JP6482075B2 - Welded duplex stainless steel pipe and its manufacturing method - Google Patents

Welded duplex stainless steel pipe and its manufacturing method Download PDF

Info

Publication number
JP6482075B2
JP6482075B2 JP2015148436A JP2015148436A JP6482075B2 JP 6482075 B2 JP6482075 B2 JP 6482075B2 JP 2015148436 A JP2015148436 A JP 2015148436A JP 2015148436 A JP2015148436 A JP 2015148436A JP 6482075 B2 JP6482075 B2 JP 6482075B2
Authority
JP
Japan
Prior art keywords
mass
phase
steel pipe
stainless steel
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015148436A
Other languages
Japanese (ja)
Other versions
JP2016053214A (en
Inventor
室恒 矢部
室恒 矢部
隆幸 武井
隆幸 武井
勉 大森
勉 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Publication of JP2016053214A publication Critical patent/JP2016053214A/en
Application granted granted Critical
Publication of JP6482075B2 publication Critical patent/JP6482075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化学プラント等、極めて優れた耐粒界腐食性が要求される環境において使用される溶接二相ステンレス鋼管とその製造方法に関するものである。   The present invention relates to a welded duplex stainless steel pipe used in an environment that requires extremely excellent intergranular corrosion resistance, such as a chemical plant, and a method for producing the same.

二相ステンレス鋼は、強度と耐食性を兼ね備えた優れた材料であり、海水などのように高い濃度で塩化物が存在する環境下や、油井や化学プラントなどのように厳しい腐食を受ける環境下でも優れた耐食性を有する材料として知られている。そのため、二相ステンレス鋼は、化学プラントの中でも特に厳しい腐食を受ける尿素プラントにも使用されており、尿素生産量の増大にともない、需要が年々増加する傾向にある。   Duplex stainless steel is an excellent material that combines strength and corrosion resistance, even in environments where chlorides are present at high concentrations such as seawater, or in environments subject to severe corrosion such as oil wells or chemical plants. It is known as a material having excellent corrosion resistance. Therefore, duplex stainless steel is also used in urea plants that are subjected to particularly severe corrosion among chemical plants, and the demand tends to increase year by year as the production amount of urea increases.

ところで、上記尿素プラント等で使用される二相ステンレス鋼製の鋼管は、SUS304やSUS316Lに代表される通常のステンレス鋼の鋼管製造に用いられる設備および製造方法で製造することができる。しかし、現在のところ、特許文献1や特許文献2等に記載されている、ユジーン方式やブッシュベンチ方式に代表される熱間押出方式、あるいは、プラグミル方式やマンドレルミル方式に代表される傾斜圧延方式(マンネスマン法)により製造されるシームレス鋼管(継目無鋼管)が主流である。しかし、このシームレス鋼管は、製造設備の面から製造コストが高く、鋼管径も比較的小径なものしか製造できないという問題がある。   By the way, the duplex stainless steel pipe used in the urea plant or the like can be manufactured by equipment and a manufacturing method used for manufacturing a normal stainless steel pipe represented by SUS304 and SUS316L. However, currently, the hot extrusion method represented by the Eugene method and the bush bench method, or the inclined rolling method represented by the plug mill method and the mandrel mill method, which are described in Patent Document 1 and Patent Document 2, etc. Seamless steel pipes (seamless steel pipes) manufactured by the (Mannesmann method) are the mainstream. However, this seamless steel pipe has a problem that the manufacturing cost is high from the viewpoint of manufacturing equipment, and only a steel pipe having a relatively small diameter can be manufactured.

これに対して、板材(鋼板)を曲げ成形後、継目を溶接して製造する溶接製管は、シームレス鋼管より製造コストが安く、しかも大径の鋼管の製造が可能であるという利点がある。しかし、溶接鋼管の場合、溶接熱影響部(HAZ;Heat Affected Zone)における、耐食性をはじめとする諸特性に問題があることが知られている。耐食性が低下する主な原因は、溶接時の入熱によって、ステンレス鋼の耐食性向上に大きく寄与するCrが、合金中に含まれるCと結合してクロム炭化物を形成し、その周囲にCr濃度が低い領域、いわゆる「Cr欠乏層」が生じ、該部分の耐食性が局所的に低下することにある。この現象は、一般に「鋭敏化」と称されており、合金に含まれるC量を低下させることで回避することが可能である。   On the other hand, a welded pipe manufactured by welding a seam after bending a plate material (steel plate) has an advantage that the manufacturing cost is lower than that of a seamless steel pipe and a large diameter steel pipe can be manufactured. However, in the case of a welded steel pipe, it is known that there are problems in various characteristics including corrosion resistance in a weld heat affected zone (HAZ). The main reason for the decrease in corrosion resistance is that Cr, which greatly contributes to improving the corrosion resistance of stainless steel due to heat input during welding, combines with C contained in the alloy to form chromium carbide, and the Cr concentration around it A low region, a so-called “Cr deficient layer” is generated, and the corrosion resistance of the portion is locally reduced. This phenomenon is generally referred to as “sensitization” and can be avoided by reducing the amount of C contained in the alloy.

また、耐食性を向上させる目的で、CrやMoを多量に含有するステンレス鋼では、溶接時の入熱によって、CrとMoを主体とする金属間化合物(σ相)が析出し、鋭敏化と同様、局所的な耐食性の低下を招くことが知られている。この対策として、例えば、特許文献3には、σ相の析出により耐孔食指数(PREW)が局所的に低下するのを防止するため、二相ステンレス鋼の溶接後、熱影響部を水冷してσ相の析出を防止する技術が提案されている。   In addition, in the case of stainless steel containing a large amount of Cr and Mo for the purpose of improving corrosion resistance, an intermetallic compound (σ phase) mainly composed of Cr and Mo precipitates due to heat input during welding, which is similar to sensitization. It is known to cause a decrease in local corrosion resistance. As a countermeasure, for example, in Patent Document 3, in order to prevent a local decrease in the pitting corrosion index (PREW) due to precipitation of the σ phase, the heat-affected zone is water-cooled after welding of the duplex stainless steel. A technique for preventing the precipitation of the σ phase has been proposed.

特開2005−014032号公報JP 2005-014032 A 特開2004−122137号公報JP 2004-122137 A 特開平06−116684号公報Japanese Patent Laid-Open No. 06-116684

ところで、二相ステンレス鋼の溶接鋼管は、造管時の溶接に、溶接材料を用いないTIG溶接やプラズマ溶接等が用いられるが、溶接ビード(溶接金属)の組織は、α相とγ相の相比が母材とは異なり、また、凝固組織であり、凝固偏析が存在するため、耐食性に劣る。同様に、溶接金属に隣接する溶接熱影響部も、溶接時の入熱によって、α相とγ相の相比が母材から変化し、α相が多くγ相が低い相比となっているため、耐食性に劣る。さらに、溶接鋼管には、造管時の曲げ加工により導入される歪や溶接残留応力により応力腐食割れなどが助長される。そこで、溶接鋼管には、有害な析出物を固溶化する目的の他に、溶接部におけるα相とγ相の相比を母材と同じ相比に戻すとともに、歪を除去する目的で、固溶化熱処理を施すことが一般に行われている。   By the way, as for the welded steel pipe of duplex stainless steel, TIG welding or plasma welding which does not use a welding material is used for welding at the time of pipe making, but the structure of the weld bead (welded metal) is composed of α phase and γ phase. Since the phase ratio is different from that of the base material and is a solidified structure and solidified segregation exists, the corrosion resistance is poor. Similarly, also in the heat affected zone adjacent to the weld metal, the phase ratio between the α phase and the γ phase changes from the base material due to heat input during welding, and the α phase has a large phase ratio and the γ phase has a low phase ratio. Therefore, it is inferior to corrosion resistance. Furthermore, stress corrosion cracking and the like are promoted in the welded steel pipe by strain introduced by bending during pipe making and welding residual stress. Therefore, in addition to the purpose of solidifying harmful precipitates in welded steel pipes, in order to return the phase ratio of the α phase and γ phase in the weld zone to the same phase ratio as that of the base metal and to eliminate strain, A solution heat treatment is generally performed.

しかしながら、発明者らの調査によれば、同一の成分組成の二相ステンレス鋼板を素材とし、かつ、σ相や炭化物、窒化物等の析出物が観察されないように製造した固溶化熱処理後の溶接鋼管において、溶接部、特に、溶接熱影響部の耐粒界腐食性に大きな差異が生じることがあることがわかった。しかし、上記特許文献1〜3に開示の技術は、いずれも、孔食や応力腐食割れを改善しようとする技術であり、溶接により製造した鋼管の熱影響部における耐粒界腐食性の向上については何らの検討もしていない。   However, according to the investigations by the inventors, welding after solution heat treatment was made using a duplex stainless steel sheet having the same component composition and manufactured so that precipitates such as σ phase, carbide, and nitride were not observed. In steel pipes, it has been found that large differences may occur in the intergranular corrosion resistance of welds, particularly weld heat-affected zones. However, the techniques disclosed in Patent Documents 1 to 3 are all techniques for improving pitting corrosion and stress corrosion cracking, and improving intergranular corrosion resistance in the heat-affected zone of a steel pipe manufactured by welding. Did not consider anything.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、溶接熱影響部の耐粒界腐食性に優れる溶接二相ステンレス鋼管を提供するとともに、その製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide a welded duplex stainless steel pipe excellent in intergranular corrosion resistance of the weld heat-affected zone and a method for producing the same. It is to propose.

