体20の両面に負極活物質層22を形成して負極用シートを得る。そして、負極用シートをスリッター等で上述した帯状に切り出して負極電極3を得る。
なお、電極加工工程S1では(すなわち、電極被覆工程S2、S12の前)、正極電極5の外形を、負極電極3の外形よりも小さくする。
On the other hand, the negative electrode slurry is applied to both surfaces of the negative electrode current collector 20. Thereafter, the negative electrode slurry is dried. Thereby, the negative electrode active material layer 22 is formed on both surfaces of the negative electrode current collector 20 to obtain a negative electrode sheet. Then, the negative electrode sheet is cut into the above-described belt shape with a slitter or the like to obtain the negative electrode 3.
In the electrode processing step S1 (that is, before the electrode coating steps S2 and S12), the outer shape of the positive electrode 5 is made smaller than the outer shape of the negative electrode 3.

次に、図7に示すように、正極電極5を、セパレータ6を構成する第一セパレータ41と第二セパレータ42とで挟んで覆い、これらを熱溶着して一体化する(電極被覆工程S2、S12)。第一セパレータ41及び第二セパレータ42は、展開状態(図7の平面視)において、正極電極5の長手方向に延びる長方形状をなしている。なお、第一セパレータ41及び第二セパレータ42の外形は、正極電極5における電極接続部5a及び正極本体5bを覆い、かつ延出部31を露出させる程度の大きさであればよい。熱融着により正極電極5をセパレータ6と一体化した正極構造体4とする。   Next, as shown in FIG. 7, the positive electrode 5 is sandwiched and covered by the first separator 41 and the second separator 42 constituting the separator 6, and these are heat-welded and integrated (electrode coating step S2, S12). The first separator 41 and the second separator 42 have a rectangular shape extending in the longitudinal direction of the positive electrode 5 in the unfolded state (plan view in FIG. 7). In addition, the external shape of the 1st separator 41 and the 2nd separator 42 should just be a magnitude | size of the grade which covers the electrode connection part 5a and the positive electrode main body 5b in the positive electrode 5, and the extension part 31 is exposed. A positive electrode structure 4 in which the positive electrode 5 and the separator 6 are integrated by heat fusion is obtained.

第一セパレータ41及び第二セパレータ42と正極電極5を熱融着させて図8に示す正極構造体シート4Aを得る。そして、正極構造体シート4Aをスリッター等で上述した帯状に切り出して図6に示す正極構造体4を得る。このとき、展開状態において、正極構造体4の外形を、負極電極3の外形と実質的に同じ大きさにする。   The first separator 41, the second separator 42, and the positive electrode 5 are thermally fused to obtain the positive electrode structure sheet 4A shown in FIG. Then, the positive electrode structure sheet 4A is cut out in the above-described band shape with a slitter or the like to obtain the positive electrode structure 4 shown in FIG. At this time, in the developed state, the outer shape of the positive electrode structure 4 is made substantially the same as the outer shape of the negative electrode 3.

次に、正極構造体4と負極電極3とを互い違いに積層するように組み合わせ(電極組み合わせ工程:S3、S13)、次いで、互いに交差する方向につづら折り形状に折り畳む(つづら折り工程:S4、S14)。   Next, the positive electrode structure 4 and the negative electrode 3 are combined so as to be stacked alternately (electrode combination process: S3, S13), and then folded in a zigzag shape in a direction intersecting each other (zigzag folding process: S4, S14).

正極構造体4と負極電極3を得たならば、これらをつづら折りして重ね合わせ、重ね合わせユニット2Aと重ね合わせユニット2Bを形成する。
重ね合わせユニット2Aは、例えば、図9(A)に示す重ね合わせからのつづら折り構造を採用し、重ね合わせユニット2Bは、例えば、図9(B)に示す重ね合わせからのつづら折り構造を採用する。
図9(A)、(B)において、正極構造体4の折り曲げ部を符号T1〜T5(鎖線)、負極電極3の折り曲げ部を符号U1〜U5(鎖線)で示す。
If the positive electrode structure 4 and the negative electrode 3 are obtained, they are folded and overlapped to form the overlapping unit 2A and the overlapping unit 2B.
For example, the overlapping unit 2A employs a zigzag folding structure from the overlapping shown in FIG. 9A, and the overlapping unit 2B employs a zigzag folding structure from the overlapping shown in FIG. 9B, for example.
9A and 9B, bent portions of the positive electrode structure 4 are denoted by reference numerals T1 to T5 (chain lines), and bent portions of the negative electrode 3 are denoted by reference numerals U1 to U5 (chain lines).

