JP6482020B2 - Coal gasification combined power generation facility - Google Patents

Coal gasification combined power generation facility Download PDF

Info

Publication number
JP6482020B2
JP6482020B2 JP2015065100A JP2015065100A JP6482020B2 JP 6482020 B2 JP6482020 B2 JP 6482020B2 JP 2015065100 A JP2015065100 A JP 2015065100A JP 2015065100 A JP2015065100 A JP 2015065100A JP 6482020 B2 JP6482020 B2 JP 6482020B2
Authority
JP
Japan
Prior art keywords
coal gasification
coal
gas
composition
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015065100A
Other languages
Japanese (ja)
Other versions
JP2016183640A (en
Inventor
長谷川 武治
武治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015065100A priority Critical patent/JP6482020B2/en
Publication of JP2016183640A publication Critical patent/JP2016183640A/en
Application granted granted Critical
Publication of JP6482020B2 publication Critical patent/JP6482020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、石炭ガス化ガスをガスタービンの燃料とした石炭ガス化複合発電設備に関する。 The present invention, the coal gasification gas about coal gasification combined power generation plant as fuel for gas turbines.

石炭は世界の広い地域に存在し、可採埋蔵量が多く、価格が安定しているため、供給安定性が高く発熱量あたりの価格が低廉である。かかる石炭を燃料とする火力発電の一つの方式として、石炭ガス化複合発電(IGCC:Integrated coal Gasfication Combined Cycle)が知られている。石炭ガス化複合発電では、石炭ガス化ガスを燃料としてガスタービンを駆動して電力を得ると共に、ガスタービンの排気熱を回収して蒸気を発生させ、発生した蒸気により蒸気タービンを駆動して電力を得ている(例えば、特許文献1参照)。   Coal exists in a large area of the world, has a large recoverable reserve, and has a stable price, so it has a high supply stability and a low price per calorific value. As one method of thermal power generation using coal as a fuel, an integrated coal gasfication combined cycle (IGCC) is known. In coal gasification combined cycle power generation, electric power is obtained by driving a gas turbine using coal gasification gas as fuel, exhaust gas from the gas turbine is recovered to generate steam, and the generated steam drives the steam turbine to generate electric power. (See, for example, Patent Document 1).

石炭ガス化ガスの組成は、石炭ガス化炉に投入される石炭の種類により異なり、石炭ガス化ガスの発熱量やガスタービンの燃焼器での燃焼温度が変化するのが現状である。このため、石炭の種類に拘わらず石炭ガス化炉への投入量を一定にすると、石炭の種類によって石炭ガス化ガスの発熱量が異なる(低下する)虞がある。発熱量が低い石炭を投入する場合、ガスタービンの出力(発電出力)を一定とするためには、石炭ガス化炉への石炭の投入量を増加させ、ガスタービンへの熱量の投入を増加させているのが実情であった。つまり、ガスタービンの出力(発電出力)を一定とするためには、石炭の種類により石炭の投入量を調整する必要があるのが実情であった。   The composition of the coal gasification gas differs depending on the type of coal charged into the coal gasification furnace, and the current situation is that the calorific value of the coal gasification gas and the combustion temperature in the combustor of the gas turbine change. For this reason, if the input amount to the coal gasification furnace is made constant regardless of the type of coal, the calorific value of the coal gasification gas may vary (decrease) depending on the type of coal. In order to keep the output (power generation output) of the gas turbine constant when coal with a low calorific value is input, the amount of coal input to the coal gasifier is increased and the amount of heat input to the gas turbine is increased. It was the actual situation. That is, in order to make the output (power generation output) of the gas turbine constant, the actual situation is that it is necessary to adjust the input amount of coal according to the type of coal.

特開2005―171148号公報JP 2005-171148 A

本発明は上記状況に鑑みてなされたもので、石炭ガス化炉に投入される石炭の種類に拘わらず一定の発電出力が得られる石炭ガス化複合発電設備を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a constant power output regardless of the type of coal is introduced into the coal gasifier is that obtained coal gasification combined power generation facility .