発明者らは、上記課題を解決するため、鋭意検討を重ねた。その結果、溶接熱影響部における耐粒界腐食性の差異は、α/γ相界面(粒界)近傍におけるγ相内のCr濃度分布の差異に起因していること、すなわち、耐粒界腐食性に劣る鋼管には、溶接熱影響部のα/γ相界面近傍のγ相内にCr濃度が低い領域が存在しており、これが耐粒界腐食性を低下させる原因であること、そして、上記Cr濃度が低い領域の形成を防止するには、固溶化熱処理条件を適正化することが有効であることを見出し、本発明を開発するに至った。   Inventors repeated earnest examination in order to solve the said subject. As a result, the difference in intergranular corrosion resistance in the heat affected zone is due to the difference in Cr concentration distribution in the γ phase near the α / γ phase interface (grain boundary), that is, intergranular corrosion resistance. In steel pipes with inferior properties, there is a low Cr concentration region in the γ phase in the vicinity of the α / γ phase interface of the weld heat affected zone, which is a cause of reducing intergranular corrosion resistance, and In order to prevent the formation of the low Cr concentration region, it has been found effective to optimize the solution heat treatment conditions, and the present invention has been developed.

すなわち、本発明は、C:0.05mass%以下、Si:0.10〜1.00mass%、Mn:0.3〜2.0mass%、P:0.010〜0.050mass%、S:0.0001〜0.02mass%、Al:0.001〜0.05mass%、N:0.05〜0.4mass%、Ni:4〜9mass%、Cr:20〜27mass%、Mo:2〜5mass%、Cu:0.01〜0.30mass%、W:0.01〜0.4mass%、B:0.0001〜0.001mass%およびCa:0.0006〜0.01mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、溶接熱影響部にσ相が存在せず、かつ、溶接熱影響部におけるα/γ相界面からγ相側に0.5μmまでの領域の最低Cr濃度と、同一γ相内で、α/γ相界面からγ相側に0.5μmより離れた領域の平均Cr濃度の差が1.5mass%未満であることを特徴とする溶接二相ステンレス鋼管である。   That is, the present invention is C: 0.05 mass% or less, Si: 0.10 to 1.00 mass%, Mn: 0.3 to 2.0 mass%, P: 0.010 to 0.050 mass%, S: 0 0.0001-0.02 mass%, Al: 0.001-0.05 mass%, N: 0.05-0.4 mass%, Ni: 4-9 mass%, Cr: 20-27 mass%, Mo: 2-5 mass% Cu: 0.01-0.30 mass%, W: 0.01-0.4 mass%, B: 0.0001-0.001 mass%, and Ca: 0.0006-0.01 mass%, the balance being It has a composition composed of Fe and unavoidable impurities, has no σ phase in the weld heat affected zone, and has a minimum area of 0.5 μm from the α / γ phase interface to the γ phase side in the weld heat affected zone. Cr concentration; In the same γ phase, the welded duplex stainless steel pipe is characterized in that the difference in average Cr concentration in the region separated from 0.5 μm from the α / γ phase interface to the γ phase side is less than 1.5 mass%.

本発明の上記溶接二相ステンレス鋼管は、上記成分組成に加えてさらに、V:0.003〜0.5mass%およびNb:0.003〜0.5mass%のうちから選ばれる1種または2種を含有することを特徴とする。   In addition to the above component composition, the welded duplex stainless steel pipe of the present invention is further one or two selected from V: 0.003 to 0.5 mass% and Nb: 0.003 to 0.5 mass%. It is characterized by containing.

また、本発明の上記溶接二相ステンレス鋼管は、70mass%沸騰硝酸による腐食速度が0.30g/m・hr未満であることを特徴とする。 Further, the welded duplex stainless steel pipe of the present invention is characterized in that the corrosion rate by 70 mass% boiling nitric acid is less than 0.30 g / m 2 · hr.

また、本発明は、上記のいずれかに記載の溶接二相ステンレス鋼管を製造するに際し、常法に従って製造した溶接二相ステンレス鋼管を1000〜1100℃の温度に加熱した後、800℃以上の温度まで冷却速度3℃/s以上で冷却し、その後、直ちに6℃/s以上で冷却する固溶化熱処理を施すことを特徴とする溶接二相ステンレス鋼管の製造方法を提案する。   Moreover, when manufacturing the welded duplex stainless steel pipe according to any of the above, the present invention heats the welded duplex stainless steel pipe manufactured according to a conventional method to a temperature of 1000 to 1100 ° C, and then a temperature of 800 ° C or higher. We propose a method for producing a welded duplex stainless steel pipe, characterized in that it is cooled at a cooling rate of 3 ° C./s or higher, and then subjected to solution heat treatment immediately cooled at 6 ° C./s or higher.

本発明によれば、耐粒界腐食性に優れる溶接二相ステンレス鋼管を安価に提供することができるので、化学プラントなど、粒界腐食の発生が懸念される環境下で使用される耐食性鋼管として好適に用いることができる。   According to the present invention, a welded duplex stainless steel pipe having excellent intergranular corrosion resistance can be provided at a low cost. Therefore, as a corrosion resistant steel pipe used in an environment where the occurrence of intergranular corrosion is a concern, such as a chemical plant. It can be used suitably.

耐粒界腐食性が良好な溶接二相ステンレス鋼管のα/γ相界面近傍のCr濃度分布をTEM−EDXで測定した結果を示すグラフである。It is a graph which shows the result of having measured the Cr density | concentration distribution of the alpha / gamma phase interface vicinity of the welded duplex stainless steel pipe with favorable intergranular corrosion resistance by TEM-EDX. 耐粒界腐食性に劣る溶接二相ステンレス鋼管のα/γ相界面近傍のCr濃度分布をTEM−EDXで測定した結果を示すグラフである。It is a graph which shows the result of having measured Cr density distribution near the alpha / gamma phase interface of a welded duplex stainless steel pipe inferior to intergranular corrosion resistance by TEM-EDX.

まず、本発明の基本的な技術思想について説明する。
前述したように、同一の成分組成からなる二相ステンレス鋼板を素材とし、かつ、結晶粒界や粒内にσ相や炭化物、窒化物等の析出物が全く観察されない溶接鋼管においても、溶接熱影響部の耐粒界腐食性に大きな差異が生じることが多々認められた。
そこで、発明者らは、上記溶接熱影響部における耐粒界腐食性の差は、粒界近傍における何らかの成分濃度の差異によるものと考え、α/γ相界面近傍の成分分析を行った。具体的には、耐粒界腐食性に劣る溶接二相ステンレス鋼管と耐粒界腐食性が良好な溶接二相ステンレス鋼管から試料を採取し、造管方向に垂直な断面を観察面とする透過電子顕微鏡(TEM)用の試料を作製し、TEMに付属のエネルギー分散X線分光分析(EDX分析)装置を用いて、α/γ相界面を基準にし、α相側およびγ相側に、それぞれ60nm間隔で点分析を行った。
First, the basic technical idea of the present invention will be described.
As described above, even in welded steel pipes made of a duplex stainless steel sheet having the same component composition, and no precipitates such as σ phase, carbides, and nitrides are observed at the grain boundaries and in the grains, welding heat It was often observed that large differences occurred in the intergranular corrosion resistance of the affected area.
Therefore, the inventors considered that the difference in intergranular corrosion resistance in the weld heat affected zone is due to a difference in some component concentration in the vicinity of the grain boundary, and conducted component analysis in the vicinity of the α / γ phase interface. Specifically, samples were taken from welded duplex stainless steel pipes with poor intergranular corrosion resistance and welded duplex stainless steel pipes with good intergranular corrosion resistance, and the cross-section perpendicular to the pipe forming direction was used as the observation surface. Prepare a sample for an electron microscope (TEM), and use the energy dispersive X-ray spectroscopic analysis (EDX analysis) apparatus attached to the TEM, respectively, on the α phase side and the γ phase side with reference to the α / γ phase interface. Point analysis was performed at 60 nm intervals.

その結果、溶接熱影響部における耐粒界腐食性が良好な溶接二相ステンレス鋼管では、図1に示したように、α/γ相界面に対してγ相側のα/γ相界面近傍にはCr濃度分布に大きな変動は認められなかったが、耐粒界腐食性に劣る溶接二相ステンレス鋼管では、図2に示したように、α/γ相界面に対してγ相側のα/γ相界面近傍には、γ相の内部よりCr濃度の低い領域(以降、本発明では、この領域を「Cr欠乏領域」という)が存在しており、これが、耐粒界腐食性を低下させている原因であること、特に、上記のα/γ相界面近傍のCr欠乏領域の最低Cr濃度と、上記Cr欠乏領域が存在するγ相内部の平均Cr濃度の差が、1.5mass%以上になると、耐粒界腐食性が大きく低下することが明らかとなった。なお、この「Cr欠乏領域」は、クロム炭化物の形成を伴わないことから、従来から知られている「Cr欠乏層」とは全く異なるものである。   As a result, in a welded duplex stainless steel pipe with good intergranular corrosion resistance in the weld heat affected zone, as shown in FIG. 1, the α / γ phase interface is near the α / γ phase interface as shown in FIG. As shown in FIG. 2, in the welded duplex stainless steel pipe having poor intergranular corrosion resistance, as shown in FIG. 2, the α / γ phase side α / In the vicinity of the γ-phase interface, there is a region where the Cr concentration is lower than the inside of the γ-phase (hereinafter, this region is referred to as “Cr-deficient region” in the present invention), which reduces the intergranular corrosion resistance. In particular, the difference between the minimum Cr concentration in the Cr-deficient region near the α / γ phase interface and the average Cr concentration in the γ-phase in which the Cr-deficient region exists is 1.5 mass% or more. It became clear that the intergranular corrosion resistance was greatly reduced. The “Cr-deficient region” is completely different from the conventionally known “Cr-deficient layer” because it does not involve the formation of chromium carbide.