図9(A)に示すように、まず、正極構造体4の長手方向において延出部31を設けた張出し部(すなわち、セパレータ6の張出し部6b)と、負極電極3の長手方向において延出部21を設けた負極本体3bとを、正極構造体4と負極電極3とが直交するように平面視L字型に重ね合わせる。図9(A)では正極構造体4のセパレータ6の張出し部6bの上に負極電極3の負極本体3bを設置する(電極組み合わせ工程:S3)。
この状態から、正極構造体4の正極本体(すなわち、セパレータ6の張出し部6b)と負極電極3の負極本体3bとが順次交互に重なるようにつづら折りして重ね合わせユニット2Aを形成する。
As shown in FIG. 9A, first, an overhang portion (ie, an overhang portion 6b of the separator 6) provided with an extension portion 31 in the longitudinal direction of the positive electrode structure 4 and an extension in the longitudinal direction of the negative electrode 3 are provided. The negative electrode body 3b provided with the portion 21 is overlapped in an L shape in plan view so that the positive electrode structure 4 and the negative electrode 3 are orthogonal to each other. In FIG. 9A, the negative electrode body 3b of the negative electrode 3 is placed on the overhanging portion 6b of the separator 6 of the positive electrode structure 4 (electrode combination step: S3).
From this state, the positive electrode main body (ie, the protruding portion 6b of the separator 6) of the positive electrode structure 4 and the negative electrode main body 3b of the negative electrode 3 are successively folded and alternately overlapped to form the overlapping unit 2A.

図9(B)に示すように、まず、正極構造体4の長手方向において延出部31を設けた正極本体(すなわち、セパレータ6の張出し部6b)と、負極電極3の長手方向において延出部21を設けた負極本体3bとを、正極構造体4と負極電極3とが直交するように平面視L字型に重ね合わせる。図9(B)では負極電極3の負極本体3bの上に正極構造体4のセパレータ6の張出し部6bを設置する(電極組み合わせ工程:S13)。
この状態から、負極本体3bと正極本体(すなわち、セパレータ6の張出し部6b)とが順次交互に重なるようにつづら折りして重ね合わせユニット2Bを形成する。
As shown in FIG. 9B, first, the positive electrode main body (that is, the protruding portion 6b of the separator 6) provided with the extending portion 31 in the longitudinal direction of the positive electrode structure 4, and the negative electrode 3 extending in the longitudinal direction. The negative electrode body 3b provided with the portion 21 is overlapped in an L shape in plan view so that the positive electrode structure 4 and the negative electrode 3 are orthogonal to each other. In FIG. 9B, the overhanging portion 6b of the separator 6 of the positive electrode structure 4 is installed on the negative electrode main body 3b of the negative electrode 3 (electrode combination step: S13).
From this state, the negative electrode main body 3b and the positive electrode main body (that is, the overhanging portion 6b of the separator 6) are sequentially folded and alternately folded to form the overlapping unit 2B.

図9(A)、(B)に示す状態からつづら折りされて得られる重ね合わせユニット2A、2Bを図2に示すように積層し(重ね合わせユニット積層工程:S5)、後述する電極端子の接続(電極端子接続工程:S6)を行うことで積層体2を構成できる。
重ね合わせユニット2A、2Bを積層する場合、重ね合わせユニット2Aの底部側に正極構造体4の正極電極端子31を配置し、重ね合わせユニット2Bの上部側に負極電極3の負極電極端子21を配置する。
9A and 9B are stacked as shown in FIG. 2 (stacking unit stacking step: S5), and electrode terminal connection (to be described later) ( The laminated body 2 can be comprised by performing electrode terminal connection process: S6).
When stacking the overlapping units 2A and 2B, the positive electrode terminal 31 of the positive electrode structure 4 is disposed on the bottom side of the overlapping unit 2A, and the negative electrode terminal 21 of the negative electrode 3 is disposed on the upper side of the overlapping unit 2B. To do.