上記目的を達成するための請求項1に係る本発明の石炭ガス化複合発電設備は、石炭が投入され石炭ガス化ガスを得る石炭ガス化炉と、前記石炭ガス化炉で得られた石炭ガス化ガスが圧縮流体と共に投入されて燃焼されることで燃焼ガスを得る燃焼器と、前記燃焼器で得られた前記燃焼ガスを膨張して駆動力を得るタービンと、前記燃焼器に投入される前記石炭ガス化ガスの組成を導出する組成導出手段と、前記燃焼器もしくは前記石炭ガス化炉の少なくともいずれか一方に流体燃料を投入する流体燃料投入手段と、前記組成導出手段で導出された前記石炭ガス化ガスの組成に応じて、前記流体燃料投入手段による前記流体燃料の投入を制御する制御手段と、前記タービンの排気ガスの熱を回収して蒸気を発生させる排熱回収ボイラと、前記排熱回収ボイラで発生した蒸気が導入されて駆動力を得る蒸気タービンとを備え、前記流体燃料投入手段は、前記排熱回収ボイラに流体燃料の一部を投入して再燃させることで、蒸気量を増加させて、前記石炭ガス化ガスの組成に応じて、前記蒸気タービンの出力を増加させることを特徴とする。 In order to achieve the above object , the combined coal gasification combined power generation facility according to the present invention according to claim 1 includes a coal gasification furnace for obtaining coal gasification gas by inputting coal, and a coal gas obtained in the coal gasification furnace. A combustor that receives combustion gas together with a compressed fluid and combusts it to obtain combustion gas, a turbine that expands the combustion gas obtained by the combustor to obtain driving force, and is input to the combustor. Composition derivation means for deriving the composition of the coal gasification gas, fluid fuel injection means for supplying fluid fuel to at least one of the combustor or the coal gasification furnace, and the composition derivation means depending on the composition of the coal gasification gas, and control means for controlling the introduction of said fluid fuel by said fluid fuel input means, an exhaust heat recovery boiler to generate steam by recovering heat of exhaust gas of the turbine, the A steam turbine that obtains a driving force by introducing steam generated in the heat recovery boiler, and the fluid fuel input means supplies a part of the fluid fuel to the exhaust heat recovery boiler and re-burns it, so that the amount of steam And the output of the steam turbine is increased according to the composition of the coal gasification gas .

請求項1に係る本発明では、石炭ガス化炉で得られた石炭ガス化ガスが燃焼され、燃焼ガスがガスタービンで膨張されて駆動され発電出力が得られる。組成導出手段により導出された石炭ガス化ガスの組成に応じて、流体燃料投入手段による流体燃料の投入が制御され、例えば、石炭ガス化ガスの発熱量が低い状況であれば流体燃料を増加して燃焼器での燃焼温度を上昇させ、石炭ガス化ガスの発熱量が高い状況の時のガスタービンの出力と同等の出力を得る。
そして、石炭ガス化炉に投入される石炭の種類に拘わらず、一定の出力でガスタービンを駆動することができ、一定の発電出力を得ることができる石炭ガス化発電設備を備え、ガスタービンの排気ガスを排熱回収ボイラで熱回収して蒸気を得て、排熱回収ボイラで得られた蒸気により蒸気タービンを駆動させることができる。
In the present invention according to claim 1, the coal gasification gas obtained in the coal gasification furnace is combusted, and the combustion gas is expanded and driven by the gas turbine to obtain a power generation output. According to the composition of the coal gasification gas derived by the composition deriving means, the fluid fuel input by the fluid fuel injection means is controlled. For example, if the calorific value of the coal gasification gas is low, the fluid fuel is increased. As a result, the combustion temperature in the combustor is raised, and an output equivalent to the output of the gas turbine when the calorific value of the coal gasification gas is high is obtained.
The gas turbine is equipped with a coal gasification power generation facility that can drive a gas turbine with a constant output and obtain a constant power output regardless of the type of coal that is put into the coal gasification furnace. The exhaust gas can be heat recovered by the exhaust heat recovery boiler to obtain steam, and the steam turbine can be driven by the steam obtained by the exhaust heat recovery boiler.

これにより、石炭ガス化炉に投入される石炭の種類に拘わらず、一定の出力でガスタービンを駆動することができ、一定の発電出力を得ることができる。
そして、石炭ガス化炉に投入される石炭の種類に拘わらず一定の発電出力が得られる石炭ガス化発電設備を備えた石炭ガス化複合発電設備とすることが可能になる。
Thereby, irrespective of the kind of coal thrown into the coal gasifier, the gas turbine can be driven with a constant output, and a constant power generation output can be obtained.
And it becomes possible to set it as the coal gasification combined cycle power generation equipment provided with the coal gasification power generation equipment which can obtain fixed power generation output irrespective of the kind of coal thrown into a coal gasification furnace.

そして、請求項2に係る本発明の石炭ガス化複合発電設備は、請求項1に記載の石炭ガス化複合発電設備において、前記タービンで仕事を終えた排気ガスの通路に設けられ、アンモニアもしくは尿素を供給することにより前記排気ガスの脱硝を行う脱硝手段を備え、前記流体燃料は、前記脱硝手段に供給される前記アンモニアもしくは尿素であることを特徴とする。 And the coal gasification combined cycle facility of the present invention according to claim 2 is the coal gasification combined cycle facility according to claim 1, wherein the coal gasification combined cycle facility is provided in an exhaust gas passage that has finished work in the turbine, and is either ammonia or urea. The exhaust gas is provided with denitration means for denitrating the exhaust gas, and the fluid fuel is the ammonia or urea supplied to the denitration means.