そこで、上記Cr欠乏領域が形成される原因を究明するため、耐粒界腐食性に劣る溶接二相ステンレス鋼管と耐粒界腐食性が良好な溶接二相ステンレス鋼管の製造履歴を詳細に調査した。その結果、両溶接鋼管の間には、固溶化熱処理温度や冷却速度に違いがあり、特に、Cr欠乏領域が認められた鋼管は、Cr欠乏領域が認めらないあるいは軽度であった鋼管と比較して、冷却速度が遅い傾向があることがわかった。   Therefore, in order to investigate the cause of the formation of the Cr-deficient region, the production history of welded duplex stainless steel pipes with poor intergranular corrosion resistance and welded duplex stainless steel pipes with good intergranular corrosion resistance was investigated in detail. . As a result, there is a difference in the solution heat treatment temperature and the cooling rate between the two welded steel pipes. And found that the cooling rate tends to be slow.

以上の結果から、発明者らは、上記Cr欠乏領域が形成されるメカニズムについて、以下のように推定している。
固溶化熱処理において二相域の温度に加熱した二相ステンレス鋼を冷却すると、フェライト相(α相)とオーステナイト相(γ相)は、それぞれ平衡状態における相比になろうとしてα/γ相界面(粒界)が移動すると同時に、α相中およびγ相中のCr濃度も平衡濃度になろうとしてCrの拡散が起こる。
本発明の成分組成を有する二相ステンレス鋼の場合、状態図上では、固溶化熱処理温度から低下するほど、γ相の比率が増加し、平衡Cr濃度は低下する。そのため、本発明の溶接二相ステンレス鋼管では、固溶化熱処理温度からの冷却中に、α/γ相界面がα相側に移動してγ相の領域が拡大するとともに、新たにγ相となった領域は、従来からあるγ相と比較してのCr濃度が低くなる。
From the above results, the inventors estimate the mechanism by which the Cr-depleted region is formed as follows.
When the duplex stainless steel heated to a temperature in the two-phase region is cooled in the solution heat treatment, the ferrite phase (α phase) and the austenite phase (γ phase) become α / γ phase interfaces in an attempt to reach the phase ratio in the equilibrium state. Simultaneously with the movement of the (grain boundaries), Cr diffusion in the α phase and the γ phase tends to reach an equilibrium concentration.
In the case of the duplex stainless steel having the composition of the present invention, on the phase diagram, the proportion of the γ phase increases and the equilibrium Cr concentration decreases as the temperature decreases from the solution heat treatment temperature. Therefore, in the welded duplex stainless steel pipe of the present invention, during cooling from the solution heat treatment temperature, the α / γ phase interface moves to the α phase side, and the region of the γ phase expands and becomes a new γ phase. In this region, the Cr concentration is lower than that of the conventional γ phase.

ここで、上記の冷却速度が遅く、Crの拡散時間が十分に確保できる場合には、Cr濃度が低い領域にCrが供給されて、上記Cr濃度の低い領域は解消される。しかし、固溶化熱処理において通常行われているような緩速冷却では、上記のようなCr拡散によるCr濃度の均一化効果を期待することはできないため、局所的な「Cr欠乏領域」が残存してしまう。そこで、本発明は、固溶化熱処理温度から急速冷却し、冷却中におけるα/γ相界面の移動を防止することで、溶接熱影響部における「Cr欠乏領域」の形成を抑止することとした。
本発明は、上記の新規な知見に、さらに検討を加えてなされたものである。
Here, when the cooling rate is slow and a sufficient Cr diffusion time can be secured, Cr is supplied to a region having a low Cr concentration, and the region having a low Cr concentration is eliminated. However, in the slow cooling that is normally performed in the solution heat treatment, it is not possible to expect the effect of uniforming the Cr concentration by the Cr diffusion as described above, so a local “Cr deficient region” remains. End up. Therefore, in the present invention, the rapid cooling is performed from the solution heat treatment temperature to prevent the movement of the α / γ phase interface during the cooling, thereby suppressing the formation of the “Cr deficient region” in the weld heat affected zone.
The present invention has been made by further studying the above-described novel findings.

次に、本発明の溶接二相ステンレス鋼管の素材となる二相ステンレス鋼板が有すべき成分組成について説明する。
C:0.05mass%以下
Cは、Crとクロム炭化物を形成し、耐食性の向上に必要なCrの濃度を低下させ、いわゆる「Cr欠乏層」を生成させる元素であるので、できる限り低減するのが望ましい。しかし、Cの過度の低減は、鋼の強度低下を招いたり、製造コストの上昇を招いたりする。よって、Cの含有量は0.05mass%以下とする。好ましくは0.005〜0.040mass%、より好ましくは0.010〜0.035mass%の範囲である。
Next, the component composition that the duplex stainless steel sheet as the material of the welded duplex stainless steel pipe of the present invention should have will be described.
C: 0.05 mass% or less C is an element that forms Cr and chromium carbide, lowers the concentration of Cr necessary for improving corrosion resistance, and generates a so-called “Cr-deficient layer”. Is desirable. However, excessive reduction of C causes a decrease in steel strength or an increase in manufacturing cost. Therefore, the C content is 0.05 mass% or less. Preferably it is 0.005-0.040 mass%, More preferably, it is the range of 0.010-0.035 mass%.

Si:0.10〜1.00mass%
Siは、脱酸材として添加される元素であり、0.10mass%以上含有させる必要がある。しかし、Siの過剰添加は、上記効果が飽和する他、延性の低下や強度の上昇を招き、さらには、σ相やχ相などの金属間化合物の析出を助長して耐食性を低下させる。よって、Siの含有量は0.10〜1.00mass%の範囲とする。好ましくは0.15〜0.75mass%、より好ましくは0.20〜0.60mass%の範囲である。
Si: 0.10 to 1.00 mass%
Si is an element added as a deoxidizing material and needs to be contained in an amount of 0.10 mass% or more. However, excessive addition of Si not only saturates the above effects, but also reduces ductility and strength, and further promotes precipitation of intermetallic compounds such as σ phase and χ phase, thereby reducing corrosion resistance. Therefore, the Si content is in the range of 0.10 to 1.00 mass%. Preferably it is 0.15-0.75 mass%, More preferably, it is the range of 0.20-0.60 mass%.

Mn:0.3〜2.0mass%
Mnは、オーステナイト生成元素であり、同じオーステナイト生成元素である高価なNiの代替となり得るものであるので、0.3mass%以上添加する。しかし、過度の添加は、耐食性を低下させるσ相やχ相などの金属間化合物の析出を促進するので、上限は2.0mass%とする。好ましくは0.4〜1.5mass%、より好ましくは0.5〜1.2mass%の範囲である。
Mn: 0.3 to 2.0 mass%
Mn is an austenite-forming element and can be an alternative to expensive Ni, which is the same austenite-forming element, so 0.3 mass% or more is added. However, excessive addition promotes the precipitation of intermetallic compounds such as σ phase and χ phase that lower the corrosion resistance, so the upper limit is made 2.0 mass%. Preferably it is 0.4-1.5 mass%, More preferably, it is the range of 0.5-1.2 mass%.

P:0.010〜0.050mass%
Pは、不可避的に混入してくる不純物元素であり、結晶粒界に偏析し易く、耐食性や熱間加工性を低下させるので、できる限り低減するのが望ましい。しかし、Pは、耐粒界腐食性を大きく低下させるBと競合して粒界に偏析するため、一定量のPを含有させることで、Bの粒界への偏析を軽減することができる。また、一定量のPを粒界に偏析させることで、冷却中の相比変化によるα/γ相界面の移動が抑制されるので、Cr欠乏領域の形成を抑制する効果もある。上記の効果は、0.010mass%以上の添加で得られる。しかし、0.050mass%を超える添加は、耐粒界腐食性を著しく低下させる。よって、Pの含有量は0.010〜0.050mass%の範囲とする。好ましくは0.015〜0.040mass%の範囲である。
P: 0.010-0.050 mass%
P is an impurity element that is inevitably mixed in, and is easily segregated at the crystal grain boundaries, and lowers corrosion resistance and hot workability, so it is desirable to reduce it as much as possible. However, P competes with B, which greatly reduces intergranular corrosion resistance, and segregates at the grain boundary. Therefore, by containing a certain amount of P, segregation of B to the grain boundary can be reduced. In addition, since a certain amount of P is segregated at the grain boundaries, the movement of the α / γ phase interface due to the change in the phase ratio during cooling is suppressed, so there is also an effect of suppressing the formation of the Cr-deficient region. Said effect is acquired by addition of 0.010 mass% or more. However, addition exceeding 0.050 mass% significantly reduces the intergranular corrosion resistance. Therefore, the P content is in the range of 0.010 to 0.050 mass%. Preferably it is the range of 0.015-0.040 mass%.