即ち、重ね合わせユニット2Bは図5(A)に示す状態のまま外装体10の内部に配置され、重ね合わせユニット2Aは図3(A)に示す状態から上下裏返しにして重ね合わせユニット2Bの上に配置される。これにより、図10に示すように重ね合わせユニット2Aの正極電極端子31と重ね合わせユニット2Bの正極電極端子31が上下に対向配置され、重ね合わせユニット2Aの負極電極端子21と重ね合わせユニット2Bの負極電極端子21が上下に対向配置される。   That is, the overlapping unit 2B is arranged inside the exterior body 10 in the state shown in FIG. 5A, and the overlapping unit 2A is turned upside down from the state shown in FIG. Placed in. As a result, as shown in FIG. 10, the positive electrode terminal 31 of the superposition unit 2A and the positive electrode terminal 31 of the superposition unit 2B are vertically opposed to each other, and the negative electrode terminal 21 of the superposition unit 2A and the superposition unit 2B The negative electrode terminals 21 are arranged opposite to each other in the vertical direction.

上下に対向配置された正極電極端子31どうしおよび負極電極端子21どうしを接続することで重ね合わせユニット2Aと重ね合わせユニット2Bを接続できる(S6;電極端子接続工程)。
重ね合わせユニット2Aは最上面に負極電極3の負極本体3bが配置されているので、負極缶体12側に配置され、重ね合わせユニット2Bは最下面に正極構造体4のセパレータ6の張出し部6bが配置されているので、正極缶体11側に配置される。
The superposition unit 2A and the superposition unit 2B can be connected by connecting the positive electrode terminals 31 and the negative electrode terminals 21 facing each other vertically (S6; electrode terminal connection step).
Since the negative electrode body 3b of the negative electrode 3 is disposed on the uppermost surface of the overlapping unit 2A, the overlapping unit 2B is disposed on the negative electrode can body 12 side, and the overlapping unit 2B is disposed on the lowermost surface of the separator 6 of the positive electrode structure 4 on the protruding portion 6b. Is arranged on the positive electrode can body 11 side.

そして、積層体2に不図示の電解質溶液を含浸させた後、電解質溶液を含浸した積層体2を外装体10内に封入することにより、本実施形態の電池1(図2参照)が完成する。
以上説明の如く構成された電池1においては、上下に対向配置された重ね合わせユニット2Aと重ね合わせユニット2Bの近接した位置から導出させた正極電極端子31どうしを接続して正極缶体11に接続できる。
Then, after impregnating the laminate 2 with an electrolyte solution (not shown), the laminate 2 impregnated with the electrolyte solution is enclosed in the exterior body 10 to complete the battery 1 (see FIG. 2) of the present embodiment. .
In the battery 1 configured as described above, the superposition unit 2A and the superposition unit 2B, which are vertically opposed to each other, are connected to the positive electrode can body 11 by connecting the positive electrode terminals 31 led out from the close position of the superposition unit 2B. it can.

また、上下に対向配置された重ね合わせユニット2Aと重ね合わせユニット2Bの近接した位置から導出させた負極電極端子21どうしを接続して負極缶体12に接続できる。
これらの接続構造において、重ね合わせユニット2A、2Bの重ね合わせ部分に近い位置から導出させた正極電極端子31、31と負極電極端子21、21であるならば、正極缶体11に正極電極端子31を接続するにしても、負極缶体12に負極電極端子21を接続するにしても同等距離で接続ができる。例えば、図11の接続構造であれば、正極側と負極側において同等距離で端子接続ができる。
Moreover, the negative electrode terminal body 21 can be connected to the negative electrode can body 12 by connecting the negative electrode terminal 21 led out from a position close to the superposition unit 2 </ b> A and the superposition unit 2 </ b> B that are opposed to each other.
In these connection structures, if the positive electrode terminals 31 and 31 and the negative electrode terminals 21 and 21 are derived from positions close to the overlapping portions of the overlapping units 2A and 2B, the positive electrode terminal 31 is connected to the positive electrode can body 11. Even if the negative electrode terminal 21 is connected to the negative electrode can body 12, the connection can be made at the same distance. For example, with the connection structure of FIG. 11, terminal connection can be made at the same distance on the positive electrode side and the negative electrode side.