請求項2に係る本発明では、系の内部に備えられた脱硝手段に用いられるアンモニアもしくは尿素を流体燃料として使用することができ、別途、流体燃料を供給するための設備を必要としない。   In the present invention according to claim 2, ammonia or urea used for the denitration means provided inside the system can be used as the fluid fuel, and no separate facility for supplying the fluid fuel is required.

また、請求項3に係る本発明の石炭ガス化複合発電設備は、請求項1もしくは請求項2に記載の石炭ガス化複合発電設備において、前記組成導出手段は、前記石炭ガス化炉に投入される石炭の種類を判断する炭種判断手段であることを特徴とする。 Further, the coal gasification combined cycle facility of the present invention according to claim 3, in coal gasification combined cycle power generation plant according to claim 1 or claim 2, wherein the composition deriving means is put into the coal gasifier It is a charcoal type judgment means for judging the type of coal.

請求項3に係る本発明では、石炭ガス化炉に投入される石炭の種類を判断することで、石炭ガス化ガスの組成を求め、流体燃料投入手段による流体燃料の投入を制御することができる。   In the present invention according to claim 3, the composition of the coal gasification gas can be obtained by determining the type of coal to be input to the coal gasification furnace, and the injection of fluid fuel by the fluid fuel input means can be controlled. .

また、請求項4に係る本発明の石炭ガス化複合発電設備は、請求項1もしくは請求項2に記載の石炭ガス化複合発電設備において、前記組成導出手段は、前記燃焼器に投入される前記石炭ガス化ガスの組成を検知する組成検知手段であることを特徴とする。 Moreover, the coal gasification combined cycle facility of the present invention according to claim 4 is the coal gasification combined cycle facility according to claim 1 or 2, wherein the composition derivation means is supplied to the combustor. It is a composition detection means for detecting the composition of coal gasification gas.

請求項4に係る本発明では、燃焼器に投入される石炭ガス化ガスの組成を検知することで、石炭ガス化ガスの組成を求め、流体燃料投入手段による流体燃料の投入を制御することができる。   In the present invention according to claim 4, the composition of the coal gasification gas input to the combustor is detected to determine the composition of the coal gasification gas, and the fluid fuel input by the fluid fuel input means can be controlled. it can.

本発明の石炭ガス化複合発電設備は、石炭ガス化炉に投入される石炭の種類に拘わらず一定の発電出力を得ることが可能な石炭ガス発電設備を備えた石炭ガス化複合発電設備となる。 IGCC plant of the present invention includes a coal gasification combined cycle power generation plant equipped with coal types a constant power output coal gasification power generation equipment which can obtain despite being charged into the coal gasifier Become.

本発明の一実施例に係る石炭ガス化発電設備を備えた石炭ガス化複合発電設備の概略系統図である。1 is a schematic system diagram of a combined coal gasification combined power generation facility including a coal gasification power generation facility according to an embodiment of the present invention. 石炭の種類毎の組成状況とアンモニア投入量との状況を説明する表図である。It is a table | surface figure explaining the condition of a composition condition for every kind of coal, and the condition of ammonia input.

図1には本発明の一実施例に係る石炭ガス化複合発電設備の全体の構成を表す概略系統を示してある。   FIG. 1 shows a schematic system representing the overall configuration of a combined coal gasification combined cycle facility according to an embodiment of the present invention.

本実施例の石炭ガス化複合発電設備1は、石炭ガス化炉2を備え、石炭ガス化炉2では石炭(石炭ミル3で作製された微粉炭)と酸化剤(酸素、空気)の反応により石炭ガス化ガスが生成される。石炭ガス化ガスは除塵されて熱交換器4で所定温度に調整され、ガス精製設備5で不純物が除去されて燃料ガスとされる。   The combined coal gasification combined power generation facility 1 of the present embodiment includes a coal gasification furnace 2, and in the coal gasification furnace 2, a reaction between coal (pulverized coal produced by the coal mill 3) and an oxidizing agent (oxygen, air). Coal gasification gas is produced. The coal gasification gas is dedusted and adjusted to a predetermined temperature by the heat exchanger 4, and impurities are removed by the gas purification equipment 5 to obtain fuel gas.