S:0.0001〜0.02mass%
Sは、Pと同様、不可避的に混入してくる不純物元素であり、結晶粒界に偏析し易く、耐食性や熱間加工性を低下させるので、上限を0.02mass%とする。しかし、Sは、Pと同様、一定量を含有させることで、冷却中のα/γ相界面の移動を抑制し、Cr欠乏領域の生成を抑止する効果がある。そこで、本発明では、Sの含有量は0.0001〜0.02mass%の範囲とする。好ましくは0.0003〜0.01mass%の範囲である。
S: 0.0001 to 0.02 mass%
S, like P, is an impurity element that is inevitably mixed in, and is easily segregated at the crystal grain boundaries, and lowers corrosion resistance and hot workability. Therefore, the upper limit is set to 0.02 mass%. However, S, like P, has the effect of suppressing the movement of the α / γ phase interface during cooling and suppressing the generation of Cr-deficient regions by containing a certain amount. Therefore, in the present invention, the S content is in the range of 0.0001 to 0.02 mass%. Preferably it is the range of 0.0003-0.01 mass%.

Al:0.001〜0.05mass%
Alは、強力な脱酸材であり、0.001mass%以上添加する必要がある。しかし、0.05mass%を超えて添加しても、その効果が飽和するだけでなく、鋼板の表面品質(外観)や耐食性に悪影響を及ぼす巨大介在物の形成を助長し、さらには、Nと結合してAlNを形成し、耐食性に有効なNを低減する。よって、Alは0.001〜0.05mass%の範囲とする。好ましくは0.005〜0.04mass%の範囲である。
Al: 0.001 to 0.05 mass%
Al is a strong deoxidizing material, and it is necessary to add 0.001 mass% or more. However, even if added over 0.05 mass%, the effect is not only saturated, but also promotes the formation of giant inclusions that adversely affect the surface quality (appearance) and corrosion resistance of the steel sheet. Bonds to form AlN and reduces N effective for corrosion resistance. Therefore, Al is set to a range of 0.001 to 0.05 mass%. Preferably it is the range of 0.005-0.04 mass%.

N:0.05〜0.4mass%
Nは、強力なオーステナイト生成元素であり、また、CrやMoと同様、耐食性を向上するとともに、金属間化合物の析出を抑制するのに有効な元素であるので、0.05mass%以上含有させる必要がある。しかし、0.4mass%を超えて添加すると、熱間変形抵抗が上昇して熱間加工性を害するだけでなく、二相組織を維持することが困難になる。よって、Nは0.05〜0.4mass%の範囲とする。好ましくは0.06〜0.3mass%、より好ましくは0.08〜0.25mass%の範囲である。
N: 0.05 to 0.4 mass%
N is a strong austenite-forming element and, like Cr and Mo, is an element effective for improving corrosion resistance and suppressing the precipitation of intermetallic compounds, so it is necessary to contain 0.05 mass% or more. There is. However, if added over 0.4 mass%, the hot deformation resistance is increased and the hot workability is impaired, and it is difficult to maintain a two-phase structure. Therefore, N is set to a range of 0.05 to 0.4 mass%. Preferably it is 0.06-0.3 mass%, More preferably, it is the range of 0.08-0.25 mass%.

Ni:4〜9mass%
Niは、オーステナイト生成元素であり、フェライト組織との二相組織を維持するためには、4mass%以上含有させる必要がある。しかし、9mass%を超える添加は、オーステナイト組織が過剰になると共に、過不動態腐食の加速因子となり、耐食性を低下させる。よって、Niの含有量は4〜9mass%の範囲とする。好ましくは5.0〜8.5mass%、より好ましくは5.5〜8.0mass%の範囲である。
Ni: 4-9 mass%
Ni is an austenite-forming element and needs to be contained in an amount of 4 mass% or more in order to maintain a two-phase structure with the ferrite structure. However, the addition exceeding 9 mass% causes an austenite structure to be excessive and an acceleration factor for overpassive corrosion, thereby reducing the corrosion resistance. Therefore, the Ni content is in the range of 4-9 mass%. Preferably it is the range of 5.0-8.5 mass%, More preferably, it is the range of 5.5-8.0 mass%.

Cr:20〜27mass%
Crは、耐食性を向上させる元素であり、その効果を得るためには20mass%以上含有させる必要がある。しかし、27mass%を超えて添加すると、σ相やχ相などの金属間化合物の形成を助長し、かえって耐食性を低下させる。また、Crは、フェライト生成元素であり、過剰な添加は二相組織の維持を困難とする。よって、Crの含有量は20〜27mass%の範囲とする。好ましくは22〜26.5mass%、より好ましくは23〜26mass%の範囲である。
Cr: 20-27 mass%
Cr is an element that improves the corrosion resistance. In order to obtain the effect, it is necessary to contain 20 mass% or more. However, when added in excess of 27 mass%, formation of intermetallic compounds such as σ phase and χ phase is promoted, and the corrosion resistance is reduced. Further, Cr is a ferrite-forming element, and excessive addition makes it difficult to maintain a two-phase structure. Therefore, the Cr content is in the range of 20 to 27 mass%. Preferably it is 22-26.5 mass%, More preferably, it is the range of 23-26 mass%.

Mo:2〜5mass%
Moは、耐食性の向上に有効な元素である。その効果を得るためには2mass%以上添加する必要がある。しかし、5mass%を超えて添加すると、金属間化合物の析出を助長し、かえって耐食性を低下させるので、上限は5mass%とする。好ましくは2.5〜4.3mass%、より好ましくは3.0〜4.0mass%の範囲である。
Mo: 2-5 mass%
Mo is an element effective for improving the corrosion resistance. In order to acquire the effect, it is necessary to add 2 mass% or more. However, if added over 5 mass%, the precipitation of intermetallic compounds is promoted and the corrosion resistance is lowered, so the upper limit is made 5 mass%. Preferably it is 2.5-4.3 mass%, More preferably, it is the range of 3.0-4.0 mass%.

Cu:0.01〜0.30mass%
Cuは、一般的な耐食性の向上に有効な元素である。上記効果を得るためには0.01mass%以上含有させる必要がある。一方、尿素プラント等の特定の腐食環境においては、却って腐食を進行させる元素となるので、上限は0.30mass%に制限する必要がある。よって、Cuは0.01〜0.30mass%の範囲とする。好ましくは0.05〜0.25mass%、より好ましくは0.08〜0.20mass%の範囲である。
Cu: 0.01-0.30 mass%
Cu is an element effective for improving general corrosion resistance. In order to acquire the said effect, it is necessary to contain 0.01 mass% or more. On the other hand, in a specific corrosive environment such as a urea plant, it becomes an element that causes corrosion to proceed. Therefore, the upper limit needs to be limited to 0.30 mass%. Therefore, Cu is set to a range of 0.01 to 0.30 mass%. Preferably it is 0.05-0.25 mass%, More preferably, it is the range of 0.08-0.20 mass%.

W:0.01〜0.4mass%
Wは、Moとの共存下において、二相ステンレス鋼の耐食性を向上させる元素であり、0.01mass%以上の添加が必要である。しかし、0.4mass%を超える添加は、σ相やχ相などの金属間化合物の析出を助長し、耐食性を低下させる。よって、Wは0.01〜0.4mass%の範囲とする。好ましくは0.05〜0.3mass%、より好ましくは0.08〜0.2mass%の範囲である。
W: 0.01-0.4 mass%
W is an element that improves the corrosion resistance of the duplex stainless steel in the presence of Mo and needs to be added in an amount of 0.01 mass% or more. However, addition exceeding 0.4 mass% promotes precipitation of intermetallic compounds such as σ phase and χ phase, and lowers corrosion resistance. Therefore, W is in the range of 0.01 to 0.4 mass%. Preferably it is 0.05-0.3 mass%, More preferably, it is the range of 0.08-0.2 mass%.

B:0.0001〜0.001mass%
Bは、熱間加工性の向上に極めて有効な元素であり、上記効果は極微量の添加でも得られる。しかし、Bは、粒界に偏析し、耐粒界腐食性を大きく低下させる元素でもある。よって、Bの含有量は0.0001〜0.001mass%の範囲とする。
B: 0.0001 to 0.001 mass%
B is an extremely effective element for improving hot workability, and the above effect can be obtained even by adding a very small amount. However, B is also an element that segregates at grain boundaries and greatly reduces intergranular corrosion resistance. Therefore, the B content is in the range of 0.0001 to 0.001 mass%.

Ca:0.0006〜0.01mass%
Caは、熱間加工性に有害なSと結合してCaSを形成し、熱間加工性を改善するのに有効な元素であり、上記効果を得るためには0.0006mass%以上含有させる必要がある。しかし、0.01mass%を超える添加は、CaOを含有する介在物を形成し、かえって耐食性を低下させる。よって、Caは0.0006〜0.01mass%の範囲とする。好ましくは0.0007〜0.005mass%の範囲である。
Ca: 0.0006 to 0.01 mass%
Ca is an element effective to improve hot workability by combining with S harmful to hot workability to form CaS. In order to obtain the above effect, it is necessary to contain 0.0006 mass% or more. There is. However, addition exceeding 0.01 mass% forms inclusions containing CaO, and rather reduces the corrosion resistance. Therefore, Ca is set to a range of 0.0006 to 0.01 mass%. Preferably it is the range of 0.0007-0.005 mass%.