電極端子21、31を重ね合わせユニット2A、2Bの境界部ではなく正極缶体11側あるいは負極缶体12側にも配置できるが、この配置とした場合、積層体2の側面高さに相当する引き回し配線が必要となる。積層体2の側面高さ全長に渡る電極端子の引き回しは望ましくないので、図11に示す接続構造など、先に説明した構造を採用することが望ましい。   The electrode terminals 21 and 31 can be arranged not on the boundary between the overlapping units 2A and 2B but also on the positive electrode can body 11 side or the negative electrode can body 12 side, but this arrangement corresponds to the side surface height of the laminate 2. Lead wiring is required. Since it is not desirable to route the electrode terminals over the entire length of the side surface of the laminate 2, it is desirable to employ the structure described above, such as the connection structure shown in FIG.

1…電池、2…積層体、2A、2B…重ね合わせユニット、3…負極電極、3a…電極接続部、3b…負極本体(張出し部)、4…正極構造体、5…正極電極、5a…電極接続部、5b…正極本体(張出し部)、6…セパレータ、6a…電極接続部、6b…張出し部、10…外装体、11…正極缶体、12…負極缶体、13…ガスケット、20…負極集電体、21…負極電極端子(延出部)、22…負極活物質層、30…正極集電体、31…正極電極端子(延出部)、32…正極活物質層、41…第一セパレータ、42…第二セパレータ、S1、S11…電極加工工程、S2、S12…電極被覆工程、S3、S13…電極組み合わせ工程、S4、S14…つづら折り工程、S5…重ね合わせユニット積層工程、S6…電極端子接続工程。   DESCRIPTION OF SYMBOLS 1 ... Battery, 2 ... Laminated body, 2A, 2B ... Overlay unit, 3 ... Negative electrode, 3a ... Electrode connection part, 3b ... Negative electrode main body (overhang | projection part), 4 ... Positive electrode structure, 5 ... Positive electrode, 5a ... Electrode connection part, 5b ... Positive electrode body (overhang part), 6 ... Separator, 6a ... Electrode connection part, 6b ... Overhang part, 10 ... Exterior body, 11 ... Positive electrode body, 12 ... Negative electrode body, 13 ... Gasket, 20 DESCRIPTION OF SYMBOLS ... Negative electrode collector, 21 ... Negative electrode terminal (extension part), 22 ... Negative electrode active material layer, 30 ... Positive electrode collector, 31 ... Positive electrode terminal (extension part), 32 ... Positive electrode active material layer, 41 ... 1st separator, 42 ... 2nd separator, S1, S11 ... Electrode processing step, S2, S12 ... Electrode coating step, S3, S13 ... Electrode combination step, S4, S14 ... Spiral folding step, S5 ... Overlapping unit lamination step, S6 ... Electrode terminal connection step.

Claims (11)