燃料ガスはタービン設備6の燃焼器7に投入される。タービン設備6は圧縮機11及びガスタービン(タービン)12を備え、圧縮機11で圧縮された圧縮空気と燃料ガスが燃焼器7に送られる。燃焼器7からの燃焼ガスはタービン12で膨張されて動力が得られ、発電機13が駆動される(石炭ガス化発電設備)。タービン12の排気ガスは排熱回収ボイラ14で熱回収され、脱硝装置15(脱硝手段)でNOが除去された後、煙突から大気に放出される。 The fuel gas is input to the combustor 7 of the turbine facility 6. The turbine equipment 6 includes a compressor 11 and a gas turbine (turbine) 12, and compressed air and fuel gas compressed by the compressor 11 are sent to the combustor 7. The combustion gas from the combustor 7 is expanded by the turbine 12 to obtain power, and the generator 13 is driven (coal gasification power generation facility). Exhaust gas turbine 12 is heat recovered by the waste heat recovery boiler 14, after the NO x is removed by the denitration apparatus 15 (denitration means) is released from a chimney into the atmosphere.

脱硝装置15にはアンモニア供給装置16(脱硝手段)からアンモニア(もしくは尿素)が供給され、排ガス中にアンモニアが投入されてNOが浄化される。アンモニア供給装置16からは、アンモニアが流体燃料として燃焼器7に供給できるようになっている(流体燃料投入手段)。尚、アンモニア供給装置16から、石炭ガス化炉2に流体燃料としてアンモニアを供給することも可能である(図中点線で示してある)。 Ammonia from the ammonia supply device 16 (denitration means) (or urea) is supplied to the denitration apparatus 15, the ammonia is turned NO x is purified in the exhaust gas. From the ammonia supply device 16, ammonia can be supplied as fluid fuel to the combustor 7 (fluid fuel input means). In addition, it is also possible to supply ammonia as fluid fuel from the ammonia supply device 16 to the coal gasification furnace 2 (shown by a dotted line in the figure).

圧縮機11及びタービン12と同軸状態に蒸気タービン18が接続され、蒸気タービン18には排熱回収ボイラ14からの蒸気が送られて動力が得られる。蒸気タービン18の排気蒸気は復水器19で凝縮され、復水器19で凝縮された復水が排熱回収ボイラ14に給水される。   A steam turbine 18 is connected coaxially to the compressor 11 and the turbine 12, and steam from the exhaust heat recovery boiler 14 is sent to the steam turbine 18 to obtain power. The exhaust steam of the steam turbine 18 is condensed by the condenser 19, and the condensed water condensed by the condenser 19 is supplied to the exhaust heat recovery boiler 14.

つまり、石炭ガス化複合発電設備1は、石炭ガス化炉2で得られた石炭ガス化ガスが燃焼器7で燃焼され、燃焼ガスがタービン12で膨張されて駆動され、発電機13により発電出力が得られる。タービン12の排気ガスは排熱回収ボイラ14で熱回収されて蒸気が得られ、排熱回収ボイラ14で得られた蒸気により蒸気タービン18が駆動される。   That is, in the coal gasification combined power generation facility 1, the coal gasification gas obtained in the coal gasification furnace 2 is combusted in the combustor 7, the combustion gas is expanded and driven by the turbine 12, and the generator 13 generates power output. Is obtained. The exhaust gas of the turbine 12 is heat recovered by the exhaust heat recovery boiler 14 to obtain steam, and the steam turbine 18 is driven by the steam obtained by the exhaust heat recovery boiler 14.

燃焼器7の上流側の燃料供給経路には燃焼器7に投入される石炭ガス化ガス(燃料ガス)の組成を検知する組成検知手段21(組成導出手段)が設けられ、組成検知手段21で検知された燃料ガスの組成の情報は制御装置22に送られる。制御装置22には微粉炭の種類の情報が入力される(組成導出手段:炭種判断手段)。   The fuel supply path upstream of the combustor 7 is provided with a composition detection means 21 (composition derivation means) for detecting the composition of the coal gasification gas (fuel gas) charged into the combustor 7. Information on the composition of the detected fuel gas is sent to the control device 22. Information on the type of pulverized coal is input to the control device 22 (composition derivation means: charcoal type determination means).

制御装置22からは、アンモニア供給装置16に対し、組成検知手段21で検知された燃料ガスの組成、及び、微粉炭の種類の情報に応じて類推された燃料ガスの組成に応じて、燃焼器7(石炭ガス化ガス)にアンモニアを送る指令が出力される。つまり、制御装置22は、燃料ガスの組成(微粉炭の種類)に応じて、燃焼器7に投入するアンモニアの量を制御する。   From the control device 22, the combustor according to the composition of the fuel gas detected by the composition detection means 21 and the composition of the fuel gas estimated according to the information on the type of pulverized coal from the ammonia supply device 16. A command to send ammonia to 7 (coal gasification gas) is output. That is, the control device 22 controls the amount of ammonia put into the combustor 7 according to the composition of fuel gas (type of pulverized coal).