本発明に用いる二相ステンレス鋼板は、上記必須とする成分以外の残部は、Feおよび不可避的不純物である。ただし、必要に応じて、VおよびNbのうちから選ばれる1種または2種を下記の範囲で含有してもよい。
V:0.003〜0.5mass%、Nb:0.003〜0.5mass%
VおよびNbは、耐食性の向上に有効な元素であり、その効果を得るためには、それぞれ0.003mass%以上添加するのが好ましい。しかし、0.5mass%を超えて添加すると、σ相やχ相などの金属間化合物の析出を助長し、耐食性を低下させたり、熱間加工性を害したりする。よって、上記元素を添加する場合には、それぞれの上記範囲で添加するのが好ましい。より好ましくは、それぞれ0.003〜0.2mass%の範囲である。
In the duplex stainless steel sheet used in the present invention, the balance other than the essential components is Fe and inevitable impurities. However, you may contain 1 type or 2 types chosen from V and Nb in the following range as needed.
V: 0.003-0.5 mass%, Nb: 0.003-0.5 mass%
V and Nb are effective elements for improving the corrosion resistance. In order to obtain the effect, V and Nb are each preferably added in an amount of 0.003 mass% or more. However, if added in excess of 0.5 mass%, precipitation of intermetallic compounds such as σ phase and χ phase is promoted, corrosion resistance is reduced, and hot workability is impaired. Therefore, when adding the said element, it is preferable to add in each said range. More preferably, it is the range of 0.003-0.2 mass%, respectively.

次に、本発明の溶接二相ステンレス鋼管の製造方法について説明する。
本発明の溶接二相ステンレス鋼管は、素材となる二相ステンレス鋼板を、曲げ加工し、溶接して製造した溶接鋼管である。上記鋼管の素材となる二相ステンレス鋼板(鋼管素材)は、熱延鋼板、冷延鋼板のいずれであってもよく、また、その製造方法は、従来公知の方法・条件であればよく、特に制限はない。例えば、電気炉や転炉等で鋼を溶製し、二次精錬して上述した成分組成の鋼に調整した後、連続鋳造法あるいは造塊−分解圧延法で鋼素材(スラブ)とする。次いで、熱延鋼板は、上記スラブを再加熱し、熱間圧延し、適宜の条件で熱処理した後、酸洗して鋼管素材とする。一方、冷延鋼板は、上記スラブを再加熱し、熱間圧延し、適宜の条件で熱処理し、酸洗して熱延焼鈍板とし、さらに、上記熱延焼鈍板を冷間圧延し、適宜の条件で熱処理した後、酸洗して鋼管素材とする。
Next, the manufacturing method of the welded duplex stainless steel pipe of this invention is demonstrated.
The welded duplex stainless steel pipe of the present invention is a welded steel pipe manufactured by bending and welding a duplex stainless steel sheet as a raw material. The duplex stainless steel sheet (steel pipe material) used as the material of the steel pipe may be either a hot-rolled steel sheet or a cold-rolled steel sheet, and the manufacturing method may be any conventionally known method / condition, There is no limit. For example, steel is melted in an electric furnace, a converter, or the like, subjected to secondary refining and adjusted to the steel having the above-described composition, and then made into a steel material (slab) by a continuous casting method or an ingot-decomposition rolling method. Next, the hot-rolled steel sheet is obtained by reheating the slab, hot-rolling, heat-treating it under appropriate conditions, and pickling it to obtain a steel pipe material. On the other hand, the cold-rolled steel sheet is re-heated, hot-rolled, heat-treated under appropriate conditions, pickled to form a hot-rolled annealed sheet, and further cold-rolled the hot-rolled annealed sheet as appropriate. After heat treatment under the above conditions, pickling is performed to obtain a steel pipe material.

次いで、上記のようにして得た鋼管素材をロール成形等で円筒状に曲げ加工した後、溶接して溶接鋼管とし、その後、固溶化熱処理を施して製品鋼管とする。なお、上記鋼管素材から鋼管を製造する際の溶接方法は、溶接材料を用いない溶接方法であればいずれの方法でもよく、例えば、TIG溶接やMIG溶接、レーザ溶接、電子ビーム溶接、プラズマ溶接等であれば好適に用いることができる。   Next, the steel pipe material obtained as described above is bent into a cylindrical shape by roll forming or the like, and then welded to form a welded steel pipe, and then subjected to solution heat treatment to obtain a product steel pipe. In addition, the welding method at the time of manufacturing a steel pipe from the above steel pipe material may be any method as long as it does not use a welding material. For example, TIG welding, MIG welding, laser welding, electron beam welding, plasma welding, etc. If it is, it can use suitably.

ここで、本発明において最も重要なことは、上記造管後の固溶化熱処理を、以下の条件で行うことが必要であるということである。
固溶化熱処理温度:1000〜1100℃
固溶化熱処理は、前述したように、溶接部(溶接金属+溶接熱影響部)の金属組織を母材並みに調整したり、造管時に導入された加工歪や、溶接残留応力を除去したりするために行われる熱処理であり、この熱処理温度は1000〜1100℃の範囲とする必要がある。1000℃未満では、固溶化処理温度に平衡するγ相のCr濃度が低下するため、冷却中に形成されるCr欠乏領域の最低Cr濃度との差は小さくなる。しかし、1000℃未満では、溶接熱影響部の溶接残留応力が十分に除去されないため、溶接熱影響部におけるσ相の析出が助長され、耐食性や靭性の低下を招いたり、残留応力を駆動力としてα/γ界面の移動が促進され、Cr欠乏領域の形成が助長されたりする。また、鋼管素材おいても、1000℃未満では、造管時の加工歪が残存して、σ相の析出を招いたり、熱間圧延時に析出したσ相が、固溶化熱処理によっても消失せずに残存したりして、耐食性や靭性の低下を招く。一方、熱処理温度が1100℃を超えると、元素の拡散が活発になるため、後述する1次冷却中にCr欠乏領域を形成し易くなり、耐食性の低下を招く。よって、固溶化熱処理温度は1000〜1100℃の範囲とする。好ましくは1030〜1080℃の範囲である。
なお、上記温度に均熱保持する時間は30〜600秒とするのが好ましい。30秒未満では、固溶化の効果が十分に得られず、一方、600秒を超えると、上記効果が飽和する他、生産性を阻害するようになるからである。
Here, the most important thing in the present invention is that the solution heat treatment after the pipe making needs to be performed under the following conditions.
Solution heat treatment temperature: 1000-1100 ° C
As described above, the solution heat treatment adjusts the metal structure of the welded part (welded metal + welding heat affected zone) to the same level as the base metal, and removes processing strain and residual welding stress introduced during pipe making. It is necessary to make the heat treatment temperature within the range of 1000 to 1100 ° C. If the temperature is lower than 1000 ° C., the Cr concentration in the γ phase that is in equilibrium with the solution treatment temperature decreases, and therefore the difference from the minimum Cr concentration in the Cr-deficient region formed during cooling becomes small. However, if the temperature is lower than 1000 ° C., the welding residual stress in the weld heat affected zone is not sufficiently removed, so the precipitation of the σ phase in the weld heat affected zone is promoted, leading to a decrease in corrosion resistance and toughness, and the residual stress as a driving force. Movement of the α / γ interface is promoted, and formation of a Cr-deficient region is promoted. Also, in steel pipe materials, if the temperature is lower than 1000 ° C., processing strain during pipe forming remains, and σ phase is precipitated, or σ phase precipitated during hot rolling does not disappear even by solution heat treatment. Or the corrosion resistance and toughness are reduced. On the other hand, when the heat treatment temperature exceeds 1100 ° C., element diffusion becomes active, so that it becomes easy to form a Cr-deficient region during the primary cooling described later, resulting in a decrease in corrosion resistance. Therefore, the solution heat treatment temperature is in the range of 1000 to 1100 ° C. Preferably it is the range of 1030-1080 degreeC.
In addition, it is preferable that the time for maintaining soaking at the above temperature is 30 to 600 seconds. If the time is less than 30 seconds, the effect of solid solution cannot be obtained sufficiently. On the other hand, if the time exceeds 600 seconds, the above effect is saturated and productivity is inhibited.

上記熱処理後の冷却は、800℃以上の温度まで冷却速度3℃/s以上で冷却(以降、この冷却を「1次冷却」という)し、その後、直ちに6℃/s以上で冷却する(以降、この冷却を「2次冷却」という)必要がある。
1次冷却:800℃以上の温度まで、冷却速度3℃/s以上で冷却
固溶化熱処理後の1次冷却速度が3℃/s未満では、冷却中に元素が拡散する時間が確保され、溶接熱影響部および母材において、Cr欠乏領域の形成が進行するため、耐食性低下を招く。また、σ相や窒化物、炭化物が析出して、耐食性の低下を招くこともある。上記1次冷却の冷却速度は、好ましくは4℃/s以上、より好ましくは5℃/s以上である。なお、1次冷却の冷却速度の上限は、特に制限はないが、20℃/s以下が好ましい。また、上記1次冷却の冷却方法は、上記冷却速度が確保できれば特に制限はないが、ガス冷却とするのが好ましい。
The cooling after the heat treatment is performed at a cooling rate of 3 ° C./s or higher to a temperature of 800 ° C. or higher (hereinafter, this cooling is referred to as “primary cooling”), and then immediately cooled at 6 ° C./s or higher (hereinafter referred to as “cooling”). This cooling is called “secondary cooling”).
Primary cooling: Cooling at a cooling rate of 3 ° C./s or higher to a temperature of 800 ° C. or higher If the primary cooling rate after the solution heat treatment is less than 3 ° C./s, the time for the element to diffuse during cooling is secured, and welding In the heat-affected zone and the base material, formation of Cr-deficient regions proceeds, leading to a decrease in corrosion resistance. In addition, the σ phase, nitrides, and carbides may precipitate, leading to a decrease in corrosion resistance. The cooling rate of the primary cooling is preferably 4 ° C./s or more, more preferably 5 ° C./s or more. The upper limit of the cooling rate of primary cooling is not particularly limited, but is preferably 20 ° C./s or less. The primary cooling method is not particularly limited as long as the cooling rate can be secured, but gas cooling is preferable.