並んで配置された複数の正極本体と、隣り合う2つの前記正極本体を接続する電極接続部を有する帯状の正極電極と、
並んで配置された複数の負極本体と、隣り合う2つの前記負極本体を接続する電極接続部を有する帯状の負極電極と、
前記正極電極と前記負極電極との間に配置されるセパレータを備え、
前記正極本体と前記負極本体を前記セパレータを介し、互い違いにつづら折り状に重ね合わせ、前記正極本体の外側と前記負極本体の外側に個々に前記電極接続部を折り返して、 前記正極電極と前記負極電極の交互積層型重ね合わせユニットが構成され、
この重ね合わせユニットが複数積層され、相互に並列接続される一方、
前記セパレータは、並んで配置された複数の張出し部および隣り合う2つの前記張出し部を接続する接続部を備えた帯状であり、
前記正極電極の複数の正極本体の表裏面が前記セパレータの張出し部により覆われ、前記正極電極の電極接続部の表裏面が前記セパレータの接続部により覆われて正極構造体が構成されるとともに、
前記正極構造体と前記負極電極とが交互に積層されて前記重ね合わせユニットが構成されたことを特徴とする電気化学セル。
A plurality of positive electrode bodies arranged side by side, and a strip-like positive electrode electrode having an electrode connection part for connecting two adjacent positive electrode bodies;
A plurality of negative electrode bodies arranged side by side, and a strip-shaped negative electrode having an electrode connection part for connecting two adjacent negative electrode bodies;
Comprising a separator disposed between the positive electrode and the negative electrode;
The positive electrode body and through the separator the anode body, alternately superimposed zigzag, folded the electrode connecting portions individually on the outside of the outer and the negative electrode body of the positive electrode body, the negative electrode and the positive electrode The alternate stacking type superposition unit of
While a plurality of the overlapping units are stacked and connected to each other in parallel ,
The separator has a strip shape including a plurality of overhang portions arranged side by side and a connection portion that connects two adjacent overhang portions.
The front and back surfaces of the plurality of positive electrode bodies of the positive electrode are covered by the overhang portions of the separator, and the front and back surfaces of the electrode connection portions of the positive electrode are covered by the connection portions of the separator, thereby forming a positive electrode structure.
The electrochemical cell, wherein the superposition unit is configured by alternately laminating the positive electrode structure and the negative electrode .
前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記負極本体の外周輪郭の内側に前記正極本体の外周輪郭が配置されたことを特徴とする請求項1に記載の電気化学セル。  2. The electrochemical cell according to claim 1, wherein the outer peripheral contour of the positive electrode main body is arranged inside the outer peripheral contour of the negative electrode main body viewed along the overlapping direction in the one superposition unit. 前記正極電極における前記複数の電極接続部の長さが同一とされ、前記負極電極における前記複数の電極接続部の長さが同一とされるとともに、
前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記正極本体の外周輪郭が重ね合わせ層ごとに位置ずれされ、該位置ずれ量が最大の層において前記正極本体の外周輪郭が前記負極本体の外周輪郭の内側に配置されたことを特徴とする請求項1または請求項2に記載の電気化学セル。
The lengths of the plurality of electrode connection portions in the positive electrode are the same, and the lengths of the plurality of electrode connection portions in the negative electrode are the same,
The outer peripheral contour of the positive electrode body viewed along the overlapping direction in the one overlapping unit is displaced for each overlapping layer, and the outer peripheral contour of the positive electrode body is the negative electrode body in the layer having the largest positional displacement amount. The electrochemical cell according to claim 1, wherein the electrochemical cell is disposed inside an outer peripheral contour of the electrode.
前記帯状の正極電極と前記帯状の負極電極において重ね合わせの始端側より終端側において、前記正極本体と前記負極本体の重ね合わせ方向に沿って見た個々の外周輪郭の位置ずれ量が大きくされたことを特徴とする請求項1〜請求項3のいずれか一項に記載の電気化学セル。  In the belt-like positive electrode and the belt-like negative electrode, the positional deviation amount of each outer peripheral contour viewed along the superposition direction of the positive electrode main body and the negative electrode main body is increased from the start side to the end side of the superposition. The electrochemical cell according to any one of claims 1 to 3, wherein the electrochemical cell is characterized. 前記積層された隣接する重ね合わせユニットにおいて、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接正極電極どうしから正極側接続電極端子が導出され、これらの正極側接続電極端子どうしが接続され、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接負極電極どうしから負極側接続電極端子が導出され、これらの負極側接続電極端子どうしが接続されたことを特徴とする請求項1〜請求項4のいずれか一項に記載の電気化学セル。  In the stacked adjacent overlapping unit, the positive electrode side connection electrode terminal is derived from the closest positive electrode of one superposition unit and the other superposition unit, these positive electrode side connection electrode terminals are connected, The negative electrode side connection electrode terminals are led out from the closest negative electrode electrodes of one overlapping unit and the other overlapping unit, and these negative electrode side connection electrode terminals are connected to each other. 5. The electrochemical cell according to any one of 4. 前記正極電極と負極電極の少なくとも一方において、重ね合わせの始端側の接続部の長さより重ね合わせの終端側の接続部の長さが長くされたことを特徴とする請求項1〜請求項5のいずれか一項に記載の電気化学セル。 In at least one of the positive electrode and the negative electrode, the starting end side of the connecting portion of the overlapping end side of the connecting portion of the superposition than the length of the claims 1 to 5, characterized in that is longer in length The electrochemical cell as described in any one. 並んで配置された複数の正極本体および隣り合う2つの前記正極本体を接続する電極接続部を有する帯状の正極電極と、