例えば、組成検知手段21で検知された燃料ガスの組成、及び、微粉炭の種類の情報により、石炭ガス化ガス(燃料ガス)の発熱量が低い状況であると判断された場合、アンモニアを増加して燃焼器7での燃焼温度を上昇させ、石炭ガス化ガス(燃料ガス)の発熱量が高い状況の時のタービン12の出力と同等の出力を得るようにしている。   For example, if it is determined that the calorific value of the coal gasification gas (fuel gas) is low based on the fuel gas composition detected by the composition detection means 21 and the type of pulverized coal, the ammonia is increased. Thus, the combustion temperature in the combustor 7 is raised, and an output equivalent to the output of the turbine 12 when the calorific value of the coal gasification gas (fuel gas) is high is obtained.

これにより、石炭ガス化炉2に投入される石炭の種類に拘わらず、一定の出力でタービン12を駆動することができ、一定の発電出力を得ることができる。   As a result, the turbine 12 can be driven with a constant output regardless of the type of coal charged into the coal gasification furnace 2, and a constant power generation output can be obtained.

そして、系内の脱硝装置15に供給するアンモニアを流体燃料として燃焼器7に供給するので、別途、アンモニアを供給するための設備を必要としない。尚、燃焼器7に供給する流体燃料としては、アンモニア供給装置16(脱硝手段)からのアンモニアに限定されず、専用のアンモニア(もしくは尿素)を供給する手段を設けることもできる。また、燃焼器7に供給する流体燃料としては、他の発電設備の系統から流体燃料(アンモニアもしくは尿素)を供給する手段を設けることもできる。   And since the ammonia supplied to the denitration device 15 in the system is supplied to the combustor 7 as a fluid fuel, a separate facility for supplying ammonia is not required. The fluid fuel supplied to the combustor 7 is not limited to ammonia from the ammonia supply device 16 (denitration means), and means for supplying exclusive ammonia (or urea) can also be provided. In addition, as the fluid fuel supplied to the combustor 7, means for supplying fluid fuel (ammonia or urea) from another power generation facility system may be provided.

また、湿式のガス精製設備を備えた場合、ガス精製設備で洗い流されたアンモニアを燃焼器7に供給することも可能である。また、流体燃料としては、液化天然ガスやガス化ガス等他の流体燃料を用いることも可能である。尚、系内の脱硝装置15に供給するアンモニアの一部を排熱回収ボイラ14で再燃して蒸気量を増やし、蒸気タービン18の出力を増加させて石炭の種類の違いに対応させることも可能である。   In addition, when a wet gas purification facility is provided, it is possible to supply ammonia washed away by the gas purification facility to the combustor 7. As the fluid fuel, other fluid fuels such as liquefied natural gas and gasified gas can be used. A part of ammonia supplied to the denitration device 15 in the system can be reburned by the exhaust heat recovery boiler 14 to increase the amount of steam, and the output of the steam turbine 18 can be increased to cope with the difference in the type of coal. It is.

図2に基づいて、異なる種類の微粉炭(石炭)を石炭ガス化炉2に投入した時の燃焼器7での燃料ガス(石炭ガス化ガス)の組成の状況を説明する。   Based on FIG. 2, the state of the composition of the fuel gas (coal gasification gas) in the combustor 7 when different types of pulverized coal (coal) is charged into the coal gasification furnace 2 will be described.

ケースIは、石炭A(例えば瀝青炭)を石炭ガス化炉2に投入した例で、基準となる発熱量が得られる石炭の例である。燃焼器7内の燃料の成分は、COが31.0%、Hが11.0%、CHが0.8%、COが3.2%、N他が54.0%である。石炭Aを用いた場合、発熱量が1300kcal/Nmで、燃焼温度が1500℃となった。ケースIの発熱量が基準とされ発熱量比が1.0とされる。 Case I is an example in which coal A (for example, bituminous coal) is put into the coal gasification furnace 2 and is an example of coal that can obtain a reference calorific value. Component of the fuel in the combustor 7, CO is 31.0%, H 2 is 11.0%, CH 4 is 0.8%, CO 2 is 3.2%, N 2 others at 54.0% is there. When coal A was used, the calorific value was 1300 kcal / Nm 3 and the combustion temperature was 1500 ° C. The calorific value of case I is used as a reference, and the calorific value ratio is 1.0.

ケースIIは、石炭B(例えば瀝青炭)を石炭ガス化炉2に投入した例で、燃焼器7内の燃料の成分は、COが28.0%、Hが10.0%、CHが0.3%、COが3.7%、N他が58.0%である。石炭Bを用いた場合、発熱量が1190kcal/Nmで、燃焼温度が1410℃となった。ケースIに対するケースIIの発熱量比は、0.9となっている。 Case II is coal B (e.g. bituminous coal) in the example which supplied to the coal gasification furnace 2, the components of the fuel in the combustor 7, CO is 28.0%, H 2 is 10.0%, CH 4 is 0.3%, CO 2 is 3.7%, N 2 and others are 58.0%. When coal B was used, the calorific value was 1190 kcal / Nm 3 and the combustion temperature was 1410 ° C. The calorific value ratio of Case II to Case I is 0.9.