また、上記1次冷却の終了温度を800℃以上とする理由は、Crの平衡濃度は、固溶化熱処理温度(1000〜1100℃)から低くなるほど、α相においては高くなり、γ相においては低くなる。特に、800℃未満の温度においては、その傾向が顕著となる。Cr欠乏領域は、冷却中に生成したγ相に相当するため、800℃未満まで冷却した際に形成されるCr欠乏領域は、Cr濃度が低く、耐食性が大きく低下する。従って、耐食性に劣るCr欠乏領域の生成を抑制するため、1次冷却の冷却終了温度は800℃以上とする。好ましくは900℃以上である。なお、冷却終了温度の上限は、上記固溶化熱処理温度(1000〜1100℃)以下であればよく、特に制限はない。   The reason for setting the end temperature of the primary cooling to 800 ° C. or higher is that the equilibrium concentration of Cr is higher in the α phase and lower in the γ phase as the solution temperature is lower than the solution heat treatment temperature (1000 to 1100 ° C.). Become. In particular, the tendency becomes remarkable at a temperature of less than 800 ° C. Since the Cr-deficient region corresponds to the γ phase generated during cooling, the Cr-deficient region formed when cooled to less than 800 ° C. has a low Cr concentration and greatly deteriorates the corrosion resistance. Accordingly, the cooling end temperature of the primary cooling is set to 800 ° C. or higher in order to suppress generation of a Cr-deficient region inferior in corrosion resistance. Preferably it is 900 degreeC or more. In addition, the upper limit of cooling completion temperature should just be below the said solution heat treatment temperature (1000-1100 degreeC), and there is no restriction | limiting in particular.

2次冷却速度:6℃/s以上
上記1次冷却に続く2次冷却は、冷却速度を6℃/s以上として行う必要がある。2次冷却速度が6℃/s未満では、やはり、溶接熱影響部および母材において、Cr欠乏領域の生成が促進されたり、σ相や炭化物が析出したりするため、耐食性の低下を招く。また、475℃付近を緩冷却すると、475℃脆化が起こり、製造性の低下を招く。好ましくは7℃/s以上、より好ましくは8℃/s以上である。なお、上記2次冷却の冷却方法は、上記冷却速度が確保できれば特に制限はなく、例えば、走行する鋼管の表面に冷却ガスを吹き付けるガスジェット冷却方式、冷却水を吹き付ける注水冷却方式、ガスと冷却水を混合して吹き付けるミスト冷却方式、鋼管を水中に浸漬して冷却する水冷方式等、いずれの方法を用いてもよい。
Secondary cooling rate: 6 ° C./s or more The secondary cooling following the primary cooling needs to be performed at a cooling rate of 6 ° C./s or more. If the secondary cooling rate is less than 6 ° C./s, the formation of a Cr-deficient region is promoted in the weld heat affected zone and the base metal, and the σ phase and carbides are precipitated, resulting in a decrease in corrosion resistance. In addition, if the temperature near 475 ° C. is slowly cooled, 475 ° C. embrittlement occurs, resulting in a decrease in manufacturability. Preferably it is 7 degrees C / s or more, More preferably, it is 8 degrees C / s or more. The cooling method of the secondary cooling is not particularly limited as long as the cooling rate can be ensured. For example, a gas jet cooling method in which a cooling gas is blown onto the surface of a traveling steel pipe, a water injection cooling method in which cooling water is blown, a gas and cooling Any method such as a mist cooling method in which water is mixed and sprayed or a water cooling method in which a steel pipe is immersed in water for cooling may be used.

なお、上記の説明では、固溶化熱処理温度からの冷却過程を1次冷却と2次冷却とに分けているが、上記の冷却速度を確保できれば、2つに分ける必要はなく、例えば、全冷却過程を6℃/s以上で冷却するようにしてもよいことは勿論である。   In the above description, the cooling process from the solution heat treatment temperature is divided into primary cooling and secondary cooling. However, if the above cooling rate can be ensured, there is no need to divide the cooling process into two. Of course, the process may be cooled at 6 ° C./s or more.

また、溶接二相ステンレス鋼管の素材となる二相ステンレス鋼板を製造する途中の工程において熱延鋼板や冷延鋼板に施す熱処理は、炭化物の固溶化や歪除去による軟化を目的として行うものであり、上記目的を達成できればその条件については特に制限しないが、例えば、1000〜1150℃の温度で、30〜300秒間均熱保持した後、6℃/s以上の冷却速度で冷却する条件で行うのが好ましい。   The heat treatment applied to hot-rolled steel sheets and cold-rolled steel sheets in the process of manufacturing a duplex stainless steel sheet, which is the material of the welded duplex stainless steel pipe, is for the purpose of softening by solidifying carbides and removing strain. The conditions are not particularly limited as long as the above object can be achieved. For example, the temperature is maintained at 1000 to 1150 ° C. for 30 to 300 seconds, and then cooled at a cooling rate of 6 ° C./s or more. Is preferred.

次に、本発明の溶接二相ステンレス鋼管について説明する。
上記成分組成を有する鋼板を素材とする鋼管に、上記条件の固溶化熱処理を施した本発明の溶接二相ステンレス鋼管は、溶接熱影響部の金属組織内にσ相が存在していないことが必要である。σ相はCrとMoを主体とするものであるため、σ相近傍に局所的なCrとMoの欠乏領域が形成されて耐食性が低下したり、σ相は硬質で脆いため靭性が低下したりするからである。なお、このσ相の存在は、透過型電子顕微鏡やエッチング後の光学顕微鏡観察等で容易に確認することができる。
Next, the welded duplex stainless steel pipe of the present invention will be described.
The welded duplex stainless steel pipe of the present invention obtained by subjecting a steel pipe made of a steel plate having the above-described composition to a solution heat treatment under the above-mentioned conditions, has no σ phase in the metal structure of the weld heat affected zone. is necessary. Since the σ phase is mainly composed of Cr and Mo, a local Cr and Mo deficient region is formed in the vicinity of the σ phase and the corrosion resistance is lowered, or the toughness is lowered because the σ phase is hard and brittle. Because it does. The existence of this σ phase can be easily confirmed by observation with a transmission electron microscope or an optical microscope after etching.

また、本発明の溶接二相ステンレス鋼管は、溶接熱影響部の金属組織内にσ相が存在していないことに加えて、溶接熱影響部におけるα/γ相界面からγ相側に0.5μmまでの領域の最低Cr濃度と、同一γ相内で、α/γ相界面からγ相側に0.5μmより離れた領域の平均Cr濃度の差が1.5mass%未満であることが必要である。上記濃度差が1.5mass%以上となると、低Cr濃度領域と高Cr濃度領域との間で局部電池を形成し粒界腐食が顕著となるからである。また、最低Cr濃度の測定領域をα/γ相界面からγ相側に0.5μmの範囲とした理由は、図2からもわかるように、α/γ相界面の移動によって形成される低Cr領域はα/γ相界面から0.5μm程度にまで及ぶからである。なお、上記Cr濃度差は、好ましくは1.3mass%以下、より好ましくは1.2mass%以下である。   Moreover, the welded duplex stainless steel pipe of the present invention has a σ phase not present in the metal structure of the weld heat affected zone, and is further reduced from the α / γ phase interface to the γ phase side in the weld heat affected zone. The difference between the minimum Cr concentration in the region up to 5 μm and the average Cr concentration in the region away from 0.5 μm from the α / γ phase interface to the γ phase side within the same γ phase must be less than 1.5 mass%. It is. This is because when the concentration difference is 1.5 mass% or more, a local battery is formed between the low Cr concentration region and the high Cr concentration region, and intergranular corrosion becomes remarkable. The reason why the measurement region of the minimum Cr concentration is in the range of 0.5 μm from the α / γ phase interface to the γ phase side is that the low Cr formed by the movement of the α / γ phase interface, as can be seen from FIG. This is because the region extends from the α / γ phase interface to about 0.5 μm. The Cr concentration difference is preferably 1.3 mass% or less, more preferably 1.2 mass% or less.