並んで配置された複数の負極本体および隣り合う2つの前記負極本体を接続する電極接続部を有する帯状の負極電極とを、
前記正極本体と前記負極本体の間にセパレータを介し、前記正極本体の外側と前記負極本体の外側に個々に前記電極接続部を折り返し、互い違いにつづら折り状に重ね合わせて前記正極電極と前記負極電極の交互積層型重ね合わせユニットを構成し、この重ね合わせユニットを複数積層し、相互に並列接続するに際し、
前記セパレータは、並んで配置された複数の張出し部および隣り合う2つの前記張出し部を接続する接続部を備えた帯状であり、
前記正極電極の複数の正極本体の表裏面を前記セパレータの張出し部で覆い、前記正極電極の電極接続部の表裏面を前記セパレータの接続部で覆って正極構造体を構成するとともに、
前記正極構造体と前記負極電極とを交互に積層して前記重ね合わせユニットを構成することを特徴とする電気化学セルの製造方法。
A belt-like positive electrode having a plurality of positive electrode bodies arranged side by side and an electrode connecting part for connecting two adjacent positive electrode bodies;
A strip-shaped negative electrode having a plurality of negative electrode bodies arranged side by side and an electrode connecting portion for connecting two adjacent negative electrode bodies,
Via the separator between the positive electrode main body and the negative electrode main body, the electrode connecting portions are folded individually on the outer side of the positive electrode main body and the outer side of the negative electrode main body, and alternately stacked in a zigzag manner so as to overlap the positive electrode and the negative electrode When constructing an alternate stacking type superposition unit, stacking a plurality of these superposition units and connecting them in parallel ,
The separator has a strip shape including a plurality of overhang portions arranged side by side and a connection portion that connects two adjacent overhang portions.
Covering the front and back surfaces of the plurality of positive electrode bodies of the positive electrode with the protruding portion of the separator, and covering the front and back surfaces of the electrode connection portion of the positive electrode with the connection portion of the separator,
The method for producing an electrochemical cell, wherein the superposition unit is configured by alternately laminating the positive electrode structure and the negative electrode .
前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記負極本体の外周輪郭の内側に前記正極本体の外周輪郭が入るように重ね合わせることを特徴とする請求項7に記載の電気化学セルの製造方法。  8. The electrochemical cell according to claim 7, wherein the superposition is performed so that the outer peripheral contour of the positive electrode main body is placed inside the outer peripheral contour of the negative electrode main body viewed along the overlapping direction in the one superposition unit. Manufacturing method. 前記複数の電極接続部の長さが同一の正極電極と、前記複数の電極接続部の長さが同一の負極電極を用い、
前記1つの重ね合わせユニットにおいて重ね合わせ方向に沿って見た前記正極本体の外周輪郭が重ね合わせ層ごとに位置ずれするように、該位置ずれ量が最大の層において前記正極本体の外周輪郭が前記負極本体の外周輪郭の内側に入るように重ね合わせることを特徴とする請求項7または請求項8に記載の電気化学セルの製造方法。
Using a positive electrode having the same length of the plurality of electrode connection portions and a negative electrode having the same length of the plurality of electrode connection portions,
The outer peripheral contour of the positive electrode body in the layer with the largest amount of positional deviation is such that the outer peripheral contour of the positive electrode body viewed along the overlapping direction in the one overlapping unit is displaced for each overlapping layer. The method for producing an electrochemical cell according to claim 7 or 8, wherein the superposition is performed so as to be inside the outer peripheral contour of the negative electrode main body.
前記帯状の正極電極と前記帯状の負極電極において重ね合わせの始端側より終端側において、前記正極本体と前記負極本体の重ね合わせ方向に沿って見た個々の外周輪郭の位置ずれ量が大きくなるように重ね合わせることを特徴とする請求項7〜請求項9のいずれか一項に記載の電気化学セルの製造方法。  In the belt-like positive electrode and the belt-like negative electrode, the positional deviation amount of each outer peripheral contour seen along the superposition direction of the positive electrode main body and the negative electrode main body is increased from the start side to the end side of the superposition. The method for producing an electrochemical cell according to any one of claims 7 to 9, wherein the electrochemical cell is superposed on each other. 前記重ね合わせユニットを積層する際、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接正極電極どうしから正極側接続電極端子を導出し、これらの正極側接続電極端子どうしを接続するとともに、一方の重ね合わせユニットと他方の重ね合わせユニットの最近接負極電極どうしから負極側接続電極端子を導出し、これらの負極側接続電極端子どうしを接続することを特徴とする請求項7〜請求項10のいずれか一項に記載の電気化学セルの製造方法。  When laminating the superposition unit, a positive electrode side connection electrode terminal is derived from the closest positive electrodes of one superposition unit and the other superposition unit, and the positive electrode side connection electrode terminals are connected to each other. 11. The negative electrode side connection electrode terminal is derived from the nearest negative electrode of the superposition unit of the other and the other superposition unit, and these negative electrode side connection electrode terminals are connected to each other. The manufacturing method of the electrochemical cell as described in any one.
JP2017200925A 2017-10-17 2017-10-17 Electrochemical cell and method for producing electrochemical cell Active JP6482098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017200925A JP6482098B1 (en) 2017-10-17 2017-10-17 Electrochemical cell and method for producing electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200925A JP6482098B1 (en) 2017-10-17 2017-10-17 Electrochemical cell and method for producing electrochemical cell