ケースIIIは、石炭C(例えば亜瀝青炭)を石炭ガス化炉2に投入した例で、燃焼器7内の燃料の成分は、COが24.0%、Hが9.0%、CHが0.3%、COが2.7%、N他が64.0%である。石炭Cを用いた場合、発熱量が1010kcal/Nmで、燃焼温度が1270℃となった。ケースIに対するケースIIIの発熱量比は、0.8となっている。 Case III is an example in which coal C (for example, subbituminous coal) is charged into the coal gasification furnace 2, and the components of the fuel in the combustor 7 are 24.0% for CO, 9.0% for H 2 , CH 4 Is 0.3%, CO 2 is 2.7%, N 2 and others are 64.0%. When using coal C, the calorific value was 1010 kcal / Nm 3 and the combustion temperature was 1270 ° C. The calorific value ratio of Case III to Case I is 0.8.

ケースIからケースIIIに示したように、石炭の種類により、石炭ガス化ガス(燃料ガス)の燃焼器7内での発熱量が異なっている。ケースIの石炭Aに対して、ケースIIIの石炭Cを使用する際に、アンモニア(NH)を加えることで、燃焼器7での燃焼温度が上昇する(ケースIV、ケースV)。 As shown in Case I to Case III, the calorific value of the coal gasification gas (fuel gas) in the combustor 7 varies depending on the type of coal. The combustion temperature in the combustor 7 rises by adding ammonia (NH 3 ) when using the case C coal C to the case A coal A (case IV, case V).

ケースIVは、石炭C(例えば亜瀝青炭)とNH(5.8vol%)を石炭ガス化炉2に投入した例で、燃焼器7内の燃料の成分は、COが22.0vol%、Hが8.0vol%、CHが0.2vol%、COが3.0vol%、N他が61.0vol%、NHが5.8vol%である。石炭CにNH(5.8vol%)を加えた場合、発熱量が1190kcal/Nmになり、発熱量比がケースIIと略同等の、0.9となっている。 Case IV is an example in which coal C (for example, subbituminous coal) and NH 3 (5.8 vol%) are charged into the coal gasification furnace 2, and the fuel components in the combustor 7 are CO 22.0 vol%, H 2 8.0vol%, CH 4 is 0.2 vol%, CO 2 3.0vol%, N 2 others 61.0vol%, the NH 3 is 5.8vol%. When NH 3 (5.8 vol%) is added to coal C, the calorific value is 1190 kcal / Nm 3 , and the calorific value ratio is 0.9, which is substantially equivalent to Case II.

ケースVは、石炭C(例えば亜瀝青炭)とNH(9.8vol%)を石炭ガス化炉2に投入した例で、燃焼器7内の燃料の成分は、COが21.0vol%、Hが8.0vol%、CHが0.2vol%、COが3.0vol%、N他が58.0vol%、NHが9.8vol%である。石炭CにNH(9.8vol%)を加えた場合、発熱量が1300kcal/Nmになり、発熱量比がケースIと同等の、1.0となっている。 Case V is an example in which coal C (for example, subbituminous coal) and NH 3 (9.8 vol%) are charged into the coal gasification furnace 2, and the fuel components in the combustor 7 are CO 21.0 vol%, H 2 8.0vol%, CH 4 is 0.2 vol%, CO 2 3.0vol%, N 2 others 58.0vol%, the NH 3 is 9.8vol%. When NH 3 (9.8 vol%) is added to coal C, the calorific value is 1300 kcal / Nm 3 and the calorific value ratio is 1.0, which is the same as in Case I.

ケースIV、ケースVで示したように、基準となる石炭Aに対する発熱量比が0.8の石炭Cに対し、NHを加えることで、燃焼器7での熱量が増熱され、発熱量が高い状況の時の(ケースIの時の)発熱量を得ることができる。このため、石炭の種類が異なっても、即ち、発熱量が高い石炭Aに代えて石炭Cを使用しても、石炭ガス化ガス(燃料ガス)の発熱量が高い状況の時のタービン12の出力と同等の出力を得ることができる。 As shown in Case IV and Case V, the amount of heat in the combustor 7 is increased by adding NH 3 to coal C, which has a calorific value ratio of 0.8 relative to the reference coal A, and the calorific value is increased. It is possible to obtain a calorific value at the time of a high situation (in case I). For this reason, even if the type of coal is different, that is, even when coal C is used instead of coal A having a high calorific value, the heat generation amount of the coal gasification gas (fuel gas) is high. An output equivalent to the output can be obtained.