ここで、本発明が溶接熱影響部におけるCr濃度差を規定する理由は、溶接による残留応力が固溶化熱処理で完全に除去されていない場合には、冷却中に残留応力を駆動力としてα/γ相界面の移動が促進され、母材よりもCr欠乏領域の形成が助長されるからである。
なお、上記Cr濃度の測定方法については、特に制限はないが、微小部分のCr濃度を精度よく測定する観点からは、TEMやSEM等に付属のエネルギー分散X線分光分析(EDX分析)装置を用いることが好ましく、その際、より測定精度を高める観点から、線分析より点分析することが好ましい。また、Cr濃度を測定するα/γ相界面(粒界)は、試料表面(観察面)に対して垂直な界面であることが好ましい。界面が傾斜していると、α/γ相界面からの距離が不正確となってしまうからである。
Here, the reason why the present invention prescribes the Cr concentration difference in the weld heat affected zone is that if the residual stress due to welding is not completely removed by the solution heat treatment, α / This is because the movement of the γ-phase interface is promoted and the formation of a Cr-deficient region is promoted more than the base material.
In addition, although there is no restriction | limiting in particular about the measuring method of said Cr density | concentration, From a viewpoint which measures the Cr density | concentration of a micro part accurately, the energy dispersive X-ray-spectral-analysis (EDX analysis) apparatus attached to TEM, SEM, etc. is used. In this case, it is preferable to perform point analysis from line analysis from the viewpoint of increasing measurement accuracy. The α / γ phase interface (grain boundary) for measuring the Cr concentration is preferably an interface perpendicular to the sample surface (observation surface). This is because if the interface is inclined, the distance from the α / γ phase interface becomes inaccurate.

上記したα/γ相界面からγ相側に0.5μmまでの領域の最低Cr濃度と、同一γ相内で、α/γ相界面からγ相側に0.5μmより離れた領域の平均Cr濃度の差が1.5mass%未満である溶接二相ステンレス鋼管は、耐粒界腐食性に極めて優れたものとなる。そのため、例えば、ASTM A262 PracticeC(Huey Test)に準拠して、70mass%沸騰硝酸を腐食液とし、48時間を1バッチとする浸漬試験を各バッチで腐食液を更新しながら5バッチ行う粒界腐食試験における腐食速度を0.30g/m・hr未満とすることができる。 The minimum Cr concentration in the region from the α / γ phase interface to 0.5 μm on the γ phase side and the average Cr in the region separated from the α / γ phase interface to the γ phase side by 0.5 μm in the same γ phase. A welded duplex stainless steel pipe having a concentration difference of less than 1.5 mass% is extremely excellent in intergranular corrosion resistance. Therefore, for example, in accordance with ASTM A262 Practice C (Huey Test), intergranular corrosion in which 70 mass% boiling nitric acid is used as a corrosive solution and an immersion test with 48 batches as one batch is performed for 5 batches while renewing the corrosive solution in each batch. The corrosion rate in the test can be less than 0.30 g / m 2 · hr.

表1に示した種々の成分組成を有するFe−Ni−Cr−Mo系二相ステンレス鋼を常法の精錬プロセスで溶製し、連続鋳造法でスラブとし、1100〜1200℃の温度に再加熱した後、熱間圧延して厚さが4〜6mmの熱延鋼板とした。
次いで、上記熱延鋼板から以下の方法で溶接鋼管の素材となる熱延鋼板および冷延鋼板を製造した。
まず、熱延鋼板は、上記熱延鋼板に1000〜1150℃の温度で熱処理を施した後、酸洗して製造した。
また、冷延鋼板は、上記熱延鋼板に1000〜1150℃の温度で熱処理を施し、酸洗し、冷間圧延して厚さが3〜4mmの冷延鋼板とした後、さらに、1000〜1150℃の温度で熱処理を施し、酸洗して製造した。
次いで、上記熱延鋼板および冷延鋼板を素材とし、円筒状に曲げ成形した後、TIG溶接またはプラズマ溶接により、圧延方向を長さ方向とする外径が30〜400mmφの溶接鋼管とし、その後、大気雰囲気炉で、表2に示した種々の固溶化熱処理温度、冷却速度で固溶化熱処理を施し、溶接二相ステンレス鋼管とした。
Fe-Ni-Cr-Mo type duplex stainless steels having various composition shown in Table 1 are melted by a conventional refining process, made into a slab by a continuous casting method, and reheated to a temperature of 1100 to 1200 ° C. Then, hot rolling was performed to obtain a hot rolled steel sheet having a thickness of 4 to 6 mm.
Subsequently, the hot-rolled steel plate and the cold-rolled steel plate used as the raw material of a welded steel pipe were manufactured from the said hot-rolled steel plate with the following method.
First, the hot-rolled steel sheet was manufactured by subjecting the hot-rolled steel sheet to a heat treatment at a temperature of 1000 to 1150 ° C. and then pickling.
The cold-rolled steel sheet is heat-treated at a temperature of 1000 to 1150 ° C., pickled, cold-rolled to obtain a cold-rolled steel sheet having a thickness of 3 to 4 mm, Heat treatment was performed at a temperature of 1150 ° C., and pickling was performed.
Next, using the hot-rolled steel sheet and the cold-rolled steel sheet as a raw material, after bending into a cylindrical shape, a TIG welding or plasma welding is used to form a welded steel pipe having an outer diameter of 30 to 400 mmφ with the rolling direction as the length direction. In an air atmosphere furnace, solution heat treatment was performed at various solution heat treatment temperatures and cooling rates shown in Table 2 to obtain a welded duplex stainless steel pipe.

Figure 0006482075
Figure 0006482075

Figure 0006482075
Figure 0006482075

Figure 0006482075
Figure 0006482075

上記のようにして得た各種溶接二相ステンレス鋼管について、以下の評価試験に供した。
<α/γ相界面近傍のCr濃度分布測定>
上記の溶接二相ステンレス鋼管の溶接熱影響部(HAZ)のボンド部近傍で最も粒径が粗大化した領域から、溶接方向に対して垂直な断面を有する試料を採取し、該試料から、電解研磨により、上記断面を観察面とし、厚さが50nm程度の領域が存在するTEM−EDX分析用試料を作製した。
次いで、上記TEM−EDX分析用試料をTEMで観察して、電子ビームと平行する、すなわち、観察面にほぼ垂直なα/γ相界面を探し出し、該α/γ相界面のγ相側を、α/γ相界面から垂直方向に60nm間隔で点分析を行った。なお、分析精度を確保するため、1点あたりのビーム照射時間は200秒とした。
次いで、上記測定の結果から、α/γ相界面から垂直方向に0.5μm以内の領域の最低Cr濃度と、0.5μmより離れた領域の平均Cr濃度の差ΔCrを求めた。
<σ相の存在有無>
上記Cr濃度分布測定に用いた試料を用いて、TEMでσ相の存在有無を確認した。
<粒界腐食試験>
上記の溶接二相ステンレス鋼管から、溶接部を含む板厚×20mm×25mmの試験片を採取し、該試験片の表面を#120まで湿式研磨し、腐食試験片とした。
上記腐食試験片に対して、ASTM A262 PracticeC(Huey Test)に準拠して、70mass%沸騰硝酸を腐食液とし、48時間を1バッチとする浸漬試験を、各バッチで腐食液を更新しながら5バッチ行う粒界腐食試験を行い、試験前後の質量差から腐食減量を求めて、腐食速度を算出し、上記腐食速度が0.30g/m・hr未満のものを耐粒界腐食性が優(○)、0.30g/m・hr以上0.33g/m・hr未満のものを耐粒界腐食性が良(△)、0.33g/m・hr以上のものを耐粒界腐食性が劣(×)と評価した。
The various welded duplex stainless steel pipes obtained as described above were subjected to the following evaluation tests.
<Measurement of Cr concentration distribution near α / γ phase interface>
A sample having a cross section perpendicular to the welding direction is taken from the region where the particle size is most coarsened in the vicinity of the bond portion of the welded heat affected zone (HAZ) of the welded duplex stainless steel pipe, and the sample is electrolyzed. By polishing, a sample for TEM-EDX analysis having the cross section as an observation surface and a region having a thickness of about 50 nm was produced.
Next, the TEM-EDX analysis sample is observed with a TEM to find an α / γ phase interface parallel to the electron beam, that is, substantially perpendicular to the observation surface, and the γ phase side of the α / γ phase interface is Point analysis was performed at intervals of 60 nm in the vertical direction from the α / γ phase interface. In order to ensure analysis accuracy, the beam irradiation time per point was set to 200 seconds.
Next, from the measurement results, a difference ΔCr between the lowest Cr concentration in the region within 0.5 μm in the vertical direction from the α / γ phase interface and the average Cr concentration in the region separated from 0.5 μm was obtained.
<Existence of sigma phase>
Using the sample used for the Cr concentration distribution measurement, the presence or absence of the σ phase was confirmed by TEM.
<Intergranular corrosion test>
A test piece having a thickness of 20 mm × 25 mm including the welded portion was collected from the welded duplex stainless steel pipe, and the surface of the test piece was wet-polished to # 120 to obtain a corrosion test piece.
In accordance with ASTM A262 Practice C (Huey Test), an immersion test using 70 mass% boiling nitric acid as a corrosive solution and 48 batches as one batch is performed while updating the corrosive solution in each batch. Perform intergranular corrosion test in batches, calculate the corrosion weight loss from the mass difference before and after the test, calculate the corrosion rate, and those with the above corrosion rate less than 0.30 g / m 2 · hr have excellent intergranular corrosion resistance. (◯), 0.30 g / m 2 · hr or more and less than 0.33 g / m 2 · hr with good intergranular corrosion resistance (Δ), 0.33 g / m 2 · hr or more with grain resistance The interfacial corrosion was evaluated as inferior (x).