Publications (2)

Publication Number Publication Date
JP6482098B1 true JP6482098B1 (en) 2019-03-13
JP2019075294A JP2019075294A (en) 2019-05-16

Family

ID=65718264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200925A Active JP6482098B1 (en) 2017-10-17 2017-10-17 Electrochemical cell and method for producing electrochemical cell

Country Status (1)

Country Link
JP (1) JP6482098B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288811B2 (en) * 2019-06-12 2023-06-08 セイコーインスツル株式会社 Electrode manufacturing method, electrode, electrode laminate structure and electrochemical cell
WO2021006161A1 (en) * 2019-07-11 2021-01-14 株式会社村田製作所 Secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1370799A (en) * 1963-07-17 1964-08-28 Accumulateurs Fixes Process for the continuous formation of a stack of discs of parts or plates in strips, strips used for its implementation and stacks obtained
US6635381B2 (en) * 2000-05-11 2003-10-21 Wilson Greatbatch Ltd. Electrochemical lithium ion secondary cell having a scalloped electrode assembly
KR100873308B1 (en) * 2006-06-05 2008-12-12 주식회사 엘지화학 High Capacity Battery Cell Employed with Two or More Unit Cells
JP2009199825A (en) * 2008-02-20 2009-09-03 Sumitomo Chemical Co Ltd Device with electrode group
US20120288747A1 (en) * 2010-01-29 2012-11-15 Jsr Corporation Electrochemical device
JP2015133292A (en) * 2014-01-15 2015-07-23 シチズンホールディングス株式会社 Flat type secondary battery

Also Published As

Publication number Publication date
JP2019075294A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP5943244B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
KR101414092B1 (en) Stepwise Electrode Assembly, Secondary Battery, Battery Pack and Devide comprising the Stepwise Electrode Assembly, and Method for preparing the Stepwise Electrode Assembly
JP5943243B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
CN103947026B (en) There is the step electrode assemblie in difform corner and include the secondary cell of this electrode assemblie, set of cells and equipment
KR101385732B1 (en) Electrode assembly composed of electrode units with equal lengths and different widths, battery cell and device including the same
KR20130118717A (en) Electrode assembly, battery cell and device comprising the same
JP2014523102A (en) ELECTRODE ASSEMBLY EXCELLENT IN ELECTRODE TAB CONNECTIVITY, BATTERY CELL CONTAINING THE SAME, DEVICE AND MANUFACTURING METHOD THEREOF
CN104488128A (en) Electrode assembly, and battery and device comprising same
KR101482385B1 (en) Stepwise Cell Assembly
JP6482098B1 (en) Electrochemical cell and method for producing electrochemical cell
JP2009016122A (en) Laminated secondary battery and battery pack
JP6274461B2 (en) Electrochemical cell and method for producing electrochemical cell
JP5970829B2 (en) Power storage device and electrode for power storage device
EP2892067B1 (en) Method for manufacturing electricity storage device
CN107210453A (en) The design of solid state battery
JP2017050243A (en) Flat-type battery
JP5561798B2 (en) Multilayer secondary battery and battery pack
JP6592495B2 (en) Electrochemical cell and method for producing electrochemical cell
US11495832B2 (en) Electrochemical cell
JP6508742B1 (en) Electrochemical cell and method of manufacturing electrochemical cell
JP2020080283A (en) Electrochemical cell
JP2020080277A (en) Electrochemical cell
JP7320411B2 (en) electrochemical cell
JP2019212437A (en) Lamination type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190207

R150 Certificate of patent or registration of utility model

Ref document number: 6482098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250