従って、石炭ガス化炉2に投入される石炭の種類に拘わらず、即ち、石炭Aを使用しても、石炭Cを使用しても、一定の出力でタービン12を駆動することができ、一定の発電出力を得ることができる。これにより、石炭ガス化複合発電設備1は、石炭ガス化炉2に投入される石炭の種類に拘わらず一定の発電出力を得ることが可能になる。   Therefore, the turbine 12 can be driven at a constant output regardless of the type of coal charged into the coal gasification furnace 2, that is, whether coal A or coal C is used. The power generation output can be obtained. Thereby, the coal gasification combined power generation facility 1 can obtain a constant power generation output regardless of the type of coal put into the coal gasification furnace 2.

また、本発明は、石炭ガス化ガスをガスタービンの燃料とした石炭ガス化発電設備を備えた石炭ガス化複合発電設備の産業分野で利用することができる。   Moreover, this invention can be utilized in the industrial field | area of the coal gasification combined cycle power generation equipment provided with the coal gasification power generation equipment which used coal gasification gas as the fuel of the gas turbine.

1 石炭ガス化複合発電設備
2 石炭ガス化炉
3 石炭ミル
4 熱交換器
5 ガス精製設備
6 タービン設備
7 燃焼器
11 圧縮機
12 タービン
13 発電機
14 排熱回収ボイラ
15 脱硝装置
16 アンモニア供給装置
18 蒸気タービン
19 復水器
21 組成検出手段
22 制御装置
DESCRIPTION OF SYMBOLS 1 Coal gasification combined cycle power generation facility 2 Coal gasification furnace 3 Coal mill 4 Heat exchanger 5 Gas refinement facility 6 Turbine facility 7 Combustor 11 Compressor 12 Turbine 13 Generator 14 Waste heat recovery boiler 15 Denitration device 16 Ammonia supply device 18 Steam turbine 19 Condenser 21 Composition detection means 22 Control device

Claims (4)

石炭が投入され石炭ガス化ガスを得る石炭ガス化炉と、
前記石炭ガス化炉で得られた石炭ガス化ガスが圧縮流体と共に投入されて燃焼されることで燃焼ガスを得る燃焼器と、
前記燃焼器で得られた前記燃焼ガスを膨張して駆動力を得るタービンと、
前記燃焼器に投入される前記石炭ガス化ガスの組成を導出する組成導出手段と、
前記燃焼器もしくは前記石炭ガス化炉の少なくともいずれか一方に流体燃料を投入する流体燃料投入手段と、
前記組成導出手段で導出された前記石炭ガス化ガスの組成に応じて、前記流体燃料投入手段による前記流体燃料の投入を制御する制御手段と
前記タービンの排気ガスの熱を回収して蒸気を発生させる排熱回収ボイラと、
前記排熱回収ボイラで発生した蒸気が導入されて駆動力を得る蒸気タービンとを備え、
前記流体燃料投入手段は、
前記排熱回収ボイラに流体燃料の一部を投入して再燃させることで、蒸気量を増加させて、前記石炭ガス化ガスの組成に応じて、前記蒸気タービンの出力を増加させる
ことを特徴とする石炭ガス化複合発電設備
A coal gasifier that is supplied with coal to obtain coal gasification gas;
A combustor that obtains combustion gas by charging the coal gasification gas obtained in the coal gasification furnace together with the compressed fluid and burning it;
A turbine that obtains driving force by expanding the combustion gas obtained in the combustor;
A composition derivation means for deriving a composition of the coal gasification gas charged into the combustor;
Fluid fuel input means for supplying fluid fuel to at least one of the combustor or the coal gasifier;
Control means for controlling input of the fluid fuel by the fluid fuel input means according to the composition of the coal gasification gas derived by the composition derivation means ;
An exhaust heat recovery boiler that recovers heat of the exhaust gas of the turbine and generates steam;
A steam turbine in which steam generated in the exhaust heat recovery boiler is introduced to obtain driving force;
The fluid fuel input means includes
A part of fluid fuel is put into the exhaust heat recovery boiler and reburned to increase the amount of steam, and the output of the steam turbine is increased according to the composition of the coal gasification gas. Coal gasification combined power generation facility .
請求項1に記載の石炭ガス化複合発電設備において、
前記タービンで仕事を終えた排気ガスの通路に設けられ、アンモニアもしくは尿素を供給することにより前記排気ガスの脱硝を行う脱硝手段を備え、
前記流体燃料は、前記脱硝手段に供給される前記アンモニアもしくは尿素である
ことを特徴とする石炭ガス化複合発電設備
In the coal gasification combined cycle facility according to claim 1,
Provided in a passage of exhaust gas that has finished work in the turbine, comprising denitration means for denitrating the exhaust gas by supplying ammonia or urea;
The fluid fuel is coal gasification combined cycle facility, characterized in that said ammonia or urea is supplied to the denitration means.
請求項1もしくは請求項2に記載の石炭ガス化複合発電設備において、
前記組成導出手段は、前記石炭ガス化炉に投入される石炭の種類を判断する炭種判断手段である
ことを特徴とする石炭ガス化複合発電設備
In the coal gasification combined cycle facility according to claim 1 or 2,
The coal gasification combined power generation facility , wherein the composition derivation means is a coal type judgment means for judging a type of coal to be input into the coal gasification furnace.
請求項1もしくは請求項2に記載の石炭ガス化複合発電設備において、
前記組成導出手段は、前記燃焼器に投入される前記石炭ガス化ガスの組成を検知する組成検知手段である
ことを特徴とする石炭ガス化複合発電設備
In the coal gasification combined cycle facility according to claim 1 or 2,
The coal gasification combined power generation facility , wherein the composition derivation means is a composition detection means for detecting a composition of the coal gasification gas charged into the combustor.
JP2015065100A 2015-03-26 2015-03-26 Coal gasification combined power generation facility Active JP6482020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065100A JP6482020B2 (en) 2015-03-26 2015-03-26 Coal gasification combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065100A JP6482020B2 (en) 2015-03-26 2015-03-26 Coal gasification combined power generation facility