上記評価試験の結果を表2中に併記した。
この結果から、本発明に適合する成分組成の鋼板を素材とする鋼管に対して、本発明に適合する条件の固溶化熱処理を施した溶接二相ステンレス鋼管は、いずれも溶接熱影響部のα/γ相界面におけるCr濃度差が1.5mass%未満で、粒界腐食速度が0.30g/m・hr未満であり、耐粒界腐食性に優れている。
これに対して、本発明の成分組成を満たしていても、本発明に適合しない固溶化熱処理を施した鋼管は、α/γ相界面におけるCr濃度差が1.5mass%以上、粒界腐食速度も0.30g/m・hr以上で、耐粒界腐食性に劣っている。
また、本発明の成分組成を満たしていても、本発明より低い温度で固溶化熱処理を施した鋼管は、熱影響部の金属組織内にσ相が生成し、耐粒界腐食性が低下する傾向にある。
また、本発明の成分組成を満たしていない鋼管は、例え本発明に適合する条件で固溶化熱処理を施してCr濃度差ΔCrを1.5mass%未満としても、鋼管自体の耐食性に劣るため、粒界腐食速度は0.30g/m・hr以上となっている。
The results of the evaluation test are also shown in Table 2.
From this result, the welded duplex stainless steel pipe subjected to the solution heat treatment under the conditions suitable for the present invention with respect to the steel pipe made of the steel sheet having the composition composition suitable for the present invention is all α of the weld heat affected zone. The difference in Cr concentration at the / γ phase interface is less than 1.5 mass%, the intergranular corrosion rate is less than 0.30 g / m 2 · hr, and the intergranular corrosion resistance is excellent.
On the other hand, the steel pipe subjected to the solution heat treatment that does not conform to the present invention even if it satisfies the component composition of the present invention has a Cr concentration difference of 1.5 mass% or more at the α / γ phase interface, and the intergranular corrosion rate. Is 0.30 g / m 2 · hr or more, and the intergranular corrosion resistance is inferior.
Moreover, even if the composition of the present invention is satisfied, a steel pipe that has been subjected to a solution heat treatment at a temperature lower than that of the present invention produces a σ phase in the metal structure of the heat-affected zone, resulting in decreased intergranular corrosion resistance. There is a tendency.
In addition, a steel pipe not satisfying the composition of the present invention is inferior in corrosion resistance of the steel pipe itself even if it is subjected to a solution heat treatment under conditions suitable for the present invention and the Cr concentration difference ΔCr is less than 1.5 mass%. The field corrosion rate is 0.30 g / m 2 · hr or more.

本発明の溶接二相ステンレス鋼管は、耐粒界腐食性に優れているため、化学プラント以外の厳しい腐食性環境下で使用される高耐食鋼管として好適に用いることができる。   Since the welded duplex stainless steel pipe of the present invention is excellent in intergranular corrosion resistance, it can be suitably used as a high corrosion resistance steel pipe used in severe corrosive environments other than chemical plants.

Claims (4)

C:0.05mass%以下、Si:0.10〜1.00mass%、Mn:0.3〜2.0mass%、P:0.010〜0.050mass%、S:0.0001〜0.02mass%、Al:0.001〜0.05mass%、N:0.05〜0.4mass%、Ni:4.0〜9mass%、Cr:20.0〜27mass%、Mo:2.0〜5mass%、Cu:0.01〜0.30mass%、W:0.01〜0.4mass%、B:0.0001〜0.001mass%およびCa:0.0006〜0.01mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、溶接熱影響部にσ相が存在せず、かつ、溶接熱影響部におけるα/γ相界面からγ相側に0.5μmまでの領域の最低Cr濃度と、同一γ相内で、α/γ相界面からγ相側に0.5μmより離れた領域の平均Cr濃度の差が1.5mass%未満であることを特徴とする溶接二相ステンレス鋼管。 C: 0.05 mass% or less, Si: 0.10 to 1.00 mass%, Mn: 0.3 to 2.0 mass%, P: 0.010 to 0.050 mass%, S: 0.0001 to 0.02 mass %, Al: 0.001 to 0.05 mass%, N: 0.05 to 0.4 mass%, Ni: 4.0 to 9 mass%, Cr: 20.0 to 27 mass%, Mo: 2.0 to 5 mass% Cu: 0.01-0.30 mass%, W: 0.01-0.4 mass%, B: 0.0001-0.001 mass%, and Ca: 0.0006-0.01 mass%, the balance being It has a composition composed of Fe and unavoidable impurities, has no σ phase in the weld heat affected zone, and has a minimum area of 0.5 μm from the α / γ phase interface to the γ phase side in the weld heat affected zone. Same as Cr concentration A welded duplex stainless steel pipe characterized in that the difference in average Cr concentration in the region separated from 0.5 μm from the α / γ phase interface to the γ phase side in the γ phase is less than 1.5 mass%. 上記成分組成に加えてさらに、V:0.003〜0.5mass%およびNb:0.003〜0.5mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1に記載の溶接二相ステンレス鋼管。 2. In addition to the above component composition, the composition further comprises one or two selected from V: 0.003 to 0.5 mass% and Nb: 0.003 to 0.5 mass%. The welded duplex stainless steel pipe described in 1. 70mass%沸騰硝酸による腐食速度が0.30g/m・hr未満であることを特徴とする請求項1または2に記載の溶接二相ステンレス鋼管。 The welded duplex stainless steel pipe according to claim 1 or 2, wherein a corrosion rate by 70 mass% boiling nitric acid is less than 0.30 g / m 2 · hr. 請求項1〜3のいずれか1項に記載の溶接二相ステンレス鋼管を製造するに際し、常法に従って製造した溶接二相ステンレス鋼管を1000〜1100℃の温度に加熱した後、800℃以上の温度まで冷却速度3℃/s以上で冷却し、その後、直ちに6℃/s以上で冷却する固溶化熱処理を施すことを特徴とする溶接二相ステンレス鋼管の製造方法。
When manufacturing the welded duplex stainless steel pipe according to any one of claims 1 to 3, after heating the welded duplex stainless steel pipe manufactured according to a conventional method to a temperature of 1000 to 1100 ° C, a temperature of 800 ° C or higher. A method for producing a welded duplex stainless steel pipe, wherein the solution is cooled to a cooling rate of 3 ° C./s or more and then subjected to a solution heat treatment immediately cooled to 6 ° C./s or more.
JP2015148436A 2014-09-02 2015-07-28 Welded duplex stainless steel pipe and its manufacturing method Active JP6482075B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014178011 2014-09-02
JP2014178011 2014-09-02

Publications (2)

Publication Number Publication Date
JP2016053214A JP2016053214A (en) 2016-04-14
JP6482075B2 true JP6482075B2 (en) 2019-03-13

Family

ID=55744729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148436A Active JP6482075B2 (en) 2014-09-02 2015-07-28 Welded duplex stainless steel pipe and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6482075B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6771963B2 (en) * 2016-06-28 2020-10-21 日本冶金工業株式会社 Duplex stainless steel
JP7192483B2 (en) * 2018-12-20 2022-12-20 日本製鉄株式会社 Duplex stainless welded channel steel and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146890B2 (en) * 1994-12-02 2001-03-19 住友金属工業株式会社 Method for manufacturing duplex stainless steel welded pipe
JP3204065B2 (en) * 1996-01-30 2001-09-04 住友金属工業株式会社 Method for manufacturing duplex stainless steel welded pipe
JP5868206B2 (en) * 2011-03-09 2016-02-24 新日鐵住金ステンレス株式会社 Duplex stainless steel with excellent weld corrosion resistance
JP6265830B2 (en) * 2014-05-21 2018-01-24 新日鐵住金ステンレス株式会社 Method for improving corrosion resistance of duplex stainless steel welds

Also Published As

Publication number Publication date
JP2016053214A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
EP2492361B1 (en) High strength steel pipe with excellent toughness at low temperature and good sulfide stress corrosion cracking resistance
US9841124B2 (en) High-strength thick-walled electric resistance welded steel pipe having excellent low-temperature toughness and method of manufacturing the same
JP6047947B2 (en) Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
JP4609491B2 (en) Ferritic heat resistant steel
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
AU2014294080B2 (en) High-strength steel material for oil well and oil well pipes
JP6225997B2 (en) H-section steel and its manufacturing method
JP5765036B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JPWO2019168119A1 (en) Austenitic stainless steel welded joint
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP6482074B2 (en) Duplex stainless steel sheet and its manufacturing method
JP7277752B2 (en) Austenitic stainless steel material
WO2016059763A1 (en) Low alloy steel pipe for oil wells
JP6028863B2 (en) Seamless steel pipe for line pipe used in sour environment
US20190040480A1 (en) Seamless steel pipe and method for producing same
EP3342894A1 (en) Stainless steel pipe and method for producing same
JP2017206723A (en) Ti-CONTAINING FERRITIC STAINLESS STEEL SHEET FOR EXHAUST TUBE FLANGE COMPONENT AND MANUFACTURING METHOD
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP6482075B2 (en) Welded duplex stainless steel pipe and its manufacturing method
KR20220124238A (en) austenitic stainless steel
JP2017020054A (en) Stainless steel and stainless steel tube
JP2021139007A (en) Austenitic stainless steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190207

R150 Certificate of patent or registration of utility model

Ref document number: 6482075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250