Publications (2)

Publication Number Publication Date
JP2016183640A JP2016183640A (en) 2016-10-20
JP6482020B2 true JP6482020B2 (en) 2019-03-13

Family

ID=57242635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065100A Active JP6482020B2 (en) 2015-03-26 2015-03-26 Coal gasification combined power generation facility

Country Status (1)

Country Link
JP (1) JP6482020B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6855874B2 (en) 2017-03-27 2021-04-07 株式会社Ihi Combustion equipment and gas turbine
CN107355301A (en) * 2017-07-06 2017-11-17 华电电力科学研究院 Peak regulation Gas Generator Set cold start movable type denitration control system and method
JP6978277B2 (en) * 2017-10-27 2021-12-08 一般財団法人電力中央研究所 Coal gasification power generation equipment
CN107789984B (en) * 2017-10-30 2019-09-20 清华大学 A kind of denitrating system and method for gas turbine
JP7140726B2 (en) * 2019-08-28 2022-09-21 三菱重工業株式会社 Carbon-based fuel gasification power generation system
JP7376744B1 (en) 2023-07-13 2023-11-08 一般財団法人電力中央研究所 Reactive nitrogen recovery system in combustion process, power generation equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268972B2 (en) * 1996-04-26 2002-03-25 東北電力株式会社 Coal type property discrimination method
JP4681460B2 (en) * 2006-01-18 2011-05-11 三菱重工業株式会社 Gasification combined power generation facility
WO2010082359A1 (en) * 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP5427579B2 (en) * 2009-12-09 2014-02-26 三菱重工業株式会社 Coal gasification combined power generation facility
JP5900972B2 (en) * 2013-03-22 2016-04-06 一般財団法人電力中央研究所 NH3 cogeneration plant

Also Published As

Publication number Publication date
JP2016183640A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6482020B2 (en) Coal gasification combined power generation facility
Ryzhkov et al. Technological solutions for an advanced IGCC plant
CA2743176C (en) Blast furnace iron production with integrated power generation
JP6482021B2 (en) Power generation equipment
JP2016183641A (en) Power generating facility
JP2010285564A (en) Coal gasification furnace, method and program for controlling the same, and coal gasification combined power generator equipped with the furnace
JP5627724B2 (en) Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility
JP5642657B2 (en) Fuel gasification system, control method and control program therefor, and fuel gasification combined power generation system including fuel gasification system
US6237320B1 (en) Removal of inert gases from process gases prior to compression in a gas turbine or combined cycle power plant
US20120285176A1 (en) Integration of coal fired steam plants with integrated gasification combined cycle power plants
JP2014159925A5 (en)
JP5804888B2 (en) Control method for gas turbine power plant, gas turbine power plant, control method for carbon-containing fuel gasifier, and carbon-containing fuel gasifier
US6314715B1 (en) Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
JP4095829B2 (en) Char circulation type coal gasification power plant system
US5067317A (en) Process for generating electricity in a pressurized fluidized-bed combustor system
KR101219772B1 (en) Integrated gasification combined cycle power system
JP5151921B2 (en) Combined power generation method and apparatus using two-column gasifier
JP6402075B2 (en) Coal gasification combined power plant
JP2014137978A (en) Hybrid power generating device and hybrid power generating method using fuel cell
JP2000355693A (en) Coal gasification equipment
JP2011163294A (en) Coal-gasified gas supply plant
WO2009034285A2 (en) Improved power plant
JP5808465B2 (en) Gasification furnace start-up method, gasification furnace, and gasification combined power generation facility
KR101592765B1 (en) Combined cycle power generation system
JP2009174025A (en) Method for use of blast furnace gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6482020